1
|
Krajewska M, Szewczyk A, Kulawiak B, Koprowski P. Pharmacological Characterization of a Recombinant Mitochondrial ROMK2 Potassium Channel Expressed in Bacteria and Reconstituted in Planar Lipid Bilayers. MEMBRANES 2023; 13:360. [PMID: 36984747 PMCID: PMC10052516 DOI: 10.3390/membranes13030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
In the inner mitochondrial membrane, several potassium channels that play a role in cell life and death have been identified. One of these channels is the ATP-regulated potassium channel (mitoKATP). The ROMK2 potassium channel is a potential molecular component of the mitoKATP channel. The current study aimed to investigate the pharmacological modulation of the activity of the ROMK2 potassium channel expressed in Escherichia coli bacteria. ROMK2 was solubilized in polymer nanodiscs and incorporated in planar lipid bilayers. The impact of known mitoKATP channel modulators on the activity of the ROMK2 was characterized. We found that the ROMK2 channel was activated by the mitoKATP channel opener diazoxide and blocked by mitoKATP inhibitors such as ATP/Mg2+, 5-hydroxydecanoic acid, and antidiabetic sulfonylurea glibenclamide. These results indicate that the ROMK2 potassium protein may be a pore-forming subunit of mitoKATP and that the impact of channel modulators is not related to the presence of accessory proteins.
Collapse
Affiliation(s)
- Milena Krajewska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| |
Collapse
|
2
|
Woodbury DJ, Whitt EC, Coffman RE. A review of TNP-ATP in protein binding studies: benefits and pitfalls. BIOPHYSICAL REPORTS 2021; 1:100012. [PMID: 36425312 PMCID: PMC9680771 DOI: 10.1016/j.bpr.2021.100012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/03/2021] [Indexed: 06/16/2023]
Abstract
We review 50 years of use of 2',3'-O-trinitrophenyl (TNP)-ATP, a fluorescently tagged ATP analog. It has been extensively used to detect binding interactions of ATP to proteins and to measure parameters of those interactions such as the dissociation constant, Kd, or inhibitor dissociation constant, Ki. TNP-ATP has also found use in other applications, for example, as a fluorescence marker in microscopy, as a FRET pair, or as an antagonist (e.g., of P2X receptors). However, its use in protein binding studies has limitations because the TNP moiety often enhances binding affinity, and the fluorescence changes that occur with binding can be masked or mimicked in unexpected ways. The goal of this review is to provide a clear perspective of the pros and cons of using TNP-ATP to allow for better experimental design and less ambiguous data in future experiments using TNP-ATP and other TNP nucleotides.
Collapse
Affiliation(s)
- Dixon J. Woodbury
- Department of Cell Biology and Physiology
- Neuroscience Center, Brigham Young University, Provo, Utah
| | | | | |
Collapse
|
3
|
Hille B, Dickson EJ, Kruse M, Vivas O, Suh BC. Phosphoinositides regulate ion channels. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:844-56. [PMID: 25241941 PMCID: PMC4364932 DOI: 10.1016/j.bbalip.2014.09.010] [Citation(s) in RCA: 472] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 11/29/2022]
Abstract
Phosphoinositides serve as signature motifs for different cellular membranes and often are required for the function of membrane proteins. Here, we summarize clear evidence supporting the concept that many ion channels are regulated by membrane phosphoinositides. We describe tools used to test their dependence on phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, and consider mechanisms and biological meanings of phosphoinositide regulation of ion channels. This lipid regulation can underlie changes of channel activity and electrical excitability in response to receptors. Since different intracellular membranes have different lipid compositions, the activity of ion channels still in transit towards their final destination membrane may be suppressed until they reach an optimal lipid environment. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Bertil Hille
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA.
| | - Eamonn J Dickson
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA.
| | - Martin Kruse
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA.
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA.
| | - Byung-Chang Suh
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Republic of Korea.
| |
Collapse
|
4
|
Logothetis DE, Petrou VI, Zhang M, Mahajan R, Meng XY, Adney SK, Cui M, Baki L. Phosphoinositide control of membrane protein function: a frontier led by studies on ion channels. Annu Rev Physiol 2014; 77:81-104. [PMID: 25293526 DOI: 10.1146/annurev-physiol-021113-170358] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anionic phospholipids are critical constituents of the inner leaflet of the plasma membrane, ensuring appropriate membrane topology of transmembrane proteins. Additionally, in eukaryotes, the negatively charged phosphoinositides serve as key signals not only through their hydrolysis products but also through direct control of transmembrane protein function. Direct phosphoinositide control of the activity of ion channels and transporters has been the most convincing case of the critical importance of phospholipid-protein interactions in the functional control of membrane proteins. Furthermore, second messengers, such as [Ca(2+)]i, or posttranslational modifications, such as phosphorylation, can directly or allosterically fine-tune phospholipid-protein interactions and modulate activity. Recent advances in structure determination of membrane proteins have allowed investigators to obtain complexes of ion channels with phosphoinositides and to use computational and experimental approaches to probe the dynamic mechanisms by which lipid-protein interactions control active and inactive protein states.
