1
|
Jani J, Pappachan A. A review on quality control agents of protein translation - The role of Trans-editing proteins. Int J Biol Macromol 2022; 199:252-263. [PMID: 34995670 DOI: 10.1016/j.ijbiomac.2021.12.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Translation of RNA to protein is a key feature of cellular life. The fidelity of this process mainly depends on the availability of correctly charged tRNAs. Different domains of tRNA synthetase (aaRS) maintain translation quality by ensuring the proper attachment of particular amino acid with respective tRNA, thus it establishes the rule of genetic code. However occasional errors by aaRS generate mischarged tRNAs, which can become lethal to the cells. Accurate protein synthesis necessitates hydrolysis of mischarged tRNAs. Various cis and trans-editing proteins are identified which recognize these mischarged products and correct them by hydrolysis. Trans-editing proteins are homologs of cis-editing domains of aaRS. The trans-editing proteins work in close association with aaRS, Ef-Tu, and ribosome to prevent global mistranslation and ensures correct charging of tRNA. In this review, we discuss the major trans-editing proteins and compared them with their cis-editing counterparts. We also discuss their structural features, biochemical activity and role in maintaining cellular protein homeostasis.
Collapse
Affiliation(s)
- Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Sector 30, Gandhinagar 382030, Gujarat, India
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Sector 30, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
2
|
Kubatova N, Jonker HRA, Saxena K, Richter C, Vogel V, Schreiber S, Marchfelder A, Schwalbe H. Solution Structure and Dynamics of the Small Protein HVO_2922 from
Haloferax volcanii. Chembiochem 2019; 21:149-156. [DOI: 10.1002/cbic.201900085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/04/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Nina Kubatova
- Organic Chemistry and Chemical BiologyGoethe University Frankfurt Max von Laue Strasse 7 60438 Frankfurt am Main Germany
| | - Hendrik R. A. Jonker
- Organic Chemistry and Chemical BiologyGoethe University Frankfurt Max von Laue Strasse 7 60438 Frankfurt am Main Germany
| | - Krishna Saxena
- Organic Chemistry and Chemical BiologyGoethe University Frankfurt Max von Laue Strasse 7 60438 Frankfurt am Main Germany
| | - Christian Richter
- Organic Chemistry and Chemical BiologyGoethe University Frankfurt Max von Laue Strasse 7 60438 Frankfurt am Main Germany
| | | | | | | | - Harald Schwalbe
- Organic Chemistry and Chemical BiologyGoethe University Frankfurt Max von Laue Strasse 7 60438 Frankfurt am Main Germany
| |
Collapse
|
3
|
Substrate-assisted mechanism of catalytic hydrolysis of misaminoacylated tRNA required for protein synthesis fidelity. Biochem J 2019; 476:719-732. [PMID: 30718305 DOI: 10.1042/bcj20180910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 11/17/2022]
Abstract
d-aminoacyl-tRNA-deacylase (DTD) prevents the incorporation of d-amino acids into proteins during translation by hydrolyzing the ester bond between mistakenly attached amino acids and tRNAs. Despite extensive study of this proofreading enzyme, the precise catalytic mechanism remains unknown. Here, a combination of biochemical and computational investigations has enabled the discovery of a new substrate-assisted mechanism of d-Tyr-tRNATyr hydrolysis by Thermus thermophilus DTD. Several functional elements of the substrate, misacylated tRNA, participate in the catalysis. During the hydrolytic reaction, the 2'-OH group of the А76 residue of d-Tyr-tRNATyr forms a hydrogen bond with a carbonyl group of the tyrosine residue, stabilizing the transition-state intermediate. Two water molecules participate in this reaction, attacking and assisting ones, resulting in a significant decrease in the activation energy of the rate-limiting step. The amino group of the d-Tyr aminoacyl moiety is unprotonated and serves as a general base, abstracting the proton from the assisting water molecule and forming a more nucleophilic ester-attacking species. Quantum chemical methodology was used to investigate the mechanism of hydrolysis. The DFT-calculated deacylation reaction is in full agreement with the experimental data. The Gibbs activation energies for the first and second steps were 10.52 and 1.05 kcal/mol, respectively, highlighting that the first step of the hydrolysis process is the rate-limiting step. Several amino acid residues of the enzyme participate in the coordination of the substrate and water molecules. Thus, the present work provides new insights into the proofreading details of misacylated tRNAs and can be extended to other systems important for translation fidelity.
