1
|
Xing D, Zhao T, Mao C, Han Z, Cai W, Zhang T, Mei D, Xie W, Yu J, Wu Z, Chen Z, Feng S, Shen X, Xue X, Xiang D. PUF60-Regulated Isoform Switching of MAZ Modulates Gastric Cancer Cell Migration. Cancer Med 2025; 14:e70977. [PMID: 40411278 PMCID: PMC12102611 DOI: 10.1002/cam4.70977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/17/2025] [Accepted: 05/08/2025] [Indexed: 05/26/2025] Open
Abstract
BACKGROUND As an essential transcription factor, Myc-associated zinc-finger protein (MAZ) is frequently upregulated in many human tumors and is a well-documented oncogene. However, we found high expression of MAZ was closely associated with good survival outcomes in patients with stomach adenocarcinoma (STAD), and the underlying mechanism involved remains to be elucidated. We hypothesize that alternative splicing of MAZ plays an important role. METHODS Pan-cancer analysis of MAZ expression and prognostic significance was performed using The Cancer Genome Atlas (TCGA) data, with emphasis on its divergent prognostic impact in gastric cancer (GC). MAZ protein levels were further validated in 356 GC tissue samples via immunohistochemistry. Functional investigations encompassed MAZ knockout (KO) and isoform-specific rescue experiments to assess GC cell migration, alongside quantification of MAZ alternative splicing rates (PSI). Additionally, RNA immunoprecipitation sequencing (RIP-seq) identified PUF60-mediated regulation of MAZ isoforms. RESULTS MAZ was upregulated in GC but served as an independent protective prognostic factor. MAZ-KO enhanced GC cell migration, while isoform-specific re-expression revealed divergent roles: MAZ-2 promoted migration, whereas MAZ-1 and MAZ-3 suppressed it. Notably, MAZ-2 is highly expressed in GC and is associated with poor survival prognosis of patients. Lower PSI values of MAZ-2 were detected in GC. MAZ transcripts were directly bound by PUF60. PUF60 knockdown caused MAZ splice isoform switch, thereby enhancing GC cell migration. CONCLUSION The prognostic difference of MAZ in GC stems from isoform-specific functional antagonism, with cell migration phenotypes governed by the MAZ-1/3 versus MAZ-2 ratio. Targeting MAZ alternative splicing, particularly via PUF60 modulation, represents a novel therapeutic strategy.
Collapse
Affiliation(s)
- Dong Xing
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer‐Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
| | - Ting Zhao
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer‐Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
| | - Chenchen Mao
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer‐Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
| | - Zheng Han
- Department of General SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Wanxia Cai
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer‐Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
| | - Teming Zhang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer‐Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
| | - Dianfeng Mei
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer‐Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
| | - Wangkai Xie
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer‐Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
| | - Jiaye Yu
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer‐Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
| | - Zhonghan Wu
- Department of General SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhiyuan Chen
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer‐Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
| | - Shiyu Feng
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer‐Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
| | - Xian Shen
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer‐Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
- Department of General SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of General SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer‐Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
- Department of General SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Dan Xiang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer‐Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
2
|
van Haaren MJH, Steller LB, Vastert SJ, Calis JJA, van Loosdregt J. Get Spliced: Uniting Alternative Splicing and Arthritis. Int J Mol Sci 2024; 25:8123. [PMID: 39125692 PMCID: PMC11311815 DOI: 10.3390/ijms25158123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Immune responses demand the rapid and precise regulation of gene protein expression. Splicing is a crucial step in this process; ~95% of protein-coding gene transcripts are spliced during mRNA maturation. Alternative splicing allows for distinct functional regulation, as it can affect transcript degradation and can lead to alternative functional protein isoforms. There is increasing evidence that splicing can directly regulate immune responses. For several genes, immune cells display dramatic changes in isoform-level transcript expression patterns upon activation. Recent advances in long-read RNA sequencing assays have enabled an unbiased and complete description of transcript isoform expression patterns. With an increasing amount of cell types and conditions that have been analyzed with such assays, thousands of novel transcript isoforms have been identified. Alternative splicing has been associated with autoimmune diseases, including arthritis. Here, GWASs revealed that SNPs associated with arthritis are enriched in splice sites. In this review, we will discuss how alternative splicing is involved in immune responses and how the dysregulation of alternative splicing can contribute to arthritis pathogenesis. In addition, we will discuss the therapeutic potential of modulating alternative splicing, which includes examples of spliceform-based biomarkers for disease severity or disease subtype, splicing manipulation using antisense oligonucleotides, and the targeting of specific immune-related spliceforms using antibodies.
