1
|
Nguyen H, Glaaser IW, Slesinger PA. Direct modulation of G protein-gated inwardly rectifying potassium (GIRK) channels. Front Physiol 2024; 15:1386645. [PMID: 38903913 PMCID: PMC11187414 DOI: 10.3389/fphys.2024.1386645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 06/22/2024] Open
Abstract
Ion channels play a pivotal role in regulating cellular excitability and signal transduction processes. Among the various ion channels, G-protein-coupled inwardly rectifying potassium (GIRK) channels serve as key mediators of neurotransmission and cellular responses to extracellular signals. GIRK channels are members of the larger family of inwardly-rectifying potassium (Kir) channels. Typically, GIRK channels are activated via the direct binding of G-protein βγ subunits upon the activation of G-protein-coupled receptors (GPCRs). GIRK channel activation requires the presence of the lipid signaling molecule, phosphatidylinositol 4,5-bisphosphate (PIP2). GIRK channels are also modulated by endogenous proteins and other molecules, including RGS proteins, cholesterol, and SNX27 as well as exogenous compounds, such as alcohol. In the last decade or so, several groups have developed novel drugs and small molecules, such as ML297, GAT1508 and GiGA1, that activate GIRK channels in a G-protein independent manner. Here, we aim to provide a comprehensive overview focusing on the direct modulation of GIRK channels by G-proteins, PIP2, cholesterol, and novel modulatory compounds. These studies offer valuable insights into the underlying molecular mechanisms of channel function, and have potential implications for both basic research and therapeutic development.
Collapse
Affiliation(s)
| | | | - Paul A. Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Stott JB, Greenwood IA. G protein βγ regulation of KCNQ-encoded voltage-dependent K channels. Front Physiol 2024; 15:1382904. [PMID: 38655029 PMCID: PMC11035767 DOI: 10.3389/fphys.2024.1382904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The KCNQ family is comprised of five genes and the expression products form voltage-gated potassium channels (Kv7.1-7.5) that have a major impact upon cellular physiology in many cell types. Each functional Kv7 channel forms as a tetramer that often associates with proteins encoded by the KCNE gene family (KCNE1-5) and is critically reliant upon binding of phosphatidylinositol bisphosphate (PIP2) and calmodulin. Other modulators like A-kinase anchoring proteins, ubiquitin ligases and Ca-calmodulin kinase II alter Kv7 channel function and trafficking in an isoform specific manner. It has now been identified that for Kv7.4, G protein βγ subunits (Gβγ) can be added to the list of key regulators and is paramount for channel activity. This article provides an overview of this nascent field of research, highlighting themes and directions for future study.
Collapse
Affiliation(s)
| | - Iain A. Greenwood
- Vascular Biology Research Group, Institute of Molecular and Clinical Sciences, St George’s University of London, London, United Kingdom
| |
Collapse
|
3
|
Li J, Mei S, Mao X, Wan L, Wang H, Xiao B, Song Y, Gu W, Liu Y, Long L. De novo variants in KCNJ3 are associated with early-onset epilepsy. J Med Genet 2024; 61:319-324. [PMID: 37963718 DOI: 10.1136/jmg-2023-109201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/14/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND KCNJ3 encodes a subunit of G-protein-coupled inwardly rectifying potassium channels, which are important for cellular excitability and inhibitory neurotransmission. However, the genetic basis of KCNJ3 in epilepsy has not been determined. This study aimed to identify the pathogenic KCNJ3 variants in patients with epilepsy. METHODS Trio exome sequencing was performed to determine potential variants of epilepsy. Individuals with KCNJ3 variants were recruited for this study. Detailed clinical information and genetic data were obtained and systematically reviewed. Whole-cell patch-clamp recordings were performed to evaluate the functional consequences of the identified variants. RESULTS Two de novo missense variants (c.998T>C (p.Leu333Ser) and c.938G>A (p. Arg313Gln)) in KCNJ3 were identified in two unrelated families with epilepsy. The variants were absent from the gnomAD database and were assumed to be damaging or probably damaging using multiple bioinformatics tools. They were both located in the C-terminal domain. The amino acid residues were highly conserved among various species. Clinically, the seizures occurred at a young age and were under control after combined treatment. Electrophysiological analysis revealed that the KCNJ3 Leu333Ser and Arg313Gln variants significantly compromised the current activities and exhibited loss-of-function (LOF) effects. CONCLUSION Our findings suggest that de novo LOF variants in KCNJ3 are associated with early-onset epilepsy. Genetic testing of KCNJ3 in patients with epilepsy may serve as a strategy for precision medicine.
Collapse
Affiliation(s)
- Juan Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, China
| | - Shiyue Mei
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao Mao
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Lily Wan
- Department of Anatomy & Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Hua Wang
- Department of Medical Genetics, Hunan Children's Hospital, Changsha, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, China
| | - Yanmin Song
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiyue Gu
- Chigene (Beijing) Translational Medical Research Center Co. Ltd, Beijing, China
| | - Yan Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Chidipi B, Chang M, Abou-Assali O, Reiser M, Tian Z, Allen-Gipson D, Noujaim SF. The Arf6/PIP5K pathway activates IKACh in cigarette smoke mediated atrial fibrillation. Cell Signal 2022; 100:110475. [PMID: 36150420 DOI: 10.1016/j.cellsig.2022.110475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 08/29/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
Cigarette smoking (CS) is a major cause of cardiovascular diseases. Smokers are at a significantly higher risk for developing atrial fibrillation (AF), a dangerous and abnormal heart rhythm. In the US, 15.5% of adults are current smokers, and it is becoming clear that CS is an independent risk factor for AF, but a detailed mechanistic understanding of how CS contributes to the molecular patho-electrophysiology of AF remains elusive. We investigated if CS related AF is in part mediated through a mechanism that depends on the cardiac acetylcholine activated inward rectifier potassium current (IKACh). We tested the hypothesis that CS increases IKACh via phosphatidylinositol 4-phosphate 5-kinase alpha (PIP5K) and ADP ribosylation factor 6 (Arf6) signaling, leading to AF perpetuation. In vivo inducibility of AF was assessed in mice exposed to CS for 8 weeks. AF duration was increased in CS exposed mice, and TertiapinQ, an IKACh blocker prevented AF development in CS exposed mice. In HEK293 cells stably transfected with Kir3.1 and Kir3.4, the molecular correlates of IKACh, CS exposure increased the expression of the Kir3.1 and Kir3.4 proteins at the cell surface, activated Arf6 and increased the IKACh current. Inhibition of PIP5K, or of Kir3.1/Kir3.4 trafficking via Arf6 abrogated the CS effects on IKACh. Cigarette smoke modifies the atrial electrophysiological substrate, leading to arrhythmogenesis, in part, through IKACh activation via an Arf6/PIP5K dependent pathway.
Collapse
Affiliation(s)
- Bojjibabu Chidipi
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America..
| | - Mengmeng Chang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Obada Abou-Assali
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Michelle Reiser
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Zhi Tian
- Department of Pharmaceutical Science, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States of America
| | - Diane Allen-Gipson
- Department of Pharmaceutical Science, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States of America
| | - Sami F Noujaim
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| |
Collapse
|
5
|
Bony AR, McArthur JR, Finol-Urdaneta RK, Adams DJ. Analgesic α-conotoxins modulate native and recombinant GIRK1/2 channels via activation of GABA B receptors and reduce neuroexcitability. Br J Pharmacol 2021; 179:179-198. [PMID: 34599513 DOI: 10.1111/bph.15690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of GIRK channels via G protein-coupled GABAB receptors has been shown to attenuate nociceptive transmission. The analgesic α-conotoxin Vc1.1 activates GABAB receptors resulting in inhibition of Cav 2.2 and Cav 2.3 channels in mammalian primary afferent neurons. Here, we investigated the effects of analgesic α-conotoxins on recombinant and native GIRK-mediated K+ currents and on neuronal excitability. EXPERIMENTAL APPROACH The effects of analgesic α-conotoxins, Vc1.1, RgIA, and PeIA, were investigated on inwardly-rectifying K+ currents in HEK293T cells recombinantly co-expressing either heteromeric human GIRK1/2 or homomeric GIRK2 subunits, with GABAB receptors. The effects of α-conotoxin Vc1.1 and baclofen were studied on GIRK-mediated K+ currents and the passive and active electrical properties of adult mouse dorsal root ganglion neurons. KEY RESULTS Analgesic α-conotoxins Vc1.1, RgIA, and PeIA potentiate inwardly-rectifying K+ currents in HEK293T cells recombinantly expressing human GIRK1/2 channels and GABAB receptors. GABAB receptor-dependent GIRK channel potentiation by Vc1.1 and baclofen occurs via a pertussis toxin-sensitive G protein and is inhibited by the selective GABAB receptor antagonist CGP 55845. In adult mouse dorsal root ganglion neurons, GABAB receptor-dependent GIRK channel potentiation by Vc1.1 and baclofen hyperpolarizes the cell membrane potential and reduces excitability. CONCLUSIONS AND IMPLICATIONS This is the first report of GIRK channel potentiation via allosteric α-conotoxin Vc1.1-GABAB receptor agonism, leading to decreased neuronal excitability. Such action potentially contributes to the analgesic effects of Vc1.1 and baclofen observed in vivo.
