1
|
PIAS1 binds p300 and behaves as a coactivator or corepressor of the transcription factor c-Myb dependent on SUMO-status. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:705-18. [PMID: 27032383 DOI: 10.1016/j.bbagrm.2016.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/08/2016] [Accepted: 03/23/2016] [Indexed: 12/21/2022]
Abstract
The PIAS proteins (Protein Inhibitor of Activated STATs) constitute a family of multifunctional nuclear proteins operating as SUMO E3 ligases and being involved in a multitude of interactions. They participate in a range of biological processes, also beyond their well-established role in the immune system and cytokine signalling. They act both as transcriptional corepressors and coactivators depending on the context. In the present work, we investigated mechanisms by which PIAS1 causes activation or repression of c-Myb dependent target genes. Analysis of global expression data shows that c-Myb and PIAS1 knockdowns affect a subset of common targets, but with a dual outcome consistent with a role of PIAS1 as either a corepressor or coactivator. Our mechanistic studies show that PIAS1 engages in a novel interaction with the acetyltransferase and coactivator p300. Interaction and ChIP analysis suggest a bridging function where PIAS1 enhances p300 recruitment to c-Myb-bound sites through interaction with both proteins. In addition, the E3 activity of PIAS1 enhances further its coactivation. Remarkably, the SUMO status of c-Myb had a decisive role, indicating a SUMO-dependent switch in the way PIAS1 affects c-Myb, either as a coactivator or corepressor. Removal of the two major SUMO-conjugation sites in c-Myb (2KR mutant), which enhances its activity significantly, turned PIAS1 into a corepressor. Also, p300 was less efficiently recruited to chromatin by c-Myb-2KR. We propose that PIAS1 acts as a "protein inhibitor of activated c-Myb" in the absence of SUMOylation while, in its presence, PIAS behaves as a "protein activator of repressed c-Myb".
Collapse
|
2
|
Lorenzo PI, Brendeford EM, Gilfillan S, Gavrilov AA, Leedsak M, Razin SV, Eskeland R, Sæther T, Gabrielsen OS. Identification of c-Myb Target Genes in K562 Cells Reveals a Role for c-Myb as a Master Regulator. Genes Cancer 2012; 2:805-17. [PMID: 22393465 DOI: 10.1177/1947601911428224] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/08/2011] [Indexed: 11/17/2022] Open
Abstract
The c-Myb transcription factor is an important regulator of hematopoietic cell development. c-Myb is expressed in immature hematopoietic cells and plays a direct role in lineage fate selection, cell cycle progression, and differentiation of myeloid as well as B- and T-lymphoid progenitor cells. As a DNA-binding transcription factor, c-Myb regulates specific gene programs through activation of target genes. Still, our understanding of these programs is incomplete. Here, we report a set of novel c-Myb target genes, identified using a combined approach: specific c-Myb knockdown by 2 different siRNAs and subsequent global expression profiling, combined with the confirmation of direct binding of c-Myb to the target promoters by ChIP assays. The combination of these 2 approaches, as well as additional validation such as cloning and testing the promoters in reporter assays, confirmed that MYADM, LMO2, GATA2, STAT5A, and IKZF1 are target genes of c-Myb. Additional studies, using chromosome conformation capture, demonstrated that c-Myb target genes may directly interact with each other, indicating that these genes may be coordinately regulated. Of the 5 novel target genes identified, 3 are transcription factors, and one is a transcriptional co-regulator, supporting a role of c-Myb as a master regulator controlling the expression of other transcriptional regulators in the hematopoietic system.
Collapse
|
3
|
Alm-Kristiansen AH, Lorenzo PI, Molværsmyr AK, Matre V, Ledsaak M, Sæther T, Gabrielsen OS. PIAS1 interacts with FLASH and enhances its co-activation of c-Myb. Mol Cancer 2011; 10:21. [PMID: 21338522 PMCID: PMC3050860 DOI: 10.1186/1476-4598-10-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 02/21/2011] [Indexed: 11/15/2022] Open
Abstract
Background FLASH is a huge nuclear protein involved in various cellular functions such as apoptosis signalling, NF-κB activation, S-phase regulation, processing of histone pre-mRNAs, and co-regulation of transcription. Recently, we identified FLASH as a co-activator of the transcription factor c-Myb and found FLASH to be tightly associated with active transcription foci. As a huge multifunctional protein, FLASH is expected to have many interaction partners, some which may shed light on its function as a transcriptional regulator. Results To find additional FLASH-associated proteins, we performed a yeast two-hybrid (Y2H) screening with FLASH as bait and identified the SUMO E3 ligase PIAS1 as an interaction partner. The association appears to involve two distinct interaction surfaces in FLASH. We verified the interaction by Y2H-mating, GST pulldowns, co-IP and ChIP. FLASH and PIAS1 were found to co-localize in nuclear speckles. Functional assays revealed that PIAS1 enhances the intrinsic transcriptional activity of FLASH in a RING finger-dependent manner. Furthermore, PIAS1 also augments the specific activity of c-Myb, and cooperates with FLASH to further co-activate c-Myb. The three proteins, FLASH, PIAS1, and c-Myb, are all co-localized with active RNA polymerase II foci, resembling transcription factories. Conclusions We conclude that PIAS1 is a common partner for two cancer-related nuclear factors, c-Myb and FLASH. Our results point to a functional cooperation between FLASH and PIAS1 in the enhancement of c-Myb activity in active nuclear foci.
Collapse
|
4
|
Zhou Y, Ness SA. Myb proteins: angels and demons in normal and transformed cells. Front Biosci (Landmark Ed) 2011; 16:1109-31. [PMID: 21196221 DOI: 10.2741/3738] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A key regulator of proliferation, differentiation and cell fate, the c-Myb transcription factor regulates the expression of hundreds of genes and is in turn regulated by numerous pathways and protein interactions. However, the most unique feature of c-Myb is that it can be converted into an oncogenic transforming protein through a few mutations that completely change its activity and specificity. The c-Myb protein is a myriad of interactions and activities rolled up in a protein that controls proliferation and differentiation in many different cell types. Here we discuss the background and recent progress that have led to a better understanding of this complex protein, and outline the questions that have yet to be answered.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | | |
Collapse
|
5
|
A functional SUMO-interacting motif in the transactivation domain of c-Myb regulates its myeloid transforming ability. Oncogene 2010; 30:212-22. [DOI: 10.1038/onc.2010.397] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Chen L, Xu S, Zeng X, Li J, Yin W, Chen Y, Shao Z, Jin W. c-myb activates CXCL12 transcription in T47D and MCF7 breast cancer cells. Acta Biochim Biophys Sin (Shanghai) 2010; 42:1-7. [PMID: 20043041 DOI: 10.1093/abbs/gmp108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemokine C-X-C motif ligand 12 (CXCL12) is a potent chemotactic and angiogenic factor that has been proposed to play a role in organ-specific metastasis and angiogenic activity in several malignancies. In this study, we found that the overexpression of c-myb could elevate CXCL12 mRNA level and CXCL12 promoter activity in human T47D and MCF-7 breast cancer cells. Chromatin immunoprecipitation assay demonstrated that c-myb could bind to the CXCL12 promoter in the cells transfected with cmyb expression vector. c-myb siRNA attenuated CXCL12 promoter activity and the binding of c-myb to the CXCL12 promoter in T47D and MCF-7 cells. These results indicated that c-myb could activate CXCL12 promoter transcription.
Collapse
Affiliation(s)
- Li Chen
- Department of Breast Surgery, Breast Cancer Institute, Cancer Hospital/Cancer Institute, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Journo C, Douceron E, Mahieux R. HTLV gene regulation: because size matters, transcription is not enough. Future Microbiol 2009; 4:425-40. [PMID: 19416012 DOI: 10.2217/fmb.09.13] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Despite being discovered in animals in the early 20th century, the scientific interest in retroviruses was boosted with the discovery of human retroviruses (human T-leukemia/lymphoma virus [HTLV] and HIV), which are responsible for significant morbidity and mortality. HTLV was identified more than 25 years ago as the etiological agent of adult T-cell leukemia/lymphoma. It was then shown to be a complex retrovirus, given that it not only encodes the characteristic retroviral Gag, Pol and Env proteins, but also regulatory and accessory proteins. Since the first studies documenting the role of these proteins in viral expression, the picture has become increasingly more complex. Indeed, owing to the limited size of its genome that contains overlapping open-reading frames, HTLV has evolved unique ways to regulate its expression. Retroviral expression was originally thought to be mainly controlled through the regulation of transcription from the 5 long-terminal repeats, but we now know that the 3 long-terminal repeats also serve as promoters. Regulation of splicing and mRNA export, and post-translational modifications of viral protein also play a major role. This review discusses the latest insights gained into the field of HTLV gene expression.
Collapse
Affiliation(s)
- Chloé Journo
- Equipe Oncogenèse Rétrovirale, INSERM-U758 Virologie Humaine, 69364 Lyon Cedex 07, France
| | | | | |
Collapse
|
8
|
Fang F, Rycyzyn MA, Clevenger CV. Role of c-Myb during prolactin-induced signal transducer and activator of transcription 5a signaling in breast cancer cells. Endocrinology 2009; 150:1597-606. [PMID: 19036881 PMCID: PMC2659289 DOI: 10.1210/en.2008-1079] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 11/14/2008] [Indexed: 01/17/2023]
Abstract
Implicated in the pathogenesis of breast cancer, prolactin (PRL) mediates its function in part through the prolactin receptor (PRLr)-associated Janus kinase 2 (Jak2)/signal transducer and activator of transcription 5 (Stat5) signaling complex. To delineate the mechanisms of Stat5a regulation in breast cancer, transcription factor-transcription factor (TF-TF) array analysis was employed to identify associated transcriptional regulators. These analyses revealed a PRL-inducible association of Stat5a with the transcription factor and protooncogene c-Myb. Confirmatory co-immunoprecipitation studies using lysates from both T47D and MCF7 breast cancer cells revealed a PRL-inducible association between these transcription factors. Ectopic expression of c-Myb enhanced the PRL-induced expression from both composite and synthetic Stat5a-responsive luciferase reporters. Chromatin immunoprecipitation assays also revealed a PRL-inducible association between c-Myb and endogenous Stat5a-responsive CISH promoter, which was associated with an enhanced expression of CISH gene product at the RNA and protein levels. Small interfering RNA-mediated c-Myb knockdown impaired the PRL-induced mRNA expression of five Stat5-responsive genes. DNA binding-defective mutants of c-Myb, incapable of activating expression from a c-Myb-responsive reporter, maintained their ability to enhance a Stat5a-responsive reporter. At a cellular level, ectopic expression of c-Myb resulted in an increase in T47D proliferation. Taken together, these results indicate that c-Myb potentiates Stat5a-driven gene expression, possibly functioning as a Stat5a coactivator, in human breast cancer.
Collapse
Affiliation(s)
- Feng Fang
- Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
9
|
Acetylation-dependent interaction of SATB1 and CtBP1 mediates transcriptional repression by SATB1. Mol Cell Biol 2008; 29:1321-37. [PMID: 19103759 DOI: 10.1128/mcb.00822-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Special AT-rich binding protein 1 (SATB1) acts as a global regulator of gene expression by recruiting various corepressor or coactivator complexes, thereby establishing a unique chromatin structure at its genomic targets in a context-dependent manner. Although SATB1 acts predominantly as a repressor via recruitment of histone deacetylase 1 (HDAC1) complexes, the precise mechanism of global repression is not clear. Here we report that SATB1 and C-terminal binding protein 1 (CtBP1) form a repressor complex in vivo. The interaction occurs via the CtBP1 interaction consensus motif PVPLS within the PDZ-like domain of SATB1. The acetylation of SATB1 upon LiCl and ionomycin treatments disrupts its association with CtBP1, resulting in enhanced target gene expression. Chromatin immunoprecipitation analysis indicated that the occupancy of CtBP1 and HDAC1 is gradually decreased and the occupancy of PCAF is elevated at the SATB1 binding sites within the human interleukin-2 and mouse c-Myc promoters. Moreover, gene expression profiling studies using cells in which expression of SATB1 and CtBP1 was silenced indicated commonly targeted genes that may be coordinately repressed by the SATB1-CtBP1 complex. Collectively, these results provide a mechanistic insight into the role of SATB1-CtBP1 interaction in the repression and derepression of SATB1 target genes during Wnt signaling in T cells.
Collapse
|
10
|
Orvain C, Matre V, Gabrielsen OS. The transcription factor c-Myb affects pre-mRNA splicing. Biochem Biophys Res Commun 2008; 372:309-13. [PMID: 18498763 DOI: 10.1016/j.bbrc.2008.05.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 05/12/2008] [Indexed: 11/28/2022]
Abstract
c-Myb is a transcription factor which plays a key role in haematopoietic proliferation and lineage commitment. We raised the question of whether c-Myb may have abilities beyond the extensively studied transcriptional activation function. In this report we show that c-Myb influences alternative pre-mRNA splicing. This was seen by its marked effect on the 5'-splice site selection during E1A alternative splicing, while no effect of c-Myb was observed when reporters for the 3'-splice site selection or for the constitutive splicing process were tested. Moreover, co-immunoprecipitation experiments provided evidence for interactions between c-Myb and distinct components of the splicing apparatus, such as the general splicing factor U2AF(65) and hnRNPA1 involved in the 5'-splice site selection. The effect on 5'-splice site selection was abolished in the oncogenic variant v-Myb. Altogether, these data provide evidence that c-Myb may serve a previously unappreciated role in the coupling between transcription and splicing.
Collapse
Affiliation(s)
- Christophe Orvain
- University of Oslo, Department of Molecular Biosciences, P.O. Box 1041 Blindern, N-0316 Oslo, Norway
| | | | | |
Collapse
|
11
|
Saether T, Berge T, Ledsaak M, Matre V, Alm-Kristiansen AH, Dahle O, Aubry F, Gabrielsen OS. The chromatin remodeling factor Mi-2alpha acts as a novel co-activator for human c-Myb. J Biol Chem 2007; 282:13994-4005. [PMID: 17344210 DOI: 10.1074/jbc.m700755200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The c-Myb protein belongs to a group of early hematopoietic transcription factors that are important for progenitor generation and proliferation. These factors have been hypothesized to participate in establishing chromatin patterns specific for hematopoietic genes. In a two-hybrid screening we identified the chromatin remodeling factor Mi-2alpha as an interaction partner for human c-Myb. The main interacting domains were mapped to the N-terminal region of Mi-2alpha and the DNA-binding domain of c-Myb. Surprisingly, functional analysis revealed that Mi-2alpha, previously studied as a subunit in the NuRD co-repressor complex, enhanced c-Myb-dependent reporter activation. Consistently, knock-down of endogenous Mi-2alpha in c-Myb-expressing K562 cells, led to down-regulation of the c-Myb target genes NMU and ADA. When wild-type and helicase-dead Mi-2alpha were compared, the Myb-Mi-2alpha co-activation appeared to be independent of the ATPase/DNA helicase activity of Mi-2alpha. The rationale for the unexpected co-activator function seems to lie in a dual function of Mi-2alpha, by which this factor is able to repress transcription in a helicase-dependent and activate in a helicase-independent fashion, as revealed by Gal4-tethering experiments. Interestingly, desumoylation of c-Myb potentiated the Myb-Mi-2alpha transactivational co-operation, as did co-transfection with p300.
Collapse
Affiliation(s)
- Thomas Saether
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pavan Kumar P, Purbey PK, Sinha CK, Notani D, Limaye A, Jayani RS, Galande S. Phosphorylation of SATB1, a global gene regulator, acts as a molecular switch regulating its transcriptional activity in vivo. Mol Cell 2006; 22:231-43. [PMID: 16630892 DOI: 10.1016/j.molcel.2006.03.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/19/2006] [Accepted: 03/10/2006] [Indexed: 12/14/2022]
Abstract
SATB1 regulates gene expression by acting as a "docking site" for several chromatin remodeling enzymes and also by recruiting corepressors (HDACs) or coactivators (HATs) directly to promoters. However, how these contrasting effectors act at the level of SATB1 is not clear. We show here that phosphorylation by PKC acts as a switch to determine whether SATB1 interacts with HDAC1 or PCAF. Phosphorylation and dephosphorylation of SATB1 exerted opposing effects on MAR-linked reporter activity in vivo. SATB1 interacted with both CBP/p300 and PCAF HATs; however, these interactions resulted in the acetylation of the PDZ-like domain of SATB1 by PCAF but not by CBP/p300 and resulted in loss of its DNA binding activity. Using the T cell activation model, we provide mechanistic insights into how IL-2 transcription is reciprocally governed by the phosphorylation status of SATB1 and propose that a similar mechanism may dictate the ability of SATB1 to function as a global regulator.
Collapse
Affiliation(s)
- P Pavan Kumar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | | | | | | | | | | | | |
Collapse
|
13
|
Fukuzawa M, Zhukovskaya NV, Yamada Y, Araki T, Williams JG. Regulation of Dictyostelium prestalk-specific gene expression by a SHAQKY family MYB transcription factor. Development 2006; 133:1715-24. [PMID: 16571632 DOI: 10.1242/dev.02327] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PstA and pstO cells are the two major populations in the prestalk region of the Dictyostelium slug and DIF-1 is a low molecular weight signalling molecule that selectively induces pstO cell-specific gene expression. The two cell types are defined by their differential use of spatially separated regions of the ecmA promoter. Additionally, there are anterior-like cells (ALCs) scattered throughout the rear, prespore region of the slug. They, like the pstO cells, use a cap-site distal ecmA promoter segment termed the ecmO region. When multimerised, a 22-nucleotide subsegment of the ecmO region directs expression in pstA cells, pstO cells and ALCs. It also directs DIF-inducible gene expression. The 22-nucleotide region was used to purify MybE, a protein with a single MYB DNA-binding domain of a type previously found only in a large family of plant transcription factors. Slugs of a mybE-null (mybE-) strain express an ecmAO:lacZ fusion gene (i.e. a reporter construct containing the ecmA and ecmO promoter regions) in pstA cells but there is little or no expression in pstO cells and ALCs. The ecmA gene is not induced by DIF-1 in a mybE-strain. Thus, MybE is necessary for DIF-1 responsiveness and for the correct differentiation of pstO cells and ALCs.
Collapse
Affiliation(s)
- Masashi Fukuzawa
- University of Dundee, MSI/WTB Complex, Dow Street, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
14
|
Lei W, Liu F, Ness SA. Positive and negative regulation of c-Myb by cyclin D1, cyclin-dependent kinases, and p27 Kip1. Blood 2005; 105:3855-61. [PMID: 15687240 PMCID: PMC1895079 DOI: 10.1182/blood-2004-08-3342] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The c-Myb transcription factor controls differentiation and proliferation in hematopoietic and other cell types and has latent transforming activity, but little is known about its regulation during the cell cycle. Here, c-Myb was identified as part of a protein complex from human T cells containing the cyclin-dependent kinase (CDK) CDK6. Assays using model reporter constructs as well as endogenous target genes showed that the activity of c-Myb was inhibited by cyclin D1 plus CDK4 or CDK6 but stimulated by expression of the CDK inhibitors p16 Ink4a, p21 Cip1, or p27 Kip1. Mapping experiments identified a highly conserved region in c-Myb which, when transferred to the related A-Myb transcription factor, also rendered it responsive to CDKs and p27. The results suggest that c-Myb activity is directly regulated by cyclin D1 and CDKs and imply that c-Myb activity is regulated during the cell cycle in hematopoietic cells.
Collapse
Affiliation(s)
- Wanli Lei
- Department of Molecular Genetics and Microbiology, University of New Mexico, HSC, Albuquerque, NM 87131-0001, USA
| | | | | |
Collapse
|
15
|
Dahle Ø, Andersen TØ, Nordgård O, Matre V, Del Sal G, Gabrielsen OS. Transactivation properties of c-Myb are critically dependent on two SUMO-1 acceptor sites that are conjugated in a PIASy enhanced manner. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1338-48. [PMID: 12631292 DOI: 10.1046/j.1432-1033.2003.03504.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcription factor v-Myb is a potent inducer of myeloid leukemias, and its cellular homologue c-Myb plays a crucial role in the regulation of hematopoiesis. Recently, Bies and coworkers (Bies, J., Markus, J. & Wolff, L. (2002) J. Biol. Chem, 277, 8999-9009) presented evidence that murine c-Myb can be sumoylated under overexpression conditions in COS7 cells when cotransfected with FLAG-tagged SUMO-1. Here we provide independent evidence that human c-Myb is also subject to SUMO-1 conjugation under more physiological conditions as revealed by coimmunoprecipitation analysis of Jurkat cells and transfected CV-1 cells. Analysis in an in vitro conjugation system showed that modification of the two sites K503 and K527 is interdependent. A two-hybrid screening revealed that the SUMO-1 conjugase Ubc9 is one of a few major Myb-interacting proteins. The moderate basal level of sumoylation was greatly enhanced by cotransfection of PIASy, an E3 ligase for SUMO-1. The functional consequence of abolishing sumoylation was enhanced activation both of a transiently transfected reporter gene and of a resident Myb-target gene. When single and double mutants were compared, we found a clear correlation between reduction in sumoylation and increase in transcriptional activation. Enhancing sumoylation by contransfection of PIASy had a negative effect on both Myb-induced and basal level reporter activation. Furthermore, PIASy caused a shift in nuclear distribution of c-Myb towards the insoluble matrix fraction. We propose that the negative influence on transactivation properties by the negative regulatory domain region of c-Myb depends on the sumoylation sites located here.
Collapse
Affiliation(s)
- Øyvind Dahle
- Department of Biochemistry, University of Oslo, Norway
| | | | | | | | | | | |
Collapse
|