Collapse
Affiliation(s)
- Maurice J. H. van Haaren
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Levina Bertina Steller
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Division of Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, 3584 CX Utrecht, The Netherlands
| | - Jorg J. A. Calis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
3
|
Lo A, McSharry M, Berger AH. Oncogenic KRAS alters splicing factor phosphorylation and alternative splicing in lung cancer. BMC Cancer 2022; 22:1315. [PMID: 36522653 PMCID: PMC9756471 DOI: 10.1186/s12885-022-10311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Alternative RNA splicing is widely dysregulated in cancers including lung adenocarcinoma, where aberrant splicing events are frequently caused by somatic splice site mutations or somatic mutations of splicing factor genes. However, the majority of mis-splicing in cancers is unexplained by these known mechanisms. We hypothesize that the aberrant Ras signaling characteristic of lung cancers plays a role in promoting the alternative splicing observed in tumors. METHODS We recently performed transcriptome and proteome profiling of human lung epithelial cells ectopically expressing oncogenic KRAS and another cancer-associated Ras GTPase, RIT1. Unbiased analysis of phosphoproteome data identified altered splicing factor phosphorylation in KRAS-mutant cells, so we performed differential alternative splicing analysis using rMATS to identify significantly altered isoforms in lung epithelial cells. To determine whether these isoforms were uniquely regulated by KRAS, we performed a large-scale splicing screen in which we generated over 300 unique RNA sequencing profiles of isogenic A549 lung adenocarcinoma cells ectopically expressing 75 different wild-type or variant alleles across 28 genes implicated in lung cancer. RESULTS Mass spectrometry data showed widespread downregulation of splicing factor phosphorylation in lung epithelial cells expressing mutant KRAS compared to cells expressing wild-type KRAS. We observed alternative splicing in the same cells, with 2196 and 2416 skipped exon events in KRASG12V and KRASQ61H cells, respectively, 997 of which were shared (p < 0.001 by hypergeometric test). In the high-throughput splicing screen, mutant KRAS induced the greatest number of differential alternative splicing events, second only to the RNA binding protein RBM45 and its variant RBM45M126I. We identified ten high confidence cassette exon events across multiple KRAS variants and cell lines. These included differential splicing of the Myc Associated Zinc Finger (MAZ). As MAZ regulates expression of KRAS, this splice variant may be a mechanism for the cell to modulate wild-type KRAS levels in the presence of oncogenic KRAS. CONCLUSION Proteomic and transcriptomic profiling of lung epithelial cells uncovered splicing factor phosphorylation and mRNA splicing events regulated by oncogenic KRAS. These data suggest that in addition to widespread transcriptional changes, the Ras signaling pathway can promote post-transcriptional splicing changes that may contribute to oncogenic processes.