Collapse
Affiliation(s)
- Anuja R Bony
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
6
|
Abstract
K+ channels enable potassium to flow across the membrane with great selectivity. There are four K+ channel families: voltage-gated K (Kv), calcium-activated (KCa), inwardly rectifying K (Kir), and two-pore domain potassium (K2P) channels. All four K+ channels are formed by subunits assembling into a classic tetrameric (4x1P = 4P for the Kv, KCa, and Kir channels) or tetramer-like (2x2P = 4P for the K2P channels) architecture. These subunits can either be the same (homomers) or different (heteromers), conferring great diversity to these channels. They share a highly conserved selectivity filter within the pore but show different gating mechanisms adapted for their function. K+ channels play essential roles in controlling neuronal excitability by shaping action potentials, influencing the resting membrane potential, and responding to diverse physicochemical stimuli, such as a voltage change (Kv), intracellular calcium oscillations (KCa), cellular mediators (Kir), or temperature (K2P).
Collapse
|
7
|
Identification of a G-Protein-Independent Activator of GIRK Channels. Cell Rep 2021; 31:107770. [PMID: 32553165 DOI: 10.1016/j.celrep.2020.107770] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/24/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
G-protein-gated inwardly rectifying K+ (GIRK) channels are essential effectors of inhibitory neurotransmission in the brain. GIRK channels have been implicated in diseases with abnormal neuronal excitability, including epilepsy and addiction. GIRK channels are tetramers composed of either the same subunit (e.g., homotetramers) or different subunits (e.g., heterotetramers). Compounds that specifically target subsets of GIRK channels in vivo are lacking. Previous studies have shown that alcohol directly activates GIRK channels through a hydrophobic pocket located in the cytoplasmic domain of the channel. Here, we report the identification and functional characterization of a GIRK1-selective activator, termed GiGA1, that targets the alcohol pocket. GiGA1 activates GIRK1/GIRK2 both in vitro and in vivo and, in turn, mitigates the effects of a convulsant in an acute epilepsy mouse model. These results shed light on the structure-based development of subunit-specific GIRK modulators that could provide potential treatments for brain disorders.
Collapse
|
8
|
Mutual action by Gγ and Gβ for optimal activation of GIRK channels in a channel subunit-specific manner. Sci Rep 2019; 9:508. [PMID: 30679535 PMCID: PMC6346094 DOI: 10.1038/s41598-018-36833-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/29/2018] [Indexed: 01/06/2023] Open
Abstract
The tetrameric G protein-gated K+ channels (GIRKs) mediate inhibitory effects of neurotransmitters that activate Gi/o-coupled receptors. GIRKs are activated by binding of the Gβγ dimer, via contacts with Gβ. Gγ underlies membrane targeting of Gβγ, but has not been implicated in channel gating. We observed that, in Xenopus oocytes, expression of Gγ alone activated homotetrameric GIRK1* and heterotetrameric GIRK1/3 channels, without affecting the surface expression of GIRK or Gβ. Gγ and Gβ acted interdependently: the effect of Gγ required the presence of ambient Gβ and was enhanced by low doses of coexpressed Gβ, whereas excess of either Gβ or Gγ imparted suboptimal activation, possibly by sequestering the other subunit “away” from the channel. The unique distal C-terminus of GIRK1, G1-dCT, was important but insufficient for Gγ action. Notably, GIRK2 and GIRK1/2 were not activated by Gγ. Our results suggest that Gγ regulates GIRK1* and GIRK1/3 channel’s gating, aiding Gβ to trigger the channel’s opening. We hypothesize that Gγ helps to relax the inhibitory effect of a gating element (“lock”) encompassed, in part, by the G1-dCT; GIRK2 acts to occlude the effect of Gγ, either by setting in motion the same mechanism as Gγ, or by triggering an opposing gating effect.
Collapse
|
9
|
Takemoto Y, Slough DP, Meinke G, Katnik C, Graziano ZA, Chidipi B, Reiser M, Alhadidy MM, Ramirez R, Salvador-Montañés O, Ennis S, Guerrero-Serna G, Haburcak M, Diehl C, Cuevas J, Jalife J, Bohm A, Lin YS, Noujaim SF. Structural basis for the antiarrhythmic blockade of a potassium channel with a small molecule. FASEB J 2018; 32:1778-1793. [PMID: 29162702 DOI: 10.1096/fj.201700349r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The acetylcholine-activated inward rectifier potassium current ( IKACh) is constitutively active in persistent atrial fibrillation (AF). We tested the hypothesis that the blocking of IKACh with the small molecule chloroquine terminates persistent AF. We used a sheep model of tachypacing-induced, persistent AF, molecular modeling, electrophysiology, and structural biology approaches. The 50% inhibition/inhibitory concentration of IKACh block with chloroquine, measured by patch clamp, was 1 μM. In optical mapping of sheep hearts with persistent AF, 1 μM chloroquine restored sinus rhythm. Molecular modeling suggested that chloroquine blocked the passage of a hydrated potassium ion through the intracellular domain of Kir3.1 (a molecular correlate of IKACh) by interacting with residues D260 and F255, in proximity to I228, Q227, and L299. 1H 15N heteronuclear single-quantum correlation of purified Kir3.1 intracellular domain confirmed the modeling results. F255, I228, Q227, and L299 underwent significant chemical-shift perturbations upon drug binding. We then crystallized and solved a 2.5 Å X-ray structure of Kir3.1 with F255A mutation. Modeling of chloroquine binding to the mutant channel suggested that the drug's binding to the pore becomes off centered, reducing its ability to block a hydrated potassium ion. Patch clamp validated the structural and modeling data, where the F255A and D260A mutations significantly reduced IKACh block by chloroquine. With the use of numerical and structural biology approaches, we elucidated the details of how a small molecule could block an ion channel and exert antiarrhythmic effects. Chloroquine binds the IKACh channel at a site formed by specific amino acids in the ion-permeation pathway, leading to decreased IKACh and the subsequent termination of AF.-Takemoto, Y., Slough, D. P., Meinke, G., Katnik, C., Graziano, Z. A., Chidipi, B., Reiser, M., Alhadidy, M. M., Ramirez, R., Salvador-Montañés, O., Ennis, S., Guerrero-Serna, G., Haburcak, M., Diehl, C., Cuevas, J., Jalife, J., Bohm, A., Lin,Y.-S., Noujaim, S. F. Structural basis for the antiarrhythmic blockade of a potassium channel with a small molecule.
Collapse
Affiliation(s)
- Yoshio Takemoto
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Diana P Slough
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Gretchen Meinke
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Christopher Katnik
- Molecular Pharmacology and Physiology Department, University of South Florida, Tampa, Florida, USA
| | | | - Bojjibabu Chidipi
- Molecular Pharmacology and Physiology Department, University of South Florida, Tampa, Florida, USA
| | - Michelle Reiser
- Molecular Pharmacology and Physiology Department, University of South Florida, Tampa, Florida, USA
| | - Mohammed M Alhadidy
- Molecular Pharmacology and Physiology Department, University of South Florida, Tampa, Florida, USA
| | - Rafael Ramirez
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Steven Ennis
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Marian Haburcak
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| | - Carl Diehl
- Saromics Biostructures, Copenhagen, Denmark; and
| | - Javier Cuevas
- Molecular Pharmacology and Physiology Department, University of South Florida, Tampa, Florida, USA
| | - Jose Jalife
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA.,Centro de Nacional de Investigaciones Cardiovasculares Carlos III and Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares , Madrid, Spain
| | - Andrew Bohm
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Sami F Noujaim
- Molecular Pharmacology and Physiology Department, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
10
|
Yakubovich D, Berlin S, Kahanovitch U, Rubinstein M, Farhy-Tselnicker I, Styr B, Keren-Raifman T, Dessauer CW, Dascal N. A Quantitative Model of the GIRK1/2 Channel Reveals That Its Basal and Evoked Activities Are Controlled by Unequal Stoichiometry of Gα and Gβγ. PLoS Comput Biol 2015; 11:e1004598. [PMID: 26544551 PMCID: PMC4636287 DOI: 10.1371/journal.pcbi.1004598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/13/2015] [Indexed: 12/02/2022] Open
Abstract
G protein-gated K+ channels (GIRK; Kir3), activated by Gβγ subunits derived from Gi/o proteins, regulate heartbeat and neuronal excitability and plasticity. Both neurotransmitter-evoked (Ievoked) and neurotransmitter-independent basal (Ibasal) GIRK activities are physiologically important, but mechanisms of Ibasal and its relation to Ievoked are unclear. We have previously shown for heterologously expressed neuronal GIRK1/2, and now show for native GIRK in hippocampal neurons, that Ibasal and Ievoked are interrelated: the extent of activation by neurotransmitter (activation index, Ra) is inversely related to Ibasal. To unveil the underlying mechanisms, we have developed a quantitative model of GIRK1/2 function. We characterized single-channel and macroscopic GIRK1/2 currents, and surface densities of GIRK1/2 and Gβγ expressed in Xenopus oocytes. Based on experimental results, we constructed a mathematical model of GIRK1/2 activity under steady-state conditions before and after activation by neurotransmitter. Our model accurately recapitulates Ibasal and Ievoked in Xenopus oocytes, HEK293 cells and hippocampal neurons; correctly predicts the dose-dependent activation of GIRK1/2 by coexpressed Gβγ and fully accounts for the inverse Ibasal-Ra correlation. Modeling indicates that, under all conditions and at different channel expression levels, between 3 and 4 Gβγ dimers are available for each GIRK1/2 channel. In contrast, available Gαi/o decreases from ~2 to less than one Gα per channel as GIRK1/2's density increases. The persistent Gβγ/channel (but not Gα/channel) ratio support a strong association of GIRK1/2 with Gβγ, consistent with recruitment to the cell surface of Gβγ, but not Gα, by GIRK1/2. Our analysis suggests a maximal stoichiometry of 4 Gβγ but only 2 Gαi/o per one GIRK1/2 channel. The unique, unequal association of GIRK1/2 with G protein subunits, and the cooperative nature of GIRK gating by Gβγ, underlie the complex pattern of basal and agonist-evoked activities and allow GIRK1/2 to act as a sensitive bidirectional detector of both Gβγ and Gα. Many neurotransmitters and hormones inhibit the electric activity of excitable cells (such as cardiac cells and neurons) by activating a K+ channel, GIRK (G protein-gated Inwardly Rectifying K+ channel). GIRK channels also possess constitutive “basal” activity which contributes to regulation of neuronal and cardiac excitability and certain disorders, but the mechanism of this activity and its interrelation with the neurotransmitter-evoked activity are poorly understood. In this work we show that key features of basal and neurotransmitter-evoked activities are similar in cultured hippocampal neurons and in two model systems (mammalian HEK293 cells and Xenopus oocytes). Using experimental data of the neuronal GIRK1/2 channel function upon changes in GIRK and G protein concentrations, we constructed a mathematical model that quantitatively accounts for basal and evoked activity, and for the inverse correlation between the two. Our analysis suggests a novel and unexpected mechanism of interaction of GIRK1/2 with the G protein subunits, where the tetrameric GIRK channel can assemble with 4 molecules of the Gβγ subunits but only 2 molecules of Gα. GIRK is a prototypical effector of Gβγ, and the unequal stoichiometry of interaction with G protein subunits may have general implications for G protein signaling.