Collapse
|
4
|
Mechanistic Insights Into Catalytic RNA-Protein Complexes Involved in Translation of the Genetic Code. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017. [PMID: 28683922 DOI: 10.1016/bs.apcsb.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The contemporary world is an "RNA-protein world" rather than a "protein world" and tracing its evolutionary origins is of great interest and importance. The different RNAs that function in close collaboration with proteins are involved in several key physiological processes, including catalysis. Ribosome-the complex megadalton cellular machinery that translates genetic information encoded in nucleotide sequence to amino acid sequence-epitomizes such an association between RNA and protein. RNAs that can catalyze biochemical reactions are known as ribozymes. They usually employ general acid-base catalytic mechanism, often involving the 2'-OH of RNA that activates and/or stabilizes a nucleophile during the reaction pathway. The protein component of such RNA-protein complexes (RNPCs) mostly serves as a scaffold which provides an environment conducive for the RNA to function, or as a mediator for other interacting partners. In this review, we describe those RNPCs that are involved at different stages of protein biosynthesis and in which RNA performs the catalytic function; the focus of the account is on highlighting mechanistic aspects of these complexes. We also provide a perspective on such associations in the context of proofreading during translation of the genetic code. The latter aspect is not much appreciated and recent works suggest that this is an avenue worth exploring, since an understanding of the subject can provide useful insights into how RNAs collaborate with proteins to ensure fidelity during these essential cellular processes. It may also aid in comprehending evolutionary aspects of such associations.
Collapse
|
5
|
Elongation Factor Tu Prevents Misediting of Gly-tRNA(Gly) Caused by the Design Behind the Chiral Proofreading Site of D-Aminoacyl-tRNA Deacylase. PLoS Biol 2016; 14:e1002465. [PMID: 27224426 PMCID: PMC4880308 DOI: 10.1371/journal.pbio.1002465] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/19/2016] [Indexed: 01/07/2023] Open
Abstract
D-aminoacyl-tRNA deacylase (DTD) removes D-amino acids mischarged on tRNAs and is thus implicated in enforcing homochirality in proteins. Previously, we proposed that selective capture of D-aminoacyl-tRNA by DTD's invariant, cross-subunit Gly-cisPro motif forms the mechanistic basis for its enantioselectivity. We now show, using nuclear magnetic resonance (NMR) spectroscopy-based binding studies followed by biochemical assays with both bacterial and eukaryotic systems, that DTD effectively misedits Gly-tRNAGly. High-resolution crystal structure reveals that the architecture of DTD's chiral proofreading site is completely porous to achiral glycine. Hence, L-chiral rejection is the only design principle on which DTD functions, unlike other chiral-specific enzymes such as D-amino acid oxidases, which are specific for D-enantiomers. Competition assays with elongation factor thermo unstable (EF-Tu) and DTD demonstrate that EF-Tu precludes Gly-tRNAGly misediting at normal cellular concentrations. However, even slightly higher DTD levels overcome this protection conferred by EF-Tu, thus resulting in significant depletion of Gly-tRNAGly. Our in vitro observations are substantiated by cell-based studies in Escherichia coli that show that overexpression of DTD causes cellular toxicity, which is largely rescued upon glycine supplementation. Furthermore, we provide direct evidence that DTD is an RNA-based catalyst, since it uses only the terminal 2'-OH of tRNA for catalysis without the involvement of protein side chains. The study therefore provides a unique paradigm of enzyme action for substrate selection/specificity by DTD, and thus explains the underlying cause of DTD's activity on Gly-tRNAGly. It also gives a molecular and functional basis for the necessity and the observed tight regulation of DTD levels, thereby preventing cellular toxicity due to misediting.