Collapse
Affiliation(s)
- April Lo
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Maria McSharry
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alice H Berger
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
4
|
Evolutionarily conservative and non-conservative regulatory networks during primate interneuron development revealed by single-cell RNA and ATAC sequencing. Cell Res 2022; 32:425-436. [PMID: 35273378 PMCID: PMC9061815 DOI: 10.1038/s41422-022-00635-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/26/2022] [Indexed: 12/27/2022] Open
Abstract
The differences in size and function between primate and rodent brains, and the association of disturbed excitatory/inhibitory balance with many neurodevelopmental disorders highlight the importance to study primate ganglionic eminences (GEs) development. Here we used single-cell RNA and ATAC sequencing to characterize the emergence of cell diversity in monkey and human GEs where most striatal and cortical interneurons are generated. We identified regional and temporal diversity among progenitor cells which give rise to a variety of interneurons. These cells are specified within the primate GEs by well conserved gene regulatory networks, similar to those identified in mice. However, we detected, in human, several novel regulatory pathways or factors involved in the specification and migration of interneurons. Importantly, comparison of progenitors between our human and published mouse GE datasets led to the discovery and confirmation of outer radial glial cells in GEs in human cortex. Our findings reveal both evolutionarily conservative and nonconservative regulatory networks in primate GEs, which may contribute to their larger brain sizes and more complex neural networks compared with mouse.
Collapse
|
5
|
Gañez-Zapater A, Mackowiak SD, Guo Y, Tarbier M, Jordán-Pla A, Friedländer MR, Visa N, Östlund Farrants AK. The SWI/SNF subunit BRG1 affects alternative splicing by changing RNA binding factor interactions with nascent RNA. Mol Genet Genomics 2022; 297:463-484. [PMID: 35187582 PMCID: PMC8960663 DOI: 10.1007/s00438-022-01863-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/23/2022] [Indexed: 11/29/2022]
Abstract
BRG1 and BRM are ATPase core subunits of the human SWI/SNF chromatin remodelling complexes mainly associated with transcriptional initiation. They also have a role in alternative splicing, which has been shown for BRM-containing SWI/SNF complexes at a few genes. Here, we have identified a subset of genes which harbour alternative exons that are affected by SWI/SNF ATPases by expressing the ATPases BRG1 and BRM in C33A cells, a BRG1- and BRM-deficient cell line, and analysed the effect on splicing by RNA sequencing. BRG1- and BRM-affected sub-sets of genes favouring both exon inclusion and exon skipping, with only a minor overlap between the ATPase. Some of the changes in alternative splicing induced by BRG1 and BRM expression did not require the ATPase activity. The BRG1-ATPase independent included exons displayed an exon signature of a high GC content. By investigating three genes with exons affected by the BRG-ATPase-deficient variant, we show that these exons accumulated phosphorylated RNA pol II CTD, both serine 2 and serine 5 phosphorylation, without an enrichment of the RNA polymerase II. The ATPases were recruited to the alternative exons, together with both core and signature subunits of SWI/SNF complexes, and promoted the binding of RNA binding factors to chromatin and RNA at the alternative exons. The interaction with the nascent RNP, however, did not reflect the association to chromatin. The hnRNPL, hnRNPU and SAM68 proteins associated with chromatin in cells expressing BRG1 and BRM wild type, but the binding of hnRNPU to the nascent RNP was excluded. This suggests that SWI/SNF can regulate alternative splicing by interacting with splicing-RNA binding factor and influence their binding to the nascent pre-mRNA particle.
Collapse
Affiliation(s)
- Antoni Gañez-Zapater
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, The Arrhenius Laboratories F4, 106 91, Stockholm, Sweden
- Center for Genomic Regulation, 08003, Barcelona, Spain
| | - Sebastian D Mackowiak
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Yuan Guo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, The Arrhenius Laboratories F4, 106 91, Stockholm, Sweden
| | - Marcel Tarbier
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Antonio Jordán-Pla
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, The Arrhenius Laboratories F4, 106 91, Stockholm, Sweden
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencies Biológicas, Valencia University, C/Dr. Moliner, 50, 46100, Burjassot, Spain
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Neus Visa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, The Arrhenius Laboratories F4, 106 91, Stockholm, Sweden
| | - Ann-Kristin Östlund Farrants
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, The Arrhenius Laboratories F4, 106 91, Stockholm, Sweden.
