1
|
Marano N, Holaska JM. The role of inner nuclear membrane protein emerin in myogenesis. FASEB J 2025; 39:e70514. [PMID: 40178931 PMCID: PMC11967984 DOI: 10.1096/fj.202500323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Emerin, a ubiquitously expressed inner nuclear membrane protein, plays a central role in maintaining nuclear structure and genomic organization, and in regulating gene expression and cellular signaling pathways. These functions are critical for proper myogenic differentiation and are closely linked to the pathology of Emery-Dreifuss muscular dystrophy 1 (EDMD1), a laminopathy caused by mutations in the EMD gene. Emerin, along with other nuclear lamina proteins, modulates chromatin organization, cell signaling, gene expression, and cellular mechanotransduction, processes essential for muscle development and homeostasis. Loss of emerin function disrupts chromatin localization, causes dysregulated gene expression, and alters nucleoskeletal organization, resulting in impaired myogenic differentiation. Recent findings suggest that emerin tethers repressive chromatin at the nuclear envelope, a process essential for robust myogenesis. This review provides an in-depth discussion of emerin's multifaceted roles in nuclear organization, gene regulation, and cellular signaling, highlighting its importance in myogenic differentiation and disease progression.
Collapse
Affiliation(s)
- Nicholas Marano
- Department of Biomedical SciencesCooper Medical School of Rowan UniversityCamdenNew JerseyUSA
- Rowan‐Virtua School of Translational Biomedical Engineering and SciencesStratfordNew JerseyUSA
| | - James M. Holaska
- Department of Biomedical SciencesCooper Medical School of Rowan UniversityCamdenNew JerseyUSA
- Rowan‐Virtua School of Translational Biomedical Engineering and SciencesStratfordNew JerseyUSA
| |
Collapse
|
2
|
Paganelli F, Poli A, Truocchio S, Martelli AM, Palumbo C, Lattanzi G, Chiarini F. At the nucleus of cancer: how the nuclear envelope controls tumor progression. MedComm (Beijing) 2025; 6:e70073. [PMID: 39866838 PMCID: PMC11758262 DOI: 10.1002/mco2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Historically considered downstream effects of tumorigenesis-arising from changes in DNA content or chromatin organization-nuclear alterations have long been seen as mere prognostic markers within a genome-centric model of cancer. However, recent findings have placed the nuclear envelope (NE) at the forefront of tumor progression, highlighting its active role in mediating cellular responses to mechanical forces. Despite significant progress, the precise interplay between NE components and cancer progression remains under debate. In this review, we provide a comprehensive and up-to-date overview of how changes in NE composition affect nuclear mechanics and facilitate malignant transformation, grounded in the latest molecular and functional studies. We also review recent research that uses advanced technologies, including artificial intelligence, to predict malignancy risk and treatment outcomes by analyzing nuclear morphology. Finally, we discuss how progress in understanding nuclear mechanics has paved the way for mechanotherapy-a promising cancer treatment approach that exploits the mechanical differences between cancerous and healthy cells. Shifting the perspective on NE alterations from mere diagnostic markers to potential therapeutic targets, this review calls for further investigation into the evolving role of the NE in cancer, highlighting the potential for innovative strategies to transform conventional cancer therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alessandro Poli
- IFOM ETS ‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Serena Truocchio
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Carla Palumbo
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”Unit of BolognaBolognaItaly
- IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Francesca Chiarini
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
3
|
Reddy KL, Wong X. An Optimized Adaptation of DamID for NGS Applications. Methods Mol Biol 2025; 2866:245-262. [PMID: 39546207 DOI: 10.1007/978-1-0716-4192-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Recent studies have implicated higher-order genome organization in the regulation of genes and cellular state. Lamina-Associated Domains (LADs) are regions of heterochromatin associated with the nuclear envelope and the nuclear lamina, a protein network involved in both nuclear organization and genome structure. LADs are developmentally regulated, and their dysregulation is associated with several diseases and pathological states, including cancer and premature aging. In addition to LADs, other nuclear protein compartments appear to scaffold or support unique chromatin environments to affect gene expression. These revelations carry profound implications for our comprehension of developmental processes and the pathogenesis of various diseases, especially given the numerous disorders already directly associated with, for example, mutations in lamin and INM proteins. This spatial compartmentalization of chromatin subtypes to unique protein compartments has led to the adoption of proximity-labeling methods, such as DamID (DNA Adenine Methyltransferase Identification), to identify these unique chromatin compartments.
Collapse
Affiliation(s)
- Karen L Reddy
- Department of Biological Chemistry and Center for Epigenetics, Johns Hopkins University of Medicine, Baltimore, MD, USA.
| | - Xianrong Wong
- Sidney Kimmel Cancer Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| |
Collapse
|
4
|
Dutta S, Kumar V, Barua A, Vasudevan M. Investigating the differential structural organization and gene expression regulatory networks of lamin A Ig fold domain mutants of muscular dystrophy. Biochem J 2024; 481:1803-1827. [PMID: 39509247 DOI: 10.1042/bcj20240474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
Lamins form a proteinaceous meshwork as a major structural component of the nucleus. Lamins, along with their interactors, act as determinants for chromatin organization throughout the nucleus. The major dominant missense mutations responsible for autosomal dominant forms of muscular dystrophies reside in the Ig fold domain of lamin A. However, how lamin A contributes to the distribution of heterochromatin and balances euchromatin, and how it relocates epigenetic marks to shape chromatin states, remains poorly defined, making it difficult to draw conclusions about the prognosis of lamin A-mediated muscular dystrophies. In the first part of this report, we identified the in vitro organization of full-length lamin A proteins due to two well-documented Ig LMNA mutations, R453W and W514R. We further demonstrated that both lamin A/C mutant cells predominantly expressed nucleoplasmic aggregates. Labeling specific markers of epigenetics allowed correlation of lamin A mutations with epigenetic mechanisms. In addition to manipulating epigenetic mechanisms, our proteomic studies traced diverse expressions of transcription regulators, RNA synthesis and processing proteins, protein translation components, and posttranslational modifications. These data suggest severe perturbations in targeting other proteins to the nucleus.
Collapse
Affiliation(s)
- Subarna Dutta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
- Theomics International Private Limited 28, Income Tax Layout, Sadananda Nagar, NGEF Layout, Bengaluru 560038, India
| | - Vikas Kumar
- UMass Chan Medical School, Mass Spectrometry Facility, 222 Maple Avenue, Shrewsbury, MA 01545, U.S.A
| | - Arnab Barua
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Madavan Vasudevan
- Theomics International Private Limited 28, Income Tax Layout, Sadananda Nagar, NGEF Layout, Bengaluru 560038, India
| |
Collapse
|
5
|
Wang Y, Chen Z, Yang G, Yuan G. Unveiling the roles of LEMD proteins in cellular processes. Life Sci 2024; 357:123116. [PMID: 39374771 DOI: 10.1016/j.lfs.2024.123116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Proteins localized in the inner nuclear membrane (INM) engage in various fundamental cellular processes via their interactions with outer nuclear membrane (ONM) proteins and nuclear lamina. LAP2-emerin-MAN1 domain (LEMD) family proteins, predominantly positioned in the INM, participate in the maintenance of INM functions, including the reconstruction of the nuclear envelope during mitosis, mechanotransduction, and gene transcriptional modulation. Malfunction of LEMD proteins leads to severe tissue-restricted diseases, which may manifest as fatal deformities and defects. In this review, we summarize the significant roles of LEMD proteins in cellular processes, explains the mechanisms of LEMD protein-related diseases, and puts forward questions in less-explored areas like details in tissue-restricted phenotypes. It intends to sort out previous works about LEMD proteins and pave way for future researchers who might discover deeper mechanisms of and better treatment strategies for LEMD protein-related diseases.
Collapse
Affiliation(s)
- Yiyun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Guobin Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Guohua Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
6
|
Romero-Bueno R, Fragoso-Luna A, Ayuso C, Mellmann N, Kavsek A, Riedel CG, Ward JD, Askjaer P. A human progeria-associated BAF-1 mutation modulates gene expression and accelerates aging in C. elegans. EMBO J 2024; 43:5718-5746. [PMID: 39367234 PMCID: PMC11574047 DOI: 10.1038/s44318-024-00261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
Alterations in the nuclear envelope are linked to a variety of rare diseases termed laminopathies. A single amino acid substitution at position 12 (A12T) of the human nuclear envelope protein BAF (Barrier to Autointegration Factor) causes Néstor-Guillermo Progeria Syndrome (NGPS). This premature ageing condition leads to growth retardation and severe skeletal defects, but the underlying mechanisms are unknown. Here, we have generated a novel in vivo model for NGPS by modifying the baf-1 locus in C. elegans to mimic the human NGPS mutation. These baf-1(G12T) mutant worms displayed multiple phenotypes related to fertility, lifespan, and stress resistance. Importantly, nuclear morphology deteriorated faster during aging in baf-1(G12T) compared to wild-type animals, recapitulating an important hallmark of cells from progeria patients. Although localization of BAF-1(G12T) was similar to wild-type BAF-1, lamin accumulation at the nuclear envelope was reduced in mutant worms. Tissue-specific chromatin binding and transcriptome analyses showed reduced BAF-1 association in most genes deregulated by the baf-1(G12T) mutation, suggesting that altered BAF chromatin association induces NGPS phenotypes via altered gene expression.
Collapse
Affiliation(s)
- Raquel Romero-Bueno
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, km 1, 41013, Sevilla, Spain
| | - Adrián Fragoso-Luna
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, km 1, 41013, Sevilla, Spain
| | - Cristina Ayuso
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, km 1, 41013, Sevilla, Spain
| | - Nina Mellmann
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, km 1, 41013, Sevilla, Spain
| | - Alan Kavsek
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14157, Sweden
| | - Christian G Riedel
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14157, Sweden
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Peter Askjaer
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, km 1, 41013, Sevilla, Spain.
| |
Collapse
|
7
|
Li J, Jordana L, Mehsen H, Wang X, Archambault V. Nuclear reassembly defects after mitosis trigger apoptotic and p53-dependent safeguard mechanisms in Drosophila. PLoS Biol 2024; 22:e3002780. [PMID: 39186808 PMCID: PMC11379398 DOI: 10.1371/journal.pbio.3002780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/06/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
In animals, mitosis involves the breakdown of the nuclear envelope and the sorting of individualized, condensed chromosomes. During mitotic exit, emerging nuclei reassemble a nuclear envelope around a single mass of interconnecting chromosomes. The molecular mechanisms of nuclear reassembly are incompletely understood. Moreover, the cellular and physiological consequences of defects in this process are largely unexplored. Here, we have characterized a mechanism essential for nuclear reassembly in Drosophila. We show that Ankle2 promotes the PP2A-dependent recruitment of BAF and Lamin at reassembling nuclei, and that failures in this mechanism result in severe nuclear defects after mitosis. We then took advantage of perturbations in this mechanism to investigate the physiological responses to nuclear reassembly defects during tissue development in vivo. Partial depletion of Ankle2, BAF, or Lamin in imaginal wing discs results in wing development defects accompanied by apoptosis. We found that blocking apoptosis strongly enhances developmental defects. Blocking p53 does not prevent apoptosis but enhances defects due to the loss of a cell cycle checkpoint. Our results suggest that apoptotic and p53-dependent responses play a crucial role in safeguarding tissue development in response to sporadic nuclear reassembly defects.