Collapse
Affiliation(s)
- Diomedes E Logothetis
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0551;
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Furukawa F, Watanabe S, Kimura S, Kaneko T. Potassium excretion through ROMK potassium channel expressed in gill mitochondrion-rich cells of Mozambique tilapia. Am J Physiol Regul Integr Comp Physiol 2012; 302:R568-76. [PMID: 22204952 DOI: 10.1152/ajpregu.00628.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite recent progress in physiology of fish ion homeostasis, the mechanism of plasma K+ regulation has remained unclear. Using Mozambique tilapia, a euryhaline teleost, we demonstrated that gill mitochondrion-rich (MR) cells were responsible for K+ excretion, using a newly invented technique that insolubilized and visualized K+ excreted from the gills. For a better understanding of the molecular mechanism of K+ excretion in the gills, cDNA sequences of renal outer medullary K+ channel (ROMK), potassium large conductance Ca(2+)-activated channel, subfamily M (Maxi-K), K(+)-Cl(-) cotransporters (KCC1, KCC2, and KCC4) were identified in tilapia as the candidate molecules that are involved in K+ handling. Among the cloned candidate molecules, only ROMK showed marked upregulation of mRNA levels in response to high external K+ concentration. In addition, immunofluorescence microscopy revealed that ROMK was localized in the apical opening of gill MR cells, and that the immunosignals were most intense in the fish acclimated to the environment with high K+ concentration. To confirm K+ excretion via ROMK, K+ insolubilization-visualization technique was applied again in combination with K+ channel blockers. The K+ precipitation was prevented in the presence of Ba2+, indicating that ROMK has a pivotal role in K+ excretion. The present study is the first to demonstrate that the fish excrete K+ from the gill MR cells, and that ROMK expressed in the apical opening of the MR cells is a main molecular pathway responsible for K+ excretion.
Collapse
Affiliation(s)
- Fumiya Furukawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
6
|
Pattnaik BR, Asuma MP, Spott R, Pillers DAM. Genetic defects in the hotspot of inwardly rectifying K(+) (Kir) channels and their metabolic consequences: a review. Mol Genet Metab 2012; 105:64-72. [PMID: 22079268 PMCID: PMC3253982 DOI: 10.1016/j.ymgme.2011.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 02/07/2023]
Abstract
Inwardly rectifying potassium (Kir) channels are essential for maintaining normal potassium homeostasis and the resting membrane potential. As a consequence, mutations in Kir channels cause debilitating diseases ranging from cardiac failure to renal, ocular, pancreatic, and neurological abnormalities. Structurally, Kir channels consist of two trans-membrane domains, a pore-forming loop that contains the selectivity filter and two cytoplasmic polar tails. Within the cytoplasmic structure, clusters of amino acid sequences form regulatory domains that interact with cellular metabolites to control the opening and closing of the channel. In this review, we present an overview of Kir channel function and recent progress in the characterization of selected Kir channel mutations that lie in and near a C-terminal cytoplasmic 'hotspot' domain. The resultant molecular mechanisms by which the loss or gain of channel function leads to organ failure provide potential opportunities for targeted therapeutic interventions for this important group of channelopathies.
Collapse
Affiliation(s)
- Bikash R. Pattnaik
- Department of Pediatrics, University of Wisconsin, Madison
- Department of Ophthalmology & Visual Sciences, University of Wisconsin, Madison
- Department of Eye Research Institute, University of Wisconsin, Madison
| | - Matti P. Asuma
- Department of Pediatrics, University of Wisconsin, Madison
| | - Ryan Spott
- Department of Pediatrics, University of Wisconsin, Madison
| | - De-Ann M. Pillers
- Department of Pediatrics, University of Wisconsin, Madison
- Department of Eye Research Institute, University of Wisconsin, Madison
| |
Collapse
|
7
|
Logothetis DE, Petrou VI, Adney SK, Mahajan R. Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch 2010; 460:321-41. [PMID: 20396900 PMCID: PMC4040125 DOI: 10.1007/s00424-010-0828-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 02/07/2023]
Abstract
The plasma membrane phosphoinositide phosphatidylinositol 4,5-bisphosphate (PIP2) controls the activity of most ion channels tested thus far through direct electrostatic interactions. Mutations in channel proteins that change their apparent affinity to PIP2 can lead to channelopathies. Given the fundamental role that membrane phosphoinositides play in regulating channel activity, it is surprising that only a small number of channelopathies have been linked to phosphoinositides. This review proposes that for channels whose activity is PIP2-dependent and for which mutations can lead to channelopathies, the possibility that the mutations alter channel-PIP2 interactions ought to be tested. Similarly, diseases that are linked to disorders of the phosphoinositide pathway result in altered PIP2 levels. In such cases, it is proposed that the possibility for a concomitant dysregulation of channel activity also ought to be tested. The ever-growing list of ion channels whose activity depends on interactions with PIP2 promises to provide a mechanism by which defects on either the channel protein or the phosphoinositide levels can lead to disease.
