1
|
Kurzylewska M, Turska-Szewczuk A, Dworaczek K, Bomba A, Drzewiecka D, Pękala-Safińska A. Immunochemical studies and gene cluster relationships of closely related O-antigens of Aeromonas hydrophila Pt679, Aeromonas popoffii A4, and Aeromonas sobria K928 strains classified into the PGO1 serogroup dominant in Polish aquaculture of carp and rainbow trout. Carbohydr Res 2023; 531:108896. [PMID: 37437416 DOI: 10.1016/j.carres.2023.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
The present study included three Aeromonas sp. strains isolated from fish tissues during Motile Aeromonas Infection/Motile Aeromonas Septicaemia disease outbreaks on commercial farms, i.e.: Aeromonas hydrophila Pt679 obtained from rainbow trout as well as Aeromonas popoffii A4 (formerly Aeromonas encheleia) and Aeromonas sobria K928 both isolated from carp, which were classified into the new provisional PGO1 serogroup prevailing among aeromonads in Polish aquaculture. The structure of the O-specific polysaccharides of A4 and K928 has been previously established. Here, immunochemical studies of the O-specific polysaccharide of A. hydrophila Pt679 were undertaken. The O-specific polysaccharide was obtained from the lipopolysaccharide of A. hydrophila Pt679 after mild acid hydrolysis and separation by gel-permeation chromatography. The high-molecular-mass fraction was studied using chemical methods and 1H and 13C NMR spectroscopy, including 1H,1H NOESY, and 1H,13C HMBC experiments. The following structure of the branched repeating unit of the O-polysaccharide from A. hydrophila Pt679 was determined: [Formula: see text] The studies indicated that O-polysaccharides from A. hydrophila Pt679, A. popoffii A4 and A. sobria K928 share similarities but they also contain unique characteristics. Western blotting and an enzyme-linked immunosorbent assay revealed that the cross-reactivity of the related O-antigens is caused by the occurrence of common structural elements, whereas additional epitopes define the specificity of the O-serotypes. For genetic relationship studies, the O-antigen gene cluster was characterized in the genome of the A. hydrophila Pt679 strain and compared with the corresponding sequences of A. popoffii A4 and A. sobria K928 and with sequences available in the databases. The composition of the regions was found to be consistent with the O-antigen structures of Aeromonas strains classified into the same PGO1 serogroup.
Collapse
Affiliation(s)
- Maria Kurzylewska
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Katarzyna Dworaczek
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| | - Dominika Drzewiecka
- Laboratory of General Microbiology, Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Agnieszka Pękala-Safińska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland
| |
Collapse
|
2
|
Liu B, Guo X, Wang J, Wu P, Li S, Feng L, Liu B, Wang L. Development of a Molecular Serotyping Scheme for Morganella morganii. Front Microbiol 2021; 12:791165. [PMID: 34887844 PMCID: PMC8649690 DOI: 10.3389/fmicb.2021.791165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
Morganella morganii, which is often regarded as a human commensal organism, can be an opportunistic pathogen, causing a variety of clinical infections with serious morbidity and mortality. An efficient and convenient method for subtyping and identifying M. morganii strains in epidemiological surveillance and control is urgently needed. Serotyping based on bacterial surface polysaccharide antigens (O-antigen or K-antigens) is a standard subtyping method for many gram-negative bacteria. Here, through whole genome sequencing and comparative genomics analysis of 27 strains, we developed a molecular serotyping scheme based on the genetic variation of O-antigen gene clusters (O-AGC) in M. morganii, and 11 distinct O-AGC types were identified. A conventional serotyping scheme was also developed by the production of antisera and agglutination experiments, which was shown to be perfectly consistent with the molecular serotyping scheme, confirming that the variation in M. morganii O-AGC correlated with phenotypic O-antigen diversification. Furthermore, a microsphere-based suspension array (MSA) with high specificity was developed based on the specific genes within each O-AGC type. The sensitivity of MSA was determined to be 0.1 ng of genomic DNA and 103 CFU of pure culture. We further analyzed 104 M. morganii genomes available in GenBank, and an additional six novel O-AGC types were identified, indicating that the extension of this molecular serotyping scheme is convenient. Our work provides an important tool for the detection and epidemiological surveillance of M. morganii, and this method has the potential to be widely utilized, especially for bacterial genera/species without an efficient typing approach.
Collapse
Affiliation(s)
- Bin Liu
- Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, The Institute of Translational Medicine Research, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Xi Guo
- Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, The Institute of Translational Medicine Research, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Jing Wang
- Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, The Institute of Translational Medicine Research, Nankai University, Tianjin, China
| | - Pan Wu
- Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, The Institute of Translational Medicine Research, Nankai University, Tianjin, China
| | - Shujie Li
- Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, The Institute of Translational Medicine Research, Nankai University, Tianjin, China
| | - Lu Feng
- Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, The Institute of Translational Medicine Research, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Bin Liu
- Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, The Institute of Translational Medicine Research, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Lei Wang
- Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, The Institute of Translational Medicine Research, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| |
Collapse
|
3
|
Liu B, Furevi A, Perepelov AV, Guo X, Cao H, Wang Q, Reeves PR, Knirel YA, Wang L, Widmalm G. Structure and genetics of Escherichia coli O antigens. FEMS Microbiol Rev 2020; 44:655-683. [PMID: 31778182 PMCID: PMC7685785 DOI: 10.1093/femsre/fuz028] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli includes clonal groups of both commensal and pathogenic strains, with some of the latter causing serious infectious diseases. O antigen variation is current standard in defining strains for taxonomy and epidemiology, providing the basis for many serotyping schemes for Gram-negative bacteria. This review covers the diversity in E. coli O antigen structures and gene clusters, and the genetic basis for the structural diversity. Of the 187 formally defined O antigens, six (O31, O47, O67, O72, O94 and O122) have since been removed and three (O34, O89 and O144) strains do not produce any O antigen. Therefore, structures are presented for 176 of the 181 E. coli O antigens, some of which include subgroups. Most (93%) of these O antigens are synthesized via the Wzx/Wzy pathway, 11 via the ABC transporter pathway, with O20, O57 and O60 still uncharacterized due to failure to find their O antigen gene clusters. Biosynthetic pathways are given for 38 of the 49 sugars found in E. coli O antigens, and several pairs or groups of the E. coli antigens that have related structures show close relationships of the O antigen gene clusters within clades, thereby highlighting the genetic basis of the evolution of diversity.
Collapse
Affiliation(s)
- Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Axel Furevi
- Department of Organic Chemistry, Arrhenius Laboratory, Svante Arrhenius väg 16C, Stockholm University, S-106 91 Stockholm, Sweden
| | - Andrei V Perepelov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, Russia
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Hengchun Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Quan Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Peter R Reeves
- School of Molecular and Microbial Bioscience, University of Sydney, 2 Butilin Ave, Darlington NSW 2008, Sydney, Australia
| | - Yuriy A Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, Russia
| | - Lei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Svante Arrhenius väg 16C, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
4
|
Perepelov AV, Song Y, Zhu Y, Shashkov AS, Filatov AV, Hu B. Structure and gene cluster of the O-antigen of Escherichia coli strain SDLZB008. Carbohydr Res 2020; 498:108154. [PMID: 33197700 DOI: 10.1016/j.carres.2020.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
The O-polysaccharide (O-antigen) of Escherichia coli SDLZB008 was isolated from the lipopolysaccharide and studied by sugar analyses along with 1H and 13C NMR spectroscopy. The following structure of the branched pentasaccharide repeating unit was established, which is unique among the known structures of bacterial polysaccharides: The O-antigen gene cluster of E. coli SDLZB008 has been sequenced. The gene functions were tentatively assigned by comparison with sequences in the available databases and found to be in full agreement with the O-polysaccharide structure.
Collapse
Affiliation(s)
- Andrei V Perepelov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation.
| | - Yajun Song
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457, Tianjin, PR China
| | - Yiming Zhu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457, Tianjin, PR China
| | - Alexander S Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Andrei V Filatov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Bin Hu
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, PR China
| |
Collapse
|
5
|
An SQ, Potnis N, Dow M, Vorhölter FJ, He YQ, Becker A, Teper D, Li Y, Wang N, Bleris L, Tang JL. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol Rev 2020; 44:1-32. [PMID: 31578554 PMCID: PMC8042644 DOI: 10.1093/femsre/fuz024] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/29/2019] [Indexed: 01/15/2023] Open
Abstract
Xanthomonas is a well-studied genus of bacterial plant pathogens whose members cause a variety of diseases in economically important crops worldwide. Genomic and functional studies of these phytopathogens have provided significant understanding of microbial-host interactions, bacterial virulence and host adaptation mechanisms including microbial ecology and epidemiology. In addition, several strains of Xanthomonas are important as producers of the extracellular polysaccharide, xanthan, used in the food and pharmaceutical industries. This polymer has also been implicated in several phases of the bacterial disease cycle. In this review, we summarise the current knowledge on the infection strategies and regulatory networks controlling virulence and adaptation mechanisms from Xanthomonas species and discuss the novel opportunities that this body of work has provided for disease control and plant health.
Collapse
Affiliation(s)
- Shi-Qi An
- National Biofilms Innovation Centre (NBIC), Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Rouse Life Science Building, Auburn University, Auburn AL36849, USA
| | - Max Dow
- School of Microbiology, Food Science & Technology Building, University College Cork, Cork T12 K8AF, Ireland
| | | | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| | - Anke Becker
- Loewe Center for Synthetic Microbiology and Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, Marburg 35032, Germany
| | - Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA
| | - Yi Li
- Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA
| | - Leonidas Bleris
- Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA.,Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX75080, USA
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| |
Collapse
|
6
|
Li Y, Huang J, Wang X, Xu C, Han T, Guo X. Genetic Characterization of the O-Antigen and Development of a Molecular Serotyping Scheme for Enterobacter cloacae. Front Microbiol 2020; 11:727. [PMID: 32411106 PMCID: PMC7198725 DOI: 10.3389/fmicb.2020.00727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/27/2020] [Indexed: 11/13/2022] Open
Abstract
Enterobacter cloacae is a well-characterized opportunistic pathogen that is closely associated with various nosocomial infections. The O-antigen, which is one of the most variable constituents on the cell surface, has been used widely and traditionally for serological classification of many gram-negative bacteria. E. cloacae is divided into 30 serotypes, based on its O-antigen diversity. In this study, by using genomic and comparative-genomic approaches, we analyzed the O-antigen gene clusters of 26 E. cloacae serotypes in depth. We also identified the sero-specific gene for each serotype and developed a multiplex polymerase chain reaction (PCR) method. The sensitivity of the assay was 0.1 ng for genomic DNA and 103 colony forming units for pure cultures. The assay reliability was evaluated by double-blinded testing with 81 clinical strains. Furthermore, we established a valid, genome-based tool for in silico serotyping of E. cloacae. By screening 431 E. cloacae genomes deposited in GenBank, 304 were classified into current antigenic scheme, and 112 were allocated into 55 putative novel serotypes. Our results represent the first genetic basis of the O-antigen diversity and variation of E. cloacae, providing a rationale for studying the O-antigen associated evolution and pathogenesis of this bacterium. In addition, we extended the current serotyping system for E. cloacae, which is important for detection and epidemiological surveillance purposes for this important pathogen.
