1
|
Deng GF, Liu SJ, Sun XS, Sun WW, Zhao QH, Liao WP, Yi YH, Long YS. A conserved region in the 3' untranslated region of the human LIMK1 gene is critical for proper expression of LIMK1 at the post-transcriptional level. Neurosci Bull 2013; 29:348-54. [PMID: 23700283 DOI: 10.1007/s12264-013-1341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/02/2012] [Indexed: 11/30/2022] Open
Abstract
LIM kinase 1 (LIMK1), a cytosolic serine/threonine kinase, regulates actin filament dynamics and reorganization and is involved in neuronal development and brain function. Abnormal expression of LIMK1 is associated with several neurological disorders. In this study, we performed a conservation analysis using Vector NTI (8.0) software. The dualluciferase reporter assay and real-time quantitative RT-PCR were used to assess the protein and mRNA levels of the reporter gene, respectively. We found that a region ranging from nt +884 to +966 in the human LIMK1 3' untranslated region (UTR) was highly conserved in the mouse Limk1 3' UTR and formed a structure containing several loops and stems. Luciferase assay showed that the relative luciferase activity of the mutated construct with the conserved region deleted, pGL4-hLIMK1-3U-M, in SH-SY5Y and HEK-293 cells was only ~60% of that of the wild-type construct pGL4-hLIMK1-3U, indicating that the conserved region is critical for the reporter gene expression. Real-time quantitative RT-PCR analysis demonstrated that the relative Luc2 mRNA levels in SH-SY5Y and HEK293 cells transfected with pGL4-hLIMK1-3U-M decreased to ~50% of that in cells transfected with pGL4-hLIMK1-3U, suggesting an important role of the conserved region in maintaining Luc2 mRNA stability. Our study suggests that the conserved region in the LIMK1 3' UTR is involved in regulating LIMK1 expression at the post-transcriptional level, which may help reveal the mechanism underlying the regulation of LIMK1 expression in the central nervous system and explore the relationship between the 3'-UTR mutant and neurological disorders.
Collapse
Affiliation(s)
- Guang-Fei Deng
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, Guangzhou, 510260, China
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Characterization of proteins associating with 5' terminus of PGHS-1 mRNA. Cell Mol Biol Lett 2010; 15:196-214. [PMID: 20112001 PMCID: PMC6275937 DOI: 10.2478/s11658-010-0005-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 01/15/2010] [Indexed: 01/21/2023] Open
Abstract
Induction of Prostaglandin Endoperoxide H Synthase-1 (PGHS-1) gene has been previously documented in a few studies during events such as development and cellular differentiation. However, molecular mechanisms governing the regulation of PGHS-1 gene expression and contributing to changes in protein levels are poorly understood. Using the MEG-01 cell model of PGHS-1 gene induction, our laboratory has previously demonstrated that the 5’UTR and the first two exons of PGHS-1 mRNA had a significant impact on decreasing the translational efficiency of a reporter gene and suggested that the presence of a secondary structure is required for conservation of this activity. This 5’end of PGHS-1 mRNA sequence has also been shown to associate with nucleolin protein. In the current study, we set to investigate the protein composition of the mRNP (messenger ribonucleoprotein) associating with the 5’end of PGHS-1 mRNA and to identify its protein members. RNA/protein binding assays coupled with LC-MS analysis identified serpin B1 and NF45 (nuclear factor 45) proteins as potential members of PGHS-1 mRNP complex. Immunoprecipitation experiments using MEG-01 protein extracts validated mass spectrometry data and confirmed binding of nucleolin, serpin B1, NF45 and NF90. The RNA fraction was extracted from immunoprecipitated mRNP complexes and association of RNA binding proteins, serpin B1, NF45 and NF90, to PGHS-1 mRNA target sequence was confirmed by RT-PCR. Together these data suggest that serpin B1, NF45 and NF90 associate with PGHS-1 mRNA and can potentially participate in the formation a single or a number of PGHS-1 ribonucleoprotein complexes, through nucleolin that possibly serves as a docking base for other protein complex members.
