1
|
Phung HTT, Tran DH, Nguyen TX. The cruciform DNA-binding protein Crp1 stimulates the endonuclease activity of Mus81-Mms4 in Saccharomyces cerevisiae. FEBS Lett 2020; 594:4320-4337. [PMID: 32936932 DOI: 10.1002/1873-3468.13931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 11/07/2022]
Abstract
The Saccharomyces cerevisiae Mus81-Mms4 complex is a highly conserved DNA structure-specific endonuclease that plays essential roles in the processing of recombination intermediates that arise during the repair of stalled replication forks and double-stranded breaks. To identify novel factors functioning conjointly with Mus81-Mms4, we performed a biochemical screen and found that Crp1, a cruciform DNA-recognizing protein that specifically binds to DNA four-way junction structures, could stimulate the Mus81-Mms4 endonuclease. The specific protein interaction between Mus81-Mms4 and Crp1 was responsible for the stimulation observed. Multicopy expression of Crp1 could partially rescue the sensitivity to DNA-damaging agents of the sgs1∆mus81∆21-24N mutant. Our results provide insight into the functional role and interaction of Crp1 with other proteins involved in DNA repair.
Collapse
Affiliation(s)
- Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Diem Hong Tran
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Ta Xuan Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
2
|
Bittmann J, Grigaitis R, Galanti L, Amarell S, Wilfling F, Matos J, Pfander B. An advanced cell cycle tag toolbox reveals principles underlying temporal control of structure-selective nucleases. eLife 2020; 9:e52459. [PMID: 32352375 PMCID: PMC7220381 DOI: 10.7554/elife.52459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/29/2020] [Indexed: 12/26/2022] Open
Abstract
Cell cycle tags allow to restrict target protein expression to specific cell cycle phases. Here, we present an advanced toolbox of cell cycle tag constructs in budding yeast with defined and compatible peak expression that allow comparison of protein functionality at different cell cycle phases. We apply this technology to the question of how and when Mus81-Mms4 and Yen1 nucleases act on DNA replication or recombination structures. Restriction of Mus81-Mms4 to M phase but not S phase allows a wildtype response to various forms of replication perturbation and DNA damage in S phase, suggesting it acts as a post-replicative resolvase. Moreover, we use cell cycle tags to reinstall cell cycle control to a deregulated version of Yen1, showing that its premature activation interferes with the response to perturbed replication. Curbing resolvase activity and establishing a hierarchy of resolution mechanisms are therefore the principal reasons underlying resolvase cell cycle regulation.
Collapse
Affiliation(s)
- Julia Bittmann
- Max Planck Institute of Biochemistry, DNA Replication and Genome IntegrityMartinsriedGermany
| | - Rokas Grigaitis
- Institute of Biochemistry, Eidgenössische Technische Hochschule, ZürichZürichSwitzerland
| | - Lorenzo Galanti
- Max Planck Institute of Biochemistry, DNA Replication and Genome IntegrityMartinsriedGermany
| | - Silas Amarell
- Max Planck Institute of Biochemistry, DNA Replication and Genome IntegrityMartinsriedGermany
| | - Florian Wilfling
- Max Planck Institute of Biochemistry, Molecular Cell BiologyMartinsriedGermany
| | - Joao Matos
- Institute of Biochemistry, Eidgenössische Technische Hochschule, ZürichZürichSwitzerland
| | - Boris Pfander
- Max Planck Institute of Biochemistry, DNA Replication and Genome IntegrityMartinsriedGermany
| |
Collapse
|
3
|
Glineburg MR, Johns E, Johnson FB. Deletion of ULS1 confers damage tolerance in sgs1 mutants through a Top3-dependent D-loop mediated fork restart pathway. DNA Repair (Amst) 2019; 78:102-113. [PMID: 31005681 DOI: 10.1016/j.dnarep.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Homologous recombination (HR)-based repair during DNA replication can apparently utilize several partially overlapping repair pathways in response to any given lesion. A key player in HR repair is the Sgs1-Top3-Rmi1 (STR) complex, which is critical for resolving X-shaped recombination intermediates formed following bypass of methyl methanesulfonate (MMS)-induced damage. STR mutants are also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU), but unlike MMS treatment, HU treatment is not accompanied by X-structure accumulation, and it is thus unclear how STR functions in this context. Here we provide evidence that HU-induced fork stalling enlists Top3 prior to recombination intermediate formation. The resistance of sgs1Δ mutants to HU is enhanced by the absence of the putative SUMO (Small Ubiquitin MOdifier)-targeted ubiquitin ligase, Uls1, and we demonstrate that Top3 is required for this enhanced resistance and for coordinated breaks and subsequent d-loop formation at forks stalled at the ribosomal DNA (rDNA) replication fork block (RFB). We also find that HU resistance depends on the catalytic activity of the E3 SUMO ligase, Mms21, and includes a rapid Rad51-dependent restart mechanism that is different from the slow Rad51-independent HR fork restart mechanism operative in sgs1Δ ULS1+ mutants. These data support a model in which repair of HU-induced damage in sgs1Δ mutants involves an error-prone break-induced replication pathway but, in the absence of Uls1, shifts to one that is higher-fidelity and involves the formation of Rad51-dependent d-loops.
Collapse
Affiliation(s)
- M Rebecca Glineburg
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, 19104, United States; Cell and Molecular Biology Group, Biomedical Graduate Studies, Philadelphia, Pennsylvania, 19104, United States
| | - Eleanor Johns
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, 19104, United States
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, 19104, United States; Cell and Molecular Biology Group, Biomedical Graduate Studies, Philadelphia, Pennsylvania, 19104, United States; The Institute of Aging, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, United States.
| |
Collapse
|
4
|
Phung HTT, Nguyen HLH, Vo ST, Nguyen DH, Le MV. Saccharomyces cerevisiae Mus81-Mms4 and Rad52 can cooperate in the resolution of recombination intermediates. Yeast 2018; 35:543-553. [PMID: 29738624 DOI: 10.1002/yea.3320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/26/2018] [Accepted: 04/23/2018] [Indexed: 11/06/2022] Open
Abstract
Mus81 is a well-conserved DNA structure-specific endonuclease which belongs to the XPF/Rad1 family of proteins that are involved in DNA nucleotide excision repair. Mus81 forms a heterodimer with a non-catalytic subunit, Mms4, in Saccharomyces cerevisiae (Eme1/EME1 in Schizosaccharomyces pombe and mammals). Recent evidence shows that Mus81 functions redundantly with Sgs1, a member of the ubiquitous RecQ family of DNA helicases, to process toxic recombinant intermediates. In budding yeast, homologous recombination is regulated by the Rad52 epistasis group of proteins, including Rad52, which stimulates the main steps of DNA sequence-homology searching. Mus81 was proven to act in the Rad52-dependent pathway. Here, we demonstrate that Rad52 and Mus81-Mms4 possesses a functional interaction; the presence of Rad52 significantly enhances the endonuclease activity of Mus81-Mms4 on a broad range of its preferred synthetic substrates. Furthermore, this functional interaction is demonstrated to be species specific. We fragmented Rad52 and found that the N-terminal fragment from the 86th to 169th amino acid residue, which belongs to DNA-binding and self-association domains, can stimulate Mus81-Mms4 endonuclease. These results strongly support the notion that Rad52 and Mus81-Mms4 collaborate and work jointly in processing of homologous recombination intermediates.
Collapse
Affiliation(s)
- Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh city, 700000, Vietnam
| | - Hoa Luong Hieu Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh city, 700000, Vietnam
| | - Sang Thanh Vo
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh city, 700000, Vietnam
| | - Dung Hoang Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh city, 700000, Vietnam
| | - Minh Van Le
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh city, 700000, Vietnam
| |
Collapse
|
5
|
Phung HTT, Nguyen HLH, Nguyen DH. The possible function of Flp1 in homologous recombination repair in Saccharomyces cerevisiae. AIMS GENETICS 2018; 5:161-176. [PMID: 31435519 PMCID: PMC6698574 DOI: 10.3934/genet.2018.2.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/18/2018] [Indexed: 11/18/2022]
Abstract
Saccharomyces cerevisiae Mus81 is a structure-selective endonuclease which constitutes an alternative pathway in parallel with the helicase-topoisomerase Sgs1-Top3-Rmi1 complex to resolve a number of DNA intermediates during DNA replication, repair, and homologous recombination. Previously, it was showed that the N-terminal region of Mus81 was required for its in vivo function in a redundant manner with Sgs1; mus81Δ120N mutant that lacks the first 120 amino acid residues at the N-terminus exhibited synthetic lethality in combination with the loss of SGS1. In this study, the physiologically important role of the N-terminal region of Mus81 in processing toxic intermediates was further investigated. We examined the cellular defect of sgs1Δmus81Δ100N cells and observed that although viable, the cells became very sensitive to DNA damaging agents. A single-copy suppressor screening to seek for a factor(s) that could rescue the drug sensitivity of sgs1Δmus81Δ100N cells was performed and revealed that Flp1, a site-specific recombinase 1 encoded on the 2-micron plasmid was a suppressor. Moreover, Flp1 overexpression could partially suppress the drug sensitivity of mus81Δ cells at 37 °C. Our findings suggest a possible function of Flp1 in coordination with Mus81 and Sgs1 to jointly resolve the branched-DNA structures generated in cells attempting to repair DNA damages.