Collapse
Affiliation(s)
- Yayue Li
- The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Junjie Huang
- Department of Vascular Surgery, Tianjin Hospital, Tianjin, China
| | - Xiaotong Wang
- Tianjin Children's Hospital, Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Cong Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Tao Han
- The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Xi Guo
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| |
Collapse
|
7
|
Cao H, Wang M, Wang Q, Xu T, Du Y, Li H, Qian C, Yin Z, Wang L, Wei Y, Wu P, Guo X, Yang B, Liu B. Identifying genetic diversity of O antigens in Aeromonas hydrophila for molecular serotype detection. PLoS One 2018; 13:e0203445. [PMID: 30183757 PMCID: PMC6124807 DOI: 10.1371/journal.pone.0203445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/21/2018] [Indexed: 01/08/2023] Open
Abstract
Aeromonas hydrophila is a globally occurring, potentially virulent, gram-negative opportunistic pathogen that is known to cause water and food-borne diseases around the world. In this study, we use whole genome sequencing and in silico analyses to identify 14 putative O antigen gene clusters (OGCs) located downstream of the housekeeping genes acrB and/or oprM. We have also identified 7 novel OGCs by analyzing 15 publicly available genomes of different A. hydrophila strains. From the 14 OGCs identified initially, we have deduced that O antigen processing genes involved in the wzx/wzy pathway and the ABC transporter (wzm/wzt) pathway exhibit high molecular diversity among different A. hydrophila strains. Using these genes, we have developed a multiplexed Luminex-based array system that can identify up to 14 A. hydrophila strains. By combining our other results and including the sequences of processing genes from 13 other OGCs (7 OGCs identified from publicly available genome sequences and 6 OGCs that were previously published), we also have the data to create an array system that can identify 25 different A. hydrophila serotypes. Although clinical detection, epidemiological surveillance, and tracing of pathogenic bacteria are typically done using serotyping methods that rely on identifying bacterial surface O antigens through agglutination reactions with antisera, molecular methods such as the one we have developed may be quicker and more cost effective. Our assay shows high specificity, reproducibility, and sensitivity, being able to classify A. hydrophila strains using just 0.1 ng of genomic DNA. In conclusion, our findings indicate that a molecular serotyping system for A. hydrophila could be developed based on specific genes, providing an important molecular tool for the identification of A. hydrophila serotypes.
Collapse
Affiliation(s)
- Hengchun Cao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Min Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Qian Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Tingting Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Yuhui Du
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Huiying Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Chengqian Qian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Zhiqiu Yin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Lu Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Yi Wei
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Pan Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Xi Guo
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Bin Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
- * E-mail: (BY); (BL)
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
- * E-mail: (BY); (BL)
| |
Collapse
|
8
|
Li ZZ, Riegert AS, Goneau MF, Cunningham AM, Vinogradov E, Li J, Schoenhofen IC, Thoden JB, Holden HM, Gilbert M. Characterization of the dTDP-Fuc3N and dTDP-Qui3N biosynthetic pathways in Campylobacter jejuni 81116. Glycobiology 2018; 27:358-369. [PMID: 28096310 DOI: 10.1093/glycob/cww136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/11/2017] [Indexed: 11/12/2022] Open
Abstract
The Gram-negative bacterium Campylobacter jejuni 81116 (Penner serotype HS:6) has a class E lipooligosaccharide (LOS) biosynthesis locus containing 19 genes, which encode for 11 putative glycosyltransferases, 1 lipid A acyltransferase and 7 enzymes thought to be involved in the biosynthesis of dideoxyhexosamine (ddHexN) moieties. Although the LOS outer core structure of C. jejuni 81116 is still unknown, recent mass spectrometry analyses suggest that it contains acetylated forms of two ddHexN residues. For this investigation, five of the genes encoding enzymes reportedly involved in the biosyntheses of these sugar residues were examined, rmlA, rmlB, wlaRA, wlaRB and wlaRG. Specifically, these genes were cloned and expressed in Escherichia coli, and the corresponding enzymes were purified and tested for biochemical activity. Here we present data demonstrating that RmlA functions as a glucose-1-phosphate thymidylyltransferase and that RmlB is a thymidine diphosphate (dTDP)-glucose 4,6-dehydratase. We also show, through nuclear magnetic resonance spectroscopy and mass spectrometry analyses, that WlaRG, when utilized in coupled assays with either WlaRA or WlaRB and dTDP-4-keto-6-deoxyglucose, results in the production of either dTDP-3-amino-3,6-dideoxy-d-galactose (dTDP-Fuc3N) or dTDP-3-amino-3,6-dideoxy-d-glucose (dTDP-Qui3N), respectively. In addition, the X-ray crystallographic structures of the 3,4-ketoisomerases, WlaRA and WlaRB, were determined to 2.14 and 2.0 Å resolutions, respectively. Taken together, the data reported herein demonstrate that C. jejuni 81116 utilizes five enzymes to synthesize dTDP-Fuc3N or dTDP-Qui3N and that WlaRG, an aminotransferase, can function on sugars with differing stereochemistry about their C-4' carbons. Importantly, the data reveal that C. jejuni 81116 has the ability to synthesize two isomeric ddHexN forms.
Collapse
Affiliation(s)
- Zack Z Li
- National Research Council Canada, Human Health Therapeutics, 100 Sussex Drive, Ottawa, ON, Canada
| | - Alexander S Riegert
- Department of Biochemistry, University of Wisconsin, 440 Henry Mall, Madison, WI, USA
| | - Marie-France Goneau
- National Research Council Canada, Human Health Therapeutics, 100 Sussex Drive, Ottawa, ON, Canada
| | - Anna M Cunningham
- National Research Council Canada, Human Health Therapeutics, 100 Sussex Drive, Ottawa, ON, Canada
| | - Evgeny Vinogradov
- National Research Council Canada, Human Health Therapeutics, 100 Sussex Drive, Ottawa, ON, Canada
| | - Jianjun Li
- National Research Council Canada, Human Health Therapeutics, 100 Sussex Drive, Ottawa, ON, Canada
| | - Ian C Schoenhofen
- National Research Council Canada, Human Health Therapeutics, 100 Sussex Drive, Ottawa, ON, Canada
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin, 440 Henry Mall, Madison, WI, USA
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, 440 Henry Mall, Madison, WI, USA
| | - Michel Gilbert
- National Research Council Canada, Human Health Therapeutics, 100 Sussex Drive, Ottawa, ON, Canada
| |
Collapse
|
9
|
Kenyon JJ, Kasimova AA, Shneider MM, Shashkov AS, Arbatsky NP, Popova AV, Miroshnikov KA, Hall RM, Knirel YA. The KL24 gene cluster and a genomic island encoding a Wzy polymerase contribute genes needed for synthesis of the K24 capsular polysaccharide by the multiply antibiotic resistant Acinetobacter baumannii isolate RCH51. MICROBIOLOGY-SGM 2017; 163:355-363. [PMID: 28356169 DOI: 10.1099/mic.0.000430] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The whole-genome sequence of the multiply antibiotic resistant Acinetobacter baumannii isolate RCH51 belonging to sequence type ST103 (Institut Pasteur scheme) revealed that the set of genes at the capsule locus, KL24, includes four genes predicted to direct the synthesis of 3-acetamido-3,6-dideoxy-d-galactose (d-Fuc3NAc), and this sugar was found in the capsular polysaccharide (CPS). One of these genes, fdtE, encodes a novel bifunctional protein with an N-terminal FdtA 3,4-ketoisomerase domain and a C-terminal acetyltransferase domain. KL24 lacks a gene encoding a Wzy polymerase to link the oligosaccharide K units to form the CPS found associated with isolate RCH51, and a wzy gene was found in a small genomic island (GI) near the cpn60 gene. This GI is in precisely the same location as another GI carrying wzy and atr genes recently found in several A. baumannii isolates, but it does not otherwise resemble it. The CPS isolated from RCH51, studied by sugar analysis and 1D and 2D 1H and 13C NMR spectroscopy, revealed that the K unit has a branched pentasaccharide structure made up of Gal, GalNAc and GlcNAc residues with d-Fuc3NAc as a side branch, and the K units are linked via a β-d-GlcpNAc-(1→3)-β-d-Galp linkage formed by the Wzy encoded by the GI. The functions of the glycosyltransferases encoded by KL24 were assigned to formation of specific bonds. A correspondence between the order of the genes in KL24 and other KL and the order of the linkages they form was noted, and this may be useful in future predictions of glycosyltransferase specificities.
Collapse
Affiliation(s)
- Johanna J Kenyon
- School of Molecular Bioscience, The University of Sydney, Sydney, Australia.,Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Anastasiya A Kasimova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Mikhail M Shneider
- M. M. Shemyakin and Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay P Arbatsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya V Popova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.,State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Konstantin A Miroshnikov
- M. M. Shemyakin and Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ruth M Hall
- School of Molecular Bioscience, The University of Sydney, Sydney, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Yu X, Torzewska A, Zhang X, Yin Z, Drzewiecka D, Cao H, Liu B, Knirel YA, Rozalski A, Wang L. Genetic diversity of the O antigens of Proteus species and the development of a suspension array for molecular serotyping. PLoS One 2017; 12:e0183267. [PMID: 28817637 PMCID: PMC5560731 DOI: 10.1371/journal.pone.0183267] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/01/2017] [Indexed: 11/18/2022] Open
Abstract
Proteus species are well-known opportunistic pathogens frequently associated with skin wound and urinary tract infections in humans and animals. O antigen diversity is important for bacteria to adapt to different hosts and environments, and has been used to identify serotypes of Proteus isolates. At present, 80 Proteus O-serotypes have been reported. Although the O antigen structures of most Proteus serotypes have been identified, the genetic features of these O antigens have not been well characterized. The O antigen gene clusters of Proteus species are located between the cpxA and secB genes. In this study, we identified 55 O antigen gene clusters of different Proteus serotypes. All clusters contain both the wzx and wzy genes and exhibit a high degree of heterogeneity. Potential functions of O antigen-related genes were proposed based on their similarity to genes in available databases. The O antigen gene clusters and structures were compared, and a number of glycosyltransferases were assigned to glycosidic linkages. In addition, an O serotype-specific suspension array was developed for detecting 31 Proteus serotypes frequently isolated from clinical specimens. To our knowledge, this is the first comprehensive report to describe the genetic features of Proteus O antigens and to develop a molecular technique to identify different Proteus serotypes.