| |
Collapse
|
6
|
Tissue and cell-type-specific transduction using rAAV vectors in lung diseases. J Mol Med (Berl) 2021; 99:1057-1071. [PMID: 34021360 DOI: 10.1007/s00109-021-02086-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Gene therapy of genetically determined diseases, including some pathologies of the respiratory system, requires an efficient method for transgene delivery. Recombinant adeno-associated viral (rAAV) vectors are well studied and employed in gene therapy, as they are relatively simple and low immunogenic and able to efficiently transduce eukaryotic cells. To date, many natural and artificial (with modified capsids) AAV serotypes have been isolated, demonstrating preferential tropism toward different tissues and cells in accordance with the prevalent receptors on the cell surface. However, rAAV-mediated delivery is not strictly specific due to wide tropism of some viral serotypes. Thus, the development of the methods allowing modulating specificity of these vectors could be beneficial in some cases. This review describes various approaches for retargeting rAAV to respiratory cells, for example, using different types of capsid modifications and regulation of a transgene expression by tissue-specific promoters. Part of the review is devoted to the issues of transduction of stem and progenitor lung cells using AAV, which is a complicated task today.
Collapse
|
7
|
Myc-Associated Zinc Finger Protein Regulates the Proinflammatory Response in Colitis and Colon Cancer via STAT3 Signaling. Mol Cell Biol 2018; 38:MCB.00386-18. [PMID: 30181395 DOI: 10.1128/mcb.00386-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
Myc-associated zinc finger (MAZ) is a transcription factor highly upregulated in chronic inflammatory disease and several human cancers. In the present study, we found that MAZ protein is highly expressed in human ulcerative colitis and colon cancer. However, the precise role for MAZ in the progression of colitis and colon cancer is not well defined. To determine the function of MAZ, a novel mouse model of intestinal epithelial cell-specific MAZ overexpression was generated. Expression of MAZ in intestinal epithelial cells was sufficient to enhance inflammatory injury in two complementary models of colitis. Moreover, MAZ expression increased tumorigenesis in an in vivo model of inflammation-induced colon cancer and was important for growth of human colon cancer cell lines in vitro and in vivo Mechanistically, MAZ is critical in the regulation of oncogenic STAT3 signaling. MAZ-expressing mice have enhanced STAT3 activation in the acute response to colitis. Moreover, MAZ was essential for cytokine- and bacterium-induced STAT3 signaling in colon cancer cells. Furthermore, we show that STAT3 is essential for MAZ-induced colon tumorigenesis using a chemical inhibitor. These data indicate an important functional role for MAZ in the inflammatory progression of colon cancer through regulation of STAT3 signaling and suggest that MAZ is a potential therapeutic target to dampen STAT3 signaling in colon cancer.
Collapse
|
8
|
Álvaro-Blanco J, Urso K, Chiodo Y, Martín-Cortázar C, Kourani O, Arco PGD, Rodríguez-Martínez M, Calonge E, Alcamí J, Redondo JM, Iglesias T, Campanero MR. MAZ induces MYB expression during the exit from quiescence via the E2F site in the MYB promoter. Nucleic Acids Res 2017; 45:9960-9975. [PMID: 28973440 PMCID: PMC5622404 DOI: 10.1093/nar/gkx641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/13/2017] [Indexed: 12/27/2022] Open
Abstract
Most E2F-binding sites repress transcription through the recruitment of Retinoblastoma (RB) family members until the end of the G1 cell-cycle phase. Although the MYB promoter contains an E2F-binding site, its transcription is activated shortly after the exit from quiescence, before RB family members inactivation, by unknown mechanisms. We had previously uncovered a nuclear factor distinct from E2F, Myb-sp, whose DNA-binding site overlapped the E2F element and had hypothesized that this factor might overcome the transcriptional repression of MYB by E2F-RB family members. We have purified Myb-sp and discovered that Myc-associated zinc finger proteins (MAZ) are major components. We show that various MAZ isoforms are present in Myb-sp and activate transcription via the MYB-E2F element. Moreover, while forced RB or p130 expression repressed the activity of a luciferase reporter driven by the MYB-E2F element, co-expression of MAZ proteins not only reverted repression, but also activated transcription. Finally, we show that MAZ binds the MYB promoter in vivo, that its binding site is critical for MYB transactivation, and that MAZ knockdown inhibits MYB expression during the exit from quiescence. Together, these data indicate that MAZ is essential to bypass MYB promoter repression by RB family members and to induce MYB expression.