Collapse
Affiliation(s)
- Jingjing Li
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
| | - Laia Jordana
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
| | - Haytham Mehsen
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
| | - Xinyue Wang
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
| |
Collapse
|
8
|
Keuper K, Bartek J, Maya-Mendoza A. The nexus of nuclear envelope dynamics, circular economy and cancer cell pathophysiology. Eur J Cell Biol 2024; 103:151394. [PMID: 38340500 DOI: 10.1016/j.ejcb.2024.151394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The nuclear envelope (NE) is a critical component in maintaining the function and structure of the eukaryotic nucleus. The NE and lamina are disassembled during each cell cycle to enable an open mitosis. Nuclear architecture construction and deconstruction is a prime example of a circular economy, as it fulfills a highly efficient recycling program bound to continuous assessment of the quality and functionality of the building blocks. Alterations in the nuclear dynamics and lamina structure have emerged as important contributors to both oncogenic transformation and cancer progression. However, the knowledge of the NE breakdown and reassembly is still limited to a fraction of participating proteins and complexes. As cancer cells contain highly diverse nuclei in terms of DNA content, but also in terms of nuclear number, size, and shape, it is of great interest to understand the intricate relationship between these nuclear features in cancer cell pathophysiology. In this review, we provide insights into how those NE dynamics are regulated, and how lamina destabilization processes may alter the NE circular economy. Moreover, we expand the knowledge of the lamina-associated domain region by using strategic algorithms, including Artificial Intelligence, to infer protein associations, assess their function and location, and predict cancer-type specificity with implications for the future of cancer diagnosis, prognosis and treatment. Using this approach we identified NUP98 and MECP2 as potential proteins that exhibit upregulation in Acute Myeloid Leukemia (LAML) patients with implications for early diagnosis.
Collapse
Affiliation(s)
- Kristina Keuper
- DNA Replication and Cancer Group, Danish Cancer Institute, Copenhagen, Denmark; Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SciLifeLab, Stockholm, Sweden
| | | |
Collapse
|
9
|
Barger SR, Penfield L, Bahmanyar S. Nuclear envelope assembly relies on CHMP-7 in the absence of BAF-LEM-mediated hole closure. J Cell Sci 2023; 136:jcs261385. [PMID: 37795681 PMCID: PMC10668030 DOI: 10.1242/jcs.261385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Barrier-to-autointegration factor (BAF) protein is a DNA-binding protein that crosslinks chromatin to allow mitotic nuclear envelope (NE) assembly. The LAP2-emerin-MAN1 (LEM)-domain protein LEMD2 and ESCRT-II/III hybrid protein CHMP7 close NE holes surrounding spindle microtubules (MTs). BAF binds LEM-domain family proteins to repair NE ruptures in interphase, but whether BAF-LEM binding participates in NE hole closure around spindle MTs is not known. Here, we took advantage of the stereotypical event of NE formation in fertilized Caenorhabditis elegans oocytes to show that BAF-LEM binding and LEM-2-CHMP-7 have distinct roles in NE closure around spindle MTs. LEM-2 and EMR-1 (homologs of LEMD2 and emerin) function redundantly with BAF-1 (the C. elegans BAF protein) in NE closure. Compromising BAF-LEM binding revealed an additional role for EMR-1 in the maintenance of the NE permeability barrier. In the absence of BAF-LEM binding, LEM-2-CHMP-7 was required for NE assembly and embryo survival. The winged helix domain of LEM-2 recruits CHMP-7 to the NE in C. elegans and a LEM-2-independent nucleoplasmic pool of CHMP-7 also contributes to NE stability. Thus, NE hole closure surrounding spindle MTs requires redundant mechanisms that safeguard against failure in NE assembly to support embryogenesis.
Collapse
Affiliation(s)
- Sarah R. Barger
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511, USA
| | - Lauren Penfield
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511, USA
| | - Shirin Bahmanyar
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511, USA
| |
Collapse
|
10
|
Elzamzami FD, Samal A, Arun AS, Dharmaraj T, Prasad NR, Rendon-Jonguitud A, DeVine L, Walston JD, Cole RN, Wilson KL. Native lamin A/C proteomes and novel partners from heart and skeletal muscle in a mouse chronic inflammation model of human frailty. Front Cell Dev Biol 2023; 11:1240285. [PMID: 37936983 PMCID: PMC10626543 DOI: 10.3389/fcell.2023.1240285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/05/2023] [Indexed: 11/09/2023] Open
Abstract
Clinical frailty affects ∼10% of people over age 65 and is studied in a chronically inflamed (Interleukin-10 knockout; "IL10-KO") mouse model. Frailty phenotypes overlap the spectrum of diseases ("laminopathies") caused by mutations in LMNA. LMNA encodes nuclear intermediate filament proteins lamin A and lamin C ("lamin A/C"), important for tissue-specific signaling, metabolism and chromatin regulation. We hypothesized that wildtype lamin A/C associations with tissue-specific partners are perturbed by chronic inflammation, potentially contributing to dysfunction in frailty. To test this idea we immunoprecipitated native lamin A/C and associated proteins from skeletal muscle, hearts and brains of old (21-22 months) IL10-KO versus control C57Bl/6 female mice, and labeled with Tandem Mass Tags for identification and quantitation by mass spectrometry. We identified 502 candidate lamin-binding proteins from skeletal muscle, and 340 from heart, including 62 proteins identified in both tissues. Candidates included frailty phenotype-relevant proteins Perm1 and Fam210a, and nuclear membrane protein Tmem38a, required for muscle-specific genome organization. These and most other candidates were unaffected by IL10-KO, but still important as potential lamin A/C-binding proteins in native heart or muscle. A subset of candidates (21 in skeletal muscle, 30 in heart) showed significantly different lamin A/C-association in an IL10-KO tissue (p < 0.05), including AldoA and Gins3 affected in heart, and Lmcd1 and Fabp4 affected in skeletal muscle. To screen for binding, eleven candidates plus prelamin A and emerin controls were arrayed as synthetic 20-mer peptides (7-residue stagger) and incubated with recombinant purified lamin A "tail" residues 385-646 under relatively stringent conditions. We detected strong lamin A binding to peptides solvent exposed in Lmcd1, AldoA, Perm1, and Tmem38a, and plausible binding to Csrp3 (muscle LIM protein). These results validated both proteomes as sources for native lamin A/C-binding proteins in heart and muscle, identified four candidate genes for Emery-Dreifuss muscular dystrophy (CSRP3, LMCD1, ALDOA, and PERM1), support a lamin A-interactive molecular role for Tmem38A, and supported the hypothesis that lamin A/C interactions with at least two partners (AldoA in heart, transcription factor Lmcd1 in muscle) are altered in the IL10-KO model of frailty.
Collapse
Affiliation(s)
- Fatima D. Elzamzami
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arushi Samal
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Adith S. Arun
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tejas Dharmaraj
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Neeti R. Prasad
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alex Rendon-Jonguitud
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lauren DeVine
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jeremy D. Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert N. Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katherine L. Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Barger SR, Penfield L, Bahmanyar S. Nuclear envelope assembly relies on CHMP-7 in the absence of BAF-LEM-mediated hole closure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547980. [PMID: 37461528 PMCID: PMC10350047 DOI: 10.1101/2023.07.06.547980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Barrier-to-autointegration factor (BAF) is a DNA binding protein that crosslinks chromatin to assemble the nuclear envelope (NE) after mitosis. BAF also binds the Lap2b-Emerin-Man1 (LEM) domain family of NE proteins to repair interphase ruptures. The NE adaptors to ESCRTs, LEMD2-CHMP7, seal NE holes surrounding mitotic spindle microtubules (MTs), but whether NE hole closure in mitosis involves BAF-LEM binding is not known. Here, we analyze NE sealing after meiosis II in C. elegans oocytes to show that BAF-LEM binding and LEM-2 LEMD2 -CHMP-7 have distinct roles in hole closure around spindle MTs. LEM-2/EMR-1 emerin function redundantly with BAF-1 to seal the NE. Compromising BAF-LEM binding revealed an additional role for EMR-1 in maintenance of the NE permeability barrier and an essential role for LEM-2-CHMP-7 in preventing NE assembly failure. The WH domain of LEM-2 recruits the majority of CHMP-7 to the NE in C. elegans and a LEM-2 -independent pool of CHMP-7, which is mostly enriched in the nucleoplasm, also contributes to NE stability. Thus, NE hole closure surrounding spindle MTs requires redundant mechanisms that safeguard against failure in NE assembly to support embryogenesis.
Collapse
Affiliation(s)
- Sarah R. Barger
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511
| | - Lauren Penfield
- Current address: Department of Molecular, Cellular, and Developmental Biology at University of California, Santa Barbara, CA
| | - Shirin Bahmanyar
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511
| |
Collapse
|
12
|
Snyers L, Löhnert R, Weipoltshammer K, Schöfer C. Emerin prevents BAF-mediated aggregation of lamin A on chromosomes in telophase to allow nuclear membrane expansion and nuclear lamina formation. Mol Biol Cell 2022; 33:ar137. [PMID: 36200863 PMCID: PMC9727812 DOI: 10.1091/mbc.e22-01-0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Several studies have suggested a role for the LEM-domain protein emerin and the DNA binding factor BAF in nuclear envelope reformation after mitosis, but the exact molecular mechanisms are not understood. Using HeLa cells deficient for emerin or both emerin and lamin A, we show that emerin deficiency induces abnormal aggregation of lamin A at the nuclear periphery in telophase. As a result, nuclear membrane expansion is impaired and BAF accumulates at the core region, the middle part of telophase nuclei. Aggregates do not form when lamin A carries the mutation R435C in the immunoglobulin fold known to prevent interaction of lamin A with BAF suggesting that aggregation is caused by a stabilized association of lamin A with BAF bound to chromosomal DNA. Reintroduction of emerin in the cells prevents formation of lamin A clusters and BAF accumulation at the core region. Therefore emerin is required for the expansion of the nuclear membrane at the core region to enclose the nucleus and for the rapid reformation of the nuclear lamina based on lamin A/C in telophase. Finally, we show that LEM-domain and lumenal domain are required for the targeting of emerin to exert its function at the core region.