Collapse
Affiliation(s)
- Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh city, Vietnam
| | | | - Dung Hoang Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh city, Vietnam
| |
Collapse
|
6
|
Lemaçon D, Jackson J, Quinet A, Brickner JR, Li S, Yazinski S, You Z, Ira G, Zou L, Mosammaparast N, Vindigni A. MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells. Nat Commun 2017; 8:860. [PMID: 29038425 PMCID: PMC5643552 DOI: 10.1038/s41467-017-01180-5] [Citation(s) in RCA: 313] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
The breast cancer susceptibility proteins BRCA1 and BRCA2 have emerged as key stabilizing factors for the maintenance of replication fork integrity following replication stress. In their absence, stalled replication forks are extensively degraded by the MRE11 nuclease, leading to chemotherapeutic sensitivity. Here we report that BRCA proteins prevent nucleolytic degradation by protecting replication forks that have undergone fork reversal upon drug treatment. The unprotected regressed arms of reversed forks are the entry point for MRE11 in BRCA-deficient cells. The CtIP protein initiates MRE11-dependent degradation, which is extended by the EXO1 nuclease. Next, we show that the initial limited resection of the regressed arms establishes the substrate for MUS81 in BRCA2-deficient cells. In turn, MUS81 cleavage of regressed forks with a ssDNA tail promotes POLD3-dependent fork rescue. We propose that targeting this pathway may represent a new strategy to modulate BRCA2-deficient cancer cell response to chemotherapeutics that cause fork degradation. BRCA proteins have emerged as key stabilizing factors for the maintenance of replication forks following replication stress. Here the authors describe how reversed replication forks are degraded in the absence of BRCA2, and a MUS81 and POLD3-dependent mechanism of rescue following the withdrawal of genotoxic agent.
Collapse
Affiliation(s)
- Delphine Lemaçon
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, 63104, USA
| | - Jessica Jackson
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, 63104, USA
| | - Annabel Quinet
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, 63104, USA
| | - Joshua R Brickner
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Shan Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, Campus Box 8228, 660S. Euclid Ave., St Louis, MO, 63110, USA
| | - Stephanie Yazinski
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, Campus Box 8228, 660S. Euclid Ave., St Louis, MO, 63110, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Alessandro Vindigni
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, 63104, USA.
| |
Collapse
|
7
|
Morrow CA, Nguyen MO, Fower A, Wong IN, Osman F, Bryer C, Whitby MC. Inter-Fork Strand Annealing causes genomic deletions during the termination of DNA replication. eLife 2017; 6. [PMID: 28586299 PMCID: PMC5461108 DOI: 10.7554/elife.25490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/22/2017] [Indexed: 11/29/2022] Open
Abstract
Problems that arise during DNA replication can drive genomic alterations that are instrumental in the development of cancers and many human genetic disorders. Replication fork barriers are a commonly encountered problem, which can cause fork collapse and act as hotspots for replication termination. Collapsed forks can be rescued by homologous recombination, which restarts replication. However, replication restart is relatively slow and, therefore, replication termination may frequently occur by an active fork converging on a collapsed fork. We find that this type of non-canonical fork convergence in fission yeast is prone to trigger deletions between repetitive DNA sequences via a mechanism we call Inter-Fork Strand Annealing (IFSA) that depends on the recombination proteins Rad52, Exo1 and Mus81, and is countered by the FANCM-related DNA helicase Fml1. Based on our findings, we propose that IFSA is a potential threat to genomic stability in eukaryotes. DOI:http://dx.doi.org/10.7554/eLife.25490.001
Collapse
Affiliation(s)
- Carl A Morrow
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Michael O Nguyen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Andrew Fower
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Io Nam Wong
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Fekret Osman
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Claire Bryer
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Matthew C Whitby
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
The Intra-S Checkpoint Responses to DNA Damage. Genes (Basel) 2017; 8:genes8020074. [PMID: 28218681 PMCID: PMC5333063 DOI: 10.3390/genes8020074] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 02/03/2023] Open
Abstract
Faithful duplication of the genome is a challenge because DNA is susceptible to damage by a number of intrinsic and extrinsic genotoxins, such as free radicals and UV light. Cells activate the intra-S checkpoint in response to damage during S phase to protect genomic integrity and ensure replication fidelity. The checkpoint prevents genomic instability mainly by regulating origin firing, fork progression, and transcription of G1/S genes in response to DNA damage. Several studies hint that regulation of forks is perhaps the most critical function of the intra-S checkpoint. However, the exact role of the checkpoint at replication forks has remained elusive and controversial. Is the checkpoint required for fork stability, or fork restart, or to prevent fork reversal or fork collapse, or activate repair at replication forks? What are the factors that the checkpoint targets at stalled replication forks? In this review, we will discuss the various pathways activated by the intra-S checkpoint in response to damage to prevent genomic instability.
Collapse
|
9
|
Sebesta M, Urulangodi M, Stefanovie B, Szakal B, Pacesa M, Lisby M, Branzei D, Krejci L. Esc2 promotes Mus81 complex-activity via its SUMO-like and DNA binding domains. Nucleic Acids Res 2016; 45:215-230. [PMID: 27694623 PMCID: PMC5224511 DOI: 10.1093/nar/gkw882] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/30/2016] [Accepted: 09/22/2016] [Indexed: 01/17/2023] Open
Abstract
Replication across damaged DNA templates is accompanied by transient formation of sister chromatid junctions (SCJs). Cells lacking Esc2, an adaptor protein containing no known enzymatic domains, are defective in the metabolism of these SCJs. However, how Esc2 is involved in the metabolism of SCJs remains elusive. Here we show interaction between Esc2 and a structure-specific endonuclease Mus81-Mms4 (the Mus81 complex), their involvement in the metabolism of SCJs, and the effects Esc2 has on the enzymatic activity of the Mus81 complex. We found that Esc2 specifically interacts with the Mus81 complex via its SUMO-like domains, stimulates enzymatic activity of the Mus81 complex in vitro, and is involved in the Mus81 complex-dependent resolution of SCJs in vivo. Collectively, our data point to the possibility that the involvement of Esc2 in the metabolism of SCJs is, in part, via modulation of the activity of the Mus81 complex.
Collapse
Affiliation(s)
- Marek Sebesta
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic.,Department of Biology, Masaryk University, Kamenice 5/A7, CZ-62500 Brno, Czech Republic.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, IT-20139 Milan, Italy
| | | | - Barbora Stefanovie
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic.,Department of Biology, Masaryk University, Kamenice 5/A7, CZ-62500 Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Pekarska 53, CZ-656 91 Brno, Czech Republic
| | - Barnabas Szakal
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, IT-20139 Milan, Italy
| | - Martin Pacesa
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Dana Branzei
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, IT-20139 Milan, Italy
| | - Lumir Krejci
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic .,Department of Biology, Masaryk University, Kamenice 5/A7, CZ-62500 Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Pekarska 53, CZ-656 91 Brno, Czech Republic
| |
Collapse
|
10
|
Xing M, Wang X, Palmai-Pallag T, Shen H, Helleday T, Hickson ID, Ying S. Acute MUS81 depletion leads to replication fork slowing and a constitutive DNA damage response. Oncotarget 2016; 6:37638-46. [PMID: 26415217 PMCID: PMC4741954 DOI: 10.18632/oncotarget.5497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/11/2015] [Indexed: 11/25/2022] Open
Abstract
The MUS81 protein belongs to a conserved family of DNA structure-specific nucleases that play important roles in DNA replication and repair. Inactivation of the Mus81 gene in mice has no major deleterious consequences for embryonic development, although cancer susceptibility has been reported. We have investigated the role of MUS81 in human cells by acutely depleting the protein using shRNAs. We found that MUS81 depletion from human fibroblasts leads to accumulation of ssDNA and a constitutive DNA damage response that ultimately activates cellular senescence. Moreover, we show that MUS81 is required for efficient replication fork progression during an unperturbed S-phase, and for recovery of productive replication following replication stalling. These results demonstrate essential roles for the MUS81 nuclease in maintenance of replication fork integrity.
Collapse
Affiliation(s)
- Meichun Xing
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohui Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China.,State Key Laboratory For Respiratory Diseases, Guangzhou, China
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ian D Hickson
- Center for Chromosome Stability and Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Songmin Ying
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Nowotny M, Gaur V. Structure and mechanism of nucleases regulated by SLX4. Curr Opin Struct Biol 2016; 36:97-105. [PMID: 26827285 DOI: 10.1016/j.sbi.2016.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 01/08/2023]
Abstract
SLX4 is a multidomain platform that regulates various proteins that are involved in genome maintenance and stability. Among these proteins are three structure-selective nucleases (SSEs). XPF-ERCC1 and MUS81-EME1 are structurally similar and function as heterodimers of highly similar subunits, in which only one is active. Two independent modules are formed from subunits of the heterodimers - a dimer of nuclease and nuclease-like domains and a dimer of tandem helix-hairpin-helix HhH2 domains. Both modules are responsible for substrate recognition. The third SSE, SLX1, contains GIY-YIG and RING domains and is a promiscuous nuclease. Structural data imply that SLX1 exists in free form as an autoinhibited homodimer. Association with SLX4 platform disrupts the homodimer and activates SLX1. This review discusses the available structural and mechanistic information on SLX4-regulated SSEs.