Collapse
Affiliation(s)
- Josué Álvaro-Blanco
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Katia Urso
- Gene regulation in cardiovascular remodeling and inflammation group, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Yuri Chiodo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Carla Martín-Cortázar
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Omar Kourani
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Pablo Gómez-Del Arco
- Gene regulation in cardiovascular remodeling and inflammation group, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain.,Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biología Molecular, Cantoblanco, Madrid 28049, Spain.,CIBERCV, Spain
| | - María Rodríguez-Martínez
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Esther Calonge
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Majadahonda 28220, Spain
| | - José Alcamí
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Majadahonda 28220, Spain
| | - Juan Miguel Redondo
- Gene regulation in cardiovascular remodeling and inflammation group, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain.,CIBERCV, Spain
| | - Teresa Iglesias
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain.,CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain
| | - Miguel R Campanero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain.,CIBERCV, Spain
| |
Collapse
|
9
|
Shoemaker JE, Fukuyama S, Eisfeld AJ, Muramoto Y, Watanabe S, Watanabe T, Matsuoka Y, Kitano H, Kawaoka Y. Integrated network analysis reveals a novel role for the cell cycle in 2009 pandemic influenza virus-induced inflammation in macaque lungs. BMC SYSTEMS BIOLOGY 2012; 6:117. [PMID: 22937776 PMCID: PMC3481363 DOI: 10.1186/1752-0509-6-117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 08/18/2012] [Indexed: 12/17/2022]
Abstract
Background Annually, influenza A viruses circulate the world causing wide-spread sickness, economic loss, and death. One way to better defend against influenza virus-induced disease may be to develop novel host-based therapies, targeted at mitigating viral pathogenesis through the management of virus-dysregulated host functions. However, mechanisms that govern aberrant host responses to influenza virus infection remain incompletely understood. We previously showed that the pandemic H1N1 virus influenza A/California/04/2009 (H1N1; CA04) has enhanced pathogenicity in the lungs of cynomolgus macaques relative to a seasonal influenza virus isolate (A/Kawasaki/UTK-4/2009 (H1N1; KUTK4)). Results Here, we used microarrays to identify host gene sequences that were highly differentially expressed (DE) in CA04-infected macaque lungs, and we employed a novel strategy – combining functional and pathway enrichment analyses, transcription factor binding site enrichment analysis and protein-protein interaction data – to create a CA04 differentially regulated host response network. This network describes enhanced viral RNA sensing, immune cell signaling and cell cycle arrest in CA04-infected lungs, and highlights a novel, putative role for the MYC-associated zinc finger (MAZ) transcription factor in regulating these processes. Conclusions Our findings suggest that the enhanced pathology is the result of a prolonged immune response, despite successful virus clearance. Most interesting, we identify a mechanism which normally suppresses immune cell signaling and inflammation is ineffective in the pH1N1 virus infection; a dyregulatory event also associated with arthritis. This dysregulation offers several opportunities for developing strain-independent, immunomodulatory therapies to protect against future pandemics.