Collapse
Affiliation(s)
- Xiang Yu
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
| | - Agnieszka Torzewska
- Department of Immunobiology of Bacteria, Department of General Microbiology Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Xinjie Zhang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
| | - Zhiqiu Yin
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
| | - Dominika Drzewiecka
- Department of Immunobiology of Bacteria, Department of General Microbiology Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Hengchun Cao
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
| | - Yuriy A. Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Antoni Rozalski
- Department of Immunobiology of Bacteria, Department of General Microbiology Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Lei Wang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
- * E-mail:
| |
Collapse
|
11
|
Bouché L, Panico M, Hitchen P, Binet D, Sastre F, Faulds-Pain A, Valiente E, Vinogradov E, Aubry A, Fulton K, Twine S, Logan SM, Wren BW, Dell A, Morris HR. The Type B Flagellin of Hypervirulent Clostridium difficile Is Modified with Novel Sulfonated Peptidylamido-glycans. J Biol Chem 2016; 291:25439-25449. [PMID: 27758867 PMCID: PMC5207245 DOI: 10.1074/jbc.m116.749481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/12/2016] [Indexed: 01/15/2023] Open
Abstract
Glycosylation of flagellins is a well recognized property of many bacterial species. In this study, we describe the structural characterization of novel flagellar glycans from a number of hypervirulent strains of C. difficile. We used mass spectrometry (nano-LC-MS and MS/MS analysis) to identify a number of putative glycopeptides that carried a variety of glycoform substitutions, each of which was linked through an initial N-acetylhexosamine residue to Ser or Thr. Detailed analysis of a LLDGSSTEIR glycopeptide released by tryptic digestion, which carried two variant structures, revealed that the glycopeptide contained, in addition to carbohydrate moieties, a novel structural entity. A variety of electrospray-MS strategies using Q-TOF technology were used to define this entity, including positive and negative ion collisionally activated decomposition MS/MS, which produced unique fragmentation patterns, and high resolution accurate mass measurement to allow derivation of atomic compositions, leading to the suggestion of a taurine-containing peptidylamido-glycan structure. Finally, NMR analysis of flagellin glycopeptides provided complementary information. The glycan portion of the modification was assigned as α-Fuc3N-(1→3)-α-Rha-(1→2)-α-Rha3OMe-(1→3)-β-GlcNAc-(1→)Ser, and the novel capping moiety was shown to be comprised of taurine, alanine, and glycine. This is the first report of a novel O-linked sulfonated peptidylamido-glycan moiety decorating a flagellin protein.
Collapse
Affiliation(s)
- Laura Bouché
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Maria Panico
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Paul Hitchen
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Daniel Binet
- BioPharmaSpec, Suite 3.1 Lido Medical Centre, St. Saviours Road, Jersey JE2 7LA, United Kingdom
| | - Federico Sastre
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Alexandra Faulds-Pain
- the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Esmeralda Valiente
- the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Evgeny Vinogradov
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Annie Aubry
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Kelly Fulton
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Susan Twine
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Susan M Logan
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Brendan W Wren
- the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Anne Dell
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom,
| | - Howard R Morris
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.,BioPharmaSpec, Suite 3.1 Lido Medical Centre, St. Saviours Road, Jersey JE2 7LA, United Kingdom
| |
Collapse
|
12
|
Valiente E, Bouché L, Hitchen P, Faulds-Pain A, Songane M, Dawson LF, Donahue E, Stabler RA, Panico M, Morris HR, Bajaj-Elliott M, Logan SM, Dell A, Wren BW. Role of Glycosyltransferases Modifying Type B Flagellin of Emerging Hypervirulent Clostridium difficile Lineages and Their Impact on Motility and Biofilm Formation. J Biol Chem 2016; 291:25450-25461. [PMID: 27703012 PMCID: PMC5207246 DOI: 10.1074/jbc.m116.749523] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/27/2016] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is the principal cause of nosocomial infectious diarrhea worldwide. The pathogen modifies its flagellin with either a type A or type B O-linked glycosylation system, which has a contributory role in pathogenesis. We study the functional role of glycosyltransferases modifying type B flagellin in the 023 and 027 hypervirulent C. difficile lineages by mutagenesis of five putative glycosyltransferases and biosynthetic genes. We reveal their roles in the biosynthesis of the flagellin glycan chain and demonstrate that flagellar post-translational modification affects motility and adhesion-related bacterial properties of these strains. We show that the glycosyltransferases 1 and 2 (GT1 and GT2) are responsible for the sequential addition of a GlcNAc and two rhamnoses, respectively, and that GT3 is associated with the incorporation of a novel sulfonated peptidyl-amido sugar moiety whose structure is reported in our accompanying paper (Bouché, L., Panico, M., Hitchen, P., Binet, D., Sastre, F., Faulds-Pain, A., Valiente, E., Vinogradov, E., Aubry, A., Fulton, K., Twine, S., Logan, S. M., Wren, B. W., Dell, A., and Morris, H. R. (2016) J. Biol. Chem. 291, 25439–25449). GT2 is also responsible for methylation of the rhamnoses. Whereas type B modification is not required for flagellar assembly, some mutations that result in truncation or abolition of the glycan reduce bacterial motility and promote autoaggregation and biofilm formation. The complete lack of flagellin modification also significantly reduces adhesion of C. difficile to Caco-2 intestinal epithelial cells but does not affect activation of human TLR5. Our study advances our understanding of the genes involved in flagellar glycosylation and their biological roles in emerging hypervirulent C. difficile strains.
Collapse
Affiliation(s)
- Esmeralda Valiente
- From the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Laura Bouché
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Paul Hitchen
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Alexandra Faulds-Pain
- From the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Mario Songane
- the Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Lisa F Dawson
- From the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Elizabeth Donahue
- From the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Richard A Stabler
- From the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Maria Panico
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Howard R Morris
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.,BioPharmaSpec Ltd., Suite 3.1, Lido Medical Centre, St. Saviours Road, Jersey JE2 7LA, United Kingdom
| | - Mona Bajaj-Elliott
- the Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Susan M Logan
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Anne Dell
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Brendan W Wren
- From the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom,
| |
Collapse
|
13
|
Senchenkova SN, Guo X, Naumenko OI, Shashkov AS, Perepelov AV, Liu B, Knirel YA. Structure and genetics of the O-antigens of Escherichia coli O182-O187. Carbohydr Res 2016; 435:58-67. [PMID: 27710814 DOI: 10.1016/j.carres.2016.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/22/2016] [Accepted: 09/21/2016] [Indexed: 11/25/2022]
Abstract
O-polysaccharides (OPSs) were obtained by mild acid degradation of the lipopolysaccharides of Escherichia coli O182-O187, and their structures were established by sugar analysis, Smith degradation, and 1H and 13C NMR spectroscopy. In addition to the monosaccharides that occur often in E. coli OPSs (d-Glc, d-Gal, d-Man, d-GlcNAc, d-GalNAc, d-GlcA, l-Fuc, d-Rib), a number of less common components were identified as the OPS constituents, including 2-acetamido-2-deoxy-l-quinovose and 4-deoxy-4-[(S)-3-hydroxybutanoyl-l-alanyl]-d-quinovose (O186), 3-acetamido-3-deoxy-d-fucose (O187), 3-deoxy-3-[(R)-3-hydroxybutanoyl]-d-fucose (O184), and 2,3-diacetamido-2,3-dideoxy-l-rhamnose (O182). The OPS structures of E. coli O183 and O182 are identical to those of the OPS of Shigella boydii type 10 and the capsular polysaccharide of E. coli K48, respectively. The OPSs of E. coli O186 and O123 are closely related differing in the presence of a Glc residue in the former in place of a GlcNAc residue in the latter. The O-antigen gene clusters of the bacteria studied were analyzed and their contents were found to be consistent with the OPS structures. Predicted glycosyltransferases encoded in the gene clusters were tentatively assigned to glycosidic linkages based on similarities to sequences of other E. coli O-serogroups available from GenBank and taking into account the OPS structures established.
Collapse
Affiliation(s)
- Sof'ya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Xi Guo
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457, Tianjin, PR China
| | - Olesya I Naumenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Andrei V Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457, Tianjin, PR China
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation.
| |
Collapse
|
14
|
Schäffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev 2016; 41:49-91. [PMID: 27566466 DOI: 10.1093/femsre/fuw036] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Glycosylation of proteins is one of the most prevalent post-translational modifications occurring in nature, with a wide repertoire of biological implications. Pathways for the main types of this modification, the N- and O-glycosylation, can be found in all three domains of life-the Eukarya, Bacteria and Archaea-thereby following common principles, which are valid also for lipopolysaccharides, lipooligosaccharides and glycopolymers. Thus, studies on any glycoconjugate can unravel novel facets of the still incompletely understood fundamentals of protein N- and O-glycosylation. While it is estimated that more than two-thirds of all eukaryotic proteins would be glycosylated, no such estimate is available for prokaryotic glycoproteins, whose understanding is lagging behind, mainly due to the enormous variability of their glycan structures and variations in the underlying glycosylation processes. Combining glycan structural information with bioinformatic, genetic, biochemical and enzymatic data has opened up an avenue for in-depth analyses of glycosylation processes as a basis for glycoengineering endeavours. Here, the common themes of glycosylation are conceptualised for the major classes of prokaryotic (i.e. bacterial and archaeal) glycoconjugates, with a special focus on glycosylated cell-surface proteins. We describe the current knowledge of biosynthesis and importance of these glycoconjugates in selected pathogenic and beneficial microbes.