Collapse
Affiliation(s)
- Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | - Vineet Gaur
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
12
|
Xu X, Blackwell S, Lin A, Li F, Qin Z, Xiao W. Error-free DNA-damage tolerance in Saccharomyces cerevisiae. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:43-50. [DOI: 10.1016/j.mrrev.2015.02.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/07/2015] [Accepted: 02/06/2015] [Indexed: 12/18/2022]
|
13
|
Chavdarova M, Marini V, Sisakova A, Sedlackova H, Vigasova D, Brill SJ, Lisby M, Krejci L. Srs2 promotes Mus81-Mms4-mediated resolution of recombination intermediates. Nucleic Acids Res 2015; 43:3626-42. [PMID: 25765656 PMCID: PMC4402524 DOI: 10.1093/nar/gkv198] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/26/2015] [Indexed: 11/26/2022] Open
Abstract
A variety of DNA lesions, secondary DNA structures or topological stress within the DNA template may lead to stalling of the replication fork. Recovery of such forks is essential for the maintenance of genomic stability. The structure-specific endonuclease Mus81–Mms4 has been implicated in processing DNA intermediates that arise from collapsed forks and homologous recombination. According to previous genetic studies, the Srs2 helicase may play a role in the repair of double-strand breaks and ssDNA gaps together with Mus81–Mms4. In this study, we show that the Srs2 and Mus81–Mms4 proteins physically interact in vitro and in vivo and we map the interaction domains within the Srs2 and Mus81 proteins. Further, we show that Srs2 plays a dual role in the stimulation of the Mus81–Mms4 nuclease activity on a variety of DNA substrates. First, Srs2 directly stimulates Mus81–Mms4 nuclease activity independent of its helicase activity. Second, Srs2 removes Rad51 from DNA to allow access of Mus81–Mms4 to cleave DNA. Concomitantly, Mus81–Mms4 inhibits the helicase activity of Srs2. Taken together, our data point to a coordinated role of Mus81–Mms4 and Srs2 in processing of recombination as well as replication intermediates.
Collapse
Affiliation(s)
- Melita Chavdarova
- Department of Biology, Masaryk University, Kamenice 5/A7, Brno 625 00, Czech Republic National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, Brno 625 00, Czech Republic
| | - Victoria Marini
- Department of Biology, Masaryk University, Kamenice 5/A7, Brno 625 00, Czech Republic
| | - Alexandra Sisakova
- Department of Biology, Masaryk University, Kamenice 5/A7, Brno 625 00, Czech Republic International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Hana Sedlackova
- Department of Biology, Masaryk University, Kamenice 5/A7, Brno 625 00, Czech Republic
| | - Dana Vigasova
- Department of Biology, Masaryk University, Kamenice 5/A7, Brno 625 00, Czech Republic Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Steven J Brill
- Department of Genetics, Cancer Research Institute, Vlarska 7, 833 91 Bratislava, Slovakia
| | - Michael Lisby
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Lumir Krejci
- Department of Biology, Masaryk University, Kamenice 5/A7, Brno 625 00, Czech Republic National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, Brno 625 00, Czech Republic International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
14
|
Neelsen KJ, Lopes M. Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat Rev Mol Cell Biol 2015; 16:207-20. [PMID: 25714681 DOI: 10.1038/nrm3935] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The remodelling of replication forks into four-way junctions following replication perturbation, known as fork reversal, was hypothesized to promote DNA damage tolerance and repair during replication. Albeit conceptually attractive, for a long time fork reversal in vivo was found only in prokaryotes and specific yeast mutants, calling its evolutionary conservation and physiological relevance into question. Based on the recent visualization of replication forks in metazoans, fork reversal has emerged as a global, reversible and regulated process, with intriguing implications for replication completion, chromosome integrity and the DNA damage response. The study of the putative in vivo roles of recently identified eukaryotic factors in fork remodelling promises to shed new light on mechanisms of genome maintenance and to provide novel attractive targets for cancer therapy.
Collapse
Affiliation(s)
- Kai J Neelsen
- 1] Institute of Molecular Cancer Research, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland. [2] The Novo Nordisk Foundation Center for Protein Research, 2200 Copenhagen, Denmark
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
15
|
Thu HPT, Nguyen TA, Munashingha PR, Kwon B, Dao Van Q, Seo YS. A physiological significance of the functional interaction between Mus81 and Rad27 in homologous recombination repair. Nucleic Acids Res 2015; 43:1684-99. [PMID: 25628354 PMCID: PMC4330386 DOI: 10.1093/nar/gkv025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fen1 and Mus81-Mms4 are endonucleases involved in the processing of various DNA structural intermediates, and they were shown to have genetic and functional interactions with each other. Here, we show the in vivo significance of the interactions between Mus81 and Rad27 (yeast Fen1). The N-terminal 120 amino-acid (aa) region of Mus81, although entirely dispensable for its catalytic activity, was essential for the abilities of Mus81 to bind to and be stimulated by Rad27. In the absence of SGS1, the mus81Δ120N mutation lacking the N-terminal 120 aa region exhibited synthetic lethality, and the lethality was rescued by deletion of RAD52, a key homologous recombination mediator. These findings, together with the fact that Sgs1 constitutes a redundant pathway with Mus81-Mms4, indicate that the N-terminus-mediated interaction of Mus81 with Rad27 is physiologically important in resolving toxic recombination intermediates. Mutagenic analyses of the N-terminal region identified two distinct motifs, named N21-26 (aa from 21-26) and N108-114 (aa from 108-114) important for the in vitro and in vivo functions of Mus81. Our findings indicate that the N-terminal region of Mus81 acts as a landing pad to interact with Rad27 and that Mus81 and Rad27 work conjointly for efficient removal of various aberrant DNA structures.
Collapse
Affiliation(s)
- Huong Phung Thi Thu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Tuan Anh Nguyen
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Palinda Ruvan Munashingha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Buki Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Quy Dao Van
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Yeon-Soo Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| |
Collapse
|
16
|
Nucleases in homologous recombination as targets for cancer therapy. FEBS Lett 2014; 588:2446-56. [PMID: 24928444 DOI: 10.1016/j.febslet.2014.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 11/21/2022]
|
17
|
Gwon GH, Jo A, Baek K, Jin KS, Fu Y, Lee JB, Kim Y, Cho Y. Crystal structures of the structure-selective nuclease Mus81-Eme1 bound to flap DNA substrates. EMBO J 2014; 33:1061-72. [PMID: 24733841 DOI: 10.1002/embj.201487820] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Mus81-Eme1 complex is a structure-selective endonuclease with a critical role in the resolution of recombination intermediates during DNA repair after interstrand cross-links, replication fork collapse, or double-strand breaks. To explain the molecular basis of 3' flap substrate recognition and cleavage mechanism by Mus81-Eme1, we determined crystal structures of human Mus81-Eme1 bound to various flap DNA substrates. Mus81-Eme1 undergoes gross substrate-induced conformational changes that reveal two key features: (i) a hydrophobic wedge of Mus81 that separates pre- and post-nick duplex DNA and (ii) a "5' end binding pocket" that hosts the 5' nicked end of post-nick DNA. These features are crucial for comprehensive protein-DNA interaction, sharp bending of the 3' flap DNA substrate, and incision strand placement at the active site. While Mus81-Eme1 unexpectedly shares several common features with members of the 5' flap nuclease family, the combined structural, biochemical, and biophysical analyses explain why Mus81-Eme1 preferentially cleaves 3' flap DNA substrates with 5' nicked ends.
Collapse
Affiliation(s)
- Gwang Hyeon Gwon
- Department of Life Science, Pohang University of Science and Technology, Pohang, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Pepe A, West SC. Substrate specificity of the MUS81-EME2 structure selective endonuclease. Nucleic Acids Res 2014; 42:3833-45. [PMID: 24371268 PMCID: PMC3973302 DOI: 10.1093/nar/gkt1333] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/16/2013] [Accepted: 11/29/2013] [Indexed: 11/13/2022] Open
Abstract
MUS81 plays important cellular roles in the restart of stalled replication forks, the resolution of recombination intermediates and in telomere length maintenance. Although the actions of MUS81-EME1 have been extensively investigated, MUS81 is the catalytic subunit of two human structure-selective endonucleases, MUS81-EME1 and MUS81-EME2. Little is presently known about the activities of MUS81-EME2. Here, we have purified MUS81-EME2 and compared its activities with MUS81-EME1. We find that MUS81-EME2 is a more active endonuclease than MUS81-EME1 and exhibits broader substrate specificity. Like MUS81-EME1, MUS81-EME2 cleaves 3'-flaps, replication forks and nicked Holliday junctions, and exhibits limited endonuclease activity with intact Holliday junctions. In contrast to MUS81-EME1, however, MUS81-EME2 cuts D-loop recombination intermediates and in so doing disengages the D-loop structure by cleaving the 3'-invading strand. Additionally, MUS81-EME2 acts on 5'-flap structures to cleave off a duplex arm, in reactions that cannot be promoted by MUS81-EME1. These studies suggest that MUS81-EME1 and MUS81-EME2 exhibit similar and yet distinct DNA structure selectivity, indicating that the two MUS81 complexes may promote different nucleolytic cleavage reactions in vivo.
Collapse
Affiliation(s)
- Alessandra Pepe
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | - Stephen C. West
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| |
Collapse
|
19
|
Xu M, Lai Y, Torner J, Zhang Y, Zhang Z, Liu Y. Base excision repair of oxidative DNA damage coupled with removal of a CAG repeat hairpin attenuates trinucleotide repeat expansion. Nucleic Acids Res 2014; 42:3675-91. [PMID: 24423876 PMCID: PMC3973345 DOI: 10.1093/nar/gkt1372] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Trinucleotide repeat (TNR) expansion is responsible for numerous human neurodegenerative diseases. However, the underlying mechanisms remain unclear. Recent studies have shown that DNA base excision repair (BER) can mediate TNR expansion and deletion by removing base lesions in different locations of a TNR tract, indicating that BER can promote or prevent TNR expansion in a damage location–dependent manner. In this study, we provide the first evidence that the repair of a DNA base lesion located in the loop region of a CAG repeat hairpin can remove the hairpin, attenuating repeat expansion. We found that an 8-oxoguanine located in the loop region of CAG hairpins of varying sizes was removed by OGG1 leaving an abasic site that was subsequently 5′-incised by AP endonuclease 1, introducing a single-strand breakage in the hairpin loop. This converted the hairpin into a double-flap intermediate with a 5′- and 3′-flap that was cleaved by flap endonuclease 1 and a 3′-5′ endonuclease Mus81/Eme1, resulting in complete or partial removal of the CAG hairpin. This further resulted in prevention and attenuation of repeat expansion. Our results demonstrate that TNR expansion can be prevented via BER in hairpin loops that is coupled with the removal of TNR hairpins.
