1
|
Sharma KK, Raghuvamsi PV, Aik DYK, Marzinek JK, Bond PJ, Wohland T. Structural flexibility in the ordered domain of the dengue virus strain 2 capsid protein is critical for chaperoning viral RNA replication. Cell Mol Life Sci 2025; 82:184. [PMID: 40293525 PMCID: PMC12037954 DOI: 10.1007/s00018-025-05712-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/06/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
Viral replication necessitates intricate nucleic acid rearrangements, including annealing and strand displacement to achieve the viral RNA functional structure. Often a single RNA chaperone performs these seemingly incompatible functions. This raises the question of what structural and dynamic features of such chaperones govern distinct RNA rearrangements. While cationic intrinsically disordered regions promote annealing by playing a charge-screening role, how the same chaperone mediates strand displacement remains elusive. Here, we investigate the annealing and strand displacement of the 5' upstream AUG region (5UAR) as chaperoned by the Dengue virus strain 2 capsid protein (Denv2C) as a model RNA chaperone. Through single molecule analysis and molecular simulations, we demonstrate that Denv2C regulates nucleic acid melting, folding, annealing, and strand displacement via flexibility in its ordered region. A mutation that renders the Denv2C ordered region rigid, converts Denv2C into a mere annealer. Our findings underscore the role of Denv2C's disordered region as a "macromolecular counterion" during RNA annealing, while a flexible ordered region is crucial for effective strand displacement.
Collapse
Affiliation(s)
- Kamal K Sharma
- Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117557, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| | - Palur Venkata Raghuvamsi
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Daniel Y K Aik
- Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117557, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jan K Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Peter J Bond
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Thorsten Wohland
- Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117557, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
2
|
Tang F, Xia H, Wang P, Yang J, Zhao T, Zhang Q, Hu Y, Zhou X. The identification and characterization of nucleic acid chaperone activity of human enterovirus 71 nonstructural protein 3AB. Virology 2014; 464-465:353-364. [PMID: 25113906 PMCID: PMC7112070 DOI: 10.1016/j.virol.2014.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/17/2014] [Accepted: 07/22/2014] [Indexed: 11/17/2022]
Abstract
Human enterovirus 71 (EV71) belongs to the genus Enterovirus in the family Picornaviridae and has been recognized as one of the most important pathogens that cause emerging infectious disease. Despite of the importance of EV71, the nonstructural protein 3AB from this virus is little understood for its function during EV71 replication. Here we expressed EV71 3AB protein as recombinant protein in a eukaryotic expression system and uncovered that this protein possesses a nucleic acid helix-destabilizing and strand annealing acceleration activity in a dose-dependent manner, indicating that EV71 3AB is a nucleic acid chaperone protein. Moreover, we characterized the RNA chaperone activity of EV71 3AB, and revealed that divalent metal ions, such as Mg2+ and Zn2+, were able to inhibit the RNA helix-destabilizing activity of 3AB to different extents. Moreover, we determined that 3B plus the last 7 amino acids at the C-terminal of 3A (termed 3B+7) possess the RNA chaperone activity, and five amino acids, i.e. Lys-80, Phe-82, Phe-85, Tyr-89, and Arg-103, are critical and probably the active sites of 3AB for its RNA chaperone activity. This report reveals that EV71 3AB displays an RNA chaperone activity, adds a new member to the growing list of virus-encoded RNA chaperones, and provides novel knowledge about the virology of EV71.
Collapse
Affiliation(s)
- Fenfen Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
| | - Hongjie Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
| | - Peipei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
| | - Jie Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
| | - Tianyong Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
| | - Yuanyang Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China.