Collapse
|
3
|
Mbonye UR, Song I. Posttranscriptional and posttranslational determinants of cyclooxygenase expression. BMB Rep 2009; 42:552-60. [PMID: 19788855 DOI: 10.5483/bmbrep.2009.42.9.552] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cyclooxygenases (COX-1 and COX-2) are ER-resident proteins that catalyze the committed step in prostanoid synthesis. COX-1 is constitutively expressed in many mammalian cells, whereas COX-2 is usually expressed inducibly and transiently. Abnormal expression of COX-2 has been implicated in the pathogenesis of chronic inflammation and various cancers; therefore, it is subject to tight and complex regulation. Differences in regulation of the COX enzymes at the posttranscriptional and posttranslational levels also contribute significantly to their distinct patterns of expression. Rapid degradation of COX-2 mRNA has been attributed to AU-rich elements (AREs) at its 3' UTR. Recently, microRNAs that can selectively repress COX-2 protein synthesis have been identified. The mature forms of these COX proteins are very similar in structure except that COX-2 has a unique 19-amino acid (19-aa) segment located near the C-terminus. This C-terminal 19-aa cassette plays an important role in mediation of the entry of COX-2 into the ER-associated degradation (ERAD) system, which transports ER proteins to the cytoplasm for degradation by the 26S proteasome. A second pathway for COX-2 protein degradation is initiated after the enzyme undergoes suicide inactivation following cyclooxygenase catalysis. Here, we discuss these molecular determinants of COX-2 expression in detail. [BMB reports 2009; 42(9): 552-560].
Collapse
Affiliation(s)
- Uri R Mbonye
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| | | |
Collapse
|
4
|
Mbonye UR, Yuan C, Harris CE, Sidhu RS, Song I, Arakawa T, Smith WL. Two distinct pathways for cyclooxygenase-2 protein degradation. J Biol Chem 2008; 283:8611-23. [PMID: 18203712 DOI: 10.1074/jbc.m710137200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cyclooxygenases (COX-1 and COX-2) are N-glycosylated, endoplasmic reticulum-resident, integral membrane proteins that catalyze the committed step in prostanoid synthesis. COX-1 is constitutively expressed in many types of cells, whereas COX-2 is usually expressed inducibly and transiently. The control of COX-2 protein expression occurs at several levels, and overexpression of COX-2 is associated with pathologies such as colon cancer. Here we have investigated COX-2 protein degradation and demonstrate that it can occur through two independent pathways. One pathway is initiated by post-translational N-glycosylation at Asn-594. The N-glycosyl group is then processed, and the protein is translocated to the cytoplasm, where it undergoes proteasomal degradation. We provide evidence from site-directed mutagenesis that a 27-amino acid instability motif (27-IM) regulates posttranslational N-glycosylation of Asn-594. This motif begins with Glu-586 8 residues upstream of the N-glycosylation site and ends with Lys-612 near the C terminus at Leu-618. Key elements of the 27-IM include a helix involving residues Glu-586 to Ser-596 with Asn-594 near the end of this helix and residues Leu-610 and Leu-611, which are located in an apparently unstructured downstream region of the 27-IM. The last 16 residues of the 27-IM, including Leu-610 and Leu-611, appear to promote N-glycosylation of Asn-594 perhaps by causing this residue to become exposed to appropriate glycosyl transferases. A second pathway for COX-2 protein degradation is initiated by substrate-dependent suicide inactivation. Suicide-inactivated protein is then degraded. The biochemical steps have not been resolved, but substrate-dependent degradation is not inhibited by proteasome inhibitors or inhibitors of lysosomal proteases. The pathway involving the 27-IM occurs at a constant rate, whereas degradation through the substrate-dependent process is coupled to the rate of substrate turnover.