Collapse
Affiliation(s)
- Meng Xu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA, Department of Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P. R. China and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
20
|
Survival of the replication checkpoint deficient cells requires MUS81-RAD52 function. PLoS Genet 2013; 9:e1003910. [PMID: 24204313 PMCID: PMC3814295 DOI: 10.1371/journal.pgen.1003910] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 09/11/2013] [Indexed: 02/03/2023] Open
Abstract
In checkpoint-deficient cells, DNA double-strand breaks (DSBs) are produced during replication by the structure-specific endonuclease MUS81. The mechanism underlying MUS81-dependent cleavage, and the effect on chromosome integrity and viability of checkpoint deficient cells is only partly understood, especially in human cells. Here, we show that MUS81-induced DSBs are specifically triggered by CHK1 inhibition in a manner that is unrelated to the loss of RAD51, and does not involve formation of a RAD51 substrate. Indeed, CHK1 deficiency results in the formation of a RAD52-dependent structure that is cleaved by MUS81. Moreover, in CHK1-deficient cells depletion of RAD52, but not of MUS81, rescues chromosome instability observed after replication fork stalling. However, when RAD52 is down-regulated, recovery from replication stress requires MUS81, and loss of both these proteins results in massive cell death that can be suppressed by RAD51 depletion. Our findings reveal a novel RAD52/MUS81-dependent mechanism that promotes cell viability and genome integrity in checkpoint-deficient cells, and disclose the involvement of MUS81 to multiple processes after replication stress. The replication checkpoint ensures a smooth duplication of the genome. It counteracts the replication stress, which can cause chromosome rearrangements as found in most tumours. Given the importance of dealing with perturbed replication, and since in tumours secondary mutations or epigenetic changes may hamper efficiency of the replication checkpoint, it is crucial to determine the mechanisms responding to replication perturbation upon checkpoint inactivation. Furthermore, it is highly relevant to understand how failure of these mechanisms correlates with chromosomal damage after replication perturbation. Here, we investigated pathways that, in checkpoint-deficient human cells, are involved in the handling of perturbed DNA replication forks, and we uncovered a previously unappreciated function of RAD52 and MUS81 in ensuring viability of cells, but at the expense of genome instability. We also demonstrated that checkpoint deficiency can trigger different mechanisms of recovery from replication arrest depending on the presence of RAD52 or MUS81, resulting in a poor survival and reduced genome instability or increased survival and chromosomal damage. Our work provides new clues about how human cells deal with replication stress, and how genome instability may arise in cancer cells.
Collapse
|
21
|
Benitez A, Yuan F, Nakajima S, Wei L, Qian L, Myers R, Hu JJ, Lan L, Zhang Y. Damage-dependent regulation of MUS81-EME1 by Fanconi anemia complementation group A protein. Nucleic Acids Res 2013; 42:1671-83. [PMID: 24170812 PMCID: PMC3919598 DOI: 10.1093/nar/gkt975] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MUS81-EME1 is a DNA endonuclease involved in replication-coupled repair of DNA interstrand cross-links (ICLs). A prevalent hypothetical role of MUS81-EME1 in ICL repair is to unhook the damage by incising the leading strand at the 3′ side of an ICL lesion. In this study, we report that purified MUS81-EME1 incises DNA at the 5′ side of a psoralen ICL residing in fork structures. Intriguingly, ICL repair protein, Fanconi anemia complementation group A protein (FANCA), greatly enhances MUS81-EME1-mediated ICL incision. On the contrary, FANCA exhibits a two-phase incision regulation when DNA is undamaged or the damage affects only one DNA strand. Studies using truncated FANCA proteins indicate that both the N- and C-moieties of the protein are required for the incision regulation. Using laser-induced psoralen ICL formation in cells, we find that FANCA interacts with and recruits MUS81 to ICL lesions. This report clarifies the incision specificity of MUS81-EME1 on ICL damage and establishes that FANCA regulates the incision activity of MUS81-EME1 in a damage-dependent manner.
Collapse
Affiliation(s)
- Anaid Benitez
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Satoshi Nakajima
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Leizhen Wei
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Liangyue Qian
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Richard Myers
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jennifer J. Hu
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Li Lan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- *To whom correspondence should be addressed. Tel: +1 305 243 9237; Fax: +1 305 243 3955;
| |
Collapse
|
22
|
Castor D, Nair N, Déclais AC, Lachaud C, Toth R, Macartney TJ, Lilley DMJ, Arthur JSC, Rouse J. Cooperative control of holliday junction resolution and DNA repair by the SLX1 and MUS81-EME1 nucleases. Mol Cell 2013; 52:221-33. [PMID: 24076219 PMCID: PMC3808987 DOI: 10.1016/j.molcel.2013.08.036] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/19/2013] [Accepted: 08/14/2013] [Indexed: 12/20/2022]
Abstract
Holliday junctions (HJs) are X-shaped DNA structures that arise during homologous recombination, which must be removed to enable chromosome segregation. The SLX1 and MUS81-EME1 nucleases can both process HJs in vitro, and they bind in close proximity on the SLX4 scaffold, hinting at possible cooperation. However, the cellular roles of mammalian SLX1 are not yet known. Here, we use mouse genetics and structure function analysis to investigate SLX1 function. Disrupting the murine Slx1 and Slx4 genes revealed that they are essential for HJ resolution in mitotic cells. Moreover, SLX1 and MUS81-EME1 act together to resolve HJs in a manner that requires tethering to SLX4. We also show that SLX1, like MUS81-EME1, is required for repair of DNA interstrand crosslinks, but this role appears to be independent of HJ cleavage, at least in mouse cells. These findings shed light on HJ resolution in mammals and on maintenance of genome stability. Resolution of Holliday junctions in mouse cells requires the SLX1 nuclease SLX1 acts cooperatively with MUS81-EME1 in HJ resolution and ICL repair Mutations in SLX4 that prevent it binding to SLX1 and MUS81-EME1 abolish HJ resolution DNA substrates of SLX1 and MUS81-EME1 in ICL repair appear to be different from HJs
Collapse
Affiliation(s)
- Dennis Castor
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ying S, Minocherhomji S, Chan KL, Palmai-Pallag T, Chu WK, Wass T, Mankouri HW, Liu Y, Hickson ID. MUS81 promotes common fragile site expression. Nat Cell Biol 2013; 15:1001-7. [PMID: 23811685 DOI: 10.1038/ncb2773] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/30/2013] [Indexed: 12/19/2022]
Abstract
Fragile sites are chromosomal loci with a propensity to form gaps or breaks during early mitosis, and their instability is implicated as being causative in certain neurological disorders and cancers. Recent work has demonstrated that the so-called common fragile sites (CFSs) often impair the faithful disjunction of sister chromatids in mitosis. However, the mechanisms by which CFSs express their fragility, and the cellular factors required to suppress CFS instability, remain largely undefined. Here, we report that the DNA structure-specific nuclease MUS81-EME1 localizes to CFS loci in early mitotic cells, and promotes the cytological appearance of characteristic gaps or breaks observed at CFSs in metaphase chromosomes. These data indicate that CFS breakage is an active, MUS81-EME1-dependent process, and not a result of inadvertent chromatid rupturing during chromosome condensation. Moreover, CFS cleavage by MUS81-EME1 promotes faithful sister chromatid disjunction. Our findings challenge the prevailing view that CFS breakage is a nonspecific process that is detrimental to cells, and indicate that CFS cleavage actually promotes genome stability.
Collapse
Affiliation(s)
- Songmin Ying
- Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Saugar I, Vázquez MV, Gallo-Fernández M, Ortiz-Bazán MÁ, Segurado M, Calzada A, Tercero JA. Temporal regulation of the Mus81-Mms4 endonuclease ensures cell survival under conditions of DNA damage. Nucleic Acids Res 2013; 41:8943-58. [PMID: 23901010 PMCID: PMC3799426 DOI: 10.1093/nar/gkt645] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The structure-specific Mus81-Eme1/Mms4 endonuclease contributes importantly to DNA repair and genome integrity maintenance. Here, using budding yeast, we have studied its function and regulation during the cellular response to DNA damage and show that this endonuclease is necessary for successful chromosome replication and cell survival in the presence of DNA lesions that interfere with replication fork progression. On the contrary, Mus81-Mms4 is not required for coping with replicative stress originated by acute treatment with hydroxyurea (HU), which causes fork stalling. Despite its requirement for dealing with DNA lesions that hinder DNA replication, Mus81-Mms4 activation is not induced by DNA damage at replication forks. Full Mus81-Mms4 activity is only acquired when cells finish S-phase and the endonuclease executes its function after the bulk of genome replication is completed. This post-replicative mode of action of Mus81-Mms4 limits its nucleolytic activity during S-phase, thus avoiding the potential cleavage of DNA substrates that could cause genomic instability during DNA replication. At the same time, it constitutes an efficient fail-safe mechanism for processing DNA intermediates that cannot be resolved by other proteins and persist after bulk DNA synthesis, which guarantees the completion of DNA repair and faithful chromosome replication when the DNA is damaged.