Collapse
Affiliation(s)
- Christina Schäffer
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| |
Collapse
|
15
|
Pandey RP, Parajuli P, Gurung RB, Sohng JK. Donor specificity of YjiC glycosyltransferase determines the conjugation of cytosolic NDP-sugar in in vivo glycosylation reactions. Enzyme Microb Technol 2016; 91:26-33. [PMID: 27444326 DOI: 10.1016/j.enzmictec.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/05/2016] [Accepted: 05/20/2016] [Indexed: 12/13/2022]
Abstract
Escherichia coli BL21 (DE3) was engineered by blocking glucose-1-phosphate utilizing glucose phosphate isomerase (pgi), glucose-6-phosphate dehydrogenase (zwf) and uridylyltransferase (galU) genes to produce pool of four different rare dTDP-sugars. The cytosolic pool of dTDP-l-rhamnose, dTDP-d-viosamine, dTDP-4-amino 4,6-dideoxy-d-galactose, and dTDP-3-amino 3,6-dideoxy-d-galactose was generated by overexpressing respective dTDP-sugars biosynthesis genes from various microbial sources. A flexible glycosyltransferase YjiC, from Bacillus licheniformis DSM 13 was also overexpressed to transfer sugar moieties to 3-hydroxyl group of 3-hydroxyflavone, a core unit of flavonoids. Among four rare dTDP-sugars generated in cytosol of engineered strains, YjiC solely transferred l-rhamnose from dTDP-l-rhamnose and tuned to rhamnosyltransferase.
Collapse
Affiliation(s)
- Ramesh Prasad Pandey
- Institute of Biomolecule Reconstruction, Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Republic of Korea
| | - Prakash Parajuli
- Institute of Biomolecule Reconstruction, Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Republic of Korea
| | - Rit Bahadur Gurung
- Institute of Biomolecule Reconstruction, Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Republic of Korea
| | - Jae Kyung Sohng
- Institute of Biomolecule Reconstruction, Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 336-708, Republic of Korea.
| |
Collapse
|
16
|
Genetic Diversity of O-Antigens in Hafnia alvei and the Development of a Suspension Array for Serotype Detection. PLoS One 2016; 11:e0155115. [PMID: 27171009 PMCID: PMC4869667 DOI: 10.1371/journal.pone.0155115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/25/2016] [Indexed: 11/19/2022] Open
Abstract
Hafnia alvei is a facultative and rod-shaped gram-negative bacterium
that belongs to the Enterobacteriaceae family. Although it has been
more than 50 years since the genus was identified, very little is known about
variations among Hafnia species. Diversity in O-antigens
(O-polysaccharide, OPS) is thought to be a major factor in bacterial adaptation to
different hosts and situations and variability in the environment. Antigenic
variation is also an important factor in pathogenicity that has been used to define
clones within a number of species. The genes that are required to synthesize OPS are
always clustered within the bacterial chromosome. A serotyping scheme including 39
O-serotypes has been proposed for H. alvei, but it
has not been correlated with known OPS structures, and no previous report has
described the genetic features of OPS. In this study, we obtained the genome
sequences of 21 H. alvei strains (as defined by
previous immunochemical studies) with different lipopolysaccharides. This is the
first study to show that the O-antigen gene cluster in H.
alvei is located between mpo and
gnd in the chromosome. All 21 of the OPS gene clusters contain
both the wzx gene and the wzy gene and display a
large number of polymorphisms. We developed an O serotype-specific
wzy-based suspension array to detect all 21 of the distinct OPS
forms we identified in H. alvei. To the best of our
knowledge, this is the first report to identify the genetic features of
H. alvei antigenic variation and to develop a
molecular technique to identify and classify different serotypes.
Collapse
|
17
|
Li S, Wang H, Ma J, Gu G, Chen Z, Guo Z. One-pot four-enzyme synthesis of thymidinediphosphate-l-rhamnose. Chem Commun (Camb) 2016; 52:13995-13998. [DOI: 10.1039/c6cc08366h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A concise and effective one-pot four-enzyme synthesis of dTDP-Rha, the substrate of rhamnosyltransferases, is described.
Collapse
Affiliation(s)
- Siqiang Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Jinan 250100
- China
| | - Hong Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Jinan 250100
- China
| | - Juncai Ma
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Jinan 250100
- China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Jinan 250100
- China
| | - Zonggang Chen
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Jinan 250100
- China
| | - Zhongwu Guo
- Department of Chemistry
- University of Florida
- Gainesville
- USA
| |
Collapse
|
18
|
Pandey RP, Parajuli P, Chu LL, Darsandhari S, Sohng JK. Biosynthesis of amino deoxy-sugar-conjugated flavonol glycosides by engineered Escherichia coli. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Thoden JB, Vinogradov E, Gilbert M, Salinger AJ, Holden HM. Bacterial Sugar 3,4-Ketoisomerases: Structural Insight into Product Stereochemistry. Biochemistry 2015; 54:4495-506. [PMID: 26125548 DOI: 10.1021/acs.biochem.5b00541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3-Acetamido-3,6-dideoxy-d-galactose (Fuc3NAc) and 3-acetamido-3,6-dideoxy-d-glucose (Qui3NAc) are unusual sugars found on the lipopolysaccharides of Gram-negative bacteria and on the S-layers of Gram-positive bacteria. The 3,4-ketoisomerases, referred to as FdtA and QdtA, catalyze the third steps in the respective biosynthetic pathways for these sugars. Whereas both enzymes utilize the same substrate, the stereochemistries of their products are different. Specifically, the hydroxyl groups at the hexose C-4' positions assume the "galactose" and "glucose" configurations in the FdtA and QdtA products, respectively. In 2007 we reported the structure of the apoform of FdtA from Aneurinibacillus thermoaerophilus, which was followed in 2014 by the X-ray analysis of QdtA from Thermoanaerobacterium thermosaccharolyticum as a binary complex. Both of these enzymes belong to the cupin superfamily. Here we report a combined structural and enzymological study to explore the manner in which these enzymes control the stereochemistry of their products. Various site-directed mutant proteins of each enzyme were constructed, and their dTDP-sugar products were analyzed by NMR spectroscopy. In addition, the kinetic parameters for these protein variants were measured, and the structure of one, namely, the QdtA Y17R/R97H double mutant form, was determined to 2.3-Å resolution. Finally, in an attempt to obtain a model of FdtA with a bound dTDP-linked sugar, the 3,4-ketoisomerase domain of a bifunctional enzyme from Shewanella denitrificans was cloned, purified, and crystallized in the presence of a dTDP-linked sugar analogue. Taken together, the results from this investigation demonstrate that it is possible to convert a "galacto" enzyme into a "gluco" enzyme and vice versa.
Collapse
Affiliation(s)
- James B Thoden
- †Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Evgeny Vinogradov
- ‡Human Health Therapeutics, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario Canada, K1A OR6
| | - Michel Gilbert
- ‡Human Health Therapeutics, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario Canada, K1A OR6
| | - Ari J Salinger
- †Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Hazel M Holden
- †Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
20
|
Related structures of the O-polysaccharides of Cronobacter dublinensis G3983 and G3977 containing 3-(N-acetyl-l-alanyl)amino-3,6-dideoxy-d-galactose. Carbohydr Res 2015; 404:132-7. [DOI: 10.1016/j.carres.2014.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/21/2022]
|
21
|
Shashkov AS, Wang M, Turdymuratov EM, Hu S, Arbatsky NP, Guo X, Wang L, Knirel YA. Structural and genetic relationships of closely related O-antigens of Cronobacter spp. and Escherichia coli: C. sakazakii G2594 (serotype O4)/E. coli O103 and C. malonaticus G3864 (serotype O1)/E. coli O29. Carbohydr Res 2015; 404:124-31. [DOI: 10.1016/j.carres.2014.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/26/2022]
|
22
|
Ko Y, Ruszczycky MW, Choi SH, Liu HW. Mechanistic studies of the radical S-adenosylmethionine enzyme DesII with TDP-D-fucose. Angew Chem Int Ed Engl 2015; 54:860-3. [PMID: 25418063 PMCID: PMC4293265 DOI: 10.1002/anie.201409540] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Indexed: 11/06/2022]
Abstract
DesII is a radical S-adenosylmethionine (SAM) enzyme that catalyzes the C4-deamination of TDP-4-amino-4,6-dideoxyglucose through a C3 radical intermediate. However, if the C4 amino group is replaced with a hydroxy group (to give TDP-quinovose), the hydroxy group at C3 is oxidized to a ketone with no C4-dehydration. It is hypothesized that hyperconjugation between the C4 C-N/O bond and the partially filled p orbital at C3 of the radical intermediate modulates the degree to which elimination competes with dehydrogenation. To investigate this hypothesis, the reaction of DesII with the C4-epimer of TDP-quinovose (TDP-fucose) was examined. The reaction primarily results in the formation of TDP-6-deoxygulose and likely regeneration of TDP-fucose. The remainder of the substrate radical partitions roughly equally between C3-dehydrogenation and C4-dehydration. Thus, changing the stereochemistry at C4 permits a more balanced competition between elimination and dehydrogenation.
Collapse
Affiliation(s)
- Yeonjin Ko
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mark W. Ruszczycky
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sei-Hyun Choi
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-wen Liu
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
23
|
Ko Y, Ruszczycky MW, Choi SH, Liu HW. Mechanistic Studies of the RadicalS-Adenosylmethionine Enzyme DesII with TDP-D-Fucose. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409540] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Abstract
Prokaryotic glycosylation fulfills an important role in maintaining and protecting the structural integrity and function of the bacterial cell wall, as well as serving as a flexible adaption mechanism to evade environmental and host-induced pressure. The scope of bacterial and archaeal protein glycosylation has considerably expanded over the past decade(s), with numerous examples covering the glycosylation of flagella, pili, glycosylated enzymes, as well as surface-layer proteins. This article addresses structure, analysis, function, genetic basis, biosynthesis, and biomedical and biotechnological applications of cell-envelope glycoconjugates, S-layer glycoprotein glycans, and "nonclassical" secondary-cell wall polysaccharides. The latter group of polymers mediates the important attachment and regular orientation of the S-layer to the cell wall. The structures of these glycopolymers reveal an enormous diversity, resembling the structural variability of bacterial lipopolysaccharides and capsular polysaccharides. While most examples are presented for Gram-positive bacteria, the S-layer glycan of the Gram-negative pathogen Tannerella forsythia is also discussed. In addition, archaeal S-layer glycoproteins are briefly summarized.