Collapse
Affiliation(s)
- Jason E Shoemaker
- ERATO Infection-Induced Host Responses Project, Saitama, 332-0012, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ray A, Dhar S, Ray BK. Control of VEGF expression in triple-negative breast carcinoma cells by suppression of SAF-1 transcription factor activity. Mol Cancer Res 2011; 9:1030-41. [PMID: 21665940 DOI: 10.1158/1541-7786.mcr-10-0598] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiogenesis plays a significant role in cancer by providing increased blood supply to the affected tissues and thus bringing in growth factors, cytokines, and various nutrients for tumor growth. VEGF is the most prominent angiogenic agent that is markedly induced in cancer. Induction of VEGF has been widely studied but as cancer cells are quite adept at acquiring new alternative processes to circumvent surrounding environmental pressures, our understanding of the molecular mechanisms regulating VEGF expression in cancer, especially in triple-negative breast cancer cells, remains incomplete. Here, we present evidence of a novel mode of VEGF induction in triple-negative MDA-MB-231 breast cancer cells that is regulated by serum amyloid A activating factor 1 (SAF-1) transcription factor. Inhibition of SAF-1 by antisense short hairpin RNA profoundly reduces VEGF expression along with reduction in endothelial cell proliferation and migration. By both in vitro and in vivo molecular studies, we show that the effect of SAF-1 is mediated through its direct interaction with the VEGF promoter. In correlation, DNA-binding activity of SAF-1 is found to be significantly higher in MDA-MB-231 breast cancer cells. Examination of several breast cancer samples further revealed that SAF-1 is overexpressed in clinical breast cancer tissues. Taken together, these findings reveal that SAF-1 is a hitherto unrecognized participant in inducing VEGF expression in triple-negative breast cancer cells, an aggressive form of breast cancer that currently lacks effective treatment options. Suppression of SAF-1 activity in these cells can inhibit VEGF expression, providing a possible new method to control angiogenesis.
Collapse
Affiliation(s)
- Alpana Ray
- Department of Veterinary Pathobiology, University of Missouri, 124 Connaway Hall, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
11
|
Ray A, Dhar S, Shakya A, Ray P, Okada Y, Ray BK. SAF-3, a novel splice variant of the SAF-1/MAZ/Pur-1 family, is expressed during inflammation. FEBS J 2009; 276:4276-86. [PMID: 19583771 DOI: 10.1111/j.1742-4658.2009.07136.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Cys2His2-type zinc finger transcription factor serum amyloid A activating factor 1 [SAF-1, also known as MAZ (myc-associated zinc finger protein) or Pur-1 (purine binding factor-1)] plays an important role in regulation of a variety of inflammation-responsive genes. An SAF-2 splice variant acting as a negative regulator of SAF-1 was identified previously, and the present study reports the identification of a novel SAF-3 splice variant that is expressed during inflammation. SAF-3 mRNA, isolated from a cDNA library produced from IL-1beta-induced cells, originates from a previously unknown first coding exon, and thereby contains a unique N-terminal domain but shares the same six zinc finger DNA-binding domains as present in SAF-1. In addition, a negatively functioning domain present at the N-terminus of SAF-1 and SAF-2 is spliced out in SAF-3. The expression of SAF-3 is very low in normal tissues and in cells grown under normal conditions. However, RT-PCR analysis of mRNAs from cytokine and growth factor-induced cells as well of mRNAs isolated from several diseased tissues revealed abundant expression of SAF-3. The transactivation potential of SAF-3 is much greater than that of the predominantly expressed splice variant SAF-1. These findings show that transcriptional regulation of downstream inflammation-responsive genes by SAF/MAZ/Pur-1 is likely to be more complex than previously assumed. In addition, we show that SAF-3 expression initiates from an upstream novel promoter. This is the first report of the existence of multiple promoters regulating expression of the SAF/MAZ/Pur-1 family of proteins.