Collapse
Affiliation(s)
- Irene Saugar
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco. 28049-Madrid, Spain and Centro Nacional de Biotecnología (CSIC), Cantoblanco. 28049-Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Truong LN, Li Y, Shi LZ, Hwang PYH, He J, Wang H, Razavian N, Berns MW, Wu X. Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc Natl Acad Sci U S A 2013; 110:7720-5. [PMID: 23610439 PMCID: PMC3651503 DOI: 10.1073/pnas.1213431110] [Citation(s) in RCA: 369] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microhomology-mediated end joining (MMEJ) is a major pathway for Ku-independent alternative nonhomologous end joining, which contributes to chromosomal translocations and telomere fusions, but the underlying mechanism of MMEJ in mammalian cells is not well understood. In this study, we demonstrated that, distinct from Ku-dependent classical nonhomologous end joining, MMEJ--even with very limited end resection--requires cyclin-dependent kinase activities and increases significantly when cells enter S phase. We also showed that MMEJ shares the initial end resection step with homologous recombination (HR) by requiring meiotic recombination 11 homolog A (Mre11) nuclease activity, which is needed for subsequent recruitment of Bloom syndrome protein (BLM) and exonuclease 1 (Exo1) to DNA double-strand breaks (DSBs) to promote extended end resection and HR. MMEJ does not require S139-phosphorylated histone H2AX (γ-H2AX), suggesting that initial end resection likely occurs at DSB ends. Using a MMEJ and HR competition repair substrate, we demonstrated that MMEJ with short end resection is used in mammalian cells at the level of 10-20% of HR when both HR and nonhomologous end joining are available. Furthermore, MMEJ is used to repair DSBs generated at collapsed replication forks. These studies suggest that MMEJ not only is a backup repair pathway in mammalian cells, but also has important physiological roles in repairing DSBs to maintain cell viability, especially under genomic stress.
Collapse
Affiliation(s)
- Lan N. Truong
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Yongjiang Li
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Linda Z. Shi
- Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093
| | - Patty Yi-Hwa Hwang
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Jing He
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Hailong Wang
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Niema Razavian
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Michael W. Berns
- Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093
| | - Xiaohua Wu
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037; and
| |
Collapse
|
26
|
Regulation of Mus81-Eme1 Holliday junction resolvase in response to DNA damage. Nat Struct Mol Biol 2013; 20:598-603. [PMID: 23584455 DOI: 10.1038/nsmb.2550] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/27/2013] [Indexed: 11/08/2022]
Abstract
Structure-specific DNA endonucleases have critical roles during DNA replication, repair and recombination, yet they also have the potential for causing genome instability. Controlling these enzymes may be essential to ensure efficient processing of ad hoc substrates and to prevent random, unscheduled processing of other DNA structures, but it is unknown whether structure-specific endonucleases are regulated in response to DNA damage. Here, we uncover DNA damage-induced activation of Mus81-Eme1 Holliday junction resolvase in fission yeast. This new regulation requires both Cdc2(CDK1)- and Rad3(ATR)-dependent phosphorylation of Eme1. Mus81-Eme1 activation prevents gross chromosomal rearrangements in cells lacking the BLM-related DNA helicase Rqh1. We propose that linking Mus81-Eme1 DNA damage-induced activation to cell-cycle progression ensures efficient resolution of Holliday junctions that escape dissolution by Rqh1-TopIII while preventing unnecessary DNA cleavages.
Collapse
|
27
|
Nandi S, Whitby MC. The ATPase activity of Fml1 is essential for its roles in homologous recombination and DNA repair. Nucleic Acids Res 2012; 40:9584-95. [PMID: 22844101 PMCID: PMC3479183 DOI: 10.1093/nar/gks715] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In fission yeast, the DNA helicase Fml1, which is an orthologue of human FANCM, is a key component of the machinery that drives and governs homologous recombination (HR). During the repair of DNA double-strand breaks by HR, it limits the occurrence of potentially deleterious crossover recombinants, whereas at stalled replication forks, it promotes HR to aid their recovery. Here, we have mutated conserved residues in Fml1's Walker A (K99R) and Walker B (D196N) motifs to determine whether its activities are dependent on its ability to hydrolyse ATP. Both Fml1(K99R) and Fml1(D196N) are proficient for DNA binding but totally deficient in DNA unwinding and ATP hydrolysis. In vivo both mutants exhibit a similar reduction in recombination at blocked replication forks as a fml1Δ mutant indicating that Fml1's motor activity, fuelled by ATP hydrolysis, is essential for its pro-recombinogenic role. Intriguingly, both fml1(K99R) and fml1(D196N) mutants exhibit greater sensitivity to genotoxins and higher levels of crossing over during DSB repair than a fml1Δ strain. These data suggest that without its motor activity, the binding of Fml1 to its DNA substrate can impede alternative mechanisms of repair and crossover avoidance.
Collapse
Affiliation(s)
- Saikat Nandi
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | |
Collapse
|
28
|
Gallo-Fernández M, Saugar I, Ortiz-Bazán MÁ, Vázquez MV, Tercero JA. Cell cycle-dependent regulation of the nuclease activity of Mus81-Eme1/Mms4. Nucleic Acids Res 2012; 40:8325-35. [PMID: 22730299 PMCID: PMC3458551 DOI: 10.1093/nar/gks599] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The conserved heterodimeric endonuclease Mus81–Eme1/Mms4 plays an important role in the maintenance of genomic integrity in eukaryotic cells. Here, we show that budding yeast Mus81–Mms4 is strictly regulated during the mitotic cell cycle by Cdc28 (CDK)- and Cdc5 (Polo-like kinase)-dependent phosphorylation of the non-catalytic subunit Mms4. The phosphorylation of this protein occurs only after bulk DNA synthesis and before chromosome segregation, and is absolutely necessary for the function of the Mus81–Mms4 complex. Consistently, a phosphorylation-defective mms4 mutant shows highly reduced nuclease activity and increases the sensitivity of cells lacking the RecQ-helicase Sgs1 to various agents that cause DNA damage or replicative stress. The mode of regulation of Mus81–Mms4 restricts its activity to a short period of the cell cycle, thus preventing its function during chromosome replication and the negative consequences for genome stability derived from its nucleolytic action. Yet, the controlled Mus81–Mms4 activity provides a safeguard mechanism to resolve DNA intermediates that may remain after replication and require processing before mitosis.
Collapse
Affiliation(s)
- María Gallo-Fernández
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
29
|
Chernenkov AY, Fedorov DV, Gracheva LM, Evstuhina TA, Kovaltsova SV, Peshekhonov VT, Fedorova IV, Korolev VG. Interactions of the HSM3 gene with genes initiating homologous recombination repair in yeast Saccharomyces cerevisiae. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412020056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Schwartz EK, Heyer WD. Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes. Chromosoma 2011; 120:109-27. [PMID: 21369956 PMCID: PMC3057012 DOI: 10.1007/s00412-010-0304-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/04/2010] [Accepted: 12/07/2010] [Indexed: 10/27/2022]
Abstract
Homologous recombination is required for maintaining genomic integrity by functioning in high-fidelity repair of DNA double-strand breaks and other complex lesions, replication fork support, and meiotic chromosome segregation. Joint DNA molecules are key intermediates in recombination and their differential processing determines whether the genetic outcome is a crossover or non-crossover event. The Holliday model of recombination highlights the resolution of four-way DNA joint molecules, termed Holliday junctions, and the bacterial Holliday junction resolvase RuvC set the paradigm for the mechanism of crossover formation. In eukaryotes, much effort has been invested in identifying the eukaryotic equivalent of bacterial RuvC, leading to the discovery of a number of DNA endonucleases, including Mus81-Mms4/EME1, Slx1-Slx4/BTBD12/MUS312, XPF-ERCC1, and Yen1/GEN1. These nucleases exert different selectivity for various DNA joint molecules, including Holliday junctions. Their mutant phenotypes and distinct species-specific characteristics expose a surprisingly complex system of joint molecule processing. In an attempt to reconcile the biochemical and genetic data, we propose that nicked junctions constitute important in vivo recombination intermediates whose processing determines the efficiency and outcome (crossover/non-crossover) of homologous recombination.
Collapse
Affiliation(s)
- Erin K. Schwartz
- Department of Microbiology, University of California—Davis, Davis, CA 95616 USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology, University of California—Davis, Davis, CA 95616 USA
- Department of Molecular and Cellular Biology, University of California—Davis, Davis, CA 95616 USA
| |
Collapse
|
31
|
Bugreev DV, Rossi MJ, Mazin AV. Cooperation of RAD51 and RAD54 in regression of a model replication fork. Nucleic Acids Res 2010; 39:2153-64. [PMID: 21097884 PMCID: PMC3064783 DOI: 10.1093/nar/gkq1139] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
DNA lesions cause stalling of DNA replication forks, which can be lethal for the cell. Homologous recombination (HR) plays an important role in DNA lesion bypass. It is thought that Rad51, a key protein of HR, contributes to the DNA lesion bypass through its DNA strand invasion activity. Here, using model stalled replication forks we found that RAD51 and RAD54 by acting together can promote DNA lesion bypass in vitro through the ‘template-strand switch’ mechanism. This mechanism involves replication fork regression into a Holliday junction (‘chicken foot structure’), DNA synthesis using the nascent lagging DNA strand as a template and fork restoration. Our results demonstrate that RAD54 can catalyze both regression and restoration of model replication forks through its branch migration activity, but shows strong bias toward fork restoration. We find that RAD51 modulates this reaction; by inhibiting fork restoration and stimulating fork regression it promotes accumulation of the chicken foot structure, which we show is essential for DNA lesion bypass by DNA polymerase in vitro. These results indicate that RAD51 in cooperation with RAD54 may have a new role in DNA lesion bypass that is distinct from DNA strand invasion.