Collapse
|
6
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
7
|
Bhatt TK, Soni R, Sharma D. Recent Updates on DTD (D-Tyr-tRNA(Tyr) Deacylase): An Enzyme Essential for Fidelity and Quality of Protein Synthesis. Front Cell Dev Biol 2016; 4:32. [PMID: 27200345 PMCID: PMC4844752 DOI: 10.3389/fcell.2016.00032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/12/2016] [Indexed: 12/03/2022] Open
Abstract
During protein synthesis, there are several checkpoints in the cell to ensure that the information encoded within genetic material is decoded correctly. Charging of tRNA with its cognate amino acid is one of the important steps in protein synthesis and is carried out by aminoacyl-tRNA synthetase (aaRS) with great accuracy. However, due to presence of D-amino acids in the cell, sometimes aaRS charges tRNA with D-amino acids resulting in the hampering of protein translational process, which is lethal to the cell. Every species has some mechanism in order to prevent the formation of D-amino acid-tRNA complex, for instance DTD (D-Tyr-tRNA deacylase) is an enzyme responsible for the cleavage of ester bond formed between D-amino acid and tRNA leading to error free translation process. In this review, structure, function, and enzymatic mechanism of DTD are discussed. The role of DTD as a drug target is also considered.
Collapse
Affiliation(s)
- Tarun K Bhatt
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan Bandar sindri, India
| | - Rani Soni
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan Bandar sindri, India
| | - Drista Sharma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan Bandar sindri, India
| |
Collapse
|
8
|
Geraskina NV, Butov IA, Yomantas YAV, Stoynova NV. The dtd gene from Bacillus amyloliquefaciens encodes a putative D-tyrosyl-tRNATyr deacylase and is a selectable marker for Bacillus subtilis. Microbiol Res 2014; 171:90-6. [PMID: 25441601 DOI: 10.1016/j.micres.2014.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/10/2014] [Accepted: 11/15/2014] [Indexed: 02/02/2023]
Abstract
Genetically engineered microbes are of high practical importance due to their cost-effective production of valuable metabolites and enzymes, and the search for new selectable markers for genetic manipulation is of particular interest. Here, we revealed that the soil bacterium Bacillus amyloliquefaciens A50 is tolerant to the non-canonical amino acid D-tyrosine (D-Tyr), in contrast to the closely related Bacillus strain B. subtilis 168, which is a widely used "domesticated" laboratory strain. The gene responsible for resistance to D-Tyr was identified. The resistance was associated with the activity of a potential D-tyrosyl-tRNA(Tyr) deacylase. Orthologs of this enzyme are capable of hydrolyzing the ester bond and recycling misacetylated D-aminoacyl-tRNA molecules into free tRNAs and D-amino acids. This gene, yrvI (dtd), is applicable as a convenient, small selectable marker for non-antibiotic resistance selection in experiments aimed at genome editing of D-Tyr-sensitive microorganisms.
Collapse
Affiliation(s)
- Natalia V Geraskina
- Ajinomoto-Genetika Research Institute, 1st Dorozhny pr. 1-1, Moscow 117545, Russian Federation
| | - Ivan A Butov
- Ajinomoto-Genetika Research Institute, 1st Dorozhny pr. 1-1, Moscow 117545, Russian Federation
| | - Yurgis A V Yomantas
- Ajinomoto-Genetika Research Institute, 1st Dorozhny pr. 1-1, Moscow 117545, Russian Federation
| | - Nataliya V Stoynova
- Ajinomoto-Genetika Research Institute, 1st Dorozhny pr. 1-1, Moscow 117545, Russian Federation.