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China.
| |
Collapse
|
3
|
Matsumoto K, Nakata E, Tamura T, Saito I, Aizawa Y, Morii T. A peptide nucleic acid (PNA) heteroduplex probe containing an inosine-cytosine base pair discriminates a single-nucleotide difference in RNA. Chemistry 2013; 19:5034-40. [PMID: 23494894 DOI: 10.1002/chem.201204183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Indexed: 11/07/2022]
Abstract
Selective discrimination of a single-nucleotide difference in single-stranded DNA or RNA remains a challenge with conventional DNA or RNA probes. A peptide nucleic acid (PNA)-derived probe, in which PNA forms a pseudocomplementary heteroduplex with inosine-containing DNA or RNA, effectively discriminates a single-nucleotide difference in a closely related group of sequences of single-stranded DNA and/or RNA. The pseudocomplementary PNA heteroduplex is easily converted to a fluorescent probe that distinctively detects a member of highly homologous let-7 microRNAs.
Collapse
|
4
|
Godet J, Boudier C, Humbert N, Ivanyi-Nagy R, Darlix JL, Mély Y. Comparative nucleic acid chaperone properties of the nucleocapsid protein NCp7 and Tat protein of HIV-1. Virus Res 2012; 169:349-60. [PMID: 22743066 PMCID: PMC7114403 DOI: 10.1016/j.virusres.2012.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
RNA chaperones are proteins able to rearrange nucleic acid structures towards their most stable conformations. In retroviruses, the reverse transcription of the viral RNA requires multiple and complex nucleic acid rearrangements that need to be chaperoned. HIV-1 has evolved different viral-encoded proteins with chaperone activity, notably Tat and the well described nucleocapsid protein NCp7. We propose here an overview of the recent reports that examine and compare the nucleic acid chaperone properties of Tat and NCp7 during reverse transcription to illustrate the variety of mechanisms of action of the nucleic acid chaperone proteins.
Collapse
Affiliation(s)
- Julien Godet
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg, 67401 Illkirch, France
| | | | | | | | | | | |
Collapse
|
5
|
Gangaramani DR, Eden EL, Shah M, Destefano JJ. The twenty-nine amino acid C-terminal cytoplasmic domain of poliovirus 3AB is critical for nucleic acid chaperone activity. RNA Biol 2010; 7:820-9. [PMID: 21045553 PMCID: PMC3072266 DOI: 10.4161/rna.7.6.13781] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 01/01/2023] Open
Abstract
Poliovirus 3AB protein is the first picornavirus protein demonstrated to have nucleic acid chaperone activity. Further characterization of 3AB demonstrates that the C-terminal 22 amino acids (3B region (also referred to as VPg), amino acid 88-109) of the protein is required for chaperone activity, as mutations in this region abrogate nucleic acid binding and chaperone function. Protein 3B alone has no chaperone activity as determined by established assays that include the ability to stimulate nucleic acid hybridization in a primer-template annealing assay, helix-destabilization in a nucleic acid unwinding assay, or aggregation of nucleic acids. In contrast, the putative 3AB C-terminal cytoplasmic domain (C terminal amino acids 81-109, 3B + the last 7 C-terminal amino acids of 3A, termed 3B+7 in this report) possesses strong activity in these assays, albeit at much higher concentrations than 3AB. The characteristics of several mutations in 3B+7 are described here, as well as a model proposing that 3B+7 is the site of the "intrinsic" chaperone activity of 3AB while the 3A N-terminal region (amino acids 1-58) and/or membrane anchor domain (amino acids 59-80) serve to increase the effective concentration of the 3B+7 region leading to the potent chaperone activity of 3AB.
Collapse
Affiliation(s)
- Divya R Gangaramani
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | | | | | | |
Collapse
|
6
|
Huang ZS, Wang CC, Wu HN. HCV NS3 protein helicase domain assists RNA structure conversion. FEBS Lett 2010; 584:2356-62. [PMID: 20398661 DOI: 10.1016/j.febslet.2010.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/05/2010] [Accepted: 04/08/2010] [Indexed: 01/01/2023]
Abstract
NS3H, the helicase domain of HCV NS3, possesses RNA-stimulated ATPase and ATP hydrolysis-dependent dsRNA unwinding activities. Here, the ability of NS3H to facilitate RNA structural rearrangement is studied using relatively long RNA strands as the model substrates. NS3H promotes intermolecular annealing, resolves three-stranded RNA duplexes, and assists dsRNA and ssRNA inter-conversions to establish a steady state among RNA structures. NS3H facilitates RNA structure conversions in a mode distinct from an ATP-independent RNA chaperone. These findings expand the known function of HCV NS3 helicase and reveal a role for viral helicase in assisting RNA structure conversions during virus life cycle.
