1
|
Jin C, Ye Y, Gao L, Zhong Z, Zhou C, Wu X, Li X, Zhou G, Chen S, Wei Y, Cai L, Liu S, Xu J. Biological function of RNA-binding proteins in myocardial infarction: a potential emerging therapeutic limelight. Cell Biosci 2025; 15:65. [PMID: 40413549 PMCID: PMC12102849 DOI: 10.1186/s13578-025-01408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 05/08/2025] [Indexed: 05/27/2025] Open
Abstract
Myocardial infarction (MI) is currently one of the most fatal cardiovascular diseases worldwide. The screening, treatment, and prognosis of MI are top priorities for cardiovascular centers globally due to its characteristic occult onset, high lethality, and poor prognosis. MI is caused by coronary artery occlusion induced by coronary atherosclerotic plaque blockage or other factors, leading to ischemic necrosis and apoptosis of cardiomyocytes. Although significant advancements have been made in the study of cardiomyocytes at the cellular and molecular levels, RNA-binding proteins (RBPs) have not been extensively explored in the context of MI. RBPs, as key regulators coordinating cell differentiation and tissue homeostasis, exhibit specific functions in gene transcription, RNA modification and processing, and post-transcriptional gene expression. By binding to their target RNA, RBPs coordinate various RNA dynamics, including cellular metabolism, subcellular localization, and translation efficiency, thereby controlling the expression of encoded proteins. Classical RBPs, including HuR, hnRNPs, and RBM family molecules, have been identified as critical regulators in myocardial hypoxia, oxidative stress, pro-inflammatory responses, and fibrotic repair. These RBPs exert their effects by modulating key pathophysiological pathways in MI, thereby influencing specific cardiac outcomes. Additionally, specific RBPs, such as QKI and fused in sarcoma (FUS), are implicated in the apoptotic pathways activated during MI. This apoptotic pathway represents a significant molecular phenotype in MI, offering novel perspectives and insights for mitigating cardiomyocyte apoptosis and attenuating the progression of MI. Therefore, this review systematically summarizes the role of RBPs in the main pathophysiological stages of MI and explores their potential therapeutic prospects.
Collapse
Affiliation(s)
- Chenyang Jin
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Ye
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longzhe Gao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zikan Zhong
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changzuan Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xudong Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songwen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lidong Cai
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Philip JL, Caneba CA, Caggiano LR, Prakash N, Cheng TC, Barlow KA, Mustafa T, Tabima DM, Hacker TA, Masters KS, Chesler NC. Hypoxia modulates human pulmonary arterial adventitial fibroblast phenotype through HIF-1α activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635152. [PMID: 39975245 PMCID: PMC11838261 DOI: 10.1101/2025.01.27.635152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hypoxic pulmonary hypertension (HPH) develops in association with diseases characterized by low oxygen levels leading to pulmonary artery (PA) narrowing and death. Hypoxia has been linked to increased PA collagen and changes in PA adventitial fibroblast (PAAF) metabolism. However, the mechanisms by which hypoxia regulates PAAF function are unknown. Hypoxia-inducible factor-1α (HIF-1α) is a subunit of a transcription factor that is degraded in normoxia but stabilized in hypoxia and is involved in extracellular matrix remodeling by fibroblasts. We examined the role of hypoxia and HIF-1α in regulating PAAF function. Human PAAF (HPAAF) were cultured in normoxic and hypoxic conditions. Cells were further treated with HIF1-α inhibitor or no drug. Protein expression, mRNA expression, enzyme activity, and metabolite concentration were examined. Male C57BL6/J mice were exposed to 0 or 10 days of hypoxia after which right ventricular hemodynamics and tissue metabolism were assessed. Hypoxia led to an increase in collagen content and decrease in matrix metalloproteinase-2 (MMP2) activity. HIF-1α inhibition limited collagen accumulation and restored MMP2 activity. HPAAF demonstrated elevated lactic acid concentration and decreased ATP in hypoxia. HIF-1α inhibition blunted these effects. Mice exposed to hypoxia developed significant elevation in right ventricle systolic pressures and had decreased ATP levels in pulmonary tissue. This study investigated the mechanisms by which hypoxia drives HPAAF-mediated collagen accumulation and metabolic changes. We identify the key role of HIF-1α in regulating changes. These findings provide important insights into understanding HPAAF-mediated PA remodeling and help identify possible novel therapeutic targets.