Collapse
Affiliation(s)
- Daniel Yakubovich
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shai Berlin
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Uri Kahanovitch
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Moran Rubinstein
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Isabella Farhy-Tselnicker
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Styr
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tal Keren-Raifman
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Nathan Dascal
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
11
|
Glaaser IW, Slesinger PA. Structural Insights into GIRK Channel Function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:117-60. [PMID: 26422984 DOI: 10.1016/bs.irn.2015.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
G protein-gated inwardly rectifying potassium (GIRK; Kir3) channels, which are members of the large family of inwardly rectifying potassium channels (Kir1-Kir7), regulate excitability in the heart and brain. GIRK channels are activated following stimulation of G protein-coupled receptors that couple to the G(i/o) (pertussis toxin-sensitive) G proteins. GIRK channels, like all other Kir channels, possess an extrinsic mechanism of inward rectification involving intracellular Mg(2+) and polyamines that occlude the conduction pathway at membrane potentials positive to E(K). In the past 17 years, more than 20 high-resolution atomic structures containing GIRK channel cytoplasmic domains and transmembrane domains have been solved. These structures have provided valuable insights into the structural determinants of many of the properties common to all inward rectifiers, such as permeation and rectification, as well as revealing the structural bases for GIRK channel gating. In this chapter, we describe advances in our understanding of GIRK channel function based on recent high-resolution atomic structures of inwardly rectifying K(+) channels discussed in the context of classical structure-function experiments.
Collapse
Affiliation(s)
- Ian W Glaaser
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paul A Slesinger
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
12
|
Dascal N, Kahanovitch U. The Roles of Gβγ and Gα in Gating and Regulation of GIRK Channels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:27-85. [DOI: 10.1016/bs.irn.2015.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
de Velasco EMF, McCall N, Wickman K. GIRK Channel Plasticity and Implications for Drug Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:201-38. [DOI: 10.1016/bs.irn.2015.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Kahanovitch U, Tsemakhovich V, Berlin S, Rubinstein M, Styr B, Castel R, Peleg S, Tabak G, Dessauer CW, Ivanina T, Dascal N. Recruitment of Gβγ controls the basal activity of G-protein coupled inwardly rectifying potassium (GIRK) channels: crucial role of distal C terminus of GIRK1. J Physiol 2014; 592:5373-90. [PMID: 25384780 DOI: 10.1113/jphysiol.2014.283218] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The G-protein coupled inwardly rectifying potassium (GIRK, or Kir3) channels are important mediators of inhibitory neurotransmission via activation of G-protein coupled receptors (GPCRs). GIRK channels are tetramers comprising combinations of subunits (GIRK1-4), activated by direct binding of the Gβγ subunit of Gi/o proteins. Heterologously expressed GIRK1/2 exhibit high, Gβγ-dependent basal currents (Ibasal) and a modest activation by GPCR or coexpressed Gβγ. Inversely, the GIRK2 homotetramers exhibit low Ibasal and strong activation by Gβγ. The high Ibasal of GIRK1 seems to be associated with its unique distal C terminus (G1-dCT), which is not present in the other subunits. We investigated the role of G1-dCT using electrophysiological and fluorescence assays in Xenopus laevis oocytes and protein interaction assays. We show that expression of GIRK1/2 increases the plasma membrane level of coexpressed Gβγ (a phenomenon we term 'Gβγ recruitment') but not of coexpressed Gαi3. All GIRK1-containing channels, but not GIRK2 homomers, recruited Gβγ to the plasma membrane. In biochemical assays, truncation of G1-dCT reduces the binding between the cytosolic parts of GIRK1 and Gβγ, but not Gαi3. Nevertheless, the truncation of G1-dCT does not impair activation by Gβγ. In fluorescently labelled homotetrameric GIRK1 channels and in the heterotetrameric GIRK1/2 channel, the truncation of G1-dCT abolishes Gβγ recruitment and decreases Ibasal. Thus, we conclude that G1-dCT carries an essential role in Gβγ recruitment by GIRK1 and, consequently, in determining its high basal activity. Our results indicate that G1-dCT is a crucial part of a Gβγ anchoring site of GIRK1-containing channels, spatially and functionally distinct from the site of channel activation by Gβγ.
Collapse
Affiliation(s)
- Uri Kahanovitch
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vladimir Tsemakhovich
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shai Berlin
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moran Rubinstein
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Boaz Styr
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ruth Castel
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sagit Peleg
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Galit Tabak
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Tatiana Ivanina
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nathan Dascal
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
15
|
Nagi K, Pineyro G. Kir3 channel signaling complexes: focus on opioid receptor signaling. Front Cell Neurosci 2014; 8:186. [PMID: 25071446 PMCID: PMC4085882 DOI: 10.3389/fncel.2014.00186] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/18/2014] [Indexed: 12/03/2022] Open
Abstract
Opioids are among the most effective drugs to treat severe pain. They produce their analgesic actions by specifically activating opioid receptors located along the pain perception pathway where they inhibit the flow of nociceptive information. This inhibition is partly accomplished by activation of hyperpolarizing G protein-coupled inwardly-rectifying potassium (GIRK or Kir3) channels. Kir3 channels control cellular excitability in the central nervous system and in the heart and, because of their ubiquitous distribution, they mediate the effects of a large range of hormones and neurotransmitters which, upon activation of corresponding G protein-coupled receptors (GPCRs) lead to channel opening. Here we analyze GPCR signaling via these effectors in reference to precoupling and collision models. Existing knowledge on signaling bias is discussed in relation to these models as a means of developing strategies to produce novel opioid analgesics with an improved side effects profile.
Collapse
Affiliation(s)
- Karim Nagi
- Département de Pharmacologie, Faculté de Médecine, Université de Montréal Montreal, QC, Canada ; Centre de Recherche du CHU Sainte-Justine Montréal, QC, Canada
| | - Graciela Pineyro
- Département de Pharmacologie, Faculté de Médecine, Université de Montréal Montreal, QC, Canada ; Centre de Recherche du CHU Sainte-Justine Montréal, QC, Canada ; Département de Psychiatrie, Faculté de Médecine, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
16
|
Zylbergold P, Sleno R, Khan SM, Jacobi AM, Belhke MA, Hébert TE. Kir3 channel ontogeny - the role of Gβγ subunits in channel assembly and trafficking. Front Cell Neurosci 2014; 8:108. [PMID: 24782712 PMCID: PMC3995069 DOI: 10.3389/fncel.2014.00108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/25/2014] [Indexed: 11/13/2022] Open
Abstract
The role of Gβγ subunits in Kir3 channel gating is well characterized. Here, we have studied the role of Gβγ dimers during their initial contact with Kir3 channels, prior to their insertion into the plasma membrane. We show that distinct Gβγ subunits play an important role in orchestrating and fine-tuning parts of the Kir3 channel life cycle. Gβ1γ2, apart from its role in channel opening that it shares with other Gβγ subunit combinations, may play a unique role in protecting maturing channels from degradation as they transit to the cell surface. Taken together, our data suggest that Gβ1γ2 prolongs the lifetime of the Kir3.1/Kir3.2 heterotetramer, although further studies would be required to shed more light on these early Gβγ effects on Kir3 maturation and trafficking.
Collapse
Affiliation(s)
- Peter Zylbergold
- Department of Pharmacology and Therapeutics, McGill University Montréal, QC, Canada
| | - Rory Sleno
- Department of Pharmacology and Therapeutics, McGill University Montréal, QC, Canada
| | - Shahriar M Khan
- Department of Pharmacology and Therapeutics, McGill University Montréal, QC, Canada
| | | | - Mark A Belhke
- Integrated DNA Technologies, Inc., Coralville IA, USA
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University Montréal, QC, Canada
| |
Collapse
|
17
|
Bodhinathan K, Slesinger PA. Alcohol modulation of G-protein-gated inwardly rectifying potassium channels: from binding to therapeutics. Front Physiol 2014; 5:76. [PMID: 24611054 PMCID: PMC3933770 DOI: 10.3389/fphys.2014.00076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/07/2014] [Indexed: 12/27/2022] Open
Abstract
Alcohol (ethanol)-induced behaviors may arise from direct interaction of alcohol with discrete protein cavities within brain proteins. Recent structural and biochemical studies have provided new insights into the mechanism of alcohol-dependent activation of G protein-gated inwardly rectifying potassium (GIRK) channels, which regulate neuronal responses in the brain reward circuit. GIRK channels contain an alcohol binding pocket formed at the interface of two adjacent channel subunits. Here, we discuss the physiochemical properties of the alcohol pocket and the roles of G protein βγ subunits and membrane phospholipid PIP2 in regulating the alcohol response of GIRK channels. Some of the features of alcohol modulation of GIRK channels may be common to other alcohol-sensitive brain proteins. We discuss the possibility of alcohol-selective therapeutics that block alcohol access to the pocket. Understanding alcohol recognition and modulation of brain proteins is essential for development of therapeutics for alcohol abuse and addiction.