Collapse
Affiliation(s)
- Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | |
Collapse
|
25
|
Thoden JB, Holden HM. The molecular architecture of QdtA, a sugar 3,4-ketoisomerase from Thermoanaerobacterium thermosaccharolyticum. Protein Sci 2014; 23:683-92. [PMID: 24616215 DOI: 10.1002/pro.2451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/01/2014] [Accepted: 03/03/2014] [Indexed: 11/05/2022]
Abstract
Unusual di- and trideoxysugars are often found on the O-antigens of Gram-negative bacteria, on the S-layers of Gram-positive bacteria, and on various natural products. One such sugar is 3-acetamido-3,6-dideoxy-D-glucose. A key step in its biosynthesis, catalyzed by a 3,4-ketoisomerase, is the conversion of thymidine diphosphate (dTDP)-4-keto-6-deoxyglucose to dTDP-3-keto-6-deoxyglucose. Here we report an X-ray analysis of a 3,4-ketoisomerase from Thermoanaerobacterium thermosaccharolyticum. For this investigation, the wild-type enzyme, referred to as QdtA, was crystallized in the presence of dTDP and its structure solved to 2.0-Å resolution. The dimeric enzyme adopts a three-dimensional architecture that is characteristic for proteins belonging to the cupin superfamily. In order to trap the dTDP-4-keto-6-deoxyglucose substrate into the active site, a mutant protein, H51N, was subsequently constructed, and the structure of this protein in complex with the dTDP-sugar ligand was solved to 1.9-Å resolution. Taken together, the structures suggest that His 51 serves as a catalytic base, that Tyr 37 likely functions as a catalytic acid, and that His 53 provides a proton shuttle between the C-3' hydroxyl and the C-4' keto group of the hexose. This study reports the first three-dimensional structure of a 3,4-ketoisomerase in complex with its dTDP-sugar substrate and thus sheds new molecular insight into this fascinating class of enzymes.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| | | |
Collapse
|
26
|
Implication of lateral genetic transfer in the emergence of Aeromonas hydrophila isolates of epidemic outbreaks in channel catfish. PLoS One 2013; 8:e80943. [PMID: 24278351 PMCID: PMC3835674 DOI: 10.1371/journal.pone.0080943] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/08/2013] [Indexed: 01/29/2023] Open
Abstract
To investigate the molecular basis of the emergence of Aeromonas hydrophila responsible for an epidemic outbreak of motile aeromonad septicemia of catfish in the Southeastern United States, we sequenced 11 A. hydrophila isolates that includes five reference and six recent epidemic isolates. Comparative genomics revealed that recent epidemic A. hydrophila isolates are highly clonal, whereas reference isolates are greatly diverse. We identified 55 epidemic-associated genetic regions with 313 predicted genes that are present in epidemic isolates but absent from reference isolates and 35% of these regions are located within genomic islands, suggesting their acquisition through lateral gene transfer. The epidemic-associated regions encode predicted prophage elements, pathogenicity islands, metabolic islands, fitness islands and genes of unknown functions, and 34 of the genes encoded in these regions were predicted as virulence factors. We found two pilus biogenesis gene clusters encoded within predicted pathogenicity islands. A functional metabolic island that encodes a complete pathway for myo-inositol catabolism was evident by the ability of epidemic A. hydrophila isolates to use myo-inositol as a sole carbon source. Testing of A. hydrophila field isolates found a consistent correlation between myo-inositol utilization as a sole carbon source and the presence of an epidemic-specific genetic marker. All epidemic isolates and one reference isolate shared a novel O-antigen cluster. Altogether we identified four different O-antigen biosynthesis gene clusters within the 11 sequenced A. hydrophila genomes. Our study reveals new insights into the evolutionary changes that have resulted in the emergence of recent epidemic A. hydrophila strains.
Collapse
|
27
|
Chantigian DP, Thoden JB, Holden HM. Structural and biochemical characterization of a bifunctional ketoisomerase/N-acetyltransferase from Shewanella denitrificans. Biochemistry 2013; 52:8374-85. [PMID: 24128043 DOI: 10.1021/bi401170t] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unusual N-acetylated sugars have been observed on the O-antigens of some Gram-negative bacteria and on the S-layers of both Gram-positive and Gram-negative bacteria. One such sugar is 3-acetamido-3,6-dideoxy-α-d-galactose or Fuc3NAc. The pathway for its production requires five enzymes with the first step involving the attachment of dTMP to glucose-1-phosphate. Here, we report a structural and biochemical characterization of a bifunctional enzyme from Shewanella denitificans thought to be involved in the biosynthesis of dTDP-Fuc3NAc. On the basis of a bioinformatics analysis, the enzyme, hereafter referred to as FdtD, has been postulated to catalyze the third and fifth steps in the pathway, namely, a 3,4-keto isomerization and an N-acetyltransferase reaction. For the X-ray analysis reported here, the enzyme was crystallized in the presence of dTDP and CoA. The crystal structure shows that FdtD adopts a hexameric quaternary structure with 322 symmetry. Each subunit of the hexamer folds into two distinct domains connected by a flexible loop. The N-terminal domain adopts a left-handed β-helix motif and is responsible for the N-acetylation reaction. The C-terminal domain folds into an antiparallel flattened β-barrel that harbors the active site responsible for the isomerization reaction. Biochemical assays verify the two proposed catalytic activities of the enzyme and reveal that the 3,4-keto isomerization event leads to the inversion of configuration about the hexose C-4' carbon.
Collapse
Affiliation(s)
- Daniel P Chantigian
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | | | | |
Collapse
|
28
|
Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Reeves PR, Wang L. Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol Rev 2013; 38:56-89. [PMID: 23848592 DOI: 10.1111/1574-6976.12034] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/15/2013] [Accepted: 07/05/2013] [Indexed: 11/30/2022] Open
Abstract
This review covers the structures and genetics of the 46 O antigens of Salmonella, a major pathogen of humans and domestic animals. The variation in structures underpins the serological specificity of the 46 recognized serogroups. The O antigen is important for the full function and virulence of many bacteria, and the considerable diversity of O antigens can confer selective advantage. Salmonella O antigens can be divided into two major groups: those which have N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine (GalNAc) and those which have galactose (Gal) as the first sugar in the O unit. In recent years, we have determined 21 chemical structures and sequenced 28 gene clusters for GlcNAc-/GalNAc-initiated O antigens, thus completing the structure and DNA sequence data for the 46 Salmonella O antigens. The structures and gene clusters of the GlcNAc-/GalNAc-initiated O antigens were found to be highly diverse, and 24 of them were found to be identical or closely related to Escherichia coli O antigens. Sequence comparisons indicate that all or most of the shared gene clusters were probably present in the common ancestor, although alternative explanations are also possible. In contrast, the better-known eight Gal-initiated O antigens are closely related both in structures and gene cluster sequences.
Collapse
Affiliation(s)
- Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Mobarak H, Engström O, Widmalm G. Synthesis of methyl 3-amino-3,6-dideoxy-α-d-galactopyranoside carrying different amide substituents. RSC Adv 2013. [DOI: 10.1039/c3ra45092a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Holden KM, Gilbert M, Coloe PJ, Li J, Fry BN. The role of WlaRG, WlaTB and WlaTC in lipooligosaccharide synthesis by Campylobacter jejuni strain 81116. Microb Pathog 2012; 52:344-52. [PMID: 22445818 DOI: 10.1016/j.micpath.2012.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 02/29/2012] [Accepted: 03/02/2012] [Indexed: 11/27/2022]
Abstract
Campylobacter jejuni is a major bacterial cause of gastroenteritis world-wide. C. jejuni produces a range of glycans including lipooligosaccharide (LOS), an important virulence factor. The genetic content of the LOS synthesis locus varies between C. jejuni strains and 19 classes have been described. Three LOS synthesis genes of C. jejuni strain 81116 (NCTC 11828), wlaRG, wlaTB and wlaTC were the focus of this study. WlaRG and the remaining two proteins of interest share sequence similarity to aminotransferases and glycosyltransferases, respectively. These genes were insertionally inactivated and phenotypically characterised. Each mutant produced truncated LOS. Mutants lacking WlaRG, WlaTB and WlaTC produced LOS with reduced immunogenicity. Both the wlaRG and wlaTC mutants were non-motile and aflagellate. In vitro invasion and adhesion assays revealed that the wlaRG, wlaTB and wlaTC mutants displayed reduced adherence to chicken embryo fibroblasts. All mutants were less invasive of human cells than 81116 confirming the role of intact LOS during invasion of human cells in vitro. Here we propose the general composition for the 81116 LOS core backbone based on capillary electrophoresis-mass spectrometry.
Collapse
Affiliation(s)
- Karen M Holden
- School of Applied Sciences, RMIT University, Melbourne, Bundoora, VIC 3083, Australia.
| | | | | | | | | |
Collapse
|
31
|
Ovchinnikova OG, Liu B, Guo D, Kocharova NA, Shashkov AS, Chen M, Feng L, Rozalski A, Knirel YA, Wang L. Localization and molecular characterization of putative O antigen gene clusters of Providencia species. MICROBIOLOGY-SGM 2012; 158:1024-1036. [PMID: 22282517 DOI: 10.1099/mic.0.055210-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enterobacteria of the genus Providencia are opportunistic human pathogens associated with urinary tract and wound infections, as well as enteric diseases. The lipopolysaccharide (LPS) O antigen confers major antigenic variability upon the cell surface and is used for serotyping of Gram-negative bacteria. Recently, Providencia O antigen structures have been extensively studied, but no data on the location and organization of the O antigen gene cluster have been reported. In this study, the four Providencia genome sequences available were analysed, and the putative O antigen gene cluster was identified in the polymorphic locus between the cpxA and yibK genes. This finding provided the necessary information for designing primers, and cloning and sequencing the O antigen gene clusters from five more Providencia alcalifaciens strains. The gene functions predicted in silico were in agreement with the known O antigen structures; furthermore, annotation of the genes involved in the three-step synthesis of GDP-colitose (gmd, colD and colC) was supported by cloning and biochemical characterization of the corresponding enzymes. In one strain (P. alcalifaciens O39), no polysaccharide product of the gene cluster in the cpxA-yibK locus was found, and hence genes for synthesis of the existing O antigen are located elsewhere in the genome. In addition to the putative O antigen synthesis genes, homologues of wza, wzb, wzc and (in three strains) wzi, required for the surface expression of capsular polysaccharides, were found upstream of yibK in all species except Providencia rustigianii, suggesting that the LPS of these species may be attributed to the so-called K LPS (K(LPS)). The data obtained open a way for development of a PCR-based typing method for identification of Providencia isolates.