Collapse
|
3
|
Shatat AAS, Mahgoup EM, Rashed MH, Saleh IG, Akool ES. Molecular mechanisms of extracellular-ATP-mediated colorectal cancer progression: Implication of purinergic receptors-mediated nucleocytoplasmic shuttling of HuR. Purinergic Signal 2024; 20:669-680. [PMID: 38801618 PMCID: PMC11554961 DOI: 10.1007/s11302-024-10021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
One of the leading causes of cancer-related deaths worldwide is colorectal cancer (CRC). Extracellular ATP (e-ATP) and purinergic receptors (P2R) play a central role in CRC proliferation and progression. Human antigen R (HuR) is becoming more and more understood to be essential for the expression of genes linked to cancer. The current study demonstrates that ATP can mediate CRC (Caco-2 cells) progression via induction of HuR nucleocytoplasmic shuttling and subsequent expression of cancer-related genes, a consequence mostly mediated via the P2R receptor. It was also noted that suppression of HuR activity by using dihydrotanshinone I (DHTS) prevents cancer-related gene expression and subsequent CRC (Caco-2 cells) progression induced by ATP. The expression of cyclin A2/cyclin-dependent kinase 2 (CDK2), Bcl-2, ProT-α, hypoxia-inducible factor1-α (HIF1-α), vascular endothelial growth factor A (VEGF-A), transforming growth factor-β (TGF-β) and matrix metallopeptidase 9 (MMP-9) induced by ATP were highly reduced in the presence of either PPADS (non-selective P2R antagonist) or DHTS. In addition, e-ATP-induced Caco-2 cell proliferation as well as cell survival were highly reduced in the presence of either PPADS or DHTS or selective CDK-2 inhibitor (Roscovitine) or selective Bcl-2 inhibitor (ABT-263). Furthermore, it was found that MMP-9 is critical for Caco-2 cells migration induced by e-ATP as demonstrated by a clear reduction in cells migration in the presence of a selective MMP-9 inhibitor (Marimastat). Collectively, these data demonstrate that ATP through P2R activation can induce HuR nucleocytoplasmic shuttling that could be translated into an increase in cancer-related genes expression and subsequent, cell proliferation and progression.
Collapse
Affiliation(s)
- Abdel-Aziz S Shatat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Elsayed M Mahgoup
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohammed H Rashed
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ibrahim G Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Sinai University, Kantra, Ismailia, Egypt
| | - El-Sayed Akool
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
4
|
Jiang M, Wang X, Chen Z, Wang X, An Y, Ding L, Xu M, Fan B, Jiao P, Wang C, Wang M, Sun H, Zhao S, Gong Y. Lipolysis-Stimulated Lipoprotein Receptor in Proximal Tubule, BMP-SMAD Signaling, and Kidney Disease. J Am Soc Nephrol 2024; 35:1016-1033. [PMID: 38809616 PMCID: PMC11377808 DOI: 10.1681/asn.0000000000000382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Key Points
We identify that lipolysis-stimulated lipoprotein receptor is highly enriched in the nucleus of mouse and human kidney.This study provides new insights into the role of lipolysis-stimulated lipoprotein receptor in kidney disease.
Background
Lipolysis-stimulated lipoprotein receptor (LSR) is a single-pass membrane protein that plays essential roles in tricellular tight junction organization in the epithelium and endothelium, but its function in kidney physiology and disease development remains unknown.
Methods
Conditional Lsr deletion mice were generated and analyzed to investigate the function of LSR in proximal tubule. Unilateral ischemia-reperfusion was used as an injury model to investigate the role of LSR in AKI and the progression to CKD. Detailed mechanistic analyses were conducted using whole-transcriptome RNA sequencing, immunofluorescence, dual-luciferase reporter gene assay, coimmunoprecipitation, RNA immunoprecipitation, and adeno-associated virus-mediated gene overexpression and knockdown.
Results
The nuclear localization of LSR was found in the kidney. Proximal tubule–specific Lsr knockout mice exhibited alleviated kidney damage and fibrosis compared with those in wild-type mice in response unilateral ischemia-reperfusion injury. Loss of LSR resulted in downregulation of Chrdl1 and activation of bone morphogenetic protein (BMP)-mothers against decapentaplegic homolog (SMAD) signaling in proximal tubules. Treatment with CHRDL1 counteracted the protective effect of LSR deletion in the unilaterally ischemic injured kidney. In addition, the systemic delivery of Chrdl1 short hairpin RNA attenuated injury-induced kidney fibrosis. LSR formed a complex with 14-3-3θ in the nucleus of proximal tubular cells, thereby reducing the interaction between human antigen R and 14-3-3θ, consequently leading to the translocation of unbound human antigen R to the cytoplasm. The absence of LSR promoted the association of 14-3-3θ with human antigen R, potentially resulting in decreased human antigen R levels in the cytoplasm. Reduced human antigen R levels impaired Chrdl1 mRNA stability, subsequently leading to the activation of BMP-SMAD signaling.