Collapse
Affiliation(s)
- Uri R Mbonye
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Bunimov N, Smith JE, Gosselin D, Laneuville O. Translational regulation of PGHS-1 mRNA: 5′ untranslated region and first two exons conferring negative regulation. ACTA ACUST UNITED AC 2007; 1769:92-105. [PMID: 17320986 DOI: 10.1016/j.bbaexp.2007.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 12/11/2006] [Accepted: 01/17/2007] [Indexed: 11/30/2022]
Abstract
Prostaglandin endoperoxide H synthase-1 gene expression is described as inducible in a few contexts such as differentiation of megakaryoblastic MEG-01 cells into platelet-like structures. In the MEG-01 cells model of PGHS-1 gene induction, we previously reported a delay in protein synthesis and identified the translational step of gene expression as being regulated. In the current study, we mapped PGHS-1 mRNA sequences regulating translational efficiency and identified an RNA binding protein. The 5'UTR and first two exons of the PGHS-1 5' mRNA decreased the synthesis of Luciferase protein by approximately 80% without significant changes in mRNA levels when compared to controls. Both the PGHS-1 5'-UTR and the first two exons were required for activity. Sucrose density gradient fractionations of cytoplasmic extracts from MEG-01 cells infected with reporter constructs, either controls or containing PGHS-1 sequence, presented a similar profile of distribution of reporter transcripts between polysomal and non-polysomal fractions. RNA/protein interaction studies revealed nucleolin binding to the 135 nt PGHS-1 sequence. Mutation of the two NRE elements located in the 5'end of PGHS-1 mRNA sequence partially reduced the negative activity of the 135 nt sequence. Stable secondary structures predicted at the 5' end of the transcript are potentially involved in translational regulation. We propose that the 5'end of PGHS-1 mRNA represses translation and could delay the synthesis of PGHS-1 enzyme.
Collapse
Affiliation(s)
- Natalia Bunimov
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | |
Collapse
|
6
|
DeLong CJ, Smith WL. An intronic enhancer regulates cyclooxygenase-1 gene expression. Biochem Biophys Res Commun 2005; 338:53-61. [PMID: 16105649 DOI: 10.1016/j.bbrc.2005.07.184] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 07/30/2005] [Indexed: 11/20/2022]
Abstract
To identify cis-elements regulating PMA-induced prostaglandin H synthase-1 (PGHS-1) gene expression in the human megakaryoblast cell line, MEG-01, we performed promoter reporter assays with a luciferase reporter vector containing the -2030/-22 region of the human PGHS-1 gene. PMA treatment for 24 h increased PGHS-1 promoter activity by twofold. Mutagenesis studies of the promoter revealed a single Sp1 site essential for PMA-inducible transcription. Insertion of a highly conserved 100 bp sequence cloned from intron 8 into the -2030/-22 reporter plasmid enhanced PMA-dependent transcription 10-fold. Mutation of either a consensus AP-1 site within intron 8 or the Sp1 site in the promoter reduced PMA-induced activity by 80-100%. Gel shift assays using the intron 8 AP-1 sequence demonstrated the formation of an AP-1-specific DNA-protein complex. Our results suggest that inducible PGHS-1 gene expression involves the coordinate functioning of a Sp1 site in the promoter and an AP-1 site in intron 8.