Collapse
Affiliation(s)
- Karthik Bodhinathan
- Structural Biology and Peptide Biology Laboratories, The Salk Institute for Biological Studies La Jolla, CA, USA
| | - Paul A Slesinger
- Structural Biology and Peptide Biology Laboratories, The Salk Institute for Biological Studies La Jolla, CA, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
18
|
González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, Latorre R. K(+) channels: function-structural overview. Compr Physiol 2013; 2:2087-149. [PMID: 23723034 DOI: 10.1002/cphy.c110047] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Potassium channels are particularly important in determining the shape and duration of the action potential, controlling the membrane potential, modulating hormone secretion, epithelial function and, in the case of those K(+) channels activated by Ca(2+), damping excitatory signals. The multiplicity of roles played by K(+) channels is only possible to their mammoth diversity that includes at present 70 K(+) channels encoding genes in mammals. Today, thanks to the use of cloning, mutagenesis, and the more recent structural studies using x-ray crystallography, we are in a unique position to understand the origins of the enormous diversity of this superfamily of ion channels, the roles they play in different cell types, and the relations that exist between structure and function. With the exception of two-pore K(+) channels that are dimers, voltage-dependent K(+) channels are tetrameric assemblies and share an extremely well conserved pore region, in which the ion-selectivity filter resides. In the present overview, we discuss in the function, localization, and the relations between function and structure of the five different subfamilies of K(+) channels: (a) inward rectifiers, Kir; (b) four transmembrane segments-2 pores, K2P; (c) voltage-gated, Kv; (d) the Slo family; and (e) Ca(2+)-activated SK family, SKCa.
Collapse
Affiliation(s)
- Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | | | | | | | | | | |
Collapse
|
19
|
Luján R, Marron Fernandez de Velasco E, Aguado C, Wickman K. New insights into the therapeutic potential of Girk channels. Trends Neurosci 2013; 37:20-9. [PMID: 24268819 DOI: 10.1016/j.tins.2013.10.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 01/01/2023]
Abstract
G protein-dependent signaling pathways control the activity of excitable cells of the nervous system and heart, and are the targets of neurotransmitters, clinically relevant drugs, and drugs of abuse. G protein-gated inwardly rectifying potassium (K(+)) (Girk/Kir3) channels are a key effector in inhibitory signaling pathways. Girk-dependent signaling contributes to nociception and analgesia, reward-related behavior, mood, cognition, and heart-rate regulation, and has been linked to epilepsy, Down syndrome, addiction, and arrhythmias. We discuss recent advances in our understanding of Girk channel structure, organization in signaling complexes, and plasticity, as well as progress on the development of subunit-selective Girk modulators. These findings offer new hope for the selective manipulation of Girk channels to treat a variety of debilitating afflictions.
Collapse
Affiliation(s)
- Rafael Luján
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain.
| | | | - Carolina Aguado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, 321 Church Street South East, Minneapolis, MN 55455, USA.
| |
Collapse
|
20
|
Molecular mechanism underlying ethanol activation of G-protein-gated inwardly rectifying potassium channels. Proc Natl Acad Sci U S A 2013; 110:18309-14. [PMID: 24145411 DOI: 10.1073/pnas.1311406110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alcohol (ethanol) produces a wide range of pharmacological effects on the nervous system through its actions on ion channels. The molecular mechanism underlying ethanol modulation of ion channels is poorly understood. Here we used a unique method of alcohol-tagging to demonstrate that alcohol activation of a G-protein-gated inwardly rectifying potassium (GIRK or Kir3) channel is mediated by a defined alcohol pocket through changes in affinity for the membrane phospholipid signaling molecule phosphatidylinositol 4,5-bisphosphate. Surprisingly, hydrophobicity and size, but not the canonical hydroxyl, were important determinants of alcohol-dependent activation. Altering levels of G protein Gβγ subunits, conversely, did not affect alcohol-dependent activation, suggesting a fundamental distinction between receptor and alcohol gating of GIRK channels. The chemical properties of the alcohol pocket revealed here might extend to other alcohol-sensitive proteins, revealing a unique protein microdomain for targeting alcohol-selective therapeutics in the treatment of alcoholism and addiction.
Collapse
|
21
|
Mahajan R, Ha J, Zhang M, Kawano T, Kozasa T, Logothetis DE. A computational model predicts that Gβγ acts at a cleft between channel subunits to activate GIRK1 channels. Sci Signal 2013; 6:ra69. [PMID: 23943609 DOI: 10.1126/scisignal.2004075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The atrial G protein (heterotrimeric guanine nucleotide-binding protein)-regulated inwardly rectifying K(+) (GIRK1 and GIRK4) heterotetrameric channels underlie the acetylcholine-induced K(+) current responsible for vagal inhibition of heart rate and are activated by the G protein βγ subunits (Gβγ). We used a multistage protein-protein docking approach with data from published structures of GIRK1 and Gβγ to generate an experimentally testable interaction model of Gβγ docked onto the cytosolic domains of the GIRK1 homotetramer. The model suggested a mechanism by which Gβγ promotes the open state of a specific cytosolic gate in the channel, the G loop gate. The predicted structure showed that the Gβ subunit interacts with the channel near the site of action for ethanol and stabilizes an intersubunit cleft formed by two loops (LM and DE) of adjacent channel subunits. Using a heterologous expression system, we disrupted the predicted GIRK1- and Gβγ-interacting residues by mutation of one protein and then rescued the regulatory activity by mutating reciprocal residues in the other protein. Disulfide cross-linking of channels and Gβγ with cysteine mutations at the predicted interacting residues yielded activated channels. The mechanism of Gβγ-induced activation of GIRK4 was distinct from GIRK1 homotetramers. However, GIRK1-GIRK4 heterotetrameric channels activated by Gβγ displayed responses indicating that the GIRK1 subunit dominated the response pattern. This work demonstrated that combining computational with experimental approaches is an effective method for elucidating interactions within protein complexes that otherwise might be challenging to decipher.
Collapse
Affiliation(s)
- Rahul Mahajan
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
22
|
G protein modulation of K2P potassium channel TASK-2 : a role of basic residues in the C terminus domain. Pflugers Arch 2013; 465:1715-26. [PMID: 23812165 DOI: 10.1007/s00424-013-1314-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 12/24/2022]
Abstract
TASK-2 (K2P5.1) is a background K(+) channel opened by extra- or intracellular alkalinisation that plays a role in renal bicarbonate handling, central chemoreception and cell volume regulation. Here, we present results that suggest that TASK-2 is also modulated by Gβγ subunits of heterotrimeric G protein. TASK-2 was strongly inhibited when GTP-γ-S was used as a replacement for intracellular GTP. No inhibition was present using GDP-β-S instead. Purified Gβγ introduced intracellularly also inhibited TASK-2 independently of whether GTP or GDP-β-S was present. The effects of GTP-γ-S and Gβγ subunits were abolished by neutralisation of TASK-2 C terminus double lysine residues K257-K258 or K296-K297. Use of membrane yeast two hybrid (MYTH) experiments and immunoprecipitation assays using tagged proteins gave evidence for a physical interaction between Gβ1 and Gβ2 subunits and TASK-2, in agreement with expression of these subunits in proximal tubule cells. Co-immunoprecipitation was impeded by mutating C terminus K257-K258 (but not K296-K297) to alanines. Gating by extra- or intracellular pH was unaltered in GTP-γ-S-insensitive TASK-2-K257A-K258A mutant. Shrinking TASK-2-expressing cells in hypertonic solution decreased the current to 36 % of its initial value. The same manoeuvre had a significantly diminished effect on TASK-2-K257A-K258A- or TASK-2-K296-K297-expressing cells, or in cells containing intracellular GDP-β-S. Our data are compatible with the concept that TASK-2 channels are modulated by Gβγ subunits of heterotrimeric G protein. We propose that this modulation is a novel way in which TASK-2 can be tuned to its physiological functions.
Collapse
|
23
|
Khan SM, Sleno R, Gora S, Zylbergold P, Laverdure JP, Labbé JC, Miller GJ, Hébert TE. The expanding roles of Gβγ subunits in G protein-coupled receptor signaling and drug action. Pharmacol Rev 2013; 65:545-77. [PMID: 23406670 DOI: 10.1124/pr.111.005603] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gβγ subunits from heterotrimeric G proteins perform a vast array of functions in cells with respect to signaling, often independently as well as in concert with Gα subunits. However, the eponymous term "Gβγ" does not do justice to the fact that 5 Gβ and 12 Gγ isoforms have evolved in mammals to serve much broader roles beyond their canonical roles in cellular signaling. We explore the phylogenetic diversity of Gβγ subunits with a view toward understanding these expanded roles in different cellular organelles. We suggest that the particular content of distinct Gβγ subunits regulates cellular activity, and that the granularity of individual Gβ and Gγ action is only beginning to be understood. Given the therapeutic potential of targeting Gβγ action, this larger view serves as a prelude to more specific development of drugs aimed at individual isoforms.