| |
Collapse
|
9
|
Ahmad S, Routh SB, Kamarthapu V, Chalissery J, Muthukumar S, Hussain T, Kruparani SP, Deshmukh MV, Sankaranarayanan R. Mechanism of chiral proofreading during translation of the genetic code. eLife 2013; 2:e01519. [PMID: 24302572 PMCID: PMC3845328 DOI: 10.7554/elife.01519] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The biological macromolecular world is homochiral and effective enforcement and perpetuation of this homochirality is essential for cell survival. In this study, we present the mechanistic basis of a configuration-specific enzyme that selectively removes D-amino acids erroneously coupled to tRNAs. The crystal structure of dimeric D-aminoacyl-tRNA deacylase (DTD) from Plasmodium falciparum in complex with a substrate-mimicking analog shows how it uses an invariant ‘cross-subunit’ Gly-cisPro dipeptide to capture the chiral centre of incoming D-aminoacyl-tRNA. While no protein residues are directly involved in catalysis, the unique side chain-independent mode of substrate recognition provides a clear explanation for DTD’s ability to act on multiple D-amino acids. The strict chiral specificity elegantly explains how the enriched cellular pool of L-aminoacyl-tRNAs escapes this proofreading step. The study thus provides insights into a fundamental enantioselection process and elucidates a chiral enforcement mechanism with a crucial role in preventing D-amino acid infiltration during the evolution of translational apparatus. DOI:http://dx.doi.org/10.7554/eLife.01519.001 Amino acids are ‘chiral’ molecules that come in two different forms, called D and L, which are mirror images of each other, similar to how our left and right hands are mirror images of each other. However, only one of these forms is used to make proteins: the more abundant L-amino acids are linked together to make proteins, whereas the scarcer D-amino acids are not. This ‘homochirality’ is common to all life on Earth. The molecular machinery inside cells that manufactures proteins involves many enzymes that carry out different tasks. Among these is an enzyme called DTD (short for D-aminoacyl-tRNA deacylase), which prevents D-amino acids being incorporated into proteins. To do this, DTD must be able to recognise and remove the D forms of many different amino acids before they are taken to the growing protein by transfer RNA molecules. However, the details of this process are not fully understood. To investigate this mechanism, Ahmad et al. made crystals of the DTD enzyme in complex with a molecule that mimics a D-amino acid attached to a transfer RNA molecule. By studying this structure at a high resolution, Ahmad et al. were able to identify how the active site of DTD can specifically accommodate the ‘chiral centre’ of a complex made of a D-amino acid and a transfer RNA molecule. DTD is able to recognize D-amino acids because of a critical dipeptide that is inserted from one subunit of the DTD into the active site of another subunit of the enzyme. The effect of this dipeptide is to generate a binding pocket that is a perfect fit for the chiral centre of a complex that contains a D-amino acid and a transfer RNA molecule. Moreover, this pocket specifically excludes complexes that contain an L-amino acid. The crucial parts of DTD that form the binding pocket are highly conserved—that is, they are the same in a wide variety of organisms, from bacteria to mammals. This conservation suggests that DTD is crucial for ensuring homochirality throughout all forms of life. Intriguingly, DTD is particularly highly expressed in neurons which are abundant in D-amino acids: this indicates that the DTD enzyme has an important physiological role, which will certainly be the focus of future work. DOI:http://dx.doi.org/10.7554/eLife.01519.002
Collapse
Affiliation(s)
- Sadeem Ahmad
- Structural Biology Laboratory, Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Aminoacyl-tRNAsynthetases (aaRSs) are modular enzymesglobally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation.Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g.,in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show hugestructural plasticity related to function andlimited idiosyncrasies that are kingdom or even speciesspecific (e.g.,the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS).Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably betweendistant groups such as Gram-positive and Gram-negative Bacteria.Thereview focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation,and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulatedin last two decades is reviewed,showing how thefield moved from essentially reductionist biologytowards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRSparalogs (e.g., during cellwall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointedthroughout the reviewand distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
|
11
|
Abstract
Proline is incompatible with ideal β-sheet geometry, and the incompatibility gets magnified when Pro assumes the cis peptidyl-prolyl conformation. We show that Gly appears with high propensity at pre-cisPro positions in β-sheets and rescues the β-sheet from severe distortions by assuming a right-handed polyproline conformation (β(PR)), effectively increasing the local β-sheet register by one residue. The united residue, Gly(β(PR))-cisPro, is evolutionarily conserved, functionally important, and dynamic in nature.