Collapse
Affiliation(s)
- Cynthia J DeLong
- Department of Biological Chemistry, University of Michigan Medical School, 5416 Medical Science I, 1301 Catherine St., Ann Arbor, MI 48109-0606, USA
| | | |
Collapse
|
7
|
Tseng CP, Chang P, Huang CL, Cheng JC, Chang SS. Autocrine signaling of platelet-derived growth factor regulates disabled-2 expression during megakaryocytic differentiation of K562 cells. FEBS Lett 2005; 579:4395-401. [PMID: 16061224 DOI: 10.1016/j.febslet.2005.06.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 06/25/2005] [Accepted: 06/27/2005] [Indexed: 11/21/2022]
Abstract
Platelet-derived growth factor (PDGF) is involved in megakaryocytopoiesis and is secreted into the culture medium during megakaryocytic differentiation of human leukemic cells. We investigate whether PDGF plays a role in the regulation of the adapter protein Disabled-2 (DAB2) that expresses abundantly in platelets and megakaryocytes. Western blot analysis revealed that conditioned medium from 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated, megakaryocytic differentiating K562 cells upregulated DAB2 expression. DAB2 induction and megakaryocytic differentiation was abrogated when cells were co-treated with the PDGF receptor inhibitor STI571 or when the conditioned medium was derived from TPA-plus STI571-treated cells. Although the level of PDGF mRNA was not altered by STI571, an approximate 44% decrease in PDGF in the conditioned medium was observed. Consistent with these findings, interfering PDGF signaling by PDGF neutralization antibody or dominant negative PDGF receptors attenuated DAB2 expression. Accordingly, transfection of an expression plasmid encoding secreted PDGF upregulated DAB2. This study shows for the first time that PDGF autocrine signaling regulates DAB2 expression during megakaryocytic differentiation.
Collapse
Affiliation(s)
- Ching-Ping Tseng
- Graduate Institute of Basic Medical Sciences, Chang Gung University, Tao-Yuan 333, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
8
|
Schneider C, Boeglin WE, Brash AR. Human cyclo-oxygenase-1 and an alternative splice variant: contrasts in expression of mRNA, protein and catalytic activities. Biochem J 2005; 385:57-64. [PMID: 15361066 PMCID: PMC1134673 DOI: 10.1042/bj20041115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The two COX (cyclo-oxygenase) isoenzymes COX-1 and -2 catalyse the initial step in the conversion of arachidonic acid into PG (prostaglandin) hormones. The identification of an mRNA transcript encoding a splice variant of human COX-1 was reported more than a decade ago [Diaz, Reginato and Jimenez (1992) J. Biol. Chem. 267, 10816-10822], yet catalytic activity and tissue expression of the corresponding spliced protein remained uncharacterized. The splice variant lacks amino acids 396-432, corresponding to the last 37 amino acids of exon 9 of the gene encoding COX-1. These amino acids form a loop at one side of the peroxidase active site of the protein. We expressed the full-length and spliced COX-1 cDNAs in COS-7 and Sf9 insect cells, and determined the PG-forming activity using incubations with radiolabelled arachidonic acid and HPLC analyses. When expressed in either system, abundant PG formation was observed with the full-length COX-1, whereas the spliced protein did not form any detectable product. Peroxidase activity was readily detected in microsomes prepared from COS-7 cells transfected with COX-1 but not with the splice variant. In reverse transcriptase-PCR experiments, we detected the mRNA for the alternatively spliced and full-length COX-1 in human brain, tonsil and colon tissue, yet we were unable to detect expression of the spliced protein in the same tissues using immunoprecipitation and Western-blot analyses. We conclude that, whereas the mRNA transcript for the spliced COX-1 is present in various human tissues, the corresponding protein is either not formed or subject to rapid proteolytic degradation.
Collapse
Affiliation(s)
- Claus Schneider
- Department of Pharmacology, Vanderbilt University School of Medicine, 23rd Ave. at Pierce, Nashville, TN 37232-6602, USA.