Collapse
Affiliation(s)
- Zhi-Shun Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
7
|
Hepatitis delta virus RNA replication. Viruses 2009; 1:818-31. [PMID: 21994571 PMCID: PMC3185533 DOI: 10.3390/v1030818] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 12/12/2022] Open
Abstract
Hepatitis delta virus (HDV) is a distant relative of plant viroids in the animal world. Similar to plant viroids, HDV replicates its circular RNA genome using a double rolling-circle mechanism. Nevertheless, the production of hepatitis delta antigen (HDAg), which is indispensible for HDV replication, is a unique feature distinct from plant viroids, which do not encode any protein. Here the HDV RNA replication cycle is reviewed, with emphasis on the function of HDAg in modulating RNA replication and the nature of the enzyme involved.
Collapse
|
8
|
Zúñiga S, Sola I, Cruz JLG, Enjuanes L. Role of RNA chaperones in virus replication. Virus Res 2008; 139:253-66. [PMID: 18675859 PMCID: PMC7114511 DOI: 10.1016/j.virusres.2008.06.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 06/18/2008] [Accepted: 06/23/2008] [Indexed: 01/06/2023]
Abstract
RNA molecules are functionally diverse in part due to their extreme structural flexibility that allows rapid regulation by refolding. RNA folding could be a difficult process as often molecules adopt a spatial conformation that is very stable but not biologically functional, named a kinetic trap. RNA chaperones are non-specific RNA binding proteins that help RNA folding by resolving misfolded structures or preventing their formation. There is a large number of viruses whose genome is RNA that allows some evolutionary advantages, such as rapid genome mutation. On the other hand, regions of the viral RNA genomes can adopt different structural conformations, some of them lacking functional relevance and acting as misfolded intermediates. In fact, for an efficient replication, they often require RNA chaperone activities. There is a growing list of RNA chaperones encoded by viruses involved in different steps of the viral cycle. Also, cellular RNA chaperones have been involved in replication of RNA viruses. This review briefly describes RNA chaperone activities and is focused in the roles that viral or cellular nucleic acid chaperones have in RNA virus replication, particularly in those viruses that require discontinuous RNA synthesis.
Collapse
Affiliation(s)
- Sonia Zúñiga
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universitario de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
9
|
Chadalavada DM, Cerrone-Szakal AL, Bevilacqua PC. Wild-type is the optimal sequence of the HDV ribozyme under cotranscriptional conditions. RNA (NEW YORK, N.Y.) 2007; 13:2189-2201. [PMID: 17956974 PMCID: PMC2080589 DOI: 10.1261/rna.778107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Accepted: 09/11/2007] [Indexed: 05/25/2023]
Abstract
RNA viruses are responsible for a variety of human diseases, and the pathogenicity of RNA viruses is often attributed to a high rate of mutation. Self-cleavage activity of the wild-type hepatitis delta virus (HDV) ribozyme as measured in standard divalent ion renaturation assays is biphasic and mostly slow and can be improved by multiple rational changes to ribozyme sequence or by addition of chemical denaturants. This is unusual in the sense that wild type is the most catalytically active sequence for the majority of protein enzymes, and RNA viruses are highly mutable. To see whether the ribozyme takes advantage of fast-reacting sequence changes in vivo, we performed alignment of 76 genomic and 269 antigenomic HDV isolates. Paradoxically, the sequence for the ribozyme was found to be essentially invariant in nature. We therefore tested whether three ribozyme sequence changes that improve self-cleavage under standard divalent ion renaturation assays also improve self-cleavage during transcription. Remarkably, wild type was as fast, or faster, than these mutants under cotranscriptional conditions. Slowing the rate of transcription or adding the hepatitis delta antigen protein only further stimulated cotranscriptional self-cleavage activity. Thus, the relative activity of HDV ribozyme mutants depends critically on whether the reaction is assayed under in vivo-like conditions. A model is presented for how wild-type ribozyme sequence and flanking sequence work in concert to promote efficient self-cleavage during transcription. Wild type being the optimal ribozyme sequence under in vivo-like conditions parallels the behavior of most protein enzymes.