Collapse
Affiliation(s)
- L. Snyers
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstrasse 17, 1090 Vienna, Austria,*Address correspondence to: L. Snyers ()
| | - R. Löhnert
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - K. Weipoltshammer
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - C. Schöfer
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| |
Collapse
|
13
|
Borah S, Dhanasekaran K, Kumar S. The LEM-ESCRT toolkit: Repair and maintenance of the nucleus. Front Cell Dev Biol 2022; 10:989217. [PMID: 36172278 PMCID: PMC9512039 DOI: 10.3389/fcell.2022.989217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
The eukaryotic genome is enclosed in a nuclear envelope that protects it from potentially damaging cellular activities and physically segregates transcription and translation.Transport across the NE is highly regulated and occurs primarily via the macromolecular nuclear pore complexes.Loss of nuclear compartmentalization due to defects in NPC function and NE integrity are tied to neurological and ageing disorders like Alzheimer’s, viral pathogenesis, immune disorders, and cancer progression.Recent work implicates inner-nuclear membrane proteins of the conserved LEM domain family and the ESCRT machinery in NE reformation during cell division and NE repair upon rupture in migrating cancer cells, and generating seals over defective NPCs. In this review, we discuss the recent in-roads made into defining the molecular mechanisms and biochemical networks engaged by LEM and many other integral inner nuclear membrane proteins to preserve the nuclear barrier.
Collapse
Affiliation(s)
- Sapan Borah
- National Institute of Immunohaematology, Mumbai, Maharashtra, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| | - Karthigeyan Dhanasekaran
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| | - Santosh Kumar
- National Centre for Cell Science, Pune, Maharashtra, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| |
Collapse
|
14
|
Han L, Shi J, Zhao L, Deng J, Li Y, Zhao H, Wang H, Yan Y, Zou F. BCAP31 is involved in modulating colorectal cancer cell proliferation via the Emerin/β-catenin axis. Exp Cell Res 2022; 418:113265. [PMID: 35716785 DOI: 10.1016/j.yexcr.2022.113265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/12/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022]
Abstract
Understanding the mechanisms of colorectal cancer (CRC) progression is critical for developing innovative treatment strategies. As an endoplasmic reticulum-located protein, B cell receptor-associated protein 31 (BCAP31) has been identified to be highly expressed in multiple cancers. However, its function and molecular mechanism in CRC remain not fully understood. In the present study, BCAP31 expression and its correlation with the clinical stage were analyzed based on TCGA database. We demonstrated that loss of BCAP31 suppressed CRC cell proliferation in vitro and tumor growth in vivo. Mechanistically, we demonstrated that Emerin was an interaction partner and downstream molecule of BCAP31. Knockdown of BCAP31 promoted the nuclear envelope localization of Emerin, leading to a reduction of β-catenin accumulation in the nucleus, which resulted in downregulation of Wnt/β-catenin downstream target genes, including c-Myc, cyclin D1, Survivin, and Mcl-1. Moreover, downregulation of Emerin partially restored the BCAP31 depletion-mediated β-catenin protein level and tumor suppressive effects in CRC cells.Our data highlights the pivotal role of BCAP31 depletion in inhibiting cell proliferation in CRC cells, and mechanistically via Emerin/β-catenin signaling, which may serve as a promising target for CRC treatment.
Collapse
Affiliation(s)
- Liping Han
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Junyang Shi
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lili Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jiaqiang Deng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Hong Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Huani Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yan Yan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Fangdong Zou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
15
|
The Role of Emerin in Cancer Progression and Metastasis. Int J Mol Sci 2021; 22:ijms222011289. [PMID: 34681951 PMCID: PMC8537873 DOI: 10.3390/ijms222011289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022] Open
Abstract
It is commonly recognized in the field that cancer cells exhibit changes in the size and shape of their nuclei. These features often serve as important biomarkers in the diagnosis and prognosis of cancer patients. Nuclear size can significantly impact cell migration due to its incredibly large size. Nuclear structural changes are predicted to regulate cancer cell migration. Nuclear abnormalities are common across a vast spectrum of cancer types, regardless of tissue source, mutational spectrum, and signaling dependencies. The pervasiveness of nuclear alterations suggests that changes in nuclear structure may be crucially linked to the transformation process. The factors driving these nuclear abnormalities, and the functional consequences, are not completely understood. Nuclear envelope proteins play an important role in regulating nuclear size and structure in cancer. Altered expression of nuclear lamina proteins, including emerin, is found in many cancers and this expression is correlated with better clinical outcomes. A model is emerging whereby emerin, as well as other nuclear lamina proteins, binding to the nucleoskeleton regulates the nuclear structure to impact metastasis. In this model, emerin and lamins play a central role in metastatic transformation, since decreased emerin expression during transformation causes the nuclear structural defects required for increased cell migration, intravasation, and extravasation. Herein, we discuss the cellular functions of nuclear lamina proteins, with a particular focus on emerin, and how these functions impact cancer progression and metastasis.
Collapse
|
16
|
Pawar S, Kutay U. The Diverse Cellular Functions of Inner Nuclear Membrane Proteins. Cold Spring Harb Perspect Biol 2021; 13:a040477. [PMID: 33753404 PMCID: PMC8411953 DOI: 10.1101/cshperspect.a040477] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nuclear compartment is delimited by a specialized expanded sheet of the endoplasmic reticulum (ER) known as the nuclear envelope (NE). Compared to the outer nuclear membrane and the contiguous peripheral ER, the inner nuclear membrane (INM) houses a unique set of transmembrane proteins that serve a staggering range of functions. Many of these functions reflect the exceptional position of INM proteins at the membrane-chromatin interface. Recent research revealed that numerous INM proteins perform crucial roles in chromatin organization, regulation of gene expression, genome stability, and mediation of signaling pathways into the nucleus. Other INM proteins establish mechanical links between chromatin and the cytoskeleton, help NE remodeling, or contribute to the surveillance of NE integrity and homeostasis. As INM proteins continue to gain prominence, we review these advancements and give an overview on the functional versatility of the INM proteome.
Collapse
Affiliation(s)
- Sumit Pawar
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
17
|
Curzon AY, Shirak A, Benet-Perlberg A, Naor A, Low-Tanne SI, Sharkawi H, Ron M, Seroussi E. Gene Variant of Barrier to Autointegration Factor 2 ( Banf2w) Is Concordant with Female Determination in Cichlids. Int J Mol Sci 2021; 22:7073. [PMID: 34209244 PMCID: PMC8268354 DOI: 10.3390/ijms22137073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/15/2022] Open
Abstract
Oreochromis fishes exhibit variability of sex-determination (SD) genes whose characterization contributes to understanding of the sex differentiation network, and to effective tilapia farming, which requires all-male culture. However, O. niloticus (On) amh is the only master-key regulator (MKR) of SD that has been mapped (XY/XX SD-system on LG23). In O. aureus (Oa), LG3 controls a WZ/ZZ SD-system that has recently been delimited to 9.2 Mbp, with an embedded interval rich with female-specific variation, harboring two paics genes and banf2. Developing genetic markers within this interval and using a hybrid Oa stock that demonstrates no recombination repression in LG3, we mapped the critical SD region to 235 Kbp on the orthologous On physical map (p < 1.5 × 10-26). DNA-seq assembly and peak-proportion analysis of variation based on Sanger chromatograms allowed the characterization of copy-number variation (CNV) of banf2. Oa males had three exons capable of encoding 90-amino-acid polypeptides, yet in Oa females, we found an extra copy with an 89-amino-acid polypeptide and three non-conservative amino acid substitutions, designated as banf2w. CNV analysis suggested the existence of two to five copies of banf2 in diploidic Cichlidae. Disrupting the Hardy-Weinberg equilibrium (p < 4.2 × 10-3), banf2w was concordant with female determination in Oa and in three cichlids with LG3 WZ/ZZ SD-systems (O. tanganicae, O. hornorum and Pelmatolapia mariae). Furthermore, exclusive RNA-seq expression in Oa females strengthened the candidacy of banf2w as the long-sought LG3 SD MKR. As banf genes mediate nuclear assembly, chromatin organization, gene expression and gonad development, banf2w may play a fundamental role inducing female nucleus formation that is essential for WZ/ZZ SD.
Collapse
Affiliation(s)
- Arie Yehuda Curzon
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Andrey Shirak
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Ayana Benet-Perlberg
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Alon Naor
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Shai Israel Low-Tanne
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Haled Sharkawi
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Micha Ron
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| |
Collapse
|
18
|
Lee B, Lee S, Lee Y, Park Y, Shim J. Emerin Represses STAT3 Signaling through Nuclear Membrane-Based Spatial Control. Int J Mol Sci 2021; 22:ijms22136669. [PMID: 34206382 PMCID: PMC8269395 DOI: 10.3390/ijms22136669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Emerin is the inner nuclear membrane protein involved in maintaining the mechanical integrity of the nuclear membrane. Mutations in EMD encoding emerin cause Emery–Dreifuss muscular dystrophy (EDMD). Evidence is accumulating that emerin regulation of specific gene expression is associated with this disease, but the exact function of emerin has not been fully elucidated. Here, we show that emerin downregulates Signal transducer and activators of transcription 3 (STAT3) signaling, activated exclusively by Janus kinase (JAK). Deletion mutation experiments show that the lamin-binding domain of emerin is essential for the inhibition of STAT3 signaling. Emerin interacts directly and co-localizes with STAT3 in the nuclear membrane. Emerin knockdown induces STAT3 target genes Bcl2 and Survivin to increase cell survival signals and suppress hydrogen peroxide-induced cell death in HeLa cells. Specifically, downregulation of BAF or lamin A/C increases STAT3 signaling, suggesting that correct-localized emerin, by assembling with BAF and lamin A/C, acts as an intrinsic inhibitor against STAT3 signaling. In C2C12 cells, emerin knockdown induces STAT3 target gene, Pax7, and activated abnormal myoblast proliferation associated with muscle wasting in skeletal muscle homeostasis. Our results indicate that emerin downregulates STAT3 signaling by inducing retention of STAT3 and delaying STAT3 signaling in the nuclear membrane. This mechanism provides clues to the etiology of emerin-related muscular dystrophy and may be a new therapeutic target for treatment.