Collapse
Affiliation(s)
- Madhurima Das
- Bioinformatics Centre, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | | |
Collapse
|
12
|
Kumar S, Das M, Hadad CM, Musier-Forsyth K. Substrate and enzyme functional groups contribute to translational quality control by bacterial prolyl-tRNA synthetase. J Phys Chem B 2012; 116:6991-9. [PMID: 22458656 DOI: 10.1021/jp300845h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aminoacyl-tRNA synthetases activate specific amino acid substrates and attach them via an ester linkage to cognate tRNA molecules. In addition to cognate proline, prolyl-tRNA synthetase (ProRS) can activate cysteine and alanine and misacylate tRNA(Pro). Editing of the misacylated aminoacyl-tRNA is required for error-free protein synthesis. An editing domain (INS) appended to bacterial ProRS selectively hydrolyzes Ala-tRNA(Pro), whereas Cys-tRNA(Pro) is cleared by a freestanding editing domain, YbaK, through a unique mechanism involving substrate sulfhydryl chemistry. The detailed mechanism of catalysis by INS is currently unknown. To understand the alanine specificity and mechanism of catalysis by INS, we have explored several possible mechanisms of Ala-tRNA(Pro) deacylation via hybrid QM/MM calculations. Experimental studies were also performed to test the role of several residues in the INS active site as well as various substrate functional groups in catalysis. Our results support a critical role for the tRNA 2'-OH group in substrate binding and catalytic water activation. A role is also proposed for the protein's conserved GXXXP loop in transition state stabilization and for the main chain atoms of Gly261 in a proton relay that contributes substantially to catalysis.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
13
|
So BR, An S, Kumar S, Das M, Turner DA, Hadad CM, Musier-Forsyth K. Substrate-mediated fidelity mechanism ensures accurate decoding of proline codons. J Biol Chem 2011; 286:31810-20. [PMID: 21768119 DOI: 10.1074/jbc.m111.232611] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases attach specific amino acids to cognate tRNAs. Prolyl-tRNA synthetases are known to mischarge tRNA(Pro) with the smaller amino acid alanine and with cysteine, which is the same size as proline. Quality control in proline codon translation is partly ensured by an editing domain (INS) present in most bacterial prolyl-tRNA synthetases that hydrolyzes smaller Ala-tRNA(Pro) and excludes Pro-tRNA(Pro). In contrast, Cys-tRNA(Pro) is cleared by a freestanding INS domain homolog, YbaK. Here, we have investigated the molecular mechanism of catalysis and substrate recognition by Hemophilus influenzae YbaK using site-directed mutagenesis, enzymatic assays of isosteric substrates and functional group analogs, and computational modeling. These studies together with mass spectrometric characterization of the YbaK-catalyzed reaction products support a novel substrate-assisted mechanism of Cys-tRNA(Pro) deacylation that prevents nonspecific Pro-tRNA(Pro) hydrolysis. Collectively, we propose that the INS and YbaK domains co-evolved distinct mechanisms involving steric exclusion and thiol-specific chemistry, respectively, to ensure accurate decoding of proline codons.
Collapse
Affiliation(s)
- Byung Ran So
- Department of Chemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Liu W, Liu C, Zhu JX, Li AH, Zhao ZQ, Yin B, Peng XZ. D-Tyr-tRNA(Tyr) deacylase, a new role in Alzheimer's-associated disease in SAMP8 mice. ACTA ACUST UNITED AC 2010; 25:90-4. [PMID: 20598230 DOI: 10.1016/s1001-9294(10)60028-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To assess the expression level of D-Tyr-tRNA(Tyr) deacylase (DTD) in SAMP8 mice and speculate the function of DTD in disorders associated with Alzheimer's disease (AD). METHODS Altogether 12 SAMP8 mice and 12 SAMR1 mice were used in this study. Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were performed to detect the mRNA and protein levels of DTD in the mice. Purified DTD protein was injected into lateral ventricle to investigate the function of DTD in SAMP mice. The behavior of the mice was tested by using a Step-through Test System. RESULTS Both mRNA and protein levels of DTD were found to be significantly lower in SAMP8 mice compared with those in SAMR1 mice (P<0.05). In vivo injection of DTD protein did not lead to an obvious change in behavior of SAM mice. CONCLUSIONS DTD might function in the process of AD-associated pathology and could possibly participate in physiology process in a long-term manner to orchestrate with other regulators in order to maintain the balance of organism.