Collapse
Affiliation(s)
- Olga G Ovchinnikova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia.,TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China
| | - Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China
| | - Dan Guo
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China
| | - Nina A Kocharova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia
| | - Miao Chen
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China
| | - Lu Feng
- Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China.,TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China
| | - Antoni Rozalski
- Department of Immunobiology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia
| | - Lei Wang
- Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China.,TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China
| |
Collapse
|
32
|
Molecular characterization of Cronobacter lipopolysaccharide O-antigen gene clusters and development of serotype-specific PCR assays. Appl Environ Microbiol 2011; 77:4017-26. [PMID: 21531829 DOI: 10.1128/aem.00162-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cronobacter (formerly Enterobacter sakazakii) is a recently defined genus consisting of six species, C. sakazakii, C. malonaticus, C. dublinensis, C. muytjensii, C. turicensis, and Cronobacter genomospecies 1. In this study, MboII restriction fragment length polymorphism (RFLP) patterns of O-antigen gene clusters, located between galF and gnd, were used to identify serotypes in Cronobacter spp. Seven O-antigen RFLP clusters were generated, including three C. sakazakii clusters, previously identified as serotypes O1, O2, and O3. The O-antigen regions of six strains with unique RFLP patterns, including two C. sakazakii strains, two C. malonaticus strains, one C. turicensis strain, and one C. muytjensii strain, revealed three O-antigen gene clusters shared among Cronobacter species. PCR assays were developed, targeting the wzx O-antigen polymerase gene, and used to screen 231 Cronobacter strains to determine the frequency of these newly identified serotypes.
Collapse
|
33
|
Kharel MK, Lian H, Rohr J. Characterization of the TDP-D-ravidosamine biosynthetic pathway: one-pot enzymatic synthesis of TDP-D-ravidosamine from thymidine-5-phosphate and glucose-1-phosphate. Org Biomol Chem 2011; 9:1799-808. [PMID: 21264378 PMCID: PMC4482361 DOI: 10.1039/c0ob00854k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ravidomycin V and related compounds, e.g., FE35A-B, exhibit potent anticancer activities against various cancer cell lines in the presence of visible light. The amino sugar moieties (D-ravidosamine and its analogues, respectively) in these molecules contribute to the higher potencies of ravidomycin and analogues when compared to closely related compounds with neutral or branched sugars. Within the ravidomycin V biosynthetic gene cluster, five putative genes encoding NDP-D-ravidosamine biosynthetic enzymes were identified. Through the activities of the isolated enzymes in vitro, it is demonstrated that ravD, ravE, ravIM, ravAMT and ravNMT encode TDP-D-glucose synthase, TDP-4-keto-6-deoxy-D-glucose-4,6-dehydratase, TDP-4-keto-6-deoxy-D-glucose-3,4-ketoisomerase, TDP-3-keto-6-deoxy-D-galactose-3-aminotransferase, and TDP-3-amino-3,6-dideoxy-D-galactose-N,N-dimethyl-transferase, respectively. A protocol for a one-pot enzymatic synthesis of TDP-D-ravidosamine has been developed. The results presented here now set the stage to produce TDP-D-ravidosamine routinely for glycosylation studies.
Collapse
Affiliation(s)
- Madan K. Kharel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Hui Lian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| |
Collapse
|
34
|
Ristl R, Steiner K, Zarschler K, Zayni S, Messner P, Schäffer C. The s-layer glycome-adding to the sugar coat of bacteria. Int J Microbiol 2010; 2011:127870. [PMID: 20871840 PMCID: PMC2943079 DOI: 10.1155/2011/127870] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/29/2010] [Indexed: 11/29/2022] Open
Abstract
The amazing repertoire of glycoconjugates present on bacterial cell surfaces includes lipopolysaccharides, capsular polysaccharides, lipooligosaccharides, exopolysaccharides, and glycoproteins. While the former are constituents of Gram-negative cells, we review here the cell surface S-layer glycoproteins of Gram-positive bacteria. S-layer glycoproteins have the unique feature of self-assembling into 2D lattices providing a display matrix for glycans with periodicity at the nanometer scale. Typically, bacterial S-layer glycans are O-glycosidically linked to serine, threonine, or tyrosine residues, and they rely on a much wider variety of constituents, glycosidic linkage types, and structures than their eukaryotic counterparts. As the S-layer glycome of several bacteria is unravelling, a picture of how S-layer glycoproteins are biosynthesized is evolving. X-ray crystallography experiments allowed first insights into the catalysis mechanism of selected enzymes. In the future, it will be exciting to fully exploit the S-layer glycome for glycoengineering purposes and to link it to the bacterial interactome.
Collapse
Affiliation(s)
- Robin Ristl
- Department of NanoBiotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Kerstin Steiner
- Department of NanoBiotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, UK
| | - Kristof Zarschler
- Department of NanoBiotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
- Institute of Genetics, General Genetics, Dresden University of Technology, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Sonja Zayni
- Department of NanoBiotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology, Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
35
|
Gottelt M, Kol S, Gomez-Escribano JP, Bibb M, Takano E. Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2). MICROBIOLOGY (READING, ENGLAND) 2010; 156:2343-2353. [PMID: 20447997 DOI: 10.1099/mic.0.038281-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genome sequencing of Streptomyces coelicolor A3(2) revealed an uncharacterized type I polyketide synthase gene cluster (cpk). Here we describe the discovery of a novel antibacterial activity (abCPK) and a yellow-pigmented secondary metabolite (yCPK) after deleting a presumed pathway-specific regulatory gene (scbR2) that encodes a member of the gamma-butyrolactone receptor family of proteins and which lies in the cpk gene cluster. Overproduction of yCPK and abCPK in a scbR2 deletion mutant, and the absence of the newly described compounds from cpk deletion mutants, suggest that they are products of the previously orphan cpk biosynthetic pathway in which abCPK is converted into the yellow pigment. Transcriptional analysis suggests that scbR2 may act in a negative feedback mechanism to eventually limit yCPK biosynthesis. The results described here represent a novel approach for the discovery of new, biologically active compounds.
Collapse
Affiliation(s)
- Marco Gottelt
- Department of Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751NN Haren, The Netherlands
| | - Stefan Kol
- Department of Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751NN Haren, The Netherlands
| | - Juan Pablo Gomez-Escribano
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Mervyn Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Eriko Takano
- Department of Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751NN Haren, The Netherlands
| |
Collapse
|
36
|
Hutchinson E, Murphy B, Dunne T, Breen C, Rawlings B, Caffrey P. Redesign of polyene macrolide glycosylation: engineered biosynthesis of 19-(O)-perosaminyl-amphoteronolide B. ACTA ACUST UNITED AC 2010; 17:174-82. [PMID: 20189107 DOI: 10.1016/j.chembiol.2010.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 12/03/2009] [Accepted: 01/11/2010] [Indexed: 11/17/2022]
Abstract
Most polyene macrolide antibiotics are glycosylated with mycosamine (3,6-dideoxy-3-aminomannose). In the amphotericin B producer, Streptomyces nodosus, mycosamine biosynthesis begins with AmphDIII-catalyzed conversion of GDP-mannose to GDP-4-keto-6-deoxymannose. This is converted to GDP-3-keto-6-deoxymannose, which is transaminated to GDP-mycosamine by the AmphDII protein. The glycosyltransferase AmphDI transfers mycosamine to amphotericin aglycones (amphoteronolides). The aromatic heptaene perimycin is unusual among polyenes in that the sugar is perosamine (4,6-dideoxy-4-aminomannose), which is synthesized by direct transamination of GDP-4-keto-6-deoxymannose. Here, we use the Streptomyces aminophilus perDII perosamine synthase and perDI perosaminyltransferase genes to engineer biosynthesis of perosaminyl-amphoteronolide B in S. nodosus. Efficient production required a hybrid glycosyltransferase containing an N-terminal region of AmphDI and a C-terminal region of PerDI. This work will assist efforts to generate glycorandomized amphoteronolides for drug discovery.
Collapse
Affiliation(s)
- Eve Hutchinson
- School of Biomolecular and Biomedical Science and Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
37
|
Thoden JB, Holden HM. Molecular structure of WlbB, a bacterial N-acetyltransferase involved in the biosynthesis of 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid . Biochemistry 2010; 49:4644-53. [PMID: 20433200 PMCID: PMC2879449 DOI: 10.1021/bi1005738] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pathogenic bacteria Pseudomonas aeruginosa and Bordetella pertussis contain in their outer membranes the rare sugar 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid. Five enzymes are required for the biosynthesis of this sugar starting from UDP-N-acetylglucosamine. One of these, referred to as WlbB, is an N-acetyltransferase that converts UDP-2-acetamido-3-amino-2,3-dideoxy-d-glucuronic acid (UDP-GlcNAc3NA) to UDP-2,3-diacetamido-2,3-dideoxy-d-glucuronic acid (UDP-GlcNAc3NAcA). Here we report the three-dimensional structure of WlbB from Bordetella petrii. For this analysis, two ternary structures were determined to 1.43 A resolution: one in which the protein was complexed with acetyl-CoA and UDP and the second in which the protein contained bound CoA and UDP-GlcNAc3NA. WlbB adopts a trimeric quaternary structure and belongs to the LbetaH superfamily of N-acyltransferases. Each subunit contains 27 beta-strands, 23 of which form the canonical left-handed beta-helix. There are only two hydrogen bonds that occur between the protein and the GlcNAc3NA moiety, one between O(delta1) of Asn 84 and the sugar C-3' amino group and the second between the backbone amide group of Arg 94 and the sugar C-5' carboxylate. The sugar C-3' amino group is ideally positioned in the active site to attack the si face of acetyl-CoA. Given that there are no protein side chains that can function as general bases within the GlcNAc3NA binding pocket, a reaction mechanism is proposed for WlbB whereby the sulfur of CoA ultimately functions as the proton acceptor required for catalysis.
Collapse
Affiliation(s)
- James B. Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Hazel M. Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
38
|
Structure and gene cluster of the O-antigen of Salmonella enterica O60 containing 3-formamido-3,6-dideoxy-D-galactose. Carbohydr Res 2010; 345:1632-4. [PMID: 20538266 DOI: 10.1016/j.carres.2010.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/05/2010] [Accepted: 05/10/2010] [Indexed: 11/23/2022]
Abstract
An O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Salmonella enterica O60 strain G1462, and the following unique structure of the O-unit was determined by chemical analyses along with 2D (1)H and (13)C NMR spectroscopy: where Fuc3NFo stands for 3-formamido-3,6-dideoxygalactose. The structure established is in agreement with the O-antigen gene cluster of S. enterica O60, which contains putative genes for the synthesis of GDP-D-Man and dTDP-D-Fuc3NFo, three glycosyltransferase genes, and two O-unit-processing genes (wzx and wzy).