Collapse
Affiliation(s)
- Durga M Chadalavada
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
10
|
Zúñiga S, Sola I, Moreno JL, Sabella P, Plana-Durán J, Enjuanes L. Coronavirus nucleocapsid protein is an RNA chaperone. Virology 2007; 357:215-27. [PMID: 16979208 PMCID: PMC7111943 DOI: 10.1016/j.virol.2006.07.046] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 07/11/2006] [Accepted: 07/29/2006] [Indexed: 01/19/2023]
Abstract
RNA chaperones are nonspecific nucleic acid binding proteins with long disordered regions that help RNA molecules to adopt its functional conformation. Coronavirus nucleoproteins (N) are nonspecific RNA-binding proteins with long disordered regions. Therefore, we investigated whether transmissible gastroenteritis coronavirus (TGEV) N protein was an RNA chaperone. Purified N protein enhanced hammerhead ribozyme self-cleavage and nucleic acids annealing, which are properties that define RNA chaperones. In contrast, another RNA-binding protein, PTB, did not show these activities. N protein chaperone activity was blocked by specific monoclonal antibodies. Therefore, it was concluded that TGEV N protein is an RNA chaperone. In addition, we have shown that purified severe acute respiratory syndrome (SARS)-CoV N protein also has RNA chaperone activity. In silico predictions of disordered domains showed a similar pattern for all coronavirus N proteins evaluated. Altogether, these data led us to suggest that all coronavirus N proteins might be RNA chaperones.
Collapse
Affiliation(s)
- Sonia Zúñiga
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universidad Autónoma, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Enjuanes L, Almazán F, Sola I, Zuñiga S. Biochemical aspects of coronavirus replication and virus-host interaction. Annu Rev Microbiol 2006; 60:211-30. [PMID: 16712436 DOI: 10.1146/annurev.micro.60.080805.142157] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infection by different coronaviruses (CoVs) causes alterations in the transcriptional and translational patterns, cell cycle, cytoskeleton, and apoptosis pathways of the host cells. In addition, CoV infection may cause inflammation, alter immune and stress responses, and modify the coagulation pathways. The balance between the up- and downregulated genes could explain the pathogenesis caused by these viruses. We review specific aspects of CoV-host interactions. CoV genome replication takes place in the cytoplasm in a membrane-protected microenvironment and may control the cell machinery by locating some of their proteins in the host cell nucleus. CoVs initiate translation by cap-dependent and cap-independent mechanisms. CoV transcription involves a discontinuous RNA synthesis (template switching) during the extension of a negative copy of the subgenomic mRNAs. The requirement for base-pairing during transcription has been formally demonstrated in arteriviruses and CoVs. CoV N proteins have RNA chaperone activity that may help initiate template switching. Both viral and cellular proteins are required for replication and transcription, and the role of selected proteins is addressed.