Collapse
Affiliation(s)
- Wei Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Yogavel M, Khan S, Bhatt TK, Sharma A. Structure ofD-tyrosyl-tRNATyrdeacylase using home-source Cu Kα and moderate-quality iodide-SAD data: structural polymorphism and HEPES-bound enzyme states. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:584-92. [DOI: 10.1107/s0907444910006062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 02/15/2010] [Indexed: 11/11/2022]
Abstract
D-Tyrosyl-tRNATyrdeacylase (DTD) is an editing enzyme that removes D-amino acids from mischarged tRNAs. The crystal structure ofPlasmodium falciparumDTD (PfDTD) was determined using the iodide-SAD phasing method. Iodide-derivatized PfDTD crystals were obtained using the quick cryo-soaking procedure in which native crystals were soaked for a short period of 10–30 s in cryoprotectant solution containing 0.2–1 MNaI. Iodide-SAD data sets were collected to 3.3 and 2.74 Å resolution from PfDTD crystals that belonged to two different space groups,P43andP1, using an in-house X-ray copper-anode source. This is the first report to detail structure solution using low iodide anomalous signal, modest resolution and redundancy and average solvent content for SAD phasing of 984 and 1312 amino acids in the triclinicP1 and tetragonalP43space groups, respectively. A total of 85% and 56% of the residues were automatically built into the iodide-phased electron-density maps usingPHENIX AutoBuild. The structure of HEPES-bound PfDTD was subsequently determined by molecular replacement and refined to 2.83 Å resolution. The crystals obtained from various batches of crystallization trials of PfDTD exhibited polymorphism in terms of belonging to different crystal forms and space groups. Even within a given crystal system the unit-cell parameters showed high non-isomorphism. These packing variations were exploited in order to conduct a systematic study of conformational changes in PfDTD. It is shown that the disposition of a ten-residue insertion loop affects packing within the PfDTD crystals and seems to determine the non-isomorphism in unit-cell parameters. By tracking the changes in PfDTD unit cells, it was possible to map conformational differences within PfDTD that may be of significance for enzyme activity.
Collapse
|
16
|
Bhatt TK, Yogavel M, Wydau S, Berwal R, Sharma A. Ligand-bound structures provide atomic snapshots for the catalytic mechanism of D-amino acid deacylase. J Biol Chem 2009; 285:5917-30. [PMID: 20007323 PMCID: PMC2820817 DOI: 10.1074/jbc.m109.038562] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
d-tyrosyl-tRNATyr deacylase (DTD) is an editing enzyme that removes d-amino acids from mischarged tRNAs. We describe an in-depth analysis of the malaria parasite Plasmodium falciparum DTD here. Our data provide structural insights into DTD complexes with adenosine and d-amino acids. Bound adenosine is proximal to the DTD catalysis site, and it represents the authentic terminal adenosine of charged tRNA. DTD-bound d-amino acids cluster at three different subsites within the overall active site pocket. These subsites, called transition, active, and exit subsites allow docking, re-orientation, chiral selection, catalysis, and exit of the free d-amino acid from DTD. Our studies reveal variable modes of d-amino acid recognition by DTDs, suggesting an inherent plasticity that can accommodate all d- amino acids. An in-depth analysis of native, ADP-bound, and d- amino acid-complexed DTD structures provide the first atomic snapshots of ligand recognition and subsequent catalysis by this enzyme family. We have mapped sites for the deacylation reaction and mark possible routes for entry and egress of all substrates and products. We have also performed structure-based inhibitor discovery and tested lead compounds against the malaria parasite P. falciparum using growth inhibition assays. Our studies provide a comprehensive structural basis for the catalytic mechanism of DTD enzymes and have implications for inhibition of this enzyme in P. falciparum as a route to inhibiting the parasite.
Collapse
Affiliation(s)
- Tarun Kumar Bhatt
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India
| | | | | | | | | |
Collapse
|
17
|
Comparison of the chemical and thermal denaturation of proteins by a two-state transition model. Anal Biochem 2008; 374:221-30. [DOI: 10.1016/j.ab.2007.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 10/04/2007] [Indexed: 11/18/2022]
|
18
|
Kemp M, Bae B, Yu JP, Ghosh M, Leffak M, Nair SK. Structure and function of the c-myc DNA-unwinding element-binding protein DUE-B. J Biol Chem 2007; 282:10441-8. [PMID: 17264083 DOI: 10.1074/jbc.m609632200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Local zones of easily unwound DNA are characteristic of prokaryotic and eukaryotic replication origins. The DNA-unwinding element of the human c-myc replication origin is essential for replicator activity and is a target of the DNA-unwinding element-binding protein DUE-B in vivo. We present here the 2.0A crystal structure of DUE-B and complementary biochemical characterization of its biological activity. The structure corresponds to a dimer of the N-terminal domain of the full-length protein and contains many of the structural elements of the nucleotide binding fold. A single magnesium ion resides in the putative active site cavity, which could serve to facilitate ATP hydrolytic activity of this protein. The structure also demonstrates a notable similarity to those of tRNA-editing enzymes. Consistent with this structural homology, the N-terminal core of DUE-B is shown to display both D-aminoacyl-tRNA deacylase activity and ATPase activity. We further demonstrate that the C-terminal portion of the enzyme is disordered and not essential for dimerization. However, this region is essential for DNA binding in vitro and becomes ordered in the presence of DNA.