Collapse
Affiliation(s)
- Diomedes E Logothetis
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|
8
|
Welling PA, Ho K. A comprehensive guide to the ROMK potassium channel: form and function in health and disease. Am J Physiol Renal Physiol 2009; 297:F849-63. [PMID: 19458126 DOI: 10.1152/ajprenal.00181.2009] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The discovery of the renal outer medullary K+ channel (ROMK, K(ir)1.1), the founding member of the inward-rectifying K+ channel (K(ir)) family, by Ho and Hebert in 1993 revolutionized our understanding of potassium channel biology and renal potassium handling. Because of the central role that ROMK plays in the regulation of salt and potassium homeostasis, considerable efforts have been invested in understanding the underlying molecular mechanisms. Here we provide a comprehensive guide to ROMK, spanning from the physiology in the kidney to the organization and regulation by intracellular factors to the structural basis of its function at the atomic level.
Collapse
Affiliation(s)
- Paul A Welling
- Dept. of Physiology, Univ. of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA.
| | | |
Collapse
|
9
|
Physiologic regulation of the epithelial sodium channel by phosphatidylinositides. Curr Opin Nephrol Hypertens 2009; 17:533-40. [PMID: 18695396 DOI: 10.1097/mnh.0b013e328308fff3] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Epithelial sodium channel (ENaC) activity is limiting for sodium reabsorption in the distal nephron. Humans regulate blood pressure by fine-tuning sodium balance through control of ENaC. ENaC dysfunction causes some hypertensive and renal salt wasting diseases. Thus, it is critical to understand the cellular mechanisms controlling ENaC activity. RECENT FINDINGS ENaC is sensitive to phosphatidylinositol 4,5-bisphosphate (PIP2), the target of phospholipase C-mediated metabolism, and phosphatidylinositiol 3,4,5-trisphosphate (PIP3), the product of phosphatidylinositide 3-OH kinase (PI3-K). PIP2 is permissive for ENaC gating possibly interacting directly with the channel. Activation of distal nephron P2Y receptors tempers ENaC activity by promoting PIP2 metabolism. This is important because gene deletion of P2Y2 receptors causes hypertension associated with hyperactive ENaC. Aldosterone, the final hormone in a negative-feedback cascade activated by decreases in blood pressure, increases ENaC activity. PIP3 sits at a critical bifurcation in the aldosterone-signaling cascade, increasing ENaC open probability and number. PIP3-effectors mediate increases in ENaC number by suppressing channel retrieval. PIP3 binds ENaC, at a site distinct from that important to PIP2 regulation, to modulate directly open probability. SUMMARY Phosphoinositides play key roles in physiologic control of ENaC and perhaps dysregulation plays a role in disease associated with abnormal renal sodium handling.
Collapse
|
10
|
Hernandez CC, Zaika O, Shapiro MS. A carboxy-terminal inter-helix linker as the site of phosphatidylinositol 4,5-bisphosphate action on Kv7 (M-type) K+ channels. ACTA ACUST UNITED AC 2008; 132:361-81. [PMID: 18725531 PMCID: PMC2518730 DOI: 10.1085/jgp.200810007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulation of M-type (KCNQ [Kv7]) K+ channels by phosphatidylinositol 4,5-bisphosphate (PIP2) has perhaps the best correspondence to physiological signaling, but the site of action and structural motif of PIP2 on these channels have not been established. Using single-channel recordings of chimeras of Kv7.3 and 7.4 channels with highly differential PIP2 sensitivities, we localized a carboxy-terminal inter-helix linker as the primary site of PIP2 action. Point mutants within this linker in Kv7.2 and Kv7.3 identified a conserved cluster of basic residues that interact with the lipid using electrostatic and hydrogen bonds. Homology modeling of this putative PIP2-binding linker in Kv7.2 and Kv7.3 using the solved structure of Kir2.1 and Kir3.1 channels as templates predicts a structure of Kv7.2 and 7.3 very similar to the Kir channels, and to the seven-β-sheet barrel motif common to other PIP2-binding domains. Phosphoinositide-docking simulations predict affinities and interaction energies in accord with the experimental data, and furthermore indicate that the precise identity of residues in the interacting pocket alter channel–PIP2 interactions not only by altering electrostatic energies, but also by allosterically shifting the structure of the lipid-binding surface. The results are likely to shed light on the general structural mechanisms of phosphoinositide regulation of ion channels.