Conclusions
Deletion of LSR in proximal tubule deregulated Chrdl1 to activate BMP-SMAD signaling and ameliorated kidney disease.
Collapse
Affiliation(s)
- Min Jiang
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, China
- Department of Pharmacology, Binzhou Medical University, Yantai, China
| | - Xiangdong Wang
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Zhenni Chen
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Xin Wang
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Yanan An
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, China
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Lixia Ding
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Mengyuan Xu
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Baozhen Fan
- Department of Urology, Binzhou Medical University Hospital, Binzhou, China
| | - Peng Jiao
- Department of Urology, Binzhou Medical University Hospital, Binzhou, China
| | - Chao Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mingxia Wang
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, China
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Hui Sun
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, China
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Shengtian Zhao
- Department of Urology, Binzhou Medical University Hospital, Binzhou, China
- Shandong Provincial Engineering Laboratory of Urologic Tissue Reconstruction, Jinan, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yongfeng Gong
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, China
- Department of Physiology, Binzhou Medical University, Yantai, China
| |
Collapse
|
5
|
Li Y, Song W, Kong L, He Y, Li H. Injectable and Microporous Microgel-Fiber Granular Hydrogel Loaded with Bioglass and siRNA for Promoting Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309599. [PMID: 38054634 DOI: 10.1002/smll.202309599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Injectable hydrogels find extensive application in the treatment of diabetic wound healing. However, traditional bulk hydrogels are significantly limited due to their nano-porous structure, which obstructs cell migration and tissue infiltration. Moreover, regulating inflammation and matrix metalloproteinase -9 (MMP-9) expression in diabetic wounds is crucial for enhancing wound healing. This study marks the first instance of introducing an efficient, scalable, and simple method for producing microfiber-gel granules encapsulating bioceramics powders. Utilizing this method, an injectable microporous granular microgel-fiber hydrogel (MFgel) is successfully developed by assembling microgel-fibers made from hyaluronic acid (HA) and sodium alginate (SA) loaded with small interfering RNA (siRNA) and bioglass (BG) particles. Compared to traditional hydrogels (Tgel), MFgel possesses a highly interconnected network with micron-sized pores, demonstrating favorable properties for cell adhesion and penetration in in vitro experiments. Additionally, MFgel exhibits a higher compressive modulus and superior mechanical stability. When implanted subcutaneously in mice, MFgel promotes cellular and tissue infiltration, facilitating cell proliferation. Furthermore, when applied to skin defects in diabetic rats, MFgel not only effectively regulates inflammation and suppresses MMP-9 expression but also enhances angiogenesis and collagen deposition, thereby significantly accelerating diabetic wound healing. Taken together, this hydrogel possesses great potential in diabetic wound healing applications.
Collapse
Affiliation(s)
- Ying Li
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai, 200233, China
| | - Wei Song
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Lingzhi Kong
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yaohua He
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- Department of Orthopedic Surgery, Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, 201500, China
| | - Haiyan Li
- Chemical and Environment Engineering Department, School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| |
Collapse
|
6
|
Zhang Y, Zhang Y, Song J, Cheng X, Zhou C, Huang S, Zhao W, Zong Z, Yang L. Targeting the "tumor microenvironment": RNA-binding proteins in the spotlight in colorectal cancer therapy. Int Immunopharmacol 2024; 131:111876. [PMID: 38493688 DOI: 10.1016/j.intimp.2024.111876] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer and has the second highest mortality rate among cancers. The development of CRC involves both genetic and epigenetic abnormalities, and recent research has focused on exploring the ex-transcriptome, particularly post-transcriptional modifications. RNA-binding proteins (RBPs) are emerging epigenetic regulators that play crucial roles in post-transcriptional events. Dysregulation of RBPs can result in aberrant expression of downstream target genes, thereby affecting the progression of colorectal tumors and the prognosis of patients. Recent studies have shown that RBPs can influence CRC pathogenesis and progression by regulating various components of the tumor microenvironment (TME). Although previous research on RBPs has primarily focused on their direct regulation of colorectal tumor development, their involvement in the remodeling of the TME has not been systematically reported. This review aims to highlight the significant role of RBPs in the intricate interactions within the CRC tumor microenvironment, including tumor immune microenvironment, inflammatory microenvironment, extracellular matrix, tumor vasculature, and CRC cancer stem cells. We also highlight several compounds under investigation for RBP-TME-based treatment of CRC, including small molecule inhibitors such as antisense oligonucleotides (ASOs), siRNAs, agonists, gene manipulation, and tumor vaccines. The insights gained from this review may lead to the development of RBP-based targeted novel therapeutic strategies aimed at modulating the TME, potentially inhibiting the progression and metastasis of CRC.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China; Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China; Queen Mary School, Nanchang University, 330006 Nanchang, China
| | - Yujun Zhang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China; Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China
| | - Jingjing Song
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China; Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China; School of Ophthalmology and Optometry of Nanchang University, China
| | - Xifu Cheng
- School of Ophthalmology and Optometry of Nanchang University, China
| | - Chulin Zhou
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Shuo Huang
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wentao Zhao
- The 3rd Clinical Department of China Medical University, 10159 Shenyang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China.