Collapse
Affiliation(s)
- Alpana Ray
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Kovacevic A, Hammer A, Stadelmeyer E, Windischhofer W, Sundl M, Ray A, Schweighofer N, Friedl G, Windhager R, Sattler W, Malle E. Expression of serum amyloid A transcripts in human bone tissues, differentiated osteoblast-like stem cells and human osteosarcoma cell lines. J Cell Biochem 2008; 103:994-1004. [PMID: 17849429 PMCID: PMC4861207 DOI: 10.1002/jcb.21472] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although the liver is the primary site of cytokine-mediated expression of acute-phase serum amyloid A (SAA) protein, extrahepatic production has also been reported. Besides its role in amyloidosis and lipid homeostasis during the acute-phase, SAA has recently been assumed to contribute to bone and cartilage destruction. However, expression of SAA in human osteogenic tissue has not been studied. Therefore, we first show that SAA1 (coding for the major SAA isoform) but not SAA2 transcripts are expressed in human trabecular and cortical bone fractions and bone marrow. Next, we show expression of (i) IL-1, IL-6, and TNF receptor transcripts; (ii) the human homolog of SAA-activating factor-1 (SAF-1, a transcription factor involved in cytokine-mediated induction of SAA genes); and (iii) SAA1/2 transcripts in non-differentiated and, to a higher extent, in osteoblast-like differentiated human mesenchymal stem cells. Third, we provide evidence that human osteoblast-like cells of tumor origin (MG-63 and SAOS-2) express SAF-1 under basal conditions. SAA1/2 transcripts are expressed under basal conditions (SAOS-2) and cytokine-mediated conditions (MG-63 and SAOS-2). RT-PCR, Western blot analysis, and immunofluorescence technique confirmed cytokine-mediated expression of SAA on RNA and protein level in osteosarcoma cell lines while SAA4, a protein of unknown function, is constitutively expressed in all osteogenic tissues investigated.
Collapse
Affiliation(s)
- Alenka Kovacevic
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Center of Molecular Medicine, Graz, Austria
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology, Center of Molecular Medicine, Medical University of Graz, Center of Molecular Medicine, Graz, Austria
| | - Elke Stadelmeyer
- Department of Orthopaedics, Graz University Hospital, Medical University of Graz, Graz, Austria
| | - Werner Windischhofer
- Department of Pediatrics, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Monika Sundl
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Center of Molecular Medicine, Graz, Austria
| | - Alpana Ray
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211
| | - Natascha Schweighofer
- Division of Endocrinology and Nuclear Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gerald Friedl
- Department of Orthopaedics, Graz University Hospital, Medical University of Graz, Graz, Austria
| | - Reinhard Windhager
- Department of Orthopaedics, Graz University Hospital, Medical University of Graz, Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Center of Molecular Medicine, Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Center of Molecular Medicine, Graz, Austria
| |
Collapse
|
13
|
Ray A, Shakya A, Kumar D, Benson MD, Ray BK. Inflammation-responsive transcription factor SAF-1 activity is linked to the development of amyloid A amyloidosis. THE JOURNAL OF IMMUNOLOGY 2006; 177:2601-9. [PMID: 16888022 DOI: 10.4049/jimmunol.177.4.2601] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abundantly expressed serum amyloid A (SAA) protein under chronic inflammatory conditions gives rise to insoluble aggregates of SAA derivatives in multiple organs resulting in reactive amyloid A (AA) amyloidosis, a consequence of rheumatoid arthritis, Crohn's disease, ankylosing spondylitis, familial Mediterranean fever, and Castleman's disease. An inflammation-responsive transcription factor, SAF (for SAA activating factor), has been implicated in the sustained expression of amyloidogenic SAA under chronic inflammatory conditions. However, its role in the pathogenesis of AA amyloidosis has thus far remained obscure. In this paper we have shown that SAF-1, a major member of the SAF family, is abundantly present in human AA amyloidosis patients. To assess whether SAF-1 is directly linked to the pathogenesis of AA amyloidosis, we have developed a SAF-1 transgenic mouse model. SAF-1-overexpressing mice spontaneously developed AA amyloidosis at the age of 14 mo or older. Immunohistochemical analysis confirmed the nature of the amyloid deposits as an AA type derived from amyloidogenic SAA1. Furthermore, SAF-1 transgenic mice rapidly developed severe AA amyloidosis in response to azocasein injection, indicating increased susceptibility to inflammation. Also, during inflammation SAF-1 transgenic mice exhibited a prolonged acute phase response, leading to an extended period of SAA synthesis. Together, these results provide direct evidence that SAF-1 plays a key role in the development of AA amyloidosis, a consequence of chronic inflammation.