Collapse
Affiliation(s)
- Michael Kemp
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The aminoacyl-tRNA synthetases (aaRSs) are responsible for selecting specific amino acids for protein synthesis, and this essential role in translation has garnered them much attention as targets for novel antimicrobials. Understanding how the aaRSs evolved efficient substrate selection offers a potential route to develop useful inhibitors of microbial protein synthesis. Here, we discuss discrimination of small molecules by aaRSs, and how the evolutionary divergence of these mechanisms offers a means to target inhibitors against these essential microbial enzymes.
Collapse
Affiliation(s)
- Sandro F Ataide
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
20
|
Rigden DJ. Archaea recruited D-Tyr-tRNATyr deacylase for editing in Thr-tRNA synthetase. RNA (NEW YORK, N.Y.) 2004; 10:1845-1851. [PMID: 15525705 PMCID: PMC1370672 DOI: 10.1261/rna.7115404] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 09/06/2004] [Indexed: 05/24/2023]
Abstract
Aminoacyl-tRNA synthetases (AARSs) are key players in the maintenance of the genetic code through correct pairing of amino acids with their cognate tRNA molecules. To this end, some AARSs, as well as seeking to recognize the correct amino acid during synthesis of aminoacyl-tRNA, enhance specificity through recognition of mischarged aminoacyl-tRNA molecules in a separate editing reaction. Recently, an editing domain, of uncertain provenance, idiosyncratic to some archaeal ThrRSs has been characterized. Here, sequence analyses and molecular modeling are reported that clearly show a relationship of the archaea-specific ThrRS editing domains with d-Tyr-tRNATyr deacylases (DTDs). The model enables the identification of the catalytic site and other substrate binding residues, as well as the proposal of a likely catalytic mechanism. Interestingly, typical DTD sequences, common in bacteria and eukaryotes, are entirely absent in archaea, consistent with an evolutionary scheme in which DTD was co-opted to serve as a ThrRS editing domain in archaea soon after their divergence from eukaryotes. A group of present-day archaebacteria contain a ThrRS obtained from a bacterium by horizontal gene transfer. In some of these cases a vestigial version of the original archaeal ThrRS, of potentially novel function, is maintained.
Collapse
Affiliation(s)
- Daniel J Rigden
- School of Biological Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, United Kingdom.
| |
Collapse
|
21
|
Yang H, Zheng G, Peng X, Qiang B, Yuan J. D-Amino acids and D-Tyr-tRNA(Tyr) deacylase: stereospecificity of the translation machine revisited. FEBS Lett 2003; 552:95-8. [PMID: 14527667 DOI: 10.1016/s0014-5793(03)00858-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Until 30 years ago, it had been considered that D-amino acids were excluded from living systems except for D-amino acids in the cell wall of microorganisms. However, D-amino acids, in the form of free amino acids, peptides and proteins, were recently detected in various living organisms from bacteria to mammals. The extensive distribution of bio-functional D-amino acids challenges the current concept of protein synthesis: more attention should be paid to the stereospecificity of the translation machine. Besides aminoacyl-tRNA synthetases, elongation factor Tu and some other mechanisms, D-Tyr-tRNA(Tyr) deacylases provide a novel checkpoint since they specifically recycle misaminoacylated D-Tyr-tRNA(Tyr) and some other D-aminoacyl-tRNAs. Their unique structure represents a new class of tRNA-dependent hydrolase. These unexpected findings have far-reaching implications for our understanding of protein synthesis and its origin.
Collapse
Affiliation(s)
- Hongbo Yang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, 100005 Beijing, PR China
| | | | | | | | | |
Collapse
|