Collapse
Affiliation(s)
- Dmitry V Bugreev
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102-1192, USA
| | | | | |
Collapse
|
32
|
Mannuss A, Dukowic-Schulze S, Suer S, Hartung F, Pacher M, Puchta H. RAD5A, RECQ4A, and MUS81 have specific functions in homologous recombination and define different pathways of DNA repair in Arabidopsis thaliana. THE PLANT CELL 2010; 22:3318-30. [PMID: 20971895 PMCID: PMC2990144 DOI: 10.1105/tpc.110.078568] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/09/2010] [Accepted: 10/06/2010] [Indexed: 05/17/2023]
Abstract
Complex DNA structures, such as double Holliday junctions and stalled replication forks, arise during DNA replication and DNA repair. Factors processing these intermediates include the endonuclease MUS81, helicases of the RecQ family, and the yeast SNF2 ATPase RAD5 and its Arabidopsis thaliana homolog RAD5A. By testing sensitivity of mutant plants to DNA-damaging agents, we defined the roles of these factors in Arabidopsis. rad5A recq4A and rad5A mus81 double mutants are more sensitive to cross-linking and methylating agents, showing that RAD5A is required for damage-induced DNA repair, independent of MUS81 and RECQ4A. The lethality of the recq4A mus81 double mutant indicates that MUS81 and RECQ4A also define parallel DNA repair pathways. The recq4A/mus81 lethality is suppressed by blocking homologous recombination (HR) through disruption of RAD51C, showing that RECQ4A and MUS81 are required for processing recombination-induced aberrant intermediates during replication. Thus, plants possess at least three different pathways to process DNA repair intermediates. We also examined HR-mediated double-strand break (DSB) repair using recombination substrates with inducible site-specific DSBs: MUS81 and RECQ4A are required for efficient synthesis-dependent strand annealing (SDSA) but only to a small extent for single-strand annealing (SSA). Interestingly, RAD5A plays a significant role in SDSA but not in SSA.
Collapse
|
33
|
Palets D, Lushnikov AY, Karymov MA, Lyubchenko YL. Effect of single-strand break on branch migration and folding dynamics of Holliday junctions. Biophys J 2010; 99:1916-24. [PMID: 20858437 PMCID: PMC2941029 DOI: 10.1016/j.bpj.2010.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 06/29/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022] Open
Abstract
The Holliday junction (HJ), or four-way junction, is a central intermediate state of DNA for homologous genetic recombination and other genetic processes such as replication and repair. Branch migration is the process by which the exchange of homologous DNA regions occurs, and it can be spontaneous or driven by proteins. Unfolding of the HJ is required for branch migration. Our previous single-molecule fluorescence studies led to a model according to which branch migration is a stepwise process consisting of consecutive migration and folding steps. Folding of the HJ in one of the folded conformations terminates the branch migration phase. At the same time, in the unfolded state HJ rapidly migrates over entire homology region of the HJ in one hop. This process can be affected by irregularities in the DNA double helical structure, so mismatches almost terminate a spontaneous branch migration. Single-stranded breaks or nicks are the most ubiquitous defects in the DNA helix; however, to date, their effect on the HJ branch migration has not been studied. In addition, although nicked HJs are specific substrates for a number of enzymes involved in DNA recombination and repair, the role of this substrate specificity remains unclear. Our main goal in this work was to study the effect of nicks on the efficiency of HJ branch migration and the dynamics of the HJ. To accomplish this goal, we applied two single-molecule methods: atomic force microscopy and fluorescence resonance energy transfer. The atomic force microscopy data show that the nick does not prevent branch migration, but it does decrease the probability that the HJ will pass the DNA lesion. The single-molecule fluorescence resonance energy transfer approaches were instrumental in detailing the effects of nicks. These studies reveal a dramatic change of the HJ dynamics. The nick changes the structure and conformational dynamics of the junctions, leading to conformations with geometries that are different from those for the intact HJ. On the basis of these data, we propose a model of branch migration in which the propensity of the junction to unfold decreases the lifetimes of folded states, thereby increasing the frequency of junction fluctuations between the folded states.
Collapse
Affiliation(s)
| | | | | | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
34
|
Kang MJ, Lee CH, Kang YH, Cho IT, Nguyen TA, Seo YS. Genetic and functional interactions between Mus81-Mms4 and Rad27. Nucleic Acids Res 2010; 38:7611-25. [PMID: 20660481 PMCID: PMC2995070 DOI: 10.1093/nar/gkq651] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The two endonucleases, Rad27 (yeast Fen1) and Dna2, jointly participate in the processing of Okazaki fragments in yeasts. Mus81–Mms4 is a structure-specific endonuclease that can resolve stalled replication forks as well as toxic recombination intermediates. In this study, we show that Mus81–Mms4 can suppress dna2 mutational defects by virtue of its functional and physical interaction with Rad27. Mus81–Mms4 stimulated Rad27 activity significantly, accounting for its ability to restore the growth defects caused by the dna2 mutation. Interestingly, Rad27 stimulated the rate of Mus81–Mms4 catalyzed cleavage of various substrates, including regressed replication fork substrates. The ability of Rad27 to stimulate Mus81–Mms4 did not depend on the catalytic activity of Rad27, but required the C-terminal 64 amino acid fragment of Rad27. This indicates that the stimulation was mediated by a specific protein–protein interaction between the two proteins. Our in vitro data indicate that Mus81–Mms4 and Rad27 act together during DNA replication and resolve various structures that can impede normal DNA replication. This conclusion was further strengthened by the fact that rad27 mus81 or rad27 mms4 double mutants were synergistically lethal. We discuss the significance of the interactions between Rad27, Dna2 and Mus81–Mms4 in context of DNA replication.
Collapse
Affiliation(s)
- Min-Jung Kang
- Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The archetypical member of the SNM1 gene family was discovered 30 years ago in the budding yeast Saccharomyces cerevisiae. This small but ubiquitous gene family is characterized by metallo-beta-lactamase and beta-CASP domains, which together have been demonstrated to comprise a nuclease activity. Three mammalian members of this family, SNM1A, SNM1B/Apollo and Artemis, have been demonstrated to play surprisingly divergent roles in cellular metabolism. These pathways include variable (diversity) joining recombination, nonhomologous end-joining of double-strand breaks, DNA damage and mitotic cell cycle checkpoints, telomere maintenance and protein ubiquitination. Not all of these functions are consistent with a model in which these proteins act only as nucleases, and indicate that the SNM1 gene family encodes multifunctional products that can act in diverse biochemical pathways. In this article we discuss the various functions of SNM1A, SNM1B/Apollo and Artemis.
Collapse
Affiliation(s)
- Yiyi Yan
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Shamima Akhter
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Xiaoshan Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Randy Legerski
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| |
Collapse
|
36
|
Blanco MG, Matos J, Rass U, Ip SCY, West SC. Functional overlap between the structure-specific nucleases Yen1 and Mus81-Mms4 for DNA-damage repair in S. cerevisiae. DNA Repair (Amst) 2010; 9:394-402. [PMID: 20106725 DOI: 10.1016/j.dnarep.2009.12.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 11/23/2009] [Accepted: 12/21/2009] [Indexed: 11/16/2022]
Abstract
In eukaryotic cells, multiple DNA repair mechanisms respond to a wide variety of DNA lesions. Homologous recombination-dependent repair provides a pathway for dealing with DNA double-strand breaks and replication fork demise. A key step in this process is the resolution of recombination intermediates such as Holliday junctions (HJs). Recently, nucleases from yeast (Yen1) and human cells (GEN1) were identified that can resolve HJ intermediates, in a manner analogous to the E. coli HJ resolvase RuvC. Here, we have analyzed the role of Yen1 in DNA repair in S. cerevisiae, and show that while yen1Delta mutants are repair-proficient, yen1Delta mus81Delta double mutants are exquisitely sensitive to a variety of DNA-damaging agents that disturb replication fork progression. This phenotype is dependent upon RAD52, indicating that toxic recombination intermediates accumulate in the absence of Yen1 and Mus81. After MMS treatment, yen1Delta mus81Delta double mutants arrest with a G2 DNA content and unsegregated chromosomes. These findings indicate that Yen1 can act upon recombination/repair intermediates that arise in MUS81-defective cells following replication fork damage.
Collapse
Affiliation(s)
- Miguel G Blanco
- London Research Institute, Cancer Research UK, South Mimms, Herts, UK.
| | | | | | | | | |
Collapse
|
37
|
Lorenz A, West SC, Whitby MC. The human Holliday junction resolvase GEN1 rescues the meiotic phenotype of a Schizosaccharomyces pombe mus81 mutant. Nucleic Acids Res 2010; 38:1866-73. [PMID: 20040574 PMCID: PMC2847240 DOI: 10.1093/nar/gkp1179] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 11/25/2009] [Accepted: 12/02/2009] [Indexed: 11/30/2022] Open
Abstract
A key step in meiotic recombination involves the nucleolytic resolution of Holliday junctions to generate crossovers. Although the enzyme that performs this function in human cells is presently unknown, recent studies led to the identification of the XPG-family endonuclease GEN1 that promotes Holliday junction resolution in vitro, suggesting that it may perform a related function in vivo. Here, we show that ectopic expression of GEN1 in fission yeast mus81Delta strains results in Holliday junction resolution and crossover formation during meiosis.