Collapse
|
19
|
Unnikannan CP, Reuveny A, Grunberg D, Volk T. Recruitment of BAF to the nuclear envelope couples the LINC complex to endoreplication. Development 2020; 147:dev.191304. [PMID: 33168584 PMCID: PMC7758627 DOI: 10.1242/dev.191304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022]
Abstract
DNA endoreplication has been implicated as a cell strategy for cell growth and in tissue injury. Here, we demonstrate that barrier-to-autointegration factor (BAF) represses endoreplication in Drosophila myofibers. We show that BAF localization at the nuclear envelope is eliminated in flies with mutations of the linker of nucleoskeleton and cytoskeleton (LINC) complex in which the LEM-domain protein Otefin is excluded, or after disruption of the nucleus-sarcomere connections. Furthermore, BAF localization at the nuclear envelope requires the activity of the BAF kinase VRK1/Ball, and, consistently, non-phosphorylatable BAF-GFP is excluded from the nuclear envelope. Importantly, removal of BAF from the nuclear envelope correlates with increased DNA content in the myonuclei. E2F1, a key regulator of endoreplication, overlaps BAF localization at the myonuclear envelope, and BAF removal from the nuclear envelope results in increased E2F1 levels in the nucleoplasm and subsequent elevated DNA content. We suggest that LINC-dependent and phosphosensitive attachment of BAF to the nuclear envelope, through its binding to Otefin, tethers E2F1 to the nuclear envelope thus inhibiting its accumulation in the nucleoplasm. Summary: Localization of BAF at the nuclear envelope of myonuclei depends on a functional LINC complex and on nucleus-sarcomere connections, and is shown to restrict E2F1 levels in the nucleoplasm.
Collapse
Affiliation(s)
- C P Unnikannan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Adriana Reuveny
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dvorah Grunberg
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
20
|
Marcelot A, Worman HJ, Zinn-Justin S. Protein structural and mechanistic basis of progeroid laminopathies. FEBS J 2020; 288:2757-2772. [PMID: 32799420 DOI: 10.1111/febs.15526] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
Progeroid laminopathies are characterized by the premature appearance of certain signs of physiological aging in a subset of tissues. They are caused by mutations in genes coding for A-type lamins or lamin-binding proteins. Here, we review how different mutations causing progeroid laminopathies alter protein structure or protein-protein interactions and how these impact on mechanisms that protect cell viability and function. One group of progeroid laminopathies, which includes Hutchinson-Gilford progeria syndrome, is characterized by accumulation of unprocessed prelamin A or variants. These are caused by mutations in the A-type lamin gene (LMNA), altering prelamin A itself, or in ZMPSTE24, encoding an endoprotease involved in its processing. The abnormally expressed farnesylated proteins impact on various cellular processes that may contribute to progeroid phenotypes. Other LMNA mutations lead to the production of nonfarnesylated A-type lamin variants with amino acid substitutions in solvent-exposed hot spots located mainly in coil 1B and the immunoglobulin fold domain. Dominant missense mutations might reinforce interactions between lamin domains, thus giving rise to excessively stabilized filament networks. Recessive missense mutations in A-type lamins and barrier-to-autointegration factor (BAF) causing progeroid disorders are found at the interface between these interacting proteins. The amino acid changes decrease the binding affinity of A-type lamins for BAF, which may contribute to lamina disorganization, as well as defective repair of mechanically induced nuclear envelope rupture. Targeting these molecular alterations in A-type lamins and associated proteins identified through structural biology studies could facilitate the design of therapeutic strategies to treat patients with rare but severe progeroid laminopathies.
Collapse
Affiliation(s)
- Agathe Marcelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Howard J Worman
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette Cedex, France
| |
Collapse
|
21
|
The Molecular Basis and Biologic Significance of the β-Dystroglycan-Emerin Interaction. Int J Mol Sci 2020; 21:ijms21175944. [PMID: 32824881 PMCID: PMC7504044 DOI: 10.3390/ijms21175944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023] Open
Abstract
β-dystroglycan (β-DG) assembles with lamins A/C and B1 and emerin at the nuclear envelope (NE) to maintain proper nuclear architecture and function. To provide insight into the nuclear function of β-DG, we characterized the interaction between β-DG and emerin at the molecular level. Emerin is a major NE protein that regulates multiple nuclear processes and whose deficiency results in Emery–Dreifuss muscular dystrophy (EDMD). Using truncated variants of β-DG and emerin, via a series of in vitro and in vivo binding experiments and a tailored computational analysis, we determined that the β-DG–emerin interaction is mediated at least in part by their respective transmembrane domains (TM). Using surface plasmon resonance assays we showed that emerin binds to β-DG with high affinity (KD in the nanomolar range). Remarkably, the analysis of cells in which DG was knocked out demonstrated that loss of β-DG resulted in a decreased emerin stability and impairment of emerin-mediated processes. β-DG and emerin are reciprocally required for their optimal targeting within the NE, as shown by immunofluorescence, western blotting and immunoprecipitation assays using emerin variants with mutations in the TM domain and B-lymphocytes of a patient with EDMD. In summary, we demonstrated that β-DG plays a role as an emerin interacting partner modulating its stability and function.
Collapse
|
22
|
Sears RM, Roux KJ. Diverse cellular functions of barrier-to-autointegration factor and its roles in disease. J Cell Sci 2020; 133:133/16/jcs246546. [PMID: 32817163 DOI: 10.1242/jcs.246546] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Barrier-to-autointegration factor (BAF; encoded by BANF1) is a small highly conserved, ubiquitous and self-associating protein that coordinates with numerous binding partners to accomplish several key cellular processes. By interacting with double-stranded DNA, histones and various other nuclear proteins, including those enriched at the nuclear envelope, BAF appears to be essential for replicating cells to protect the genome and enable cell division. Cellular processes, such as innate immunity, post-mitotic nuclear reformation, repair of interphase nuclear envelope rupture, genomic regulation, and the DNA damage and repair response have all been shown to depend on BAF. This Review focuses on the regulation of the numerous interactions of BAF, which underlie the mechanisms by which BAF accomplishes its essential cellular functions. We will also discuss how perturbation of BAF function may contribute to human disease.
Collapse
Affiliation(s)
- Rhiannon M Sears
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA.,Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA .,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57069, USA
| |
Collapse
|
23
|
EDMD-Causing Emerin Mutant Myogenic Progenitors Exhibit Impaired Differentiation Using Similar Mechanisms. Cells 2020; 9:cells9061463. [PMID: 32549231 PMCID: PMC7349064 DOI: 10.3390/cells9061463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022] Open
Abstract
Mutations in the gene encoding emerin (EMD) cause Emery–Dreifuss muscular dystrophy (EDMD1), an inherited disorder characterized by progressive skeletal muscle wasting, irregular heart rhythms and contractures of major tendons. The skeletal muscle defects seen in EDMD are caused by failure of muscle stem cells to differentiate and regenerate the damaged muscle. However, the underlying mechanisms remain poorly understood. Most EDMD1 patients harbor nonsense mutations and have no detectable emerin protein. There are three EDMD-causing emerin mutants (S54F, Q133H, and Δ95–99) that localize correctly to the nuclear envelope and are expressed at wildtype levels. We hypothesized these emerin mutants would share in the disruption of key molecular pathways involved in myogenic differentiation. We generated myogenic progenitors expressing wildtype emerin and each EDMD1-causing emerin mutation (S54F, Q133H, Δ95–99) in an emerin-null (EMD−/y) background. S54F, Q133H, and Δ95–99 failed to rescue EMD−/y myogenic differentiation, while wildtype emerin efficiently rescued differentiation. RNA sequencing was done to identify pathways and networks important for emerin regulation of myogenic differentiation. This analysis significantly reduced the number of pathways implicated in EDMD1 muscle pathogenesis.
Collapse
|
24
|
Muscle cell differentiation and development pathway defects in Emery-Dreifuss muscular dystrophy. Neuromuscul Disord 2020; 30:443-456. [DOI: 10.1016/j.nmd.2020.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/20/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
|
25
|
Probing the Environment of Emerin by Enhanced Ascorbate Peroxidase 2 (APEX2)-Mediated Proximity Labeling. Cells 2020; 9:cells9030605. [PMID: 32138363 PMCID: PMC7140434 DOI: 10.3390/cells9030605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
Emerin is one of the best characterized proteins of the inner nuclear membrane, but can also occur at the level of the endoplasmic reticulum. We now use enhanced ascorbate peroxidase 2 (APEX2) to probe the environment of emerin. APEX2 can be used as a genetic tag that produces short-lived yet highly reactive biotin species, allowing the modification of proteins that interact with or are in very close proximity to the tagged protein. Biotinylated proteins can be isolated using immobilized streptavidin and analyzed by mass spectrometry. As an alternative to the standard approach with a genetic fusion of APEX2 to emerin, we also used RAPIDS (rapamycin- and APEX-dependent identification of proteins by SILAC), a method with improved specificity, where the peroxidase interacts with the protein of interest (i.e., emerin) only upon addition of rapamycin to the cells. We compare these different approaches, which, together, identify well-known interaction partners of emerin like lamin A and the lamina associated polypeptide 1 (LAP1), as well as novel proximity partners.
Collapse
|
26
|
Samson C, Petitalot A, Celli F, Herrada I, Ropars V, Le Du MH, Nhiri N, Jacquet E, Arteni AA, Buendia B, Zinn-Justin S. Structural analysis of the ternary complex between lamin A/C, BAF and emerin identifies an interface disrupted in autosomal recessive progeroid diseases. Nucleic Acids Res 2019; 46:10460-10473. [PMID: 30137533 PMCID: PMC6212729 DOI: 10.1093/nar/gky736] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/02/2018] [Indexed: 01/22/2023] Open
Abstract
Lamins are the main components of the nucleoskeleton. Whereas their 3D organization was recently described using cryoelectron tomography, no structural data highlights how they interact with their partners at the interface between the inner nuclear envelope and chromatin. A large number of mutations causing rare genetic disorders called laminopathies were identified in the C-terminal globular Igfold domain of lamins A and C. We here present a first structural description of the interaction between the lamin A/C immunoglobulin-like domain and emerin, a nuclear envelope protein. We reveal that this lamin A/C domain both directly binds self-assembled emerin and interacts with monomeric emerin LEM domain through the dimeric chromatin-associated Barrier-to-Autointegration Factor (BAF) protein. Mutations causing autosomal recessive progeroid syndromes specifically impair proper binding of lamin A/C domain to BAF, thus destabilizing the link between lamin A/C and BAF in cells. Recent data revealed that, during nuclear assembly, BAF’s ability to bridge distant DNA sites is essential for guiding membranes to form a single nucleus around the mitotic chromosome ensemble. Our results suggest that BAF interaction with lamin A/C also plays an essential role, and that mutations associated with progeroid syndromes leads to a dysregulation of BAF-mediated chromatin organization and gene expression.