Collapse
Affiliation(s)
- Alpana Ray
- Department of Veterinary Pathobiology, University of Missouri, 126A Connaway Hall, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|
14
|
Kovacevic A, Hammer A, Sundl M, Pfister B, Hrzenjak A, Ray A, Ray BK, Sattler W, Malle E. Expression of serum amyloid A transcripts in human trophoblast and fetal-derived trophoblast-like choriocarcinoma cells. FEBS Lett 2005; 580:161-7. [PMID: 16343490 DOI: 10.1016/j.febslet.2005.11.067] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 11/16/2005] [Accepted: 11/27/2005] [Indexed: 11/21/2022]
Abstract
The placenta comprises a highly specialized trophoblast layer, which arises from the embryo and differentiates during embryonic development to perform specialized functions, e.g., synthesis of pregnancy-associated hormones, growth factors and cytokines. As there is no evidence of maternal acute-phase protein transplacental transfer and trophoblast plays an important role in regulating immune responses at the feto-maternal interface, the expression of acute-phase serum amyloid A (A-SAA) was investigated in human first trimester trophoblast and trophoblast-like JAR and Jeg-3 choriocarcinoma cells. We here show expression of cytokine receptors and cytokine-dependent induction of A-SAA in JAR and Jeg-3 cells. While interleukin-1alpha/beta is a major agonist for A-SAA expression in JAR, tumor necrosis factor-alpha is the predominant agonist in Jeg-3. First trimester trophoblast and JAR/Jeg-3 cells further express the human homolog of SAA-activating factor-1, a transcription factor involved in cytokine-mediated induction of A-SAA genes. A-SAA1 and A-SAA2 transcripts were increased in first trimester trophoblast during pregnancy weeks 10 and 12 suggesting that A-SAA plays a role during early fetal development.
Collapse
Affiliation(s)
- Alenka Kovacevic
- Medical University Graz, Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, A-8010 Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ray A, Shakya A, Kumar D, Ray BK. Overexpression of serum amyloid A-activating factor 1 inhibits cell proliferation by the induction of cyclin-dependent protein kinase inhibitor p21WAF-1/Cip-1/Sdi-1 expression. THE JOURNAL OF IMMUNOLOGY 2004; 172:5006-15. [PMID: 15067082 DOI: 10.4049/jimmunol.172.8.5006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inflammation-responsive transcription factor, serum amyloid A-activating factor 1 (SAF-1), has been shown to regulate several genes, including serum amyloid A, gamma-fibrinogen, and matrix metalloproteinase 1, whose abnormal expression is associated with the pathogenesis of arthritis, atherosclerosis, and amyloidosis. Prolonged high level expression of SAF-1 in cultured cells failed to produce any stable cell line that overexpresses SAF-1. To test the fate of SAF-1-overexpressing cells, the cells were monitored for growth and morphological changes over time. The cells that were programmed to overproduce SAF-1 were found to undergo growth arrest and reduce DNA synthesis within 3 days after transfection. These cells undergo marked morphological changes from typical fibroblasts to round morphology and gradually cease to exist. Microarray analysis for cell cycle-specific genes in SAF1-transfected cells identified several candidate genes whose expression levels were altered during SAF-1 overexpression. Cdk inhibitor protein p21 was significantly affected by SAF-1; its expression level was highly induced by cellular conditions where SAF-1 is abundant. The increased level of p21 in the cell drives it to a growth arrest mode, a condition previously found to be controlled by p53. In this study we provide evidence that, similar to p53, SAF-1 is able to activate p21 gene expression by promoting transcription directly via its interaction with the p21 promoter. Together these data indicate that SAF-1 controls cell cycle progression via p21 induction, and pathophysiological conditions that favor overexpression of SAF-1, such as an acute inflammatory condition, can trigger cellular growth arrest.
Collapse
Affiliation(s)
- Alpana Ray
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|