Collapse
Affiliation(s)
- Luis Enjuanes
- Department of Molecular and Cell Biology, CNB, CSIC, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
12
|
Perlman S, Holmes KV. Regulation of coronavirus transcription: viral and cellular proteins interacting with transcription-regulating sequences. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:31-5. [PMID: 17037500 PMCID: PMC7123242 DOI: 10.1007/978-0-387-33012-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
13
|
Choi I, Cho BR, Kim D, Miyagawa S, Kubo T, Kim JY, Park CG, Hwang WS, Lee JS, Ahn C. Choice of the adequate detection time for the accurate evaluation of the efficiency of siRNA-induced gene silencing. J Biotechnol 2005; 120:251-61. [PMID: 16095743 DOI: 10.1016/j.jbiotec.2005.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 06/15/2005] [Accepted: 06/20/2005] [Indexed: 11/25/2022]
Abstract
RNA interference (RNAi) mediated by small interfering RNA (siRNA) has become a popular tool of examining the function of various genes. However, many studies have failed to identify any inhibitory effect of the siRNAs on the expression of the target gene, even though the siRNA being tested had been designed sequence-specifically. In order to determine if this failure is due to the incorrect choice of observation time rather than that of the target site of the gene of interest, this study examined the RNAi efficiency of a vector-driven siRNA targeting two different reporter proteins, EGFP and d2EGFP, whose targeted sequences were identical but the half-lives within the cells differed remarkably from each other (>24h versus 2h), during the time course after transfection. The EGFP expression levels in both cells were reduced in time-dependent manner but the reduction patterns were quite different from each other. The RNAi efficiency varied among the different observation time points and the time required for the maximum RNAi efficiency was proportional to the half-life of the target protein. Stable knocked down cell lines for EGFP expression were then established and the reduced EGFP expression levels in these cell lines were retained for a long period. These results suggest that the choice of an adequate observation time or the establishment of stable knocked down cells by antibiotic selection might be required for making an accurate evaluation of the RNAi effect on the target protein possessing a long half-life.
Collapse
Affiliation(s)
- Inho Choi
- Laboratory of Immunology, Transplantation Research Institute and Clinical Research Institute, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cao G, Yang G, Liu Z, Liu X, Zhang J, Zhang D, Liu N, Ding H, Fan M, Shen B, Shao N. Identification of the RNA chaperone activity of recombinant human tumor necrosis factor alpha in vitro. Biochem Biophys Res Commun 2005; 328:573-9. [PMID: 15694386 DOI: 10.1016/j.bbrc.2005.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Indexed: 11/24/2022]
Abstract
RNA chaperones are defined as proteins that aid in the process of RNA folding by processing misfolding or by resolving misfolded structures. Although RNA chaperones are ubiquitous and abundant in all living organisms and viruses, there are no any reports that a cytokine has such RNA chaperone activity. Here, we demonstrate for the first time that recombinant human tumor necrosis factor alpha (rhTNF-alpha), a well-known cytokine, has RNA chaperone activity in vitro. rhTNF-alpha binds random 68 nt RNAs strongly at the minimal concentration of 10 microM with a broad sequence specificity. Our results also show that rhTNF-alpha facilitates annealing and strand exchange, and promotes the cleavage of a 17-nucleotide substrate S by hammerhead ribozyme HH16. The role of TNF-alpha as an RNA chaperone in vivo is not clear, but we propose that TNF-alpha may play an important role as an RNA chaperone during the process of some infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Guojun Cao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Huang ZS, Chen AYJ, Wu HN. Characterization and application of the selective strand annealing activity of the N terminal domain of hepatitis delta antigen. FEBS Lett 2005; 578:345-50. [PMID: 15589843 DOI: 10.1016/j.febslet.2004.11.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Accepted: 11/11/2004] [Indexed: 11/28/2022]
Abstract
We used synthetic DNA oligos to investigate the nucleic acid chaperone properties of the N terminal domain of hepatitis delta antigen (NdAg). We found that NdAg possessed a bona fide chaperone activity. NdAg could distinguish subtle differences in the thermal stability of the base pairing region, and enabled DNA oligos to form a more stable duplex among competing sequences through facilitating strand annealing selectively, stimulating duplex conversion selectively, and stabilizing the more stable duplex. The property of NdAg identified in this study could be applied to improve the efficiency and specificity of dot blot hybridization under conditions of low stringency.
Collapse
Affiliation(s)
- Zhi-Shun Huang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
16
|
Abstract
RNA is structurally very flexible, which provides the basis for its functional diversity. An RNA molecule can often adopt different conformations, which enables the regulation of its function through folding. Proteins help RNAs reach their functionally active conformation by increasing their structural stability or by chaperoning the folding process. Large, dynamic RNA-protein complexes, such as the ribosome or the spliceosome, require numerous proteins that coordinate conformational switches of the RNA components during assembly and during their respective activities.
Collapse
Affiliation(s)
- Renée Schroeder
- Max F. Perutz Laboratories, Department of Microbiology and Genetics, University of Vienna, Austria.
| | | | | |
Collapse
|
17
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:2269-2275. [DOI: 10.11569/wcjd.v12.i10.2269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
18
|
Wang CC, Chang TC, Lin CW, Tsui HL, Chu PBC, Chen BS, Huang ZS, Wu HN. Nucleic acid binding properties of the nucleic acid chaperone domain of hepatitis delta antigen. Nucleic Acids Res 2004; 31:6481-92. [PMID: 14602906 PMCID: PMC275553 DOI: 10.1093/nar/gkg857] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The N terminal region of hepatitis delta antigen (HDAg), referred to here as NdAg, has a nucleic acid chaperone activity that modulates the ribozyme activity of hepatitis delta virus (HDV) RNA and stimulates hammerhead ribozyme catalysis. We characterized the nucleic acid binding properties of NdAg, identified the structural and sequence domains important for nucleic acid binding, and studied the correlation between the nucleic acid binding ability and the nucleic acid chaperone activity. NdAg does not recognize the catalytic core of HDV ribozyme specifically. Instead, NdAg interacts with a variety of nucleic acids and has higher affinities to longer nucleic acids. The studies with RNA homopolymers reveal that the binding site size of NdAg is around nine nucleotides long. The extreme N terminal portion of NdAg, the following coiled-coil domain and the basic amino acid clusters in these regions are important for nucleic acid binding. The nucleic acid-NdAg complex is stabilized largely by electrostatic interactions. The formation of RNA-protein complex appears to be a prerequisite for facilitating hammerhead ribozyme catalysis of NdAg and its derivatives. Mutations that reduce the RNA binding activity or high ionic strength that destabilizes the RNA-protein complex, reduce the nucleic acid chaperone activity of NdAg.
Collapse
Affiliation(s)
- Chun-Chung Wang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Arthur DC, Ghetu AF, Gubbins MJ, Edwards RA, Frost LS, Glover JNM. FinO is an RNA chaperone that facilitates sense-antisense RNA interactions. EMBO J 2004; 22:6346-55. [PMID: 14633993 PMCID: PMC291848 DOI: 10.1093/emboj/cdg607] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The protein FinO represses F-plasmid conjugative transfer by facilitating interactions between the mRNA of the major F-plasmid transcriptional activator, TraJ, and an antisense RNA, FinP. FinO is known to bind stem-loop structures in both FinP and traJ RNAs; however, the mechanism by which FinO facilitates sense-antisense pairing is poorly understood. Here we show that FinO acts as an RNA chaperone to promote strand exchange and duplexing between minimal RNA targets derived from FinP. This strongly suggests that FinO may function to destabilize internal secondary structures within FinP and traJ RNAs that would otherwise act as a kinetic trap to sense-antisense pairing. The energy for FinO-catalyzed base-pair destabilization does not arise from ATP hydrolysis but appears to be supplied directly from FinO RNA binding free energy. An analysis of the activities of mutants that are specifically deficient in strand exchange but not RNA-binding activity demonstrates that strand exchange is essential to the ability of FinO to mediate sense-antisense RNA recognition, and that this function also plays a role in repression of conjugation in vivo.
Collapse
Affiliation(s)
- David C Arthur
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | |
Collapse
|