Collapse
|
39
|
A multiplex PCR method to detect 14 Escherichia coli serogroups associated with urinary tract infections. J Microbiol Methods 2010; 82:71-7. [PMID: 20434495 DOI: 10.1016/j.mimet.2010.04.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/16/2010] [Accepted: 04/22/2010] [Indexed: 11/20/2022]
Abstract
Urinary tract infections (UTIs) are one of the most common bacterial infections and are predominantly caused by uropathogenic Escherichia coli (UPEC). E. coli strains belonging to 14 serogroups, including O1, O2, O4, O6, O7, O8, O15, O16, O18, O21, O22, O25, O75 and O83, are the most frequently detected UPEC strains in a diverse range of clinical urine specimens. In the current study, the O-antigen gene clusters of E. coli serogroups O1, O2, O18 and O75 were characterized. A multiplex PCR method based on O-antigen-specific genes was developed for the simultaneous detection of all 14 E. coli serogroups. The multiplex PCR method was shown to be highly specific and reproducible when tested against 186 E. coli and Shigella O-serogroup reference strains, 47 E. coli clinical isolates and 10 strains of other bacterial species. The sensitivity of the multiplex PCR method was analyzed and shown to detect O-antigen-specific genes in samples containing 25 ng of genomic DNA or in mock urine specimens containing 40 colony-forming units (CFUs) per ml. Five urine specimens from hospital were examined using this multiplex PCR method, and the result for one sample was verified by the conventional serotyping methods. The multiplex PCR method developed herein can be used for the detection of relevant E. coli strains from clinical and/or environmental samples, and it is particularly useful for epidemiologic analysis of urine specimens from patients with UTIs.
Collapse
|
40
|
Kharel MK, Nybo SE, Shepherd MD, Rohr J. Cloning and characterization of the ravidomycin and chrysomycin biosynthetic gene clusters. Chembiochem 2010; 11:523-32. [PMID: 20140934 PMCID: PMC2879346 DOI: 10.1002/cbic.200900673] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Indexed: 11/06/2022]
Abstract
The gene clusters responsible for the biosynthesis of two antitumor antibiotics, ravidomycin and chrysomycin, have been cloned from Streptomyces ravidus and Streptomyces albaduncus, respectively. Sequencing of the 33.28 kb DNA region of the cosmid cosRav32 and the 34.65 kb DNA region of cosChry1-1 and cosChryF2 revealed 36 and 35 open reading frames (ORFs), respectively, harboring tandem sets of type II polyketide synthase (PKS) genes, D-ravidosamine and D-virenose biosynthetic genes, post-PKS tailoring genes, regulatory genes, and genes of unknown function. The isolated ravidomycin gene cluster was confirmed to be involved in ravidomycin biosynthesis through the production of a new analogue of ravidomycin along with anticipated pathway intermediates and biosynthetic shunt products upon heterologous expression of the cosmid, cosRav32, in Streptomyces lividans TK24. The identity of the cluster was further verified through cross complementation of gilvocarcin V (GV) mutants. Similarly, the chrysomycin gene cluster was demonstrated to be indirectly involved in chrysomycin biosynthesis through cross-complementation of gilvocarcin mutants deficient in the oxygenases GilOII, GilOIII, and GilOIV with the respective chrysomycin monooxygenase homologues. The ravidomycin glycosyltransferase (RavGT) appears to be able to transfer both amino- and neutral sugars, exemplified through the structurally distinct 6-membered D-ravidosamine and 5-membered D-fucofuranose, to the coumarin-based polyketide derived backbone. These results expand the library of biosynthetic genes involved in the biosyntheses of gilvocarcin class compounds that can be used to generate novel analogues through combinatorial biosynthesis.
Collapse
Affiliation(s)
- Madan K Kharel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA
| | | | | | | |
Collapse
|
41
|
Liu B, Perepelov AV, Svensson MV, Shevelev SD, Guo D, Senchenkova SN, Shashkov AS, Weintraub A, Feng L, Widmalm G, Knirel YA, Wang L. Genetic and structural relationships of Salmonella O55 and Escherichia coli O103 O-antigens and identification of a 3-hydroxybutanoyltransferase gene involved in the synthesis of a Fuc3N derivative. Glycobiology 2010; 20:679-88. [PMID: 20147450 DOI: 10.1093/glycob/cwq015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
O-antigen (O-polysaccharide), a part of the outer membrane of Gram-negative bacteria, is one of the most variable cell constituents and is related to bacterial virulence. O-antigen diversity is almost entirely due to genetic variations in O-antigen gene clusters. In this study, the O-polysaccharide structures of Salmonella O55 and Escherichia coli O103 were elucidated by chemical analysis and nuclear magnetic resonance spectroscopy. It was found that the O-polysaccharides have similar pentasaccharide O-units, which differ only in one sugar (glucose versus N-acetylglucosamine) and in the N-acyl group (acetyl versus 3-hydroxybutanoyl) on 3-amino-3,6-dideoxy-d-galactose (d-Fuc3N). The Salmonella O55 antigen gene cluster was sequenced and compared with the E. coli O103 antigen gene cluster reported previously. The two gene clusters were found to share high-level similarity (DNA identity ranges from 53% to 76%), except for two putative acyl transferase genes (fdtC in Salmonella O55 and fdhC in E. coli O103) which show no similarity. Replacement of the fdtC gene in Salmonella O55 with the fdhC gene from E. coli O103 resulted in production of a modified O-antigen, which contains a 3-hydroxybutanoyl derivative of Fuc3N in place of 3-acetamido-3,6-dideoxygalactose. This finding strongly suggests that fdhC is a 3-hydroxybutanoyltransferase gene. The sequence similarity level suggested that the O-antigen gene clusters of Salmonella O55 and E. coli O103 originate from a common ancestor, and this evolutionary relationship is discussed.
Collapse
Affiliation(s)
- Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Metabolomics is essentially the study of all low molecular weight molecules in a biological system under defined conditions. In glycomics, there is much potential to gain insight into the biosynthesis of novel glycoconjugate structures by probing the metabolome for substrates that are suspected, or known, to be involved in the biosynthetic processes. Recently, we employed the use of hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) in a focused metabolomic study of sugar-nucleotides relevant to the biosynthesis of highly novel carbohydrate modifications on the flagellin of Campylobacter sp. We exploited the unique selectivity of the HILIC-MS method for discriminating between closely related sugar-nucleotide intermediates and allowed their subsequent structural identification using a combination of high-resolution mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. In addition, the HILIC-MS method permitted screening of selected isogenic mutants for sugar-nucleotide intermediates to determine a role for the corresponding genes on the flagellin glycosylation locus in the biosynthesis of the novel carbohydrate modifications.
Collapse
Affiliation(s)
- Evelyn C Soo
- Institute for Marine Biosciences, National Research Council Canada, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
43
|
Westman EL, McNally DJ, Charchoglyan A, Brewer D, Field RA, Lam JS. Characterization of WbpB, WbpE, and WbpD and reconstitution of a pathway for the biosynthesis of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronic acid in Pseudomonas aeruginosa. J Biol Chem 2009; 284:11854-62. [PMID: 19282284 PMCID: PMC2673254 DOI: 10.1074/jbc.m808583200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 03/11/2009] [Indexed: 11/06/2022] Open
Abstract
The lipopolysaccharide of Pseudomonas aeruginosa PAO1 contains an unusual sugar, 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid (d-ManNAc3NAcA). wbpB, wbpE, and wbpD are thought to encode oxidase, transaminase, and N-acetyltransferase enzymes. To characterize their functions, recombinant proteins were overexpressed and purified from heterologous hosts. Activities of His(6)-WbpB and His(6)-WbpE were detected only when both proteins were combined in the same reaction. Using a direct MALDI-TOF mass spectrometry approach, we identified ions that corresponded to the predicted products of WbpB (UDP-3-keto-d-GlcNAcA) and WbpE (UDP-d-GlcNAc3NA) in the coupled enzyme-substrate reaction. Additionally, in reactions involving WbpB, WbpE, and WbpD, an ion consistent with the expected product of WbpD (UDP-d-GlcNAc3NAcA) was identified. Preparative quantities of UDP-d-GlcNAc3NA and UDP-d-GlcNAc3NAcA were enzymatically synthesized. These compounds were purified by high-performance liquid chromatography, and their structures were elucidated by NMR spectroscopy. This is the first report of the functional characterization of these proteins, and the enzymatic synthesis of UDP-d-GlcNAc3NA and UDP-d-GlcNAc3NAcA.
Collapse
Affiliation(s)
- Erin L Westman
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
44
|
King JD, Poon KKH, Webb NA, Anderson EM, McNally DJ, Brisson JR, Messner P, Garavito RM, Lam JS. The structural basis for catalytic function of GMD and RMD, two closely related enzymes from the GDP-D-rhamnose biosynthesis pathway. FEBS J 2009; 276:2686-2700. [PMID: 19459932 PMCID: PMC4381037 DOI: 10.1111/j.1742-4658.2009.06993.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The rare 6-deoxysugar D-rhamnose is a component of bacterial cell surface glycans, including the D-rhamnose homopolymer produced by Pseudomonas aeruginosa, called A-band O polysaccharide. GDP-D-rhamnose synthesis from GDP-D-mannose is catalyzed by two enzymes. The first is a GDP-D-mannose-4,6-dehydratase (GMD). The second enzyme, RMD, reduces the GMD product (GDP-6-deoxy-D-lyxo-hexos-4-ulose) to GDP-d-rhamnose. Genes encoding GMD and RMD are present in P. aeruginosa, and genetic evidence indicates they act in A-band O-polysaccharide biosynthesis. Details of their enzyme functions have not, however, been previously elucidated. We aimed to characterize these enzymes biochemically, and to determine the structure of RMD to better understand what determines substrate specificity and catalytic activity in these enzymes. We used capillary electrophoresis and NMR analysis of reaction products to precisely define P. aeruginosa GMD and RMD functions. P. aeruginosa GMD is bifunctional, and can catalyze both GDP-d-mannose 4,6-dehydration and the subsequent reduction reaction to produce GDP-D-rhamnose. RMD catalyzes the stereospecific reduction of GDP-6-deoxy-D-lyxo-hexos-4-ulose, as predicted. Reconstitution of GDP-D-rhamnose biosynthesis in vitro revealed that the P. aeruginosa pathway may be regulated by feedback inhibition in the cell. We determined the structure of RMD from Aneurinibacillus thermoaerophilus at 1.8 A resolution. The structure of A. thermoaerophilus RMD is remarkably similar to that of P. aeruginosa GMD, which explains why P. aeruginosa GMD is also able to catalyze the RMD reaction. Comparison of the active sites and amino acid sequences suggests that a conserved amino acid side chain (Arg185 in P. aeruginosa GMD) may be crucial for orienting substrate and cofactor in GMD enzymes.