Collapse
Affiliation(s)
- Camille Samson
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ambre Petitalot
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Florian Celli
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Isaline Herrada
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Virginie Ropars
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie-Hélène Le Du
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Naïma Nhiri
- Institut de Chimie des Substances Naturelles, Université Paris Sud, Université Paris-Saclay, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, Université Paris Sud, Université Paris-Saclay, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Ana-Andrea Arteni
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Brigitte Buendia
- Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Sophie Zinn-Justin
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- To whom correspondence should be addressed. Tel: +33 169083026;
| |
Collapse
|
27
|
Halfmann CT, Sears RM, Katiyar A, Busselman BW, Aman LK, Zhang Q, O'Bryan CS, Angelini TE, Lele TP, Roux KJ. Repair of nuclear ruptures requires barrier-to-autointegration factor. J Cell Biol 2019; 218:2136-2149. [PMID: 31147383 PMCID: PMC6605789 DOI: 10.1083/jcb.201901116] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Cell nuclei rupture following exposure to mechanical force and/or upon weakening of nuclear integrity, but nuclear ruptures are repairable. Barrier-to-autointegration factor (BAF), a small DNA-binding protein, rapidly localizes to nuclear ruptures; however, its role at these rupture sites is unknown. Here, we show that it is predominantly a nonphosphorylated cytoplasmic population of BAF that binds nuclear DNA to rapidly and transiently localize to the sites of nuclear rupture, resulting in BAF accumulation in the nucleus. BAF subsequently recruits transmembrane LEM-domain proteins, causing their accumulation at rupture sites. Loss of BAF impairs recruitment of LEM-domain proteins and nuclear envelope membranes to nuclear rupture sites and prevents nuclear envelope barrier function restoration. Simultaneous depletion of multiple LEM-domain proteins similarly inhibits rupture repair. LEMD2 is required for recruitment of the ESCRT-III membrane repair machinery to ruptures; however, neither LEMD2 nor ESCRT-III is required to repair ruptures. These results reveal a new role for BAF in the response to and repair of nuclear ruptures.
Collapse
Affiliation(s)
| | - Rhiannon M Sears
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD
| | - Aditya Katiyar
- Department of Chemical Engineering, University of Florida, Gainesville, FL
| | - Brook W Busselman
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD
| | - London K Aman
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD
| | - Qiao Zhang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL
| | - Christopher S O'Bryan
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL
| | - Thomas E Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
- Institute for Cell and Tissue Science and Engineering, University of Florida, Gainesville, FL
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, FL
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
- Institute for Cell and Tissue Science and Engineering, University of Florida, Gainesville, FL
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD
| |
Collapse
|
28
|
An Emerin LEM-Domain Mutation Impairs Cell Response to Mechanical Stress. Cells 2019; 8:cells8060570. [PMID: 31185657 PMCID: PMC6628311 DOI: 10.3390/cells8060570] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022] Open
Abstract
Emerin is a nuclear envelope protein that contributes to genome organization and cell mechanics. Through its N-terminal LAP2-emerin-MAN1 (LEM)-domain, emerin interacts with the DNA-binding protein barrier-to-autointegration (BAF). Emerin also binds to members of the linker of the nucleoskeleton and cytoskeleton (LINC) complex. Mutations in the gene encoding emerin are responsible for the majority of cases of X-linked Emery-Dreifuss muscular dystrophy (X-EDMD). Most of these mutations lead to an absence of emerin. A few missense and short deletion mutations in the disordered region of emerin are also associated with X-EDMD. More recently, missense and short deletion mutations P22L, ∆K37 and T43I were discovered in emerin LEM-domain, associated with isolated atrial cardiac defects (ACD). Here we reveal which defects, at both the molecular and cellular levels, are elicited by these LEM-domain mutations. Whereas K37 mutation impaired the correct folding of the LEM-domain, P22L and T43I had no impact on the 3D structure of emerin. Surprisingly, all three mutants bound to BAF, albeit with a weaker affinity in the case of K37. In human myofibroblasts derived from a patient's fibroblasts, emerin ∆K37 was correctly localized at the inner nuclear membrane, but was present at a significantly lower level, indicating that this mutant is abnormally degraded. Moreover, SUN2 was reduced, and these cells were defective in producing actin stress fibers when grown on a stiff substrate and after cyclic stretches. Altogether, our data suggest that the main effect of mutation K37 is to perturb emerin function within the LINC complex in response to mechanical stress.
Collapse
|
29
|
Abstract
Cellular behavior is continuously affected by microenvironmental forces through the process of mechanotransduction, in which mechanical stimuli are rapidly converted to biochemical responses. Mounting evidence suggests that the nucleus itself is a mechanoresponsive element, reacting to cytoskeletal forces and mediating downstream biochemical responses. The nucleus responds through a host of mechanisms, including partial unfolding, conformational changes, and phosphorylation of nuclear envelope proteins; modulation of nuclear import/export; and altered chromatin organization, resulting in transcriptional changes. It is unclear which of these events present direct mechanotransduction processes and which are downstream of other mechanotransduction pathways. We critically review and discuss the current evidence for nuclear mechanotransduction, particularly in the context of stem cell fate, a largely unexplored topic, and in disease, where an improved understanding of nuclear mechanotransduction is beginning to open new treatment avenues. Finally, we discuss innovative technological developments that will allow outstanding questions in the rapidly growing field of nuclear mechanotransduction to be answered.
Collapse
Affiliation(s)
- Melanie Maurer
- Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA; ,
| | - Jan Lammerding
- Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA; ,
| |
Collapse
|
30
|
Ranade D, Pradhan R, Jayakrishnan M, Hegde S, Sengupta K. Lamin A/C and Emerin depletion impacts chromatin organization and dynamics in the interphase nucleus. BMC Mol Cell Biol 2019; 20:11. [PMID: 31117946 PMCID: PMC6532135 DOI: 10.1186/s12860-019-0192-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/16/2019] [Indexed: 12/26/2022] Open
Abstract
Background Nuclear lamins are type V intermediate filament proteins that maintain nuclear structure and function. Furthermore, Emerin - an interactor of Lamin A/C, facilitates crosstalk between the cytoskeleton and the nucleus as it also interacts with actin and Nuclear Myosin 1 (NM1). Results Here we show that the depletion of Lamin A/C or Emerin, alters the localization of the nuclear motor protein - Nuclear Myosin 1 (NM1) that manifests as an increase in NM1 foci in the nucleus and are rescued to basal levels upon the combined knockdown of Lamin A/C and Emerin. Furthermore, Lamin A/C-Emerin co-depletion destabilizes cytoskeletal organization as it increases actin stress fibers. This further impinges on nuclear organization, as it enhances chromatin mobility more toward the nuclear interior in Lamin A/C-Emerin co-depleted cells. This enhanced chromatin mobility was restored to basal levels either upon inhibition of Nuclear Myosin 1 (NM1) activity or actin depolymerization. In addition, the combined loss of Lamin A/C and Emerin alters the otherwise highly conserved spatial positions of chromosome territories. Furthermore, knockdown of Lamin A/C or Lamin A/C-Emerin combined, deregulates expression levels of a candidate subset of genes. Amongst these genes, both KLK10 (Chr.19, Lamina Associated Domain (LAD+)) and MADH2 (Chr.18, LAD-) were significantly repressed, while BCL2L12 (Chr.19, LAD-) is de-repressed. These genes differentially reposition with respect to the nuclear envelope. Conclusions Taken together, these studies underscore a remarkable interplay between Lamin A/C and Emerin in modulating cytoskeletal organization of actin and NM1 that impinges on chromatin dynamics and function in the interphase nucleus. Electronic supplementary material The online version of this article (10.1186/s12860-019-0192-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Devika Ranade
- Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Biology, Room#B-216, 1st Floor, Main Building, Pashan, Pune, Maharashtra, 411008, India
| | - Roopali Pradhan
- Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Biology, Room#B-216, 1st Floor, Main Building, Pashan, Pune, Maharashtra, 411008, India
| | - Muhunden Jayakrishnan
- Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Biology, Room#B-216, 1st Floor, Main Building, Pashan, Pune, Maharashtra, 411008, India
| | - Sushmitha Hegde
- Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Biology, Room#B-216, 1st Floor, Main Building, Pashan, Pune, Maharashtra, 411008, India
| | - Kundan Sengupta
- Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Biology, Room#B-216, 1st Floor, Main Building, Pashan, Pune, Maharashtra, 411008, India.
| |
Collapse
|
31
|
Dharmaraj T, Guan Y, Liu J, Badens C, Gaborit B, Wilson KL. Rare BANF1 Alleles and Relatively Frequent EMD Alleles Including 'Healthy Lipid' Emerin p.D149H in the ExAC Cohort. Front Cell Dev Biol 2019; 7:48. [PMID: 31024910 PMCID: PMC6459885 DOI: 10.3389/fcell.2019.00048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/19/2019] [Indexed: 01/05/2023] Open
Abstract
Emerin (EMD) and barrier to autointegration factor 1 (BANF1) each bind A-type lamins (LMNA) as fundamental components of nuclear lamina structure. Mutations in LMNA, EMD and BANF1 are genetically linked to many tissue-specific disorders including Emery-Dreifuss muscular dystrophy and cardiomyopathy (LMNA, EMD), lipodystrophy, insulin resistance and type 2 diabetes (LMNA) and progeria (LMNA, BANF1). To explore human genetic variation in these genes, we analyzed EMD and BANF1 alleles in the Exome Aggregation Consortium (ExAC) cohort of 60,706 unrelated individuals. We identified 13 rare heterozygous BANF1 missense variants (p.T2S, p.H7Y, p.D9N, p.S22R, p.G25E, p.D55N, p.D57Y, p.L63P, p.N70T, p.K72R, p.R75W, p.R75Q, p.G79R), and one homozygous variant (p.D9H). Several variants are known (p.G25E) or predicted (e.g., p.D9H, p.D9N, p.L63P) to perturb BANF1 and warrant further study. Analysis of EMD revealed two previously identified variants associated with adult-onset cardiomyopathy (p.K37del, p.E35K) and one deemed 'benign' in an Emery-Dreifuss patient (p.D149H). Interestingly p.D149H was the most frequent emerin variant in ExAC, identified in 58 individuals (overall allele frequency 0.06645%), of whom 55 were East Asian (allele frequency 0.8297%). Furthermore, p.D149H associated with four 'healthy' traits: reduced triglycerides (-0.336; p = 0.0368), reduced waist circumference (-0.321; p = 0.0486), reduced cholesterol (-0.572; p = 0.000346) and reduced LDL cholesterol (-0.599; p = 0.000272). These traits are distinct from LMNA-associated metabolic disorders and provide the first insight that emerin influences metabolism. We also identified one novel in-frame deletion (p.F39del) and 62 novel emerin missense variants, many of which were relatively frequent and potentially disruptive including p.N91S and p.S143F (∼0.041% and ∼0.034% of non-Finnish Europeans, respectively), p.G156S (∼0.39% of Africans), p.R204G (∼0.18% of Latinx), p.R207P (∼0.08% of South Asians) and p.R221L (∼0.15% of Latinx). Many novel BANF1 variants are predicted to disrupt dimerization or binding to DNA, histones, emerin or A-type lamins. Many novel emerin variants are predicted to disrupt emerin filament dynamics or binding to BANF1, HDAC3, A-type lamins or other partners. These new human variants provide a foundational resource for future studies to test the molecular mechanisms of BANF1 and emerin function, and to understand the link between emerin variant p.D149H and a 'healthy' lipid profile.