Collapse
Affiliation(s)
- Shahriar M Khan
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1303, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Richard-Lalonde M, Nagi K, Audet N, Sleno R, Amraei M, Hogue M, Balboni G, Schiller PW, Bouvier M, Hébert TE, Pineyro G. Conformational dynamics of Kir3.1/Kir3.2 channel activation via δ-opioid receptors. Mol Pharmacol 2013; 83:416-28. [PMID: 23175530 PMCID: PMC3558812 DOI: 10.1124/mol.112.081950] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 11/21/2012] [Indexed: 01/09/2023] Open
Abstract
This study assessed how conformational information encoded by ligand binding to δ-opioid receptors (DORs) is transmitted to Kir3.1/Kir3.2 channels. Human embryonic kidney 293 cells were transfected with bioluminescence resonance energy transfer (BRET) donor/acceptor pairs that allowed us to evaluate independently reciprocal interactions among signaling partners. These and coimmunoprecipitation studies indicated that DORs, Gβγ, and Kir3 subunits constitutively interacted with one another. GαoA associated with DORs and Gβγ, but despite being part of the complex, no evidence of its direct association with the channel was obtained. DOR activation by different ligands left DOR-Kir3 interactions unmodified but modulated BRET between DOR-GαoA, DOR-Gβγ, GαoA-Gβγ, and Gβγ-Kir3 interfaces. Ligand-induced BRET changes assessing Gβγ-Kir3.1 subunit interaction 1) followed similar kinetics to those monitoring the GαoA-Gβγ interface, 2) displayed the same order of efficacy as those observed at the DOR-Gβγ interface, 3) were sensitive to pertussis toxin, and 4) were predictive of whether a ligand could evoke channel currents. Conformational changes at the Gβγ/Kir3 interface were lost when Kir3.1 subunits were replaced by a mutant lacking essential sites for Gβγ-mediated activation. Thus, conformational information encoded by agonist binding to the receptor is relayed to the channel via structural rearrangements that involve repositioning of Gβγ with respect to DORs, GαoA, and channel subunits. Further, the fact that BRET changes at the Gβγ-Kir3 interface are predictive of a ligand's ability to induce channel currents points to these conformational biosensors as screening tools for identifying GPCR ligands that induce Kir3 channel activation.
Collapse
|
25
|
Four and a half LIM protein 1C (FHL1C): a binding partner for voltage-gated potassium channel K(v1.5). PLoS One 2011; 6:e26524. [PMID: 22053194 PMCID: PMC3203871 DOI: 10.1371/journal.pone.0026524] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/27/2011] [Indexed: 12/19/2022] Open
Abstract
Four-and-a-half LIM domain protein 1 isoform A (FHL1A) is predominantly expressed in skeletal and cardiac muscle. Mutations in the FHL1 gene are causative for several types of hereditary myopathies including X-linked myopathy with postural muscle atrophy (XMPMA). We here studied myoblasts from XMPMA patients. We found that functional FHL1A protein is completely absent in patient myoblasts. In parallel, expression of FHL1C is either unaffected or increased. Furthermore, a decreased proliferation rate of XMPMA myoblasts compared to controls was observed but an increased number of XMPMA myoblasts was found in the G0/G1 phase. Furthermore, low expression of Kv1.5, a voltage-gated potassium channel known to alter myoblast proliferation during the G1 phase and to control repolarization of action potential, was detected. In order to substantiate a possible relation between Kv1.5 and FHL1C, a pull-down assay was performed. A physical and direct interaction of both proteins was observed in vitro. In addition, confocal microscopy revealed substantial colocalization of FHL1C and Kv1.5 within atrial cells, supporting a possible interaction between both proteins in vivo. Two-electrode voltage clamp experiments demonstrated that coexpression of Kv1.5 with FHL1C in Xenopus laevis oocytes markedly reduced K+ currents when compared to oocytes expressing Kv1.5 only. We here present the first evidence on a biological relevance of FHL1C.
Collapse
|
26
|
Berlin S, Tsemakhovich VA, Castel R, Ivanina T, Dessauer CW, Keren-Raifman T, Dascal N. Two distinct aspects of coupling between Gα(i) protein and G protein-activated K+ channel (GIRK) revealed by fluorescently labeled Gα(i3) protein subunits. J Biol Chem 2011; 286:33223-35. [PMID: 21795707 DOI: 10.1074/jbc.m111.271056] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-activated K(+) channels (Kir3 or GIRK) are activated by direct interaction with Gβγ. Gα is essential for specific signaling and regulates basal activity of GIRK (I(basal)) and kinetics of the response elicited by activation by G protein-coupled receptors (I(evoked)). These regulations are believed to occur within a GIRK-Gα-Gβγ signaling complex. Fluorescent energy resonance transfer (FRET) studies showed strong GIRK-Gβγ interactions but yielded controversial results regarding the GIRK-Gα(i/o) interaction. We investigated the mechanisms of regulation of GIRK by Gα(i/o) using wild-type Gα(i3) (Gα(i3)WT) and Gα(i3) labeled at three different positions with fluorescent proteins, CFP or YFP (xFP). Gα(i3)xFP proteins bound the cytosolic domain of GIRK1 and interacted with Gβγ in a guanine nucleotide-dependent manner. However, only an N-terminally labeled, myristoylated Gα(i3)xFP (Gα(i3)NT) closely mimicked all aspects of Gα(i3)WT regulation except for a weaker regulation of I(basal). Gα(i3) labeled with YFP within the Gα helical domain preserved regulation of I(basal) but failed to restore fast I(evoked). Titrated expression of Gα(i3)NT and Gα(i3)WT confirmed that regulation of I(basal) and of the kinetics of I(evoked) of GIRK1/2 are independent functions of Gα(i). FRET and direct biochemical measurements indicated much stronger interaction between GIRK1 and Gβγ than between GIRK1 and Gα(i3). Thus, Gα(i/o)βγ heterotrimer may be attached to GIRK primarily via Gβγ within the signaling complex. Our findings support the notion that Gα(i/o) actively regulates GIRK. Although regulation of I(basal) is a function of Gα(i)(GDP), our new findings indicate that regulation of kinetics of I(evoked) is mediated by Gα(i)(GTP).
Collapse
Affiliation(s)
- Shai Berlin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
27
|
YAMAMOTO G, SOEDA F, SHIRASAKI T, TAKAHAMA K. Is the GIRK Channel a Possible Target in the Development of a Novel Therapeutic Drug of Urinary Disturbance? YAKUGAKU ZASSHI 2011; 131:523-32. [DOI: 10.1248/yakushi.131.523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Gen YAMAMOTO
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Fumio SOEDA
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Tetsuya SHIRASAKI
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Kazuo TAKAHAMA
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
28
|
Inanobe A, Nakagawa A, Matsuura T, Kurachi Y. A structural determinant for the control of PIP2 sensitivity in G protein-gated inward rectifier K+ channels. J Biol Chem 2010; 285:38517-23. [PMID: 20880843 PMCID: PMC2992284 DOI: 10.1074/jbc.m110.161703] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/01/2010] [Indexed: 01/04/2023] Open
Abstract
Inward rectifier K(+) (Kir) channels are activated by phosphatidylinositol-(4,5)-bisphosphate (PIP(2)), but G protein-gated Kir (K(G)) channels further require either G protein βγ subunits (Gβγ) or intracellular Na(+) for their activation. To reveal the mechanism(s) underlying this regulation, we compared the crystal structures of the cytoplasmic domain of K(G) channel subunit Kir3.2 obtained in the presence and the absence of Na(+). The Na(+)-free Kir3.2, but not the Na(+)-plus Kir3.2, possessed an ionic bond connecting the N terminus and the CD loop of the C terminus. Functional analyses revealed that the ionic bond between His-69 on the N terminus and Asp-228 on the CD loop, which are known to be critically involved in Gβγ- and Na(+)-dependent activation, lowered PIP(2) sensitivity. The conservation of these residues within the K(G) channel family indicates that the ionic bond is a character that maintains the channels in a closed state by controlling the PIP(2) sensitivity.
Collapse
Affiliation(s)
- Atsushi Inanobe
- From the Department of Pharmacology, Graduate School of Medicine
- Center for Advanced Medical Engineering and Informatics
| | | | - Takanori Matsuura
- Laboratory of Protein Informatics, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yoshihisa Kurachi
- From the Department of Pharmacology, Graduate School of Medicine
- Center for Advanced Medical Engineering and Informatics
| |
Collapse
|
29
|
Yokogawa M, Osawa M, Takeuchi K, Mase Y, Shimada I. NMR analyses of the Gbetagamma binding and conformational rearrangements of the cytoplasmic pore of G protein-activated inwardly rectifying potassium channel 1 (GIRK1). J Biol Chem 2010; 286:2215-23. [PMID: 21075842 DOI: 10.1074/jbc.m110.160754] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-activated inwardly rectifying potassium channel (GIRK) plays crucial roles in regulating heart rate and neuronal excitability in eukaryotic cells. GIRK is activated by the direct binding of heterotrimeric G protein βγ subunits (Gβγ) upon stimulation of G protein-coupled receptors, such as M2 acetylcholine receptor. The binding of Gβγ to the cytoplasmic pore (CP) region of GIRK causes structural rearrangements, which are assumed to open the transmembrane ion gate. However, the crucial residues involved in the Gβγ binding and the structural mechanism of GIRK gating have not been fully elucidated. Here, we have characterized the interaction between the CP region of GIRK and Gβγ, by ITC and NMR. The ITC analyses indicated that four Gβγ molecules bind to a tetramer of the CP region of GIRK with a dissociation constant of 250 μM. The NMR analyses revealed that the Gβγ binding site spans two neighboring subunits of the GIRK tetramer, which causes conformational rearrangements between subunits. A possible binding mode and mechanism of GIRK gating are proposed.