| | | | | |
Collapse
|
9
|
Kandasamy K, Joseph K, Subramaniam K, Raymond JR, Tholanikunnel BG. Translational control of beta2-adrenergic receptor mRNA by T-cell-restricted intracellular antigen-related protein. J Biol Chem 2004; 280:1931-43. [PMID: 15536087 DOI: 10.1074/jbc.m405937200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular expression of the beta(2)-adrenergic receptor (beta(2)-AR) is suppressed at the translational level by 3'-untranslated region (UTR) sequences. To test the possible role of 3'-UTR-binding proteins in translational suppression of beta(2)-AR mRNA, we expressed the full-length 3'-UTR or the adenylate/uridylate-rich (A+U-rich element (ARE)) RNA from the 3'-UTR sequences of beta(2)-AR in cell lines that endogenously express this receptor. Reversal of beta(2)-adrenergic receptor translational repression by retroviral expression of 3'-UTR sequences suggested that ARE RNA-binding proteins are involved in translational suppression of beta(2)-adrenergic receptor expression. Using a 20-nucleotide ARE RNA from the receptor 3'-UTR as an affinity ligand, we purified the proteins that bind to these sequences. T-cell-restricted intracellular antigen-related protein (TIAR) was one of the strongly bound proteins identified by this method. UV-catalyzed cross-linking experiments using in vitro transcribed 3'-UTR RNA and glutathione S-transferase-TIAR demonstrated multiple binding sites for this protein on beta(2)-AR 3'-UTR sequences. The distal 340-nucleotide region of the 3'-UTR was identified as a target RNA motif for TIAR binding by both RNA gel shift analysis and immunoprecipitation experiments. Overexpression of TIAR resulted in suppression of receptor protein synthesis and a significant shift in endogenously expressed beta(2)-AR mRNA toward low molecular weight fractions in sucrose gradient polysome fractionation. Taken together, our results provide the first evidence for translational control of beta(2)-AR mRNA by TIAR.
Collapse
Affiliation(s)
- Karthikeyan Kandasamy
- Department of Medicine and Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina 29425-2221, USA
| | | | | | | | | |
Collapse
|
10
|
Subramaniam K, Chen K, Joseph K, Raymond JR, Tholanikunnel BG. The 3′-Untranslated Region of the β2-Adrenergic Receptor mRNA Regulates Receptor Synthesis. J Biol Chem 2004; 279:27108-15. [PMID: 15107422 DOI: 10.1074/jbc.m401352200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta(2)-Adrenergic receptors (beta(2)-ARs) are low abundance integral membrane proteins that mediate the effects of catecholamines at the cell surface. Post-transcriptional regulation of beta(2)-AR is dependent, in part, on sequences within the 5'- and 3'-untranslated regions (UTRs) of the receptor mRNA. In this work, we demonstrate that 3'-UTR sequences regulate the translation of the receptor mRNA. Deletion of the 3'-UTR sequences resulted in 2-2.5-fold increases in receptor expression. The steadystate levels of beta(2)-AR mRNA did not change significantly in the presence or absence of the 3'-UTR, suggesting that the translation of the receptor mRNA is suppressed by 3'-UTR sequences. Introduction of the receptor 3'-UTR sequences into the 3'-UTR of a heterologous reporter gene (luciferase) resulted in a 70% decrease in reporter gene expression without significant changes in luciferase mRNA levels. Sucrose density gradient fractionation of cytoplasmic extracts from Chinese hamster ovary cells transfected with full-length receptor cDNA demonstrated that the receptor transcripts were distributed between polysomal and non-polysomal fractions. Deletion of 3'-UTR sequences from the receptor cDNA resulted in a clear shift in the distribution of receptor mRNA toward the polysomal fractions, favoring increased translation. The 3'-UTR sequences of the receptor mRNA were sufficient to shift the distribution of luciferase mRNA from predominantly polysomal fractions toward non-polysomal fractions in cells transfected with the chimeric luciferase construct. Taken together, our results provide the first evidence for translational control of beta(2)-AR expression by 3'-UTR sequences. Presumably, this occurs by affecting the receptor mRNA localization.