Collapse
Affiliation(s)
- Tejas Dharmaraj
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Youchen Guan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Julie Liu
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | | | - Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
32
|
Dubińska-Magiera M, Kozioł K, Machowska M, Piekarowicz K, Filipczak D, Rzepecki R. Emerin Is Required for Proper Nucleus Reassembly after Mitosis: Implications for New Pathogenetic Mechanisms for Laminopathies Detected in EDMD1 Patients. Cells 2019; 8:E240. [PMID: 30871242 PMCID: PMC6468536 DOI: 10.3390/cells8030240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 12/29/2022] Open
Abstract
Emerin is an essential LEM (LAP2, Emerin, MAN1) domain protein in metazoans and an integral membrane protein associated with inner and outer nuclear membranes. Mutations in the human EMD gene coding for emerin result in the rare genetic disorder: Emery⁻Dreifuss muscular dystrophy type 1 (EDMD1). This disease belongs to a broader group called laminopathies-a heterogeneous group of rare genetic disorders affecting tissues of mesodermal origin. EDMD1 phenotype is characterized by progressive muscle wasting, contractures of the elbow and Achilles tendons, and cardiac conduction defects. Emerin is involved in many cellular and intranuclear processes through interactions with several partners: lamins; barrier-to-autointegration factor (BAF), β-catenin, actin, and tubulin. Our study demonstrates the presence of the emerin fraction which associates with mitotic spindle microtubules and centrosomes during mitosis and colocalizes during early mitosis with lamin A/C, BAF, and membranes at the mitotic spindle. Transfection studies with cells expressing EGFP-emerin protein demonstrate that the emerin fusion protein fraction also localizes to centrosomes and mitotic spindle microtubules during mitosis. Transient expression of emerin deletion mutants revealed that the resulting phenotypes vary and are mutant dependent. The most frequent phenotypes include aberrant nuclear shape, tubulin network mislocalization, aberrant mitosis, and mislocalization of centrosomes. Emerin deletion mutants demonstrated different chromatin binding capacities in an in vitro nuclear assembly assay and chromatin-binding properties correlated with the strength of phenotypic alteration in transfected cells. Aberrant tubulin staining and microtubule network phenotype appearance depended on the presence of the tubulin binding region in the expressed deletion mutants. We believe that the association with tubulin might help to "deliver" emerin and associated membranes to decondensing chromatin. Preliminary analyses of cells from Polish patients with EDMD1 revealed that for several mutations thought to be null for emerin protein, a truncated emerin protein was present. We infer that the EDMD1 phenotype may be strengthened by the toxicity of truncated emerin expressed in patients with certain nonsense mutations in EMD.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland.
| | - Katarzyna Kozioł
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Magdalena Machowska
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Katarzyna Piekarowicz
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Daria Filipczak
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Ryszard Rzepecki
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
33
|
Vivante A, Brozgol E, Bronshtein I, Levi V, Garini Y. Chromatin dynamics governed by a set of nuclear structural proteins. Genes Chromosomes Cancer 2019; 58:437-451. [PMID: 30537111 DOI: 10.1002/gcc.22719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/15/2018] [Accepted: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
During the past three decades, the study of nuclear and chromatin organization has become of great interest. The organization and dynamics of chromatin are directly responsible for many functions including gene regulation, genome replication, and maintenance. In order to better understand the details of these mechanisms, we need to understand the role of specific proteins that take part in these processes. The genome in the nucleus is organized in different length scales, ranging from the bead-like nucleosomes through topological associated domains up to chromosome territories. The mechanisms that maintain these structures, however, remain to be fully elucidated. Previous works highlighted the significance of lamin A, an important nucleoplasmic protein; however, there are other nuclear structural proteins that are also important for chromatin organization. Studying the organizational aspects of the nucleus is a complex task, and different methods have been developed and adopted for this purpose, including molecular and imaging methods. Here we describe the use of the live-cell imaging method and demonstrate that the dynamics of the nucleus is strongly related to its organizational mechanisms. We labeled different genomic sites in the nucleus and measured the effect of nuclear structural proteins on their dynamics. We studied lamin A, BAF, Emerin, lamin B, CTCF, and Cohesin and discuss how each of them affect chromatin dynamics. Our findings indicate that lamin A and BAF have a significant effect on chromosomes dynamics, while other proteins mildly affect the type of the diffusion while the volume of motion is not affected.
Collapse
Affiliation(s)
- Anat Vivante
- Physics Department and Nanotechnology Institute, Bar Ilan University, Ramat Gan, Israel
| | - Eugene Brozgol
- Physics Department and Nanotechnology Institute, Bar Ilan University, Ramat Gan, Israel
| | - Irena Bronshtein
- Physics Department and Nanotechnology Institute, Bar Ilan University, Ramat Gan, Israel
| | - Vered Levi
- Physics Department and Nanotechnology Institute, Bar Ilan University, Ramat Gan, Israel
| | - Yuval Garini
- Physics Department and Nanotechnology Institute, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
34
|
Partial proteasomal degradation of Lola triggers the male-to-female switch of a dimorphic courtship circuit. Nat Commun 2019; 10:166. [PMID: 30635583 PMCID: PMC6329818 DOI: 10.1038/s41467-018-08146-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In Drosophila, some neurons develop sex-specific neurites that contribute to dimorphic circuits for sex-specific behavior. As opposed to the idea that the sexual dichotomy in transcriptional profiles produced by a sex-specific factor underlies such sex differences, we discovered that the sex-specific cleavage confers the activity as a sexual-fate inducer on the pleiotropic transcription factor Longitudinals lacking (Lola). Surprisingly, Fruitless, another transcription factor with a master regulator role for courtship circuitry formation, directly binds to Lola to protect its cleavage in males. We also show that Lola cleavage involves E3 ubiquitin ligase Cullin1 and 26S proteasome. Our work adds a new dimension to the study of sex-specific behavior and its circuit basis by unveiling a mechanistic link between proteolysis and the sexually dimorphic patterning of circuits. Our findings may also provide new insights into potential causes of the sex-biased incidence of some neuropsychiatric diseases and inspire novel therapeutic approaches to such disorders. It is unclear how some Drosophila neurons develop sex-specific neurites that contribute to dimorphic circuitries required for gendered behavior. The authors show that sex-specific cleavage by the E3 ubiquitin ligase Cullin1 and 26S proteasome of the pleiotropic BTB-ZF transcription factor Lola confers its sexual fate-inducing ability in these neurons.
Collapse
|
35
|
Ma Z, Shi H, Shen Y, Li H, Yang Y, Yang J, Zhao H, Wang G, Wang J. Emerin anchors Msx1 and its protein partners at the nuclear periphery to inhibit myogenesis. Cell Biosci 2019; 9:34. [PMID: 31044068 PMCID: PMC6460851 DOI: 10.1186/s13578-019-0296-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Previous studies have shown that in myogenic precursors, the homeoprotein Msx1 and its protein partners, histone methyltransferases and repressive histone marks, tend to be enriched on target myogenic regulatory genes at the nuclear periphery. The nuclear periphery localization of Msx1 and its protein partners is required for Msx1's function of preventing myogenic precursors from pre-maturation through repressing target myogenic regulatory genes. However, the mechanisms underlying the maintenance of Msx1 and its protein partners' nuclear periphery localization are unknown. RESULTS We show that an inner nuclear membrane protein, Emerin, performs as an anchor settled at the inner nuclear membrane to keep Msx1 and its protein partners Ezh2, H3K27me3 enriching at the nuclear periphery, and participates in inhibition of myogenesis mediated by Msx1. Msx1 interacts with Emerin both in C2C12 myoblasts and mouse developing limbs, which is the prerequisite for Emerin mediating the precise location of Msx1, Ezh2, and H3K27me3. The deficiency of Emerin in C2C12 myoblasts disturbs the nuclear periphery localization of Msx1, Ezh2, and H3K27me3, directly indicating Emerin functioning as an anchor. Furthermore, Emerin cooperates with Msx1 to repress target myogenic regulatory genes, and assists Msx1 with inhibition of myogenesis. CONCLUSIONS Emerin cooperates with Msx1 to inhibit myogenesis through maintaining the nuclear periphery localization of Msx1 and Msx1's protein partners.