| | - Lingling Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China.
| |
Collapse
|
7
|
Kakuguchi W, Kitamura T, Takahashi T, Yanagawa-Matsuda A, Fang CY, Ohiro Y, Higashino F. Human antigen R knockdown attenuates the invasive activity of oral cancer cells through inactivation of matrix metalloproteinase-1 gene expression. J Dent Sci 2024; 19:154-161. [PMID: 38303892 PMCID: PMC10829560 DOI: 10.1016/j.jds.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/11/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose The RNA-binding protein human antigen R (HuR) recognizes AU-rich elements in the 3'-untranslated regions of mRNA. The expression of cytoplasmic HuR is related to the malignancy of many carcinomas. The aim of this study is investigation of effect of HuR knockdown for invasive activity of oral carcinoma. Materials and methods Proliferation, invasion, real-time PCR, and reporter gene assays were performed to confirm that the knockdown of HuR downregulates the invasive activity of cancer cells. Immunohistochemical staining was performed for high invasive carcinoma, squamous cell carcinoma (SCC) and low invasive carcinoma, verrucous carcinoma (VC), to determine if the localization of cytoplasmic HuR is related to matrix metalloproteinase-1 (MMP-1) expression. Results Invasive activity was significantly lower in HuR knockdown cancer cells than in control cells. A luciferase assay revealed that HuR knockdown inactivated the promoter activity of the MMP-1 gene. The mRNA levels of the transcription factors required for MMP-1 expression, including c-fos and c-jun, were decreased in HuR knockdown cancer cells. Immunohistochemical analysis revealed the level of cytoplasmic HuR and MMP-1 in invasive carcinoma to be higher than in low invasive cancer. HuR induced MMP-1 expression in the invasive front of most SCC cases. Conclusion HuR knockdown attenuated the invasive activity of cancer cells by decreasing the expression of the MMP-1, at least partially. HuR localization may help determine the invasive phenotype of cancer cells and inhibit cancer cell invasion. Furthermore, in oral SCC, HuR may be related to invasive activity through the expression of MMP-1.
Collapse
Affiliation(s)
- Wataru Kakuguchi
- Department of Vascular Biology and Molecular Pathology, Division of Oral Pathobiological Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
- Department of Oral and Maxillofacial Surgery, Division of Oral Pathobiological Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tetsuya Kitamura
- Department of Vascular Biology and Molecular Pathology, Division of Oral Pathobiological Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
- Hokkaido Oral Pathology Diagnostic Clinic, Sapporo, Japan
| | - Tomomi Takahashi
- Support Section for Education and Research, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Aya Yanagawa-Matsuda
- Department of Vascular Biology and Molecular Pathology, Division of Oral Pathobiological Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Chih-Yuan Fang
- Department of Oral and Maxillofacial Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yoichi Ohiro
- Department of Oral and Maxillofacial Surgery, Division of Oral Pathobiological Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Fumihiro Higashino
- Department of Vascular Biology and Molecular Pathology, Division of Oral Pathobiological Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
- Department of Molecular Oncology, Faculty of Dental Medicine and Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Guo C, Ji W, Yang W, Deng Q, Zheng T, Wang Z, Sui W, Zhai C, Yu F, Xi B, Yu X, Xu F, Zhang Q, Zhang W, Kong J, Zhang M, Zhang C. NKRF in Cardiac Fibroblasts Protects against Cardiac Remodeling Post-Myocardial Infarction via Human Antigen R. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303283. [PMID: 37667861 PMCID: PMC10602562 DOI: 10.1002/advs.202303283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/09/2023] [Indexed: 09/06/2023]
Abstract
Myocardial infarction (MI) remains the leading cause of death worldwide. Cardiac fibroblasts (CFs) are abundant in the heart and are responsible for cardiac repair post-MI. NF-κB-repressing factor (NKRF) plays a significant role in the transcriptional inhibition of various specific genes. However, the NKRF action mechanism in CFs remains unclear in cardiac repair post-MI. This study investigates the NKRF mechanism in cardiac remodeling and dysfunction post-MI by establishing a CF-specific NKRF-knockout (NKRF-CKO) mouse model. NKRF expression is downregulated in CFs in response to pathological cardiac remodeling in vivo and TNF-α in vitro. NKRF-CKO mice demonstrate worse cardiac function and survival and