Collapse
Affiliation(s)
- Ciria C Hernandez
- Department of Physiology, MS 7756, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
11
|
Pochynyuk O, Tong Q, Medina J, Vandewalle A, Staruschenko A, Bugaj V, Stockand JD. Molecular determinants of PI(4,5)P2 and PI(3,4,5)P3 regulation of the epithelial Na+ channel. ACTA ACUST UNITED AC 2007; 130:399-413. [PMID: 17893193 PMCID: PMC2151653 DOI: 10.1085/jgp.200709800] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) are physiologically important second messengers. These molecules bind effector proteins to modulate activity. Several types of ion channels, including the epithelial Na+ channel (ENaC), are phosphoinositide effectors capable of directly interacting with these signaling molecules. Little, however, is known of the regions within ENaC and other ion channels important to phosphoinositide binding and modulation. Moreover, the molecular mechanism of this regulation, in many instances, remains obscure. Here, we investigate modulation of ENaC by PI(3,4,5)P3 and PI(4,5)P2 to begin identifying the molecular determinants of this regulation. We identify intracellular regions near the inner membrane interface just following the second transmembrane domains in β- and γ- but not α-ENaC as necessary for PI(3,4,5)P2 but not PI(4,5)P2 modulation. Charge neutralization of conserved basic amino acids within these regions demonstrated that these polar residues are critical to phosphoinositide regulation. Single channel analysis, moreover, reveals that the regions just following the second transmembrane domains in β- and γ-ENaC are critical to PI(3,4,5)P3 augmentation of ENaC open probability, thus, defining mechanism. Unexpectedly, intracellular domains within the extreme N terminus of β- and γ-ENaC were identified as being critical to down-regulation of ENaC activity and Po in response to depletion of membrane PI(4,5)P2. These regions of the channel played no identifiable role in a PI(3,4,5)P3 response. Again, conserved positive-charged residues within these domains were particularly important, being necessary for exogenous PI(4,5)P2 to increase open probability. We conclude that β and γ subunits bestow phosphoinositide sensitivity to ENaC with distinct regions of the channel being critical to regulation by PI(3,4,5)P3 and PI(4,5)P2. This argues that these phosphoinositides occupy distinct ligand-binding sites within ENaC to modulate open probability.
Collapse
Affiliation(s)
- Oleh Pochynyuk
- University of Texas Health Science Center, Department of Physiology, San Antonio, TX 78229, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Tanaka-Kunishima M, Ishida Y, Takahashi K, Honda M, Oonuma T. Ancient intron insertion sites and palindromic genomic duplication evolutionally shapes an elementally functioning membrane protein family. BMC Evol Biol 2007; 7:143. [PMID: 17708769 PMCID: PMC1999503 DOI: 10.1186/1471-2148-7-143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 08/20/2007] [Indexed: 12/28/2022] Open
Abstract
Background In spite of the recent accumulation of genomic data, the evolutionary pathway in the individual genes of present-day living taxa is still elusive for most genes. Among ion channels, inward K+ rectifier (IRK) channels are the fundamental and well-defined protein group. We analyzed the genomic structures of this group and compared them among a phylogenetically wide range with our sequenced Halocynthia roretzi, a tunicate, IRK genomic genes. Results A total of 131 IRK genomic genes were analyzed. The phylogenic trees of amino acid sequences revealed a clear diversification of deuterostomic IRKs from protostomic IRKs and suggested that the tunicate IRKs are possibly representatives of the descendants of ancestor forms of three major groups of IRKs in the vertebrate. However, the exon-intron structures of the tunicate IRK genomes showed considerable similarities to those of Caenorhabditis. In the vertebrate clade, the members in each major group increased at least four times those in the tunicate by various types of global gene duplication. The generation of some major groups was inferred to be due to anti-tandem (palindromic) duplication in early history. The intron insertion points greatly decreased during the evolution of the vertebrates, remaining as a unique conservation of an intron insertion site in the portion of protein-protein interaction within the coding regions of all vertebrate G-protein-activated IRK genes. Conclusion From the genomic survey of a family of IRK genes, it was suggested that the ancient intron insertion sites and the unique palindromic genomic duplication evolutionally shaped this membrane protein family.