Collapse
Affiliation(s)
- Alexander Lorenz
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU and Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | - Stephen C. West
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU and Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | - Matthew C. Whitby
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU and Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| |
Collapse
|
38
|
Abstract
Homologous recombination (HR) performs crucial functions including DNA repair, segregation of homologous chromosomes, propagation of genetic diversity, and maintenance of telomeres. HR is responsible for the repair of DNA double-strand breaks and DNA interstrand cross-links. The process of HR is initiated at the site of DNA breaks and gaps and involves a search for homologous sequences promoted by Rad51 and auxiliary proteins followed by the subsequent invasion of broken DNA ends into the homologous duplex DNA that then serves as a template for repair. The invasion produces a cross-stranded structure, known as the Holliday junction. Here, we describe the properties of Rad54, an important and versatile HR protein that is evolutionarily conserved in eukaryotes. Rad54 is a motor protein that translocates along dsDNA and performs several important functions in HR. The current review focuses on the recently identified Rad54 activities which contribute to the late phase of HR, especially the branch migration of Holliday junctions.
Collapse
Affiliation(s)
- Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | | | | | | |
Collapse
|
39
|
Mazloum N, Holloman WK. Brh2 promotes a template-switching reaction enabling recombinational bypass of lesions during DNA synthesis. Mol Cell 2009; 36:620-30. [PMID: 19941822 DOI: 10.1016/j.molcel.2009.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/27/2009] [Accepted: 09/02/2009] [Indexed: 12/26/2022]
Abstract
Accumulating evidence for Rad51-catalyzed DNA strand invasion during double-strand break repair features a 3' single-stranded tail as the preferred substrate for reaction, but paradoxically, the preferred substrate in model reactions in vitro is the 5' end. Here, we examined the Rad51-promoted 5' end invasion reaction in the presence of Brh2, the BRCA2 family protein in Ustilago maydis. Using plasmid DNA and a homologous duplex oligonucleotide with 5' protruding single-stranded tail as substrates, we found that Brh2 can stimulate Rad51 to promote the formation of a four-stranded complement-stabilized D loop. In this structure, the incoming recessed complementary strand of the oligonucleotide has switched partners and can now prime DNA synthesis using the recipient plasmid DNA as template, circumventing a lesion that blocks elongation when the 5' protruding tail serves as template for fill-in synthesis. We propose that template switching promoted by Brh2 provides a mechanism for recombination-mediated bypass of lesions blocking synthesis during DNA replication.
Collapse
Affiliation(s)
- Nayef Mazloum
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | | |
Collapse
|
40
|
Lorenz A, Osman F, Folkyte V, Sofueva S, Whitby MC. Fbh1 limits Rad51-dependent recombination at blocked replication forks. Mol Cell Biol 2009; 29:4742-56. [PMID: 19546232 PMCID: PMC2725720 DOI: 10.1128/mcb.00471-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 05/15/2009] [Accepted: 06/16/2009] [Indexed: 11/20/2022] Open
Abstract
Controlling the loading of Rad51 onto DNA is important for governing when and how homologous recombination is used. Here we use a combination of genetic assays and indirect immunofluorescence to show that the F-box DNA helicase (Fbh1) functions in direct opposition to the Rad52 orthologue Rad22 to curb Rad51 loading onto DNA in fission yeast. Surprisingly, this activity is unnecessary for limiting spontaneous direct-repeat recombination. Instead it appears to play an important role in preventing recombination when replication forks are blocked and/or broken. When overexpressed, Fbh1 specifically reduces replication fork block-induced recombination, as well as the number of Rad51 nuclear foci that are induced by replicative stress. These abilities are dependent on its DNA helicase/translocase activity, suggesting that Fbh1 exerts its control on recombination by acting as a Rad51 disruptase. In accord with this, overexpression of Fbh1 also suppresses the high levels of recombinant formation and Rad51 accumulation at a site-specific replication fork barrier in a strain lacking the Rad51 disruptase Srs2. Similarly overexpression of Srs2 suppresses replication fork block-induced gene conversion events in an fbh1Delta mutant, although an inability to suppress deletion events suggests that Fbh1 has a distinct functionality, which is not readily substituted by Srs2.
Collapse
Affiliation(s)
- Alexander Lorenz
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
41
|
Miyoshi T, Kanoh J, Ishikawa F. Fission yeast Ku protein is required for recovery from DNA replication stress. Genes Cells 2009; 14:1091-103. [PMID: 19682091 DOI: 10.1111/j.1365-2443.2009.01337.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The fundamental function of the conserved Ku70-Ku80 heterodimer is to promote the non-homologous end-joining (NHEJ) pathway in double-strand break repair. Although it is thought that Ku plays several roles other than NHEJ in maintaining chromosomal integrity including telomere protection, these precise functions remain unclear. In this study, we describe a novel role of fission yeast Ku proteins encoded by pku70(+) and pku80(+) genes in dealing with DNA replication stress. In the absence of Rqh1, the fission yeast RecQ helicase, the cells are sensitive to reagents inducing replication stress. pkuDeltarqh1Delta double mutant showed synergistic sensitivities to these reagents. However, this synthetic phenotype was not observed when rqh1Delta mutant was coupled with the deletion of lig4(+) that encodes a ligase essential for NHEJ, indicating that the role of Ku in replication stress is NHEJ independent. pkuDeltarqh1Delta double mutant also showed highly variable copy numbers of rDNA repeats even under unstressed condition. Furthermore, the double mutant exhibited inefficient replication resumption after transient replication stalling. These results suggest the possibility that Ku proteins play an important role in genome integrity recovering replication stress.
Collapse
Affiliation(s)
- Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
42
|
Geuting V, Kobbe D, Hartung F, Dürr J, Focke M, Puchta H. Two distinct MUS81-EME1 complexes from Arabidopsis process Holliday junctions. PLANT PHYSIOLOGY 2009; 150:1062-71. [PMID: 19339504 PMCID: PMC2689967 DOI: 10.1104/pp.109.136846] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 03/31/2009] [Indexed: 05/18/2023]
Abstract
The MUS81 endonuclease complex has been shown to play an important role in the repair of stalled or blocked replication forks and in the processing of meiotic recombination intermediates from yeast to humans. This endonuclease is composed of two subunits, MUS81 and EME1. Surprisingly, unlike other organisms, Arabidopsis (Arabidopsis thaliana) has two EME1 homologs encoded in its genome. AtEME1A and AtEME1B show 63% identity on the protein level. We were able to demonstrate that, after expression in Escherichia coli, each EME1 protein can assemble with the unique AtMUS81 to form a functional endonuclease. Both complexes, AtMUS81-AtEME1A and AtMUS81-AtEME1B, are not only able to cleave 3'-flap structures and nicked Holliday junctions (HJs) but also, with reduced efficiency, intact HJs. While the complexes have the same cleavage patterns with both nicked DNA substrates, slight differences in the processing of intact HJs can be detected. Our results are in line with an involvement of both MUS81-EME1 endonuclease complexes in DNA recombination and repair processes in Arabidopsis.
Collapse
Affiliation(s)
- Verena Geuting
- Botanik II, Universität Karlsruhe, 76128 Karlsruhe, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Matulova P, Marini V, Burgess RC, Sisakova A, Kwon Y, Rothstein R, Sung P, Krejci L. Cooperativity of Mus81.Mms4 with Rad54 in the resolution of recombination and replication intermediates. J Biol Chem 2009; 284:7733-45. [PMID: 19129197 PMCID: PMC2658067 DOI: 10.1074/jbc.m806192200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 12/09/2008] [Indexed: 11/08/2022] Open
Abstract
The Saccharomyces cerevisiae Mus81.Mms4 protein complex, a DNA structure-specific endonuclease, helps preserve genomic integrity by resolving pathological DNA structures that arise from damaged or aborted replication forks and may also play a role in the resolution of DNA intermediates arising through homologous recombination. Previous yeast two-hybrid studies have found an interaction of the Mus81 protein with Rad54, a Swi2/Snf2-like factor that serves multiple roles in homologous recombination processes. However, the functional significance of this novel interaction remains unknown. Here, using highly purified S. cerevisiae proteins, we show that Rad54 strongly stimulates the Mus81.Mms4 nuclease activity on a broad range of DNA substrates. This nuclease enhancement does not require ATP binding nor its hydrolysis by Rad54. We present evidence that Rad54 acts by targeting the Mus81.Mms4 complex to its DNA substrates. In addition, we demonstrate that the Rad54-mediated enhancement of the Mus81.Mms4 (Eme1) nuclease function is evolutionarily conserved. We propose that Mus81.Mms4 together with Rad54 efficiently process perturbed replication forks to promote recovery and may constitute an alternative mechanism to the resolution/dissolution of the recombination intermediates by Sgs1.Top3. These findings provide functional insights into the biological importance of the higher order complex of Mus81.Mms4 or its orthologue with Rad54.
Collapse
Affiliation(s)
- Petra Matulova
- National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ehmsen KT, Heyer WD. A junction branch point adjacent to a DNA backbone nick directs substrate cleavage by Saccharomyces cerevisiae Mus81-Mms4. Nucleic Acids Res 2009; 37:2026-36. [PMID: 19211663 PMCID: PMC2665226 DOI: 10.1093/nar/gkp038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The DNA structure-selective endonuclease Mus81-Mms4/Eme1 incises a number of nicked joint molecule substrates in vitro. 3′-flaps are an excellent in vitro substrate for Mus81-Mms4/Eme1. Mutants in MUS81 are synthetically lethal with mutations in the 5′-flap endonuclease FEN1/Rad27 in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Considering the possibility for isoenergetic interconversion between 3′- and 5′- flaps, these data are consistent with the hypothesis that Mus81-Mms4/Eme1 acts on 3′-flaps in vivo. FEN1/Rad27 prefers dually flapped substrates and cleaves in a way that allows direct ligation of the resulting nick in the product duplex. Here we test the activity of Mus81-Mms4 on dually flapped substrates and find that in contrast to FEN1/Rad27, Mus81-Mms4 activity is impaired on such substrates, resulting in cleavage products that do not allow direct religation. We conclude that Mus81-Mms4, unlike FEN1/Rad27, does not prefer dually flapped substrates and is unlikely to function as a 3′-flapase counterpart to the 5′-flapase activity of FEN1/Rad27. We further find that joint molecule incision by Mus81-Mms4 occurs in a fashion determined by the branch point, regardless of the position of an upstream duplex end. These findings underscore the significance of a nick adjacent to a branch point for Mus81-Mms4 incision.