Collapse
Affiliation(s)
- Kothandharaman Subramaniam
- Department of Medicine and the Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina 29425-2221, USA
| | | | | | | | | |
Collapse
|
11
|
Järving R, Järving I, Kurg R, Brash AR, Samel N. On the Evolutionary Origin of Cyclooxygenase (COX) Isozymes. J Biol Chem 2004; 279:13624-33. [PMID: 14732711 DOI: 10.1074/jbc.m313258200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vertebrates, COX-1 and COX-2, two cyclooxygenase isozymes with different physiological functions and gene regulation, catalyze identical reactions in prostaglandin synthesis. It is still not understood why there are multiple forms of COX enzyme in the same cell type and when the evolutionary duplication of the COX gene occurred. Here we report the structure of two genes encoding for COX isozymes in the coral Gersemia fruticosa, the first non-vertebrate organism from which a cyclooxygenase was characterized. Both genes are about 20 kb in size and consist of nine exons. Intron/exon boundaries are well conserved between coral and mammalian COX genes. mRNAs of the previously reported G. fruticosa COX-A (GenBank trade mark accession number AY004222) and the novel COX-B share 94% sequence identity in the coding regions and less than 30% in the 5'- and 3'-untranslated region. Transcripts of both COX genes are detectable in coral cells, although the transcriptional level of COX-A is 2 orders of magnitude higher than COX-B. Expression of both coral genes in mammalian cells gave functional proteins with similar catalytic properties. By data base analyses we also detected and constructed different pairs of COX genes from the primitive chordates, Ciona savignyi and Ciona intestinalis. These two gene pairs encode proteins with 50% intra-species and only 70% cross-species sequence identity. Our results suggest that invertebrate COX gene pairs do not correspond to vertebrate COX-1 and COX-2 and are consistent with duplication of the COX gene having occurred independently in corals, ascidians, and vertebrates. It is evident that due to the importance and complexity of its regulatory role, COX has multiple isoforms in all organisms known to express it, and the genes encoding for the isozymes may to be regulated differently.
Collapse
Affiliation(s)
- Reet Järving
- Department of Chemistry, Tallinn Technical University, Akadeemia tee 15, Tallinn 12618
| | | | | | | | | |
Collapse
|
12
|
Kawa K. Thrombopoietin Enhances Rapid Current Responses Mediated by P2X1 Receptors on Megakaryocytic Cells in Culture. ACTA ACUST UNITED AC 2003; 53:287-99. [PMID: 14606968 DOI: 10.2170/jjphysiol.53.287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effect of thrombopoietin (TPO), a magakaryocytopoietic cytokine, on the functional maturation of megakaryocytes was studied by using cell culture and patch-clamp techniques focusing on purinergic 2X(1) (P2X(1))-receptors, which are expressed specifically on platelets and their progenitors. Meg-01 cells, one of the typical human megakaryocytic cell lines, were cultured and studied by using a whole-cell patch electrode. In control cells cultured in RPMI1640 medium, an application of adenosine nucleotide (ADP, 40 microM) evoked transient inward currents with amplitudes of 45 +/- 19 pA (at -43 mV). Based on kinetic, ionic, and pharmacological properties as well as on previously reported findings, these currents were thought to be mediated by P2X(1) receptors. When Meg-01 cells were cultured for 7-9 d in a medium to which the differentiation-inducing agent phorbol ester (PMA; 10 nM) or TPO (100 ng/ml) had been added, the responses of the cells to ADP increased to about 150% of the control with PMA and to about 200% of the control value with TPO. A combination of the two agents enhanced the response of the cells to ADP to about 570% of the control value. These results suggest that phorbol ester and TPO cause cellular differentiation of Meg-01 cells and enhance the level of expression of P2X(1)-receptors on cell membranes in a synergetic manner. The effect of TPO on the induction of P2X(1)-receptors on mouse megakaryocytes in culture was more obvious.
Collapse
Affiliation(s)
- Kazuyoshi Kawa
- Department of Neurophysiology, Tohoku University Graduate School of Medicine, Sendai, 980-8575 Japan.
| |
Collapse
|