Collapse
Affiliation(s)
- Mariko Yokogawa
- Division of Physical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
30
|
Styer AM, Mirshahi UL, Wang C, Girard L, Jin T, Logothetis DE, Mirshahi T. G protein {beta}{gamma} gating confers volatile anesthetic inhibition to Kir3 channels. J Biol Chem 2010; 285:41290-9. [PMID: 21044958 DOI: 10.1074/jbc.m110.178541] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-activated inwardly rectifying potassium (GIRK or Kir3) channels are directly gated by the βγ subunits of G proteins and contribute to inhibitory neurotransmitter signaling pathways. Paradoxically, volatile anesthetics such as halothane inhibit these channels. We find that neuronal Kir3 currents are highly sensitive to inhibition by halothane. Given that Kir3 currents result from increased Gβγ available to the channels, we asked whether reducing available Gβγ to the channel would adversely affect halothane inhibition. Remarkably, scavenging Gβγ using the C-terminal domain of β-adrenergic receptor kinase (cβARK) resulted in channel activation by halothane. Consistent with this effect, channel mutants that impair Gβγ activation were also activated by halothane. A single residue, phenylalanine 192, occupies the putative Gβγ gate of neuronal Kir3.2 channels. Mutation of Phe-192 at the gate to other residues rendered the channel non-responsive, either activated or inhibited by halothane. These data indicated that halothane predominantly interferes with Gβγ-mediated Kir3 currents, such as those functioning during inhibitory synaptic activity. Our report identifies the molecular correlate for anesthetic inhibition of Kir3 channels and highlights the significance of these effects in modulating neurotransmitter-mediated inhibitory signaling.
Collapse
Affiliation(s)
- Amanda M Styer
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2621, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Zylbergold P, Ramakrishnan N, Hebert T. The role of G proteins in assembly and function of Kir3 inwardly rectifying potassium channels. Channels (Austin) 2010; 4:411-21. [PMID: 20855978 DOI: 10.4161/chan.4.5.13327] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Kir3 channels (also known as GIRK channels) are important regulators of electrical excitability in both cardiomyocytes and neurons. Much is known regarding the assembly and function of these channels and the roles that their interacting proteins play in controlling these events. Further, they are one of the best studied effectors of heterotrimeric G proteins in general and Gβγ subunits in particular. However, our understanding of the roles of multiple Gβγ binding sites on Kir3 channels is still rudimentary. We discuss potential roles for Gβγ in channel assembly and trafficking in addition to their known role in cellular signaling.
Collapse
Affiliation(s)
- Peter Zylbergold
- Department of Pharmacology and Therapeutics, McGill University, Québec, Canada
| | | | | |
Collapse
|
32
|
Wagner V, Stadelmeyer E, Riederer M, Regitnig P, Gorischek A, Devaney T, Schmidt K, Tritthart HA, Hirschberg K, Bauernhofer T, Schreibmayer W. Cloning and characterisation of GIRK1 variants resulting from alternative RNA editing of the KCNJ3 gene transcript in a human breast cancer cell line. J Cell Biochem 2010; 110:598-608. [PMID: 20512921 DOI: 10.1002/jcb.22564] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to investigate the impact of increased mRNA levels encoding GIRK1 in breast tumours on GIRK protein expression. mRNA levels encoding hGIRK1 and hGIRK4 in the MCF7, MCF10A and MDA-MB-453 breast cancer cell lines were assessed and the corresponding proteins detected using Western blots. cDNAs encoding for four hGIRK1 splice variants (hGIRK1a, 1c, 1d and 1e) were cloned from the MCF7 cell line. Subcellular localisation of fluorescence labelled hGIRK1a-e and hGIRK4 and of endogenous GIRK1 and GIRK4 subunits was monitored in the MCF7 cell line. All hGIRK1 splice variants and hGIRK4 were predominantly located within the endoplasmic reticulum. Heterologous expression in Xenopus laevis oocytes and two electrode voltage clamp experiments together with confocal microscopy were performed. Only the hGIRK1a subunit was able to form functional GIRK channels in connection with hGIRK4. The other splice variants are expressed, but exert a dominant negative effect on heterooligomeric channel function. Hence, alternative splicing of the KCNJ3 gene transcript in the MCF7 cell line leads to a family of mRNA's, encoding truncated versions of the hGIRK1 protein. The very high abundance of mRNA's encoding GIRK1 together with the presence of GIRK1 protein suggests a pathophysiological role in breast cancer.
Collapse
Affiliation(s)
- Valerie Wagner
- Institute for Biophysics, Center of Physiological Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat Rev Neurosci 2010; 11:301-15. [PMID: 20389305 DOI: 10.1038/nrn2834] [Citation(s) in RCA: 470] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-gated inwardly rectifying potassium (GIRK) channels hyperpolarize neurons in response to activation of many different G protein-coupled receptors and thus control the excitability of neurons through GIRK-mediated self-inhibition, slow synaptic potentials and volume transmission. GIRK channel function and trafficking are highly dependent on the channel subunit composition. Pharmacological investigations of GIRK channels and studies in animal models suggest that GIRK activity has an important role in physiological responses, including pain perception and memory modulation. Moreover, abnormal GIRK function has been implicated in altering neuronal excitability and cell death, which may be important in the pathophysiology of diseases such as epilepsy, Down's syndrome, Parkinson's disease and drug addiction. GIRK channels may therefore prove to be a valuable new therapeutic target.
Collapse
|
34
|
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010; 90:291-366. [PMID: 20086079 DOI: 10.1152/physrev.00021.2009] [Citation(s) in RCA: 1135] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inwardly rectifying K(+) (Kir) channels allow K(+) to move more easily into rather than out of the cell. They have diverse physiological functions depending on their type and their location. There are seven Kir channel subfamilies that can be classified into four functional groups: classical Kir channels (Kir2.x) are constitutively active, G protein-gated Kir channels (Kir3.x) are regulated by G protein-coupled receptors, ATP-sensitive K(+) channels (Kir6.x) are tightly linked to cellular metabolism, and K(+) transport channels (Kir1.x, Kir4.x, Kir5.x, and Kir7.x). Inward rectification results from pore block by intracellular substances such as Mg(2+) and polyamines. Kir channel activity can be modulated by ions, phospholipids, and binding proteins. The basic building block of a Kir channel is made up of two transmembrane helices with cytoplasmic NH(2) and COOH termini and an extracellular loop which folds back to form the pore-lining ion selectivity filter. In vivo, functional Kir channels are composed of four such subunits which are either homo- or heterotetramers. Gene targeting and genetic analysis have linked Kir channel dysfunction to diverse pathologies. The crystal structure of different Kir channels is opening the way to understanding the structure-function relationships of this simple but diverse ion channel family.
Collapse
Affiliation(s)
- Hiroshi Hibino
- Department of Pharmacology, Graduate School of Medicine and The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Schreibmayer W. Emerging role(s) of G-protein alpha-subunits in the gating of GIRKs. J Physiol 2009; 587:4125-6. [PMID: 19720846 DOI: 10.1113/jphysiol.2009.179234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Wolfgang Schreibmayer
- Molecular Physiology Laboratory, Institute of Biophysics, Medical University of Graz, Harrachgasse 21/4; A-8010 Graz, Austria.
| |
Collapse
|
36
|
Sadana R, Dascal N, Dessauer CW. N terminus of type 5 adenylyl cyclase scaffolds Gs heterotrimer. Mol Pharmacol 2009; 76:1256-64. [PMID: 19783621 PMCID: PMC2784731 DOI: 10.1124/mol.109.058370] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 09/24/2009] [Indexed: 11/22/2022] Open
Abstract
According to accepted doctrine, agonist-bound G protein-coupled receptors catalyze the exchange of GDP for GTP and facilitate the dissociation of Galpha and Gbetagamma, which in turn regulate their respective effectors. More recently, the existence of preformed signaling complexes, which may include receptors, heterotrimeric G proteins, and/or effectors, is gaining acceptance. We show herein the existence of a preformed complex of inactive heterotrimer (Galpha(s) x betagamma) and the effector type 5 adenylyl cyclase (AC5), localized by the N terminus of AC5. GST fusions of AC5 N terminus (5NT) bind to purified G protein subunits (GDP-Galpha(s) and Gbetagamma) with apparent affinities of 270 +/- 21 and 190 +/- 7 nM, respectively. GDP-bound Galpha(s) and Gbetagamma did not compete, but rather facilitated their interaction with 5NT, consistent with the isolation of a ternary complex (5NT, Galpha(s), and Gbetagamma) by gel filtration. The AC5/Gbetagamma interaction was also demonstrated by immunoprecipitation and fluorescence resonance energy transfer (FRET) and the binding site of heterotrimer Galpha(s) x betagamma mapped to amino acids 60 to 129 of 5NT. Deletion of this region in full-length AC5 resulted in significant reduction of FRET between Gbetagamma and AC. 5NT also interacts with the catalytic core of AC, mainly via the C1 domain, to enhance Galpha(s)--and forskolin-stimulated activity of C1/C2 domains. The N terminus also serves to constrain Galpha(i)-mediated inhibition of AC5, which is relieved in the presence of Gbetagamma. These results reveal that 5NT plays a key regulatory role by interacting with the catalytic core and scaffolding inactive heterotrimeric G proteins, forming a preassembled complex that is potentially braced for GPCR activation.