Collapse
Affiliation(s)
- Zhangjing Ma
- 1State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438 People's Republic of China
| | - Huiyuan Shi
- 1State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438 People's Republic of China
| | - Yi Shen
- 1State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438 People's Republic of China
| | - Huixia Li
- 1State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438 People's Republic of China
| | - Yu Yang
- 1State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438 People's Republic of China
| | - Jiange Yang
- 1State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438 People's Republic of China
| | - Hui Zhao
- Zhengzhou Revogene Inc, Zhengzhou, 450000 People's Republic of China
| | - Gang Wang
- 1State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438 People's Republic of China.,3State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 People's Republic of China
| | - Jingqiang Wang
- 1State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438 People's Republic of China
| |
Collapse
|
36
|
RanGTPase regulates the interaction between the inner nuclear membrane proteins, Samp1 and Emerin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1326-1334. [PMID: 29510091 DOI: 10.1016/j.bbamem.2018.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/07/2018] [Accepted: 03/01/2018] [Indexed: 02/02/2023]
Abstract
Samp1, spindle associated membrane protein 1, is a type II integral membrane protein localized in the inner nuclear membrane. Recent studies have shown that the inner nuclear membrane protein, Emerin and the small monomeric GTPase, Ran are direct binding partners of Samp1. Here we addressed the question whether Ran could regulate the interaction between Samp1 and Emerin in the inner nuclear membrane. To investigate the interaction between Samp1 and Emerin in live cells, we performed FRAP experiments in cells overexpressing YFP-Emerin. We compared the mobility of YFP-Emerin in Samp1 knock out cells and cells overexpressing Samp1. The results showed that the mobility of YFP-Emerin was higher in Samp1 knock out cells and lower in cells overexpressing Samp1, suggesting that Samp1 significantly attenuates the mobility of Emerin in the nuclear envelope. FRAP experiments using tsBN2 cells showed that the mobility of Emerin depends on RanGTP. Consistently, in vitro binding experiments showed that the affinity between Samp1 and Emerin is decreased in the presence of Ran, suggesting that Ran attenuates the interaction between Samp1 and Emerin. This is the first demonstration that Ran can regulate the interaction between two proteins in the nuclear envelope.
Collapse
|
37
|
Maraldi NM. The lamin code. Biosystems 2018; 164:68-75. [DOI: 10.1016/j.biosystems.2017.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022]
|
38
|
Abstract
PURPOSE OF REVIEW Nuclear envelope links to a wide range of disorders, including several myopathies and neuropathies over the past 2 decades, has spurred research leading to a completely changed view of this important cellular structure and its functions. However, the many functions now assigned to the nuclear envelope make it increasingly hard to determine which functions underlie these disorders. RECENT FINDINGS New nuclear envelope functions in genome organization, regulation and repair, signaling, and nuclear and cellular mechanics have been added to its classical barrier function. Arguments can be made for any of these functions mediating abnormality in nuclear envelope disorders and data exist supporting many. Moreover, transient and/or distal nuclear envelope connections to other cellular proteins and structures may increase the complexity of these disorders. SUMMARY Although the increased understanding of nuclear envelope functions has made it harder to distinguish specific causes of nuclear envelope disorders, this is because it has greatly expanded the spectrum of possible mechanisms underlying them. This change in perspective applies well beyond the known nuclear envelope disorders, potentially implicating the nuclear envelope in a much wider range of myopathies and neuropathies.
Collapse
|
39
|
Barrier-to-autointegration factor (BAF) involvement in prelamin A-related chromatin organization changes. Oncotarget 2017; 7:15662-77. [PMID: 26701887 PMCID: PMC4941268 DOI: 10.18632/oncotarget.6697] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/21/2015] [Indexed: 11/25/2022] Open
Abstract
Chromatin disorganization is one of the major alterations linked to prelamin A processing impairment. In this study we demonstrate that BAF is necessary to modulate prelamin A effects on chromatin structure. We show that when prelamin A and BAF cannot properly interact no prelamin A-dependent effects on chromatin occur; similar to what is observed in human Nestor Guillermo Progeria Syndrome cells harboring a BAF mutation, in HEK293 cells expressing a BAF mutant unable to bind prelamin A, or in siRNA mediated BAF-depleted HEK293 cells expressing prelamin A. BAF is necessary to induce histone trimethyl-H3K9 as well as HP1-alpha and LAP2-alpha nuclear relocalization in response to prelamin A accumulation. These findings are enforced by electron microscopy evaluations showing how the prelamin A-BAF interaction governs overall chromatin organization. Finally, we demonstrate that the LAP2-alpha nuclear localization defect observed in HGPS cells involves the progerin-BAF interaction, thus establishing a functional link between BAF and prelamin A pathological forms.
Collapse
|
40
|
Iyer A, Koch AJ, Holaska JM. Expression Profiling of Differentiating Emerin-Null Myogenic Progenitor Identifies Molecular Pathways Implicated in Their Impaired Differentiation. Cells 2017; 6:cells6040038. [PMID: 29065506 PMCID: PMC5755497 DOI: 10.3390/cells6040038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 11/16/2022] Open
Abstract
Mutations in the gene encoding emerin cause Emery-Dreifuss muscular dystrophy (EDMD), a disorder causing progressive skeletal muscle wasting, irregular heart rhythms and contractures of major tendons. RNA sequencing was performed on differentiating wildtype and emerin-null myogenic progenitors to identify molecular pathways implicated in EDMD, 340 genes were uniquely differentially expressed during the transition from day 0 to day 1 in wildtype cells. 1605 genes were uniquely expressed in emerin-null cells; 1706 genes were shared among both wildtype and emerin-null cells. One thousand and forty-seven transcripts showed differential expression during the transition from day 1 to day 2. Four hundred and thirty-one transcripts showed altered expression in both wildtype and emerin-null cells. Two hundred and ninety-five transcripts were differentially expressed only in emerin-null cells and 321 transcripts were differentially expressed only in wildtype cells. DAVID, STRING and Ingenuity Pathway Analysis identified pathways implicated in impaired emerin-null differentiation, including cell signaling, cell cycle checkpoints, integrin signaling, YAP/TAZ signaling, stem cell differentiation, and multiple muscle development and myogenic differentiation pathways. Functional enrichment analysis showed biological functions associated with the growth of muscle tissue and myogenesis of skeletal muscle were inhibited. The large number of differentially expressed transcripts upon differentiation induction suggests emerin functions during transcriptional reprograming of progenitors to committed myoblasts.
Collapse
Affiliation(s)
- Ashvin Iyer
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA 19104, USA.
| | - Adam J Koch
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA.
| | - James M Holaska
- Department of Biomedical Sciences, Rm 534, Cooper Medical School of Rowan University, 401 South Broadway St., Camden, NJ 08028, USA.
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA 19104, USA.
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
41
|
Identifying Novel Transcriptional and Epigenetic Features of Nuclear Lamina-associated Genes. Sci Rep 2017; 7:100. [PMID: 28273906 PMCID: PMC5427898 DOI: 10.1038/s41598-017-00176-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/13/2017] [Indexed: 01/10/2023] Open
Abstract
Because a large portion of the mammalian genome is associated with the nuclear lamina (NL), it is interesting to study how native genes resided there are transcribed and regulated. In this study, we report unique transcriptional and epigenetic features of nearly 3,500 NL-associated genes (NL genes). Promoter regions of active NL genes are often excluded from NL-association, suggesting that NL-promoter interactions may repress transcription. Active NL genes with higher RNA polymerase II (Pol II) recruitment levels tend to display Pol II promoter-proximal pausing, while Pol II recruitment and Pol II pausing are not correlated among non-NL genes. At the genome-wide scale, NL-association and H3K27me3 distinguishes two large gene classes with low transcriptional activities. Notably, NL-association is anti-correlated with both transcription and active histone mark levels among genes not significantly enriched with H3K9me3 or H3K27me3, suggesting that NL-association may represent a novel gene repression pathway. Interestingly, an NL gene subgroup is not significantly enriched with H3K9me3 or H3K27me3 and is transcribed at higher levels than the rest of NL genes. Furthermore, we identified distal enhancers associated with active NL genes and reported their epigenetic features.
Collapse
|
42
|
Abstract
As a compartment border, the nuclear envelope (NE) needs to serve as both a protective membrane shell for the genome and a versatile communication interface between the nucleus and the cytoplasm. Despite its important structural role in sheltering the genome, the NE is a dynamic and highly adaptable boundary that changes composition during differentiation, deforms in response to mechanical challenges, can be repaired upon rupture and even rapidly disassembles and reforms during open mitosis. NE remodelling is fundamentally involved in cell growth, division and differentiation, and if perturbed can lead to devastating diseases such as muscular dystrophies or premature ageing.
Collapse
|
43
|
Flora P, McCarthy A, Upadhyay M, Rangan P. Role of Chromatin Modifications in Drosophila Germline Stem Cell Differentiation. Results Probl Cell Differ 2017; 59:1-30. [PMID: 28247044 DOI: 10.1007/978-3-319-44820-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During Drosophila oogenesis, germline stem cells (GSCs) self-renew and differentiate to give rise to a mature egg. Self-renewal and differentiation of GSCs are regulated by both intrinsic mechanisms such as regulation of gene expression in the germ line and extrinsic signaling pathways from the surrounding somatic niche. Epigenetic mechanisms, including histone-modifying proteins, nucleosome remodeling complexes, and histone variants, play a critical role in regulating intrinsic gene expression and extrinsic signaling cues from the somatic niche. In the GSCs, intrinsic epigenetic modifiers are required to maintain a stem cell fate by promoting expression of self-renewal factors and repressing the differentiation program. Subsequently, in the GSC daughters, epigenetic regulators activate the differentiation program to promote GSC differentiation. During differentiation, the GSC daughter undergoes meiosis to give rise to the developing egg, containing a compacted chromatin architecture called the karyosome. Epigenetic modifiers control the attachment of chromosomes to the nuclear lamina to aid in meiotic recombination and the release from the lamina for karyosome formation. The germ line is in close contact with the soma for the entirety of this developmental process. This proximity facilitates signaling from the somatic niche to the developing germ line. Epigenetic modifiers play a critical role in the somatic niche, modulating signaling pathways in order to coordinate the transition of GSC to an egg. Together, intrinsic and extrinsic epigenetic mechanisms modulate this exquisitely balanced program.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Alicia McCarthy
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Maitreyi Upadhyay
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA.
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
44
|
Lee B, Lee TH, Shim J. Emerin suppresses Notch signaling by restricting the Notch intracellular domain to the nuclear membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:303-313. [PMID: 27865926 DOI: 10.1016/j.bbamcr.2016.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022]
Abstract
Emerin is an inner nuclear membrane protein that is involved in maintaining the mechanical integrity of the nuclear membrane. Increasing evidence supports the involvement of emerin in the regulation of gene expression; however, its precise function remains to be elucidated. Here, we show that emerin downregulated genes downstream of Notch signaling, which are activated exclusively by the Notch intracellular domain (NICD). Deletion mutant experiments revealed that the transmembrane domain of emerin is important for the inhibition of Notch signaling. Emerin interacted directly and colocalized with the NICD at the nuclear membrane. Emerin knockdown induced the phosphorylation of ERK and AKT, increased endogenous Notch signaling, and inhibited hydrogen peroxide-induced apoptosis in HeLa cells. Notably, the downregulation of barrier-to-autointegration factor (BAF) or lamin A/C increased Notch signaling by inducing the release of emerin into the cytosol, implying that nuclear membrane-bound emerin acts as an endogenous inhibitor of Notch signaling. Taken together, our results indicate that emerin negatively regulates Notch signaling by promoting the retention of the NICD at the nuclear membrane. This mechanism could constitute a new therapeutic target for the treatment of emerin-related diseases.
Collapse
Affiliation(s)
- Byongsun Lee
- Department of Molecular Biology, Sejong University, Seoul 05006, Republic of Korea
| | - Tae-Hee Lee
- Laboratory for Cancer & Stem Cell Biology, Plant Engineering Institute, Sejong University, Seoul 05006, Republic of Korea
| | - Jaekyung Shim
- Department of Molecular Biology, Sejong University, Seoul 05006, Republic of Korea; Laboratory for Cancer & Stem Cell Biology, Plant Engineering Institute, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
45
|
Abstract
The nucleus is separated from the cytosol by the nuclear envelope, which is a double lipid bilayer composed of the outer nuclear membrane and the inner nuclear membrane. The intermediate filament proteins lamin A, lamin B, and lamin C form a network underlying the inner nuclear membrane. This proteinaceous network provides the nucleus with its strength, rigidity, and elasticity. Positioned within the inner nuclear membrane are more than 150 inner nuclear membrane proteins, many of which interact directly with lamins and require lamins for their inner nuclear membrane localization. Inner nuclear membrane proteins and the nuclear lamins define the nuclear lamina. These inner nuclear membrane proteins have tissue-specific expression and diverse functions including regulating cytoskeletal organization, nuclear architecture, cell cycle dynamics, and genomic organization. Loss or mutations in lamins and inner nuclear membrane proteins cause a wide spectrum of diseases. Here, I will review the functions of the well-studied nuclear lamina proteins and the diseases associated with loss or mutations in these proteins. © 2016 American Physiological Society. Compr Physiol 6:1655-1674, 2016.
Collapse
Affiliation(s)
- James M. Holaska
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania, USA
| |
Collapse
|
46
|
Czapiewski R, Robson MI, Schirmer EC. Anchoring a Leviathan: How the Nuclear Membrane Tethers the Genome. Front Genet 2016; 7:82. [PMID: 27200088 PMCID: PMC4859327 DOI: 10.3389/fgene.2016.00082] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022] Open
Abstract
It is well established that the nuclear envelope has many distinct direct connections to chromatin that contribute to genome organization. The functional consequences of genome organization on gene regulation are less clear. Even less understood is how interactions of lamins and nuclear envelope transmembrane proteins (NETs) with chromatin can produce anchoring tethers that can withstand the physical forces of and on the genome. Chromosomes are the largest molecules in the cell, making megadalton protein structures like the nuclear pore complexes and ribosomes seem small by comparison. Thus to withstand strong forces from chromosome dynamics an anchoring tether is likely to be much more complex than a single protein-protein or protein-DNA interaction. Here we will briefly review known NE-genome interactions that likely contribute to spatial genome organization, postulate in the context of experimental data how these anchoring tethers contribute to gene regulation, and posit several hypotheses for the physical nature of these tethers that need to be investigated experimentally. Significantly, disruption of these anchoring tethers and the subsequent consequences for gene regulation could explain how mutations in nuclear envelope proteins cause diseases ranging from muscular dystrophy to lipodystrophy to premature aging progeroid syndromes. The two favored hypotheses for nuclear envelope protein involvement in disease are (1) weakening nuclear and cellular mechanical stability, and (2) disrupting genome organization and gene regulation. Considerable experimental support has been obtained for both. The integration of both mechanical and gene expression defects in the disruption of anchoring tethers could provide a unifying hypothesis consistent with both.
Collapse
Affiliation(s)
| | | | - Eric C. Schirmer
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of EdinburghEdinburgh, UK
| |
Collapse
|
47
|
Wang Y, Xiao X, Wang L. Molecular characterization and expression patterns of emerin (EMD) gene in skeletal muscle between Meishan and Large White pigs. Gene 2016; 579:41-6. [PMID: 26743124 DOI: 10.1016/j.gene.2015.12.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/03/2015] [Accepted: 12/21/2015] [Indexed: 01/19/2023]
Abstract
The emerin protein is a nuclear membrane protein and has important functions in muscle development, regeneration, and cell signal transduction. However, knowledge regarding emerin in the domestic animal is limited. In this study, we cloned and characterized the pig emerin (EMD) gene. Semi-quantitative RT-PCR analysis revealed that the EMD gene was expressed at the highest level in the heart and fat at 120d. However, the fetal skeletal muscles displayed a greater abundance of EMD mRNA than that in skeletal muscles at postnatal development stages. In addition, the expression level of EMD at 60 day was significantly higher (p<0.05) in Meishan than Large White pigs. Pig EMD protein displayed the sarcolemma and perinuclear distribution in skeletal muscle sections, and there was no distribution change of EMD in skeletal muscle sections between Large White and Meishan pigs. These studies provide useful information for further research on the functions of pig EMD gene in skeletal muscle.
Collapse
Affiliation(s)
- Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xia Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province,Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Linjie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province,Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| |
Collapse
|
48
|
Boone PM, Yuan B, Gu S, Ma Z, Gambin T, Gonzaga-Jauregui C, Jain M, Murdock TJ, White JJ, Jhangiani SN, Walker K, Wang Q, Muzny DM, Gibbs RA, Hejtmancik JF, Lupski JR, Posey JE, Lewis RA. Hutterite-type cataract maps to chromosome 6p21.32-p21.31, cosegregates with a homozygous mutation in LEMD2, and is associated with sudden cardiac death. Mol Genet Genomic Med 2015; 4:77-94. [PMID: 26788539 PMCID: PMC4707028 DOI: 10.1002/mgg3.181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Juvenile-onset cataracts are known among the Hutterites of North America. Despite being identified over 30 years ago, this autosomal recessive condition has not been mapped, and the disease gene is unknown. METHODS We performed whole exome sequencing of three Hutterite-type cataract trios and follow-up genotyping and mapping in four extended kindreds. RESULTS Trio exomes enabled genome-wide autozygosity mapping, which localized the disease gene to a 9.5-Mb region on chromosome 6p. This region contained two candidate variants, LEMD2 c.T38G and MUC21 c.665delC. Extended pedigrees recruited for variant genotyping revealed multiple additional relatives with juvenile-onset cataract, as well as six deceased relatives with both cataracts and sudden cardiac death. The candidate variants were genotyped in 84 family members, including 17 with cataracts; only the variant in LEMD2 cosegregated with cataracts (LOD = 9.62). SNP-based fine mapping within the 9.5 Mb linked region supported this finding by refining the cataract locus to a 0.5- to 2.9-Mb subregion (6p21.32-p21.31) containing LEMD2 but not MUC21. LEMD2 is expressed in mouse and human lenses and encodes a LEM domain-containing protein; the c.T38G missense mutation is predicted to mutate a highly conserved residue within this domain (p.Leu13Arg). CONCLUSION We performed a genetic and genomic study of Hutterite-type cataract and found evidence for an association of this phenotype with sudden cardiac death. Using combined genetic and genomic approaches, we mapped cataracts to a small portion of chromosome 6 and propose that they result from a homozygous missense mutation in LEMD2.
Collapse
Affiliation(s)
- Philip M Boone
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Bo Yuan
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Shen Gu
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch National Eye Institute Rockville Maryland
| | - Tomasz Gambin
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | | | - Mahim Jain
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | | | - Janson J White
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | | | - Kimberly Walker
- Human Genome Sequencing Center Baylor College of Medicine Houston Texas
| | - Qiaoyan Wang
- Human Genome Sequencing Center Baylor College of Medicine Houston Texas
| | - Donna M Muzny
- Human Genome Sequencing Center Baylor College of Medicine Houston Texas
| | - Richard A Gibbs
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas; Human Genome Sequencing CenterBaylor College of MedicineHoustonTexas
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch National Eye Institute Rockville Maryland
| | - James R Lupski
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas; Human Genome Sequencing CenterBaylor College of MedicineHoustonTexas; Department of PediatricsBaylor College of MedicineHoustonTexas; Texas Children's HospitalHoustonTexas
| | - Jennifer E Posey
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Richard A Lewis
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas; Department of PediatricsBaylor College of MedicineHoustonTexas; Texas Children's HospitalHoustonTexas; Department of OphthalmologyBaylor College of MedicineHoustonTexas; Department of MedicineBaylor College of MedicineHoustonTexas
| |
Collapse
|
49
|
Yuan J, Xue B. Role of structural flexibility in the evolution of emerin. J Theor Biol 2015; 385:102-11. [PMID: 26319992 DOI: 10.1016/j.jtbi.2015.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/07/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023]
Abstract
Emerin is a short inner nuclear membrane protein with an LEM-domain at the N-terminal end and a transmembrane domain at the C-terminal end. The middle region of human emerin contains multiple binding motifs. Since emerin is often found in evolutionarily newer species, the functional conservation of emerin becomes an interesting topic. In this study, we have demonstrated that most of the functional motifs of emerin are intrinsically disordered or highly flexible. Many post-translational modification sites and mutation sites are associated with these disordered regions. The averaged substitution rates of most functional motifs between species correlate positively with the averaged disorder scores of those functional motifs. Human emerin sequence may have acquired new functions on protein-protein interaction through the formation of hydrophobic motifs in the middle region, which is resulted from accumulated mutations during the evolution process.
Collapse
Affiliation(s)
- Jia Yuan
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL 33620, USA
| | - Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL 33620, USA.
| |
Collapse
|
50
|
Jamin A, Wiebe MS. Barrier to Autointegration Factor (BANF1): interwoven roles in nuclear structure, genome integrity, innate immunity, stress responses and progeria. Curr Opin Cell Biol 2015; 34:61-8. [PMID: 26072104 DOI: 10.1016/j.ceb.2015.05.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/20/2015] [Accepted: 05/27/2015] [Indexed: 11/24/2022]
Abstract
The Barrier to Autointegration Factor (BAF or BANF1) is an abundant, highly conserved DNA binding protein. BAF is involved in multiple pathways including mitosis, nuclear assembly, viral infection, chromatin and gene regulation and the DNA damage response. BAF is also essential for early development in metazoans and relevant to human physiology; BANF1 mutations cause a progeroid syndrome, placing BAF within the laminopathy disease spectrum. This review summarizes previous knowledge about BAF in the context of recent discoveries about its protein partners, posttranslational regulation, dynamic subcellular localizations and roles in disease, innate immunity, transposable elements and genome integrity.
Collapse
Affiliation(s)
- Augusta Jamin
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583-0900, USA; Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA
| | - Matthew S Wiebe
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583-0900, USA; Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA.
| |
Collapse
|