Collapse
Affiliation(s)
- Motoko Tanaka-Kunishima
- Department of Medical Physiology, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose, Tokyo, MZC204-8588, Japan
| | - Yoshihiro Ishida
- Department of Medical Physiology, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose, Tokyo, MZC204-8588, Japan
| | - Kunitaro Takahashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose, Tokyo, MZC204-8588, Japan
| | - Motoo Honda
- Department of Medical Physiology, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose, Tokyo, MZC204-8588, Japan
| | - Takashi Oonuma
- Department of Medical Physiology, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose, Tokyo, MZC204-8588, Japan
| |
Collapse
|
13
|
Jones HM, Bailey MA, Baty CJ, Macgregor GG, Syme CA, Hamilton KL, Devor DC. An NH2-terminal multi-basic RKR motif is required for the ATP-dependent regulation of hIK1. Channels (Austin) 2007; 1:80-91. [PMID: 18690018 DOI: 10.4161/chan.3999] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We previously demonstrated that the ATP/PKA-dependent activation of the human intermediate conductance, Ca2+-activated K+ channel, hIK1, is dependent upon a C-terminal motif. The NH2-terminus of hIK1 contains a multi-basic 13RRRKR17 motif, known to be important in the trafficking and function of ion channels. While individual mutations within this domain have no effect on channel function, the triple mutation (15RKR17/AAA), as well as additional double mutations, result in a near complete loss of functional channels, as assessed by whole-cell patch-clamp. However, cell-surface immunoprecipitation studies confirmed expression of these mutated channels at the plasma membrane. To elucidate the functional consequences of the (15)RKR(17)/AAA mutation we performed inside-out patch clamp recordings where we observed no difference in Ca2+ affinity between the wild-type and mutated channels. However, in contrast to wild-type hIK1, channels expressing the 15RKR17/AAA mutation exhibited rundown, which could not be reversed by the addition of ATP. Wild-type hIK1 channel activity was reduced by alkaline phosphatase both in the presence and absence of ATP, indicative of a phosphorylation event, whereas the 15RKR17/AAA mutation eliminated this effect of alkaline phosphatase. Further, single channel analysis demonstrated that the 15RKR17/AAA mutation resulted in a four-fold lower channel open probability (P(o)), in the presence of saturating Ca2+ and ATP, compared to wild-type hIK1. In conclusion, these results represent the first demonstration for a role of the NH2-terminus in the second messenger-dependent regulation of hIK1 and, in combination with our previous findings, suggest that this regulation is dependent upon a close NH2/C-terminal association.
Collapse
Affiliation(s)
- Heather M Jones
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Pochynyuk O, Tong Q, Staruschenko A, Stockand JD. Binding and direct activation of the epithelial Na+ channel (ENaC) by phosphatidylinositides. J Physiol 2007; 580:365-72. [PMID: 17272344 PMCID: PMC2075560 DOI: 10.1113/jphysiol.2006.127449] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Several distinct types of ion channels bind and directly respond to phosphatidylinositides, including phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P(3)) and phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P(2)). This regulation is physiologically relevant for its dysfunction, in some instances, causes disease. Recent studies identify the epithelial Na(+) channel (ENaC) as a channel sensitive to phosphatidylinositides. ENaC appears capable of binding both PI(4,5)P(2) and PI(3,4,5)P(3) with binding stabilizing channel gating. The binding sites for these molecules within ENaC are likely to be distinct with the former phosphoinositide interacting with elements in the cytosolic NH(2)-terminus of the beta- and gamma-ENaC subunits and the latter with cytosolic regions immediately following the second transmembrane domains in these two subunits. PI(4,5)P(2) binding to ENaC appears saturated at rest and necessary for channel gating. Thus, decreases in cellular PI(4,5)P(2) levels may serve as a convergence point for inhibitory regulation of ENaC by G-protein coupled receptors and receptor tyrosine kinases. In contrast, apparent PI(3,4,5)P(3) binding to ENaC is not saturated. This enables the channel to respond with gating changes in a rapid and dynamic manner to signalling input that influences cellular PI(3,4,5)P(3) levels.
Collapse
Affiliation(s)
- Oleh Pochynyuk
- University of Texas Health Science Center, Department of Physiology, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
15
|
Ma D, Tang XD, Rogers TB, Welling PA. An andersen-Tawil syndrome mutation in Kir2.1 (V302M) alters the G-loop cytoplasmic K+ conduction pathway. J Biol Chem 2006; 282:5781-9. [PMID: 17166852 DOI: 10.1074/jbc.m608776200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Loss-of-function mutations in the inward rectifier potassium channel, Kir2.1, cause Andersen-Tawil syndrome (ATS-1), an inherited disorder of periodic paralysis and ventricular arrhythmias. Here, we explore the mechanism by which a specific ATS-1 mutation (V302M) alters channel function. Val-302 is located in the G-loop, a structure that is believed to form a flexible barrier for potassium permeation at the apex of the cytoplasmic pore. Consistent with a role in stabilizing the G-loop in an open conformation, we found the V302M mutation specifically renders the channel unable to conduct potassium without altering subunit assembly or attenuating cell surface expression. As predicted by the position of the Val-302 side chain in the crystal structure, amino acid substitution analysis revealed that channel activity and phosphatidylinositol 4,5-bisphosphate (PIP2) sensitivity are profoundly sensitive to alterations in the size, shape, and hydrophobicity of side chains at the Val-302 position. The observations establish that the Val-302 side chain is a critical determinant of potassium conduction through the G-loop. Based on our functional studies and the cytoplasmic domain crystal structure, we suggest that Val-302 may influence PIP2 gating indirectly by translating PIP2 binding to conformational changes in the G-loop pore.
Collapse
Affiliation(s)
- Donghui Ma
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
16
|
Brady JD, Rich ED, Martens JR, Karpen JW, Varnum MD, Brown RL. Interplay between PIP3 and calmodulin regulation of olfactory cyclic nucleotide-gated channels. Proc Natl Acad Sci U S A 2006; 103:15635-40. [PMID: 17032767 PMCID: PMC1622874 DOI: 10.1073/pnas.0603344103] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphatidylinositol-3,4,5-trisphosphate (PIP3) has been proposed to modulate the odorant sensitivity of olfactory sensory neurons by inhibiting activation of cyclic nucleotide-gated (CNG) channels in the cilia. When applied to the intracellular face of excised patches, PIP3 has been shown to inhibit activation of heteromeric olfactory CNG channels, composed of CNGA2, CNGA4, and CNGB1b subunits, and homomeric CNGA2 channels. In contrast, we discovered that channels formed by CNGA3 subunits from cone photoreceptors were unaffected by PIP3. Using chimeric channels and a deletion mutant, we determined that residues 61-90 within the N terminus of CNGA2 are necessary for PIP3 regulation, and a biochemical "pulldown" assay suggests that PIP3 directly binds this region. The N terminus of CNGA2 contains a previously identified calcium-calmodulin (Ca2+/CaM)-binding domain (residues 68-81) that mediates Ca2+/CaM inhibition of homomeric CNGA2 channels but is functionally silent in heteromeric channels. We discovered, however, that this region is required for PIP3 regulation of both homomeric and heteromeric channels. Furthermore, PIP3 occluded the action of Ca2+/CaM on both homomeric and heteromeric channels, in part by blocking Ca2+/CaM binding. Our results establish the importance of the CNGA2 N terminus for PIP3 inhibition of olfactory CNG channels and suggest that PIP3 inhibits channel activation by disrupting an autoexcitatory interaction between the N and C termini of adjacent subunits. By dramatically suppressing channel currents, PIP3 may generate a shift in odorant sensitivity that does not require prior channel activity.
Collapse
Affiliation(s)
| | - Elizabeth D. Rich
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, and Program in Neuroscience, Washington State University, Pullman, WA 99164; and
| | | | - Jeffrey W. Karpen
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97006
| | - Michael D. Varnum
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, and Program in Neuroscience, Washington State University, Pullman, WA 99164; and
| | - R. Lane Brown
- *Neurological Sciences Institute and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Pochynyuk O, Tong Q, Staruschenko A, Ma HP, Stockand JD. Regulation of the epithelial Na+ channel (ENaC) by phosphatidylinositides. Am J Physiol Renal Physiol 2006; 290:F949-57. [PMID: 16601296 DOI: 10.1152/ajprenal.00386.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) is an end-effector of diverse cellular signaling cascades, including those with phosphatidylinositide second messengers. Recent evidence also suggests that in some instances, phospatidylinositides can directly interact with ENaC to increase channel activity by increasing channel open probability and/or membrane localization. We review here findings relevant to regulation of ENaC by phosphatidylinositol 4,5-bisphosphate (PIP(2)) and phosphatidylinositol 3,4,5-triphosphate (PIP(3)). Similar to its actions on other ion channels, PIP(2) is permissive for ENaC openings having a direct effect on gating. The PIP(2) binding site in ENaC involved in this regulation is most likely localized to the NH(2) terminus of beta-ENaC. PIP(3) also affects ENaC gating but, rather than being permissive, augments open probability. The PIP(3) binding site in ENaC involved in this regulation is localized to the proximal region of the COOH terminus of gamma-ENaC just following the second transmembrane domain. In complementary pathways, PIP(3) also impacts ENaC membrane levels through both direct actions on the channel and via a signaling cascade involving phosphoinositide 3-OH kinase (PI3-K) and the aldosterone-induced gene product serum and glucocorticoid-inducible kinase. The putative PIP(3) binding site in ENaC involved in direct regulation of channel membrane levels has not yet been identified.