Collapse
Affiliation(s)
- Rachna Sadana
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
37
|
Müllner C, Steinecker B, Gorischek A, Schreibmayer W. Identification of the structural determinant responsible for the phosphorylation of G-protein activated potassium channel 1 by cAMP-dependent protein kinase. FEBS J 2009; 276:6218-26. [DOI: 10.1111/j.1742-4658.2009.07325.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Probing the role of the cation-pi interaction in the binding sites of GPCRs using unnatural amino acids. Proc Natl Acad Sci U S A 2009; 106:11919-24. [PMID: 19581583 DOI: 10.1073/pnas.0903260106] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a general application of the nonsense suppression methodology for unnatural amino acid incorporation to probe drug-receptor interactions in functional G protein-coupled receptors (GPCRs), evaluating the binding sites of both the M2 muscarinic acetylcholine receptor and the D2 dopamine receptor. Receptors were expressed in Xenopus oocytes, and activation of a G protein-coupled, inward-rectifying K(+) channel (GIRK) provided, after optimization of conditions, a quantitative readout of receptor function. A number of aromatic amino acids thought to be near the agonist-binding site were evaluated. Incorporation of a series of fluorinated tryptophan derivatives at W6.48 of the D2 receptor establishes a cation-pi interaction between the agonist dopamine and W6.48, suggesting a reorientation of W6.48 on agonist binding, consistent with proposed "rotamer switch" models. Interestingly, no comparable cation-pi interaction was found at the aligning residue in the M2 receptor.
Collapse
|
39
|
Aryal P, Dvir H, Choe S, Slesinger PA. A discrete alcohol pocket involved in GIRK channel activation. Nat Neurosci 2009; 12:988-95. [PMID: 19561601 PMCID: PMC2717173 DOI: 10.1038/nn.2358] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/03/2009] [Indexed: 12/18/2022]
Abstract
Ethanol modifies neural activity in the brain by modulating ion channels. Ethanol activates G protein-gated inwardly rectifying K+ channels, but the molecular mechanism is not well understood. Here, we used a crystal structure of a mouse inward rectifier containing a bound alcohol and structure-based mutagenesis to probe a putative alcohol-binding pocket located in the cytoplasmic domains of GIRK channels. Substitutions with bulkier side-chains in the alcohol-binding pocket reduced or eliminated activation by alcohols. By contrast, alcohols inhibited constitutively open channels, such as IRK1 or GIRK2 that binds PIP2 strongly. Mutations in the hydrophobic alcohol-binding pocket of these channels had no effect on alcohol-dependent inhibition, suggesting an alternate site is involved in inhibition. Comparison of high-resolution structures of inwardly rectifying K+ channels suggests a model for activation of GIRK channels utilizing this hydrophobic alcohol-binding pocket. These results provide a tool for developing therapeutic compounds that could mitigate the effects of alcohol.
Collapse
Affiliation(s)
- Prafulla Aryal
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | | | | | | |
Collapse
|
40
|
Dai S, Hall DD, Hell JW. Supramolecular assemblies and localized regulation of voltage-gated ion channels. Physiol Rev 2009; 89:411-52. [PMID: 19342611 DOI: 10.1152/physrev.00029.2007] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review addresses the localized regulation of voltage-gated ion channels by phosphorylation. Comprehensive data on channel regulation by associated protein kinases, phosphatases, and related regulatory proteins are mainly available for voltage-gated Ca2+ channels, which form the main focus of this review. Other voltage-gated ion channels and especially Kv7.1-3 (KCNQ1-3), the large- and small-conductance Ca2+-activated K+ channels BK and SK2, and the inward-rectifying K+ channels Kir3 have also been studied to quite some extent and will be included. Regulation of the L-type Ca2+ channel Cav1.2 by PKA has been studied most thoroughly as it underlies the cardiac fight-or-flight response. A prototypical Cav1.2 signaling complex containing the beta2 adrenergic receptor, the heterotrimeric G protein Gs, adenylyl cyclase, and PKA has been identified that supports highly localized via cAMP. The type 2 ryanodine receptor as well as AMPA- and NMDA-type glutamate receptors are in close proximity to Cav1.2 in cardiomyocytes and neurons, respectively, yet independently anchor PKA, CaMKII, and the serine/threonine phosphatases PP1, PP2A, and PP2B, as is discussed in detail. Descriptions of the structural and functional aspects of the interactions of PKA, PKC, CaMKII, Src, and various phosphatases with Cav1.2 will include comparisons with analogous interactions with other channels such as the ryanodine receptor or ionotropic glutamate receptors. Regulation of Na+ and K+ channel phosphorylation complexes will be discussed in separate papers. This review is thus intended for readers interested in ion channel regulation or in localization of kinases, phosphatases, and their upstream regulators.
Collapse
Affiliation(s)
- Shuiping Dai
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
| | | | | |
Collapse
|
41
|
Rubinstein M, Peleg S, Berlin S, Brass D, Keren-Raifman T, Dessauer CW, Ivanina T, Dascal N. Divergent regulation of GIRK1 and GIRK2 subunits of the neuronal G protein gated K+ channel by GalphaiGDP and Gbetagamma. J Physiol 2009; 587:3473-91. [PMID: 19470775 DOI: 10.1113/jphysiol.2009.173229] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
G protein activated K+ channels (GIRK, Kir3) are switched on by direct binding of Gbetagamma following activation of Gi/o proteins via G protein-coupled receptors (GPCRs). Although Galphai subunits do not activate GIRKs, they interact with the channels and regulate the gating pattern of the neuronal heterotetrameric GIRK1/2 channel (composed of GIRK1 and GIRK2 subunits) expressed in Xenopus oocytes. Coexpressed Galphai3 decreases the basal activity (Ibasal) and increases the extent of activation by purified or coexpressed Gbegagamma. Here we show that this regulation is exerted by the 'inactive' GDP-bound Galphai3GDP and involves the formation of Galphai3betagamma heterotrimers, by a mechanism distinct from mere sequestration of Gbetagamma 'away' from the channel. The regulation of basal and Gbetagamma-evoked current was produced by the 'constitutively inactive' mutant of Galphai3, Galphai3G203A, which strongly binds Gbetagamma, but not by the 'constitutively active' mutant, Galphai3Q204L, or by Gbetagamma-scavenging proteins. Furthermore, regulation by Galphai3G203A was unique to the GIRK1 subunit; it was not observed in homomeric GIRK2 channels. In vitro protein interaction experiments showed that purified Gbetagamma enhanced the binding of Galphai3GDP to the cytosolic domain of GIRK1, but not GIRK2. Homomeric GIRK2 channels behaved as a 'classical' Gbetagamma effector, showing low Ibasal and strong Gbetagamma-dependent activation. Expression of Galphai3G203A did not affect either Ibasal or Gbetagamma-induced activation. In contrast, homomeric GIRK1* (a pore mutant able to form functional homomeric channels) exhibited large Ibasal and was poorly activated by Gbegagamma. Expression of Galphai3GDP reduced Ibasal and restored the ability of Gbetagamma to activate GIRK1*, like in GIRK1/2. Transferring the unique distal segment of the C terminus of GIRK1 to GIRK2 rendered the latter functionally similar to GIRK1*. These results demonstrate that GIRK1 containing channels are regulated by both Galphai3GDP and Gbetagamma, while GIRK2 is a Gbetagamma-effector insensitive to Galphai3GDP.
Collapse
Affiliation(s)
- Moran Rubinstein
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Welling PA, Ho K. A comprehensive guide to the ROMK potassium channel: form and function in health and disease. Am J Physiol Renal Physiol 2009; 297:F849-63. [PMID: 19458126 DOI: 10.1152/ajprenal.00181.2009] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The discovery of the renal outer medullary K+ channel (ROMK, K(ir)1.1), the founding member of the inward-rectifying K+ channel (K(ir)) family, by Ho and Hebert in 1993 revolutionized our understanding of potassium channel biology and renal potassium handling. Because of the central role that ROMK plays in the regulation of salt and potassium homeostasis, considerable efforts have been invested in understanding the underlying molecular mechanisms. Here we provide a comprehensive guide to ROMK, spanning from the physiology in the kidney to the organization and regulation by intracellular factors to the structural basis of its function at the atomic level.
Collapse
Affiliation(s)
- Paul A Welling
- Dept. of Physiology, Univ. of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA.
| | | |
Collapse
|
43
|
Membrane signalling complexes: implications for development of functionally selective ligands modulating heptahelical receptor signalling. Cell Signal 2008; 21:179-85. [PMID: 18790047 DOI: 10.1016/j.cellsig.2008.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 08/24/2008] [Indexed: 11/24/2022]
Abstract
Technological development has considerably changed the way in which we evaluate drug efficacy and has led to a conceptual revolution in pharmacological theory. In particular, molecular resolution assays have revealed that heptahelical receptors may adopt multiple active conformations with unique signalling properties. It is therefore becoming widely accepted that ligand ability to stabilize receptor conformations with distinct signalling profiles may allow to direct the stimulus generated by an activated receptor towards a specific signalling pathway. This capacity to induce only a subset of the ensemble of responses regulated by a given receptor has been termed "functional selectivity" (or "stimulus trafficking"), and provides the bases for a highly specific regulation of receptor signalling. Concomitant with these observations, heptahelical receptors have been shown to associate with G proteins and effectors to form multimeric arrays. These complexes are constitutively formed during protein synthesis and are targeted to the cell surface as integral signalling units. Herein we summarize evidence supporting the existence of such constitutive signalling arrays and analyze the possibility that they may constitute viable targets for developing ligands with "functional selectivity".