Collapse
Affiliation(s)
- Jerry D King
- Department of Molecular and Cellular Biology, University of Guelph, Canada
| | - Karen K H Poon
- Department of Molecular and Cellular Biology, University of Guelph, Canada
| | - Nicole A Webb
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Erin M Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Canada
| | - David J McNally
- Institute for Biological Sciences, National Research Council, Ottawa, Canada
| | - Jean-Robert Brisson
- Institute for Biological Sciences, National Research Council, Ottawa, Canada
| | - Paul Messner
- Zentrum für NanoBiotechnologie, Universität für Bodenkultur Wien, Austria
| | - R M Garavito
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Joseph S Lam
- Department of Molecular and Cellular Biology, University of Guelph, Canada
| |
Collapse
|
45
|
van Straaten KE, Langill DM, Palmer DRJ, Sanders DAR. Purification, crystallization and preliminary X-ray analysis of NtdA, a putative pyridoxal phosphate-dependent aminotransferase from Bacillus subtilis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:426-9. [PMID: 19342798 PMCID: PMC2664778 DOI: 10.1107/s1744309109009038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 03/11/2009] [Indexed: 11/11/2022]
Abstract
NtdA is a putative sugar aminotransferase that is required for the synthesis of 3,3'-neotrehalosadiamine. The enzyme was purified to homogeneity by means of Ni(2+)-affinity chromatography and was crystallized using the microbatch method. X-ray diffraction data were collected from a single crystal to 2.3 A resolution at the Canadian Light Source (CLS). The crystals belonged to space group P2(1), with unit-cell parameters a = 50.3, b = 106.7, c = 96.7 A, beta = 96.2 degrees, and contained two molecules per asymmetric unit.
Collapse
Affiliation(s)
- K. E. van Straaten
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - D. M. Langill
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - D. R. J. Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - D. A. R. Sanders
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
46
|
Wang Q, Ding P, Perepelov AV, Xu Y, Wang Y, Knirel YA, Wang L, Feng L. Characterization of the dTDP-D-fucofuranose biosynthetic pathway in Escherichia coli O52. Mol Microbiol 2008; 70:1358-67. [PMID: 19019146 DOI: 10.1111/j.1365-2958.2008.06449.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
D-fucofuranose (D-Fucf) is a component of Escherichia coli O52 O antigen. This uncommon sugar is also the sugar moiety of the anticancer drug--gilvocarcin V produced by many streptomycetes. In E. coli O52, rmlA, rmlB, fcf1 and fcf2 were proposed in a previous study by our group to encode the enzymes of the dTDP-D-Fucf (the nucleotide-activated form of D-Fucf) biosynthetic pathway. In this study, Fcf1 and Fcf2 from E. coli O52 were expressed, purified and assayed for their respective activities. Novel product peaks from enzyme-substrate reactions were detected by capillary electrophoresis and the structures of the product compounds were elucidated by electro-spray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. Fcf1 was confirmed to be a dTDP-6-deoxy-D-xylo-hex-4-ulopyranose reductase for the conversion of dTDP-6-deoxy-D-xylo-hex-4-ulopyranose to dTDP-D-fucopyranose (dTDP-D-Fucp), and Fcf2 a dTDP-D-Fucp mutase for the conversion of dTDP-D-Fucp to dTDP-D-Fucf. The K(m) of Fcf1 for dTDP-6-deoxy-D-xylo-hex-4-ulopyranose was determined to be 0.38 mM, and of Fcf2 for dTDP-D-Fucp to be 3.43 mM. The functional role of fcf1 and fcf2 in the biosynthesis of E. coli O52 O antigen were confirmed by mutation and complementation tests. This is the first time that the biosynthetic pathway of dTDP-D-Fucf has been fully characterized.
Collapse
Affiliation(s)
- Quan Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, PR China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Schell U, Haydock SF, Kaja AL, Carletti I, Lill RE, Read E, Sheehan LS, Low L, Fernandez MJ, Grolle F, McArthur HAI, Sheridan RM, Leadlay PF, Wilkinson B, Gaisser S. Engineered biosynthesis of hybrid macrolide polyketides containing D-angolosamine and D-mycaminose moieties. Org Biomol Chem 2008; 6:3315-27. [PMID: 18802638 DOI: 10.1039/b807914e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
The glycosylation of natural product scaffolds with highly modified deoxysugars is often essential for their biological activity, being responsible for specific contacts to molecular targets and significantly affecting their pharmacokinetic properties. In order to provide tools for the targeted alteration of natural product glycosylation patterns, significant strides have been made to understand the biosynthesis of activated deoxysugars and their transfer. We report here efforts towards the production of plasmid-borne biosynthetic gene cassettes capable of producing TDP-activated forms of D-mycaminose, D-angolosamine and D-desosamine. We additionally describe the transfer of these deoxysugars to macrolide aglycones using the glycosyl transferases EryCIII, TylMII and AngMII, which display usefully broad substrate tolerance.
Collapse
Affiliation(s)
- Ursula Schell
- Biotica Technology Ltd, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex, CB10 1XL, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Messner P, Steiner K, Zarschler K, Schäffer C. S-layer nanoglycobiology of bacteria. Carbohydr Res 2008; 343:1934-51. [PMID: 18336801 PMCID: PMC4381302 DOI: 10.1016/j.carres.2007.12.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 12/05/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
Cell surface layers (S-layers) are common structures of the bacterial cell envelope with a lattice-like appearance that are formed by a self-assembly process. Frequently, the constituting S-layer proteins are modified with covalently linked glycan chains facing the extracellular environment. S-layer glycoproteins from organisms of the Bacillaceae family possess long, O-glycosidically linked glycans that are composed of a great variety of sugar constituents. The observed variations already exceed the display found in eukaryotic glycoproteins. Recent investigations of the S-layer protein glycosylation process at the molecular level, which has lagged behind the structural studies due to the lack of suitable molecular tools, indicated that the S-layer glycoprotein glycan biosynthesis pathway utilizes different modules of the well-known biosynthesis routes of lipopolysaccharide O-antigens. The genetic information for S-layer glycan biosynthesis is usually present in S-layer glycosylation (slg) gene clusters acting in concert with housekeeping genes. To account for the nanometer-scale cell surface display feature of bacterial S-layer glycosylation, we have coined the neologism 'nanoglycobiology'. It includes structural and biochemical aspects of S-layer glycans as well as molecular data on the machinery underlying the glycosylation event. A key aspect for the full potency of S-layer nanoglycobiology is the unique self-assembly feature of the S-layer protein matrix. Being aware that in many cases the glycan structures associated with a protein are the key to protein function, S-layer protein glycosylation will add a new and valuable component to an 'S-layer based molecular construction kit'. In our long-term research strategy, S-layer nanoglycobiology shall converge with other functional glycosylation systems to produce 'functional' S-layer neoglycoproteins for diverse applications in the fields of nanobiotechnology and vaccine technology. Recent advances in the field of S-layer nanoglycobiology have made our overall strategy a tangible aim of the near future.
Collapse
Affiliation(s)
- Paul Messner
- Universität für Bodenkultur Wien, Zentrum für NanoBiotechnologie A-1180 Wien, Gregor-Mendel-Strasse 33, Austria
| | - Kerstin Steiner
- Universität für Bodenkultur Wien, Zentrum für NanoBiotechnologie A-1180 Wien, Gregor-Mendel-Strasse 33, Austria
| | - Kristof Zarschler
- Universität für Bodenkultur Wien, Zentrum für NanoBiotechnologie A-1180 Wien, Gregor-Mendel-Strasse 33, Austria
| | - Christina Schäffer
- Universität für Bodenkultur Wien, Zentrum für NanoBiotechnologie A-1180 Wien, Gregor-Mendel-Strasse 33, Austria
| |
Collapse
|
49
|
Tello M, Rejzek M, Wilkinson B, Lawson DM, Field RA. Tyl1a, a TDP-6-deoxy-D-xylo-4-hexulose 3,4-isomerase from Streptomyces fradiae: structure prediction, mutagenesis and solvent isotope incorporation experiments to investigate reaction mechanism. Chembiochem 2008; 9:1295-302. [PMID: 18425854 DOI: 10.1002/cbic.200800021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Indexed: 11/11/2022]
Abstract
Understanding the structure and mechanism of sugar nucleotide processing enzymes is invaluable in the generation of designer enzymes for biotransformation, for instance, in connection with engineering antibiotic glycosylation. In this study, homology modelling and mechanistic comparison to the structurally related RmlC epimerase family has been used to identify and assign functions to active-site residues in the Tyl1a-catalysed keto-sugar nucleotide isomerisation process. Tyl1a His63 is implicated as the base that initiates the isomerisation process by substrate C-3 deprotonation, with Arg109 stabilising the resulting enolate. Subsequent O-3 deprotonation (potentially by His65) and C-4 protonation (potentially by Tyr49) complete the isomerisation process.
Collapse
Affiliation(s)
- Mónica Tello
- School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | | | | | | |
Collapse
|
50
|
Molecular analysis of the Enterobacter sakazakii O-antigen gene locus. Appl Environ Microbiol 2008; 74:3783-94. [PMID: 18441119 DOI: 10.1128/aem.02302-07] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleotide polymorphism associated with the O-antigen-encoding locus, rfb, in Enterobacter sakazakii was determined by PCR-restriction fragment length polymorphism analysis. Based on the analysis of these DNA profiles, 12 unique banding patterns were detected among a collection of 62 strains from diverse origins. Two common profiles were identified and were designated serotypes O:1 and O:2. DNA sequencing of the 12,500-bp region flanked by galF and gnd identified 11 open reading frames, all with the same transcriptional direction. Analysis of the proximal region of both sequences demonstrated remarkable heterogeneity. A PCR assay targeting genes specific for the two prominent serotypes was developed and applied for the identification of these strains recovered from food, environmental, and clinical samples.
Collapse
|