Collapse
Affiliation(s)
- Oleh Pochynyuk
- Dept. of Physiology, Univ. of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
18
|
Pochynyuk O, Staruschenko A, Tong Q, Medina J, Stockand JD. Identification of a functional phosphatidylinositol 3,4,5-trisphosphate binding site in the epithelial Na+ channel. J Biol Chem 2005; 280:37565-71. [PMID: 16154997 DOI: 10.1074/jbc.m509071200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane phospholipids, such as phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)), are signaling molecules that can directly modulate the activity of ion channels, including the epithelial Na(+) channel (ENaC). Whereas PI(3,4,5)P(3) directly activates ENaC, its binding site within the channel has not been identified. We identify here a region of gamma-mENaC just following the second trans-membrane domain (residues 569-583) important to PI(3,4,5)P(3) binding and regulation. Deletion of this track decreases activity of ENaC heterologously expressed in Chinese hamster ovary cells. K-Ras and its first effector phosphoinositide 3-OH kinase (PI3-K), as well as RhoA and its effector phosphatidylinositol 4-phosphate 5-kinase increase ENaC activity. Whereas the former, via generation of PI(3,4,5)P(3), increases ENaC open probability, the latter increases activity by increasing membrane levels of the channel. Deletion of the region just distal to the second trans-membrane domain disrupted regulation by K-Ras and PI3-K but not RhoA and phosphatidylinositol 4-phosphate 5-kinase. Moreover, PI(3,4,5)P(3) binds ENaC with deletion of the region following the second transmembrane domain disrupting this interaction and disrupting direct activation of the channel by PI(3,4,5)P(3). Mutation analysis revealed the importance of conserved positive and negative charged residues as well as bulky amino acids within this region to modulation of ENaC by PI3-K. The current results identify the region just distal to the second trans-membrane domain within gamma-mENaC as being part of a functional PI(3,4,5)P(3) binding site that directly impacts ENaC activity. Phospholipid binding to this site is probably mediated by the positively charged amino acids within this track, with negatively charged and bulky residues also influencing specificity of interactions.
Collapse
Affiliation(s)
- Oleh Pochynyuk
- Department of Physiology, University of Texas Health Science Center, San Antonio, 78229-3900, USA
| | | | | | | | | |
Collapse
|
19
|
Zhuo ML, Huang Y, Liu DP, Liang CC. KATP channel: relation with cell metabolism and role in the cardiovascular system. Int J Biochem Cell Biol 2005; 37:751-64. [PMID: 15694835 DOI: 10.1016/j.biocel.2004.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Indexed: 12/21/2022]
Abstract
ATP-sensitive potassium channel (K(ATP)) is one kind of inwardly rectifying channel composed of two kinds of subunits: the pore forming subunits and the regulatory subunits. K(ATP) channels exist in the sarcolemmal, mitochondrial and nuclear membranes of various tissues. Cell metabolism regulates K(ATP) gene expression and metabolism products regulate the channel by direct interactions, while K(ATP) controls membrane potentials and regulate cell activities including energy metabolism, apoptosis and gene expression. K(ATP) channels from different cell organelles are linked by some signal molecules and they can respond to common stimulation in a coordinate way. In the cardiovascular system K(ATP) has important functions. The most prominent is that opening of this channel can protect cardiac myocytes against ischemic injuries. The sarcolemmal K(ATP) may provide a basic protection against ischemia by energy sparing, while both the sarcolemmal K(ATP) and mitochondrial K(ATP) channels are necessary for the ischemia preconditioning. K(ATP) channels also have important functions including homeostasis maintenance and vascular tone regulation under physiological conditions. Further elucidation of the role of K(ATP) in the cardiovascular system will help us to regulate cell metabolism or prevent damage caused by abnormal channel functions.
Collapse
Affiliation(s)
- Ming-Lei Zhuo
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Dong Dan San Tiao 5, Beijing 100005, PR China
| | | | | | | |
Collapse
|
20
|
Dong K, Tang LQ, MacGregor GG, Leng Q, Hebert SC. Novel nucleotide-binding sites in ATP-sensitive potassium channels formed at gating interfaces. EMBO J 2005; 24:1318-29. [PMID: 15775962 PMCID: PMC1142547 DOI: 10.1038/sj.emboj.7600626] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 02/15/2005] [Indexed: 11/09/2022] Open
Abstract
The coupling of cell metabolism to membrane electrical activity is a vital process that regulates insulin secretion, cardiac and neuronal excitability and the responses of cells to ischemia. ATP-sensitive potassium channels (K(ATP); Kir6.x) are a major part of this metabolic-electrical coupling system and translate metabolic signals such as the ATP:ADP ratio to changes in the open or closed state (gate) of the channel. The localization of the nucleotide-binding site (NBS) on Kir6.x channels and how nucleotide binding gates these K(ATP) channels remain unclear. Here, we use fluorescent nucleotide binding to purified Kir6.x proteins to define the peptide segments forming the NBS on Kir6.x channels and show that unique N- and C-terminal interactions from adjacent subunits are required for high-affinity nucleotide binding. The short N- and C-terminal segments comprising the novel intermolecular NBS are next to helices that likely move with channel opening/closing, suggesting a lock-and-key model for ligand gating.
Collapse
Affiliation(s)
- Ke Dong
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Lie-Qi Tang
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Gordon G MacGregor
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Qiang Leng
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Steven C Hebert
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA. Tel.: +1 203 785 4041; Fax: +1 203 785 7678; E-mail:
| |
Collapse
|
21
|
Hebert SC, Desir G, Giebisch G, Wang W. Molecular diversity and regulation of renal potassium channels. Physiol Rev 2005; 85:319-71. [PMID: 15618483 PMCID: PMC2838721 DOI: 10.1152/physrev.00051.2003] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
K(+) channels are widely distributed in both plant and animal cells where they serve many distinct functions. K(+) channels set the membrane potential, generate electrical signals in excitable cells, and regulate cell volume and cell movement. In renal tubule epithelial cells, K(+) channels are not only involved in basic functions such as the generation of the cell-negative potential and the control of cell volume, but also play a uniquely important role in K(+) secretion. Moreover, K(+) channels participate in the regulation of vascular tone in the glomerular circulation, and they are involved in the mechanisms mediating tubuloglomerular feedback. Significant progress has been made in defining the properties of renal K(+) channels, including their location within tubule cells, their biophysical properties, regulation, and molecular structure. Such progress has been made possible by the application of single-channel analysis and the successful cloning of K(+) channels of renal origin.
Collapse
Affiliation(s)
- Steven C Hebert
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520-8026, USA.
| | | | | | | |
Collapse
|
22
|
Quinn KV, Cui Y, Giblin JP, Clapp LH, Tinker A. Do anionic phospholipids serve as cofactors or second messengers for the regulation of activity of cloned ATP-sensitive K+ channels? Circ Res 2003; 93:646-55. [PMID: 12970116 DOI: 10.1161/01.res.0000095247.81449.8e] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The regulation of ion channels by anionic phospholipids is currently very topical. An outstanding issue is whether phosphatidylinositol 4,5-diphosphate and related species act as true second messengers in signaling or behave in a manner analogous to an enzymatic cofactor. This question is especially pertinent regarding ATP-sensitive K+ channels in smooth muscle, for which there is substantial literature supporting inhibitory regulation by hormones. In this study, we have examined regulation of the potential cloned equivalents of the smooth muscle ATP-sensitive K+ channel (SUR2B/Kir6.1 and SUR2B/Kir6.2). We find that both can be inhibited via the Gq/11-coupled muscarinic M3 receptor but that the pathways by which this occurs are different. Our data show that SUR2B/Kir6.1 is inhibited by protein kinase C and binds anionic phospholipids with high affinity, such that potential physiological fluctuations in their levels do not influence channel activity. In contrast, Kir6.2 is not regulated by protein kinase C but binds anionic phospholipids with low affinity. In this case, phosphatidylinositol 4,5-diphosphate and related species have the potential to act as second messengers in signaling. Thus, Kir6.1 and Kir6.2 are regulated by distinct inhibitory mechanisms.
Collapse
Affiliation(s)
- Kathryn V Quinn
- BHF Laboratories and Department of Medicine, University College London, 5 University St, London WC1E 6JJ, UK
| | | | | | | | | |
Collapse
|