Collapse
|
44
|
Doupnik CA. GPCR-Kir channel signaling complexes: defining rules of engagement. J Recept Signal Transduct Res 2008; 28:83-91. [PMID: 18437632 DOI: 10.1080/10799890801941970] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ion channels and G protein-coupled receptors (GPCRs) are integral transmembrane proteins vital to a multitude of cell signaling and physiological functions. Members of these large protein families are known to interact directly with various intracellular protein partners in a dynamic and isoform-dependent manner, ultimately shaping their life cycle and signal output. The family of G protein-gated inwardly rectifying potassium channels (Kir3 or GIRK) expressed in brain, heart, and endocrine tissues were recently shown to stably associate with several different GPCRs, forming the basis of a macromolecular ion channel-GPCR signaling complex. The molecular determinants that mediate and maintain GPCR-Kir3 channel complexes are currently not well understood. Recent findings and emerging hypotheses on the assembly and stability of multiprotein GPCR-Kir channel signaling complexes are discussed, highlighting distinct mechanisms used by different Kir channel families. These protein-protein interaction processes are crucial in determining both the synaptic response times and the extent of GPCR "cross-talk" in Kir3-mediated inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Craig A Doupnik
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida 33612, USA.
| |
Collapse
|
45
|
Nishida M, Cadene M, Chait BT, MacKinnon R. Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J 2007; 26:4005-15. [PMID: 17703190 PMCID: PMC1994128 DOI: 10.1038/sj.emboj.7601828] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 07/23/2007] [Indexed: 11/08/2022] Open
Abstract
The Kir3.1 K(+) channel participates in heart rate control and neuronal excitability through G-protein and lipid signaling pathways. Expression in Escherichia coli has been achieved by replacing three fourths of the transmembrane pore with the pore of a prokaryotic Kir channel, leaving the cytoplasmic pore and membrane interfacial regions of Kir3.1 origin. Two structures were determined at 2.2 A. The selectivity filter is identical to the Streptomyces lividans K(+) channel within error of measurement (r.m.s.d.<0.2 A), suggesting that K(+) selectivity requires extreme conservation of three-dimensional structure. Multiple K(+) ions reside within the pore and help to explain voltage-dependent Mg(2+) and polyamine blockade and strong rectification. Two constrictions, at the inner helix bundle and at the apex of the cytoplasmic pore, may function as gates: in one structure the apex is open and in the other, it is closed. Gating of the apex is mediated by rigid-body movements of the cytoplasmic pore subunits. Phosphatidylinositol 4,5-biphosphate-interacting residues suggest a possible mechanism by which the signaling lipid regulates the cytoplasmic pore.
Collapse
Affiliation(s)
- Motohiko Nishida
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA
| | - Martine Cadene
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, Rockefeller University, New York, NY, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, Rockefeller University, New York, NY, USA
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA. Tel.: +1 212 327 7288; Fax: +1 212 327 7289; E-mail:
| |
Collapse
|
46
|
Logothetis DE, Lupyan D, Rosenhouse-Dantsker A. Diverse Kir modulators act in close proximity to residues implicated in phosphoinositide binding. J Physiol 2007; 582:953-65. [PMID: 17495041 PMCID: PMC2075264 DOI: 10.1113/jphysiol.2007.133157] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 04/30/2007] [Indexed: 12/23/2022] Open
Abstract
Inwardly rectifying potassium (Kir) channels were the first shown to be directly activated by phosphoinositides in general and phosphatidylinositol bisphosphate (PIP(2)) in particular. Atomic resolution structures have been determined for several mammalian and bacterial Kir channels. Basic residues, identified through mutagenesis studies to contribute to the sensitivity of the channel to PIP(2), have been mapped onto the three dimensional channel structure and their localization has given rise to a plausible model that can explain channel activation by PIP(2). Moreover, mapping onto the three-dimensional channel structure sites involved in the modulation of Kir channel activity by a diverse group of regulatory molecules, revealed a striking proximity to residues implicated in phosphoinositide binding. These observations support the hypothesis that the observed dependence of diverse modulators on channel-PIP(2) interactions stems from their localization within distances that can affect PIP(2)-interacting residues.
Collapse
Affiliation(s)
- Diomedes E Logothetis
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
47
|
Xie LH, John SA, Ribalet B, Weiss JN. Activation of inwardly rectifying potassium (Kir) channels by phosphatidylinosital-4,5-bisphosphate (PIP2): Interaction with other regulatory ligands. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:320-35. [PMID: 16837026 DOI: 10.1016/j.pbiomolbio.2006.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All members of the inwardly rectifying potassium channels (Kir1-7) are regulated by the membrane phospholipid, phosphatidylinosital-4,5-bisphosphate (PIP(2)). Some are also modulated by other regulatory factors or ligands such as ATP and G-proteins, which give them their common names, such as the ATP sensitive potassium (K(ATP)) channel and the G-protein gated potassium channel. Other more non-specific regulators include polyamines, kinases, pH and Na(+) ions. Recent studies have demonstrated that PIP(2) acts cooperatively with other regulatory factors to modulate Kir channels. Here we review how PIP(2) and co-factors modulate channel activities in each subfamily of the Kir channels.
Collapse
Affiliation(s)
- Lai-Hua Xie
- Cardiovascular Research Laboratory, Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
48
|
Rubinstein M, Peleg S, Berlin S, Brass D, Dascal N. Galphai3 primes the G protein-activated K+ channels for activation by coexpressed Gbetagamma in intact Xenopus oocytes. J Physiol 2007; 581:17-32. [PMID: 17289785 PMCID: PMC2075207 DOI: 10.1113/jphysiol.2006.125864] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 02/02/2007] [Indexed: 01/29/2023] Open
Abstract
G protein-activated K+ channels (GIRK) mediate postsynaptic inhibitory effects of neurotransmitters in the atrium and in the brain by coupling to G protein-coupled receptors (GPCRs). In neurotransmitter-dependent GIRK signalling, Gbetagamma is released from the heterotrimeric Galphabetagamma complex upon GPCR activation, activating the channel and attenuating its rectification. Now it becomes clear that Galpha is more than a mere Gbetagamma donor. We have proposed that Galphai3-GDP regulates GIRK gating, keeping its basal activity low but priming (predisposing) the channel for activation by agonist in intact cells, and by Gbetagamma in excised patches. Here we have further investigated GIRK priming by Galphai3 using a model in which the channel was activated by coexpression of Gbetagamma, and the currents were measured in intact Xenopus oocytes using the two-electrode voltage clamp technique. This method enables the bypass of GPCR activation during examination of the regulation of the channel in intact cells. Using this method, we further characterize the priming phenomenon. We tested and excluded the possibility that our estimates of priming are affected by artifacts caused by series resistance or large K+ fluxes. We demonstrate that both Galphai3 and membrane-attached Gbetagamma scavenger protein, m-phosducin, reduce the basal channel activity. However, Galphai3 allows robust channel activation by coexpressed Gbetagamma, in sharp contrast to m-phosducin, which causes a substantial reduction in the total Gbetagamma-induced current. Furthermore, Galphai3 also does not impair the Gbetagamma-dependent attenuation of the channel rectification, in contrast to m-phosducin, which prevents this Gbetagamma-induced modulation. The Galphai3-induced enhancement of direct activation of GIRK by Gbetagamma, demonstrated here for the first time in intact cells, strongly supports the hypothesis that Galphai regulates GIRK gating under physiological conditions.
Collapse
Affiliation(s)
- Moran Rubinstein
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel.
| | | | | | | | | |
Collapse
|
49
|
Abstract
In this critical review we discuss recent advances in understanding the modes of interaction of metal ions with membrane proteins, including channels, pumps, transporters, ATP-binding cassette proteins, G-protein coupled receptors, kinases and respiratory enzymes. Such knowledge provides a basis for elucidating the mechanism of action of some classes of metallodrugs, and a stimulus for the further exploration of the coordination chemistry of metal ions in membranes. Such research offers promise for the discovery of new drugs with unusual modes of action. The article will be of interest to bioinorganic chemists, chemical biologists, biochemists, pharmacologists and medicinal chemists. (247 references).
Collapse
Affiliation(s)
- Xiangyang Liang
- School of Chemistry, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, UKEH9 3JJ
| | | | | |
Collapse
|
50
|
Riven I, Iwanir S, Reuveny E. GIRK Channel Activation Involves a Local Rearrangement of a Preformed G Protein Channel Complex. Neuron 2006; 51:561-73. [PMID: 16950155 DOI: 10.1016/j.neuron.2006.08.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 06/19/2006] [Accepted: 08/09/2006] [Indexed: 11/15/2022]
Abstract
G protein-coupled signaling is one of the major mechanisms for controlling cellular excitability. One of the main targets for this control at postsynaptic membranes is the G protein-coupled potassium channels (GIRK/Kir3), which generate slow inhibitory postsynaptic potentials following the activation of Pertussis toxin-sensitive G protein-coupled receptors. Using total internal reflection fluorescence (TIRF) microscopy combined with fluorescence resonance energy transfer (FRET), in intact cells, we provide evidence for the existence of a trimeric G protein-channel complex at rest. We show that activation of the channel via the receptor induces a local conformational switch of the G protein to induce channel opening. The presence of such a complex thus provides the means for a precise temporal and highly selective activation of the channel, which is required for fine tuning of neuronal excitability.
Collapse
Affiliation(s)
- Inbal Riven
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel 76100
| | | | | |
Collapse
|