Collapse
|
45
|
Franchitto A, Pirzio LM, Prosperi E, Sapora O, Bignami M, Pichierri P. Replication fork stalling in WRN-deficient cells is overcome by prompt activation of a MUS81-dependent pathway. J Cell Biol 2008; 183:241-52. [PMID: 18852298 PMCID: PMC2568021 DOI: 10.1083/jcb.200803173] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 09/19/2008] [Indexed: 11/22/2022] Open
Abstract
Failure to stabilize and properly process stalled replication forks results in chromosome instability, which is a hallmark of cancer cells and several human genetic conditions that are characterized by cancer predisposition. Loss of WRN, a RecQ-like enzyme mutated in the cancer-prone disease Werner syndrome (WS), leads to rapid accumulation of double-strand breaks (DSBs) and proliferating cell nuclear antigen removal from chromatin upon DNA replication arrest. Knockdown of the MUS81 endonuclease in WRN-deficient cells completely prevents the accumulation of DSBs after fork stalling. Also, MUS81 knockdown in WS cells results in reduced chromatin recruitment of recombination enzymes, decreased yield of sister chromatid exchanges, and reduced survival after replication arrest. Thus, we provide novel evidence that WRN is required to avoid accumulation of DSBs and fork collapse after replication perturbation, and that prompt MUS81-dependent generation of DSBs is instrumental for recovery from hydroxyurea-mediated replication arrest under such pathological conditions.
Collapse
Affiliation(s)
- Annapaola Franchitto
- Section of Experimental and Computational Carcinogenesis, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Ciccia A, McDonald N, West SC. Structural and functional relationships of the XPF/MUS81 family of proteins. Annu Rev Biochem 2008; 77:259-87. [PMID: 18518821 DOI: 10.1146/annurev.biochem.77.070306.102408] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteins belonging to the XPF/MUS81 family play important roles in the repair of DNA lesions caused by UV-light or DNA cross-linking agents. Most eukaryotes have four family members that assemble into two distinct heterodimeric complexes, XPF-ERCC1 and MUS81-EME1. Each complex contains one catalytic and one noncatalytic subunit and exhibits endonuclease activity with a variety of 3'-flap or fork DNA structures. The catalytic subunits share a characteristic core containing an excision repair cross complementation group 4 (ERCC4) nuclease domain and a tandem helix-hairpin-helix (HhH)(2) domain. Diverged domains are present in the noncatalytic subunits and may be required for substrate targeting. Vertebrates possess two additional family members, FANCM and Fanconi anemia-associated protein 24 kDa (FAAP24), which possess inactive nuclease domains. Instead, FANCM contains a functional Superfamily 2 (SF2) helicase domain that is required for DNA translocation. Determining how these enzymes recognize specific DNA substrates and promote key repair reactions is an important challenge for the future.
Collapse
Affiliation(s)
- Alberto Ciccia
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, Hertfordshire, United Kingdom
| | | | | |
Collapse
|
47
|
Chang JH, Kim JJ, Choi JM, Lee JH, Cho Y. Crystal structure of the Mus81-Eme1 complex. Genes Dev 2008; 22:1093-106. [PMID: 18413719 PMCID: PMC2335329 DOI: 10.1101/gad.1618708] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 02/22/2008] [Indexed: 11/25/2022]
Abstract
The Mus81-Eme1 complex is a structure-specific endonuclease that plays an important role in rescuing stalled replication forks and resolving the meiotic recombination intermediates in eukaryotes. We have determined the crystal structure of the Mus81-Eme1 complex. Both Mus81 and Eme1 consist of a central nuclease domain, two repeats of the helix-hairpin-helix (HhH) motif at their C-terminal region, and a linker helix. While each domain structure resembles archaeal XPF homologs, the overall structure is significantly different from those due to the structure of a linker helix. We show that a flexible intradomain linker that formed with 36 residues in the nuclease domain of Eme1 is essential for the recognition of DNA. We identified several basic residues lining the outer surface of the active site cleft of Mus81 that are involved in the interaction with a flexible arm of a nicked Holliday junction (HJ). These interactions might contribute to the optimal positioning of the opposite junction across the nick into the catalytic site, which provided the basis for the "nick and counternick" mechanism of Mus81-Eme1 and for the nicked HJ to be the favored in vitro substrate of this enzyme.
Collapse
Affiliation(s)
- Jeong Ho Chang
- National Creative Initiatives for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Pohang, KyungBook 790-784, South Korea
| | - Jeong Joo Kim
- National Creative Initiatives for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Pohang, KyungBook 790-784, South Korea
| | - Jung Min Choi
- National Creative Initiatives for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Pohang, KyungBook 790-784, South Korea
| | - Jung Hoon Lee
- National Creative Initiatives for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Pohang, KyungBook 790-784, South Korea
| | - Yunje Cho
- National Creative Initiatives for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Pohang, KyungBook 790-784, South Korea
| |
Collapse
|
48
|
Ehmsen KT, Heyer WD. Biochemistry of Meiotic Recombination: Formation, Processing, and Resolution of Recombination Intermediates. GENOME DYNAMICS AND STABILITY 2008; 3:91. [PMID: 20098639 PMCID: PMC2809983 DOI: 10.1007/7050_2008_039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Meiotic recombination ensures accurate chromosome segregation during the first meiotic division and provides a mechanism to increase genetic heterogeneity among the meiotic products. Unlike homologous recombination in somatic (vegetative) cells, where sister chromatid interactions prevail and crossover formation is avoided, meiotic recombination is targeted to involve homologs, resulting in crossovers to connect the homologs before anaphase of the first meiotic division. The mechanisms responsible for homolog choice and crossover control are poorly understood, but likely involve meiosis-specific recombination proteins, as well as meiosis-specific chromosome organization and architecture. Much progress has been made to identify and biochemically characterize many of the proteins acting during meiotic recombination. This review will focus on the proteins that generate and process heteroduplex DNA, as well as those that process DNA junctions during meiotic recombination, with particular attention to how recombination activities promote crossover resolution between homologs.
Collapse
Affiliation(s)
- Kirk T. Ehmsen
- Section of Microbiology, University of California, Davis, One Shields Ave, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Section of Microbiology, University of California, Davis, One Shields Ave, Davis, CA 95616-8665, USA
- Section of Molecular and Cellular Biology, University of California, Davis, One Shields Ave, Davis, CA 95616-8665, USA
| |
Collapse
|
49
|
Ehmsen KT, Heyer WD. Saccharomyces cerevisiae Mus81-Mms4 is a catalytic, DNA structure-selective endonuclease. Nucleic Acids Res 2008; 36:2182-95. [PMID: 18281703 PMCID: PMC2367710 DOI: 10.1093/nar/gkm1152] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 12/07/2007] [Accepted: 12/12/2007] [Indexed: 11/29/2022] Open
Abstract
The DNA structure-selective endonuclease Mus81-Mms4/Eme1 is a context-specific recombination factor that supports DNA replication, but is not essential for DSB repair in Saccharomyces cerevisiae. We overexpressed Mus81-Mms4 in S. cerevisiae, purified the heterodimer to apparent homogeneity, and performed a classical enzymological characterization. Kinetic analysis (k(cat), K(M)) demonstrated that Mus81-Mms4 is catalytically active and identified three substrate classes in vitro. Class I substrates reflect low K(M) (3-7 nM) and high k(cat) ( approximately 1 min(-1)) and include the nicked Holliday junction, 3'-flapped and replication fork-like structures. Class II substrates share low K(M) (1-6 nM) but low k(cat) (< or =0.3 min(-1)) relative to Class I substrates and include the D-loop and partial Holliday junction. The splayed Y junction defines a class III substrate having high K(M) ( approximately 30 nM) and low k(cat) (0.26 min(-1)). Holliday junctions assembled from oligonucleotides with or without a branch migratable core were negligibly cut in vitro. We found that Mus81 and Mms4 are phosphorylated constitutively and in the presence of the genotoxin MMS. The endogenous complex purified in either modification state is negligibly active on Holliday junctions. Hence, Holliday junction incision activity in vitro cannot be attributed to the Mus81-Mms4 heterodimer in isolation.
Collapse
Affiliation(s)
- Kirk Tevebaugh Ehmsen
- Section of Microbiology and Section of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Section of Microbiology and Section of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616-8665, USA
| |
Collapse
|
50
|
Interstrand crosslink repair: can XPF-ERCC1 be let off the hook? Trends Genet 2008; 24:70-6. [PMID: 18192062 DOI: 10.1016/j.tig.2007.11.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 11/21/2022]
Abstract
The interstrand crosslink (ICL) presents a challenge to both the cell and the scientist. From a clinical standpoint, these lesions are particularly intriguing: ICL-inducing agents are powerful tools in cancer chemotherapy, and spontaneous ICLs have recently been linked with accelerated aging phenotypes. Nevertheless, the ICL repair process has proven difficult to elucidate. Here we discuss recent additions to the current model and argue that the endonuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1 (XPF-ERCC1) has been heretofore misplaced. During nucleotide excision repair, XPF-ERCC1 makes a single-strand nick adjacent to the lesion. XPF-ERCC1 has been thought to play an analogous role in ICL repair. However, recent data has implicated XPF-ERCC1 in homologous recombination. We suggest that this role, rather than its function in nucleotide excision repair, defines its importance to ICL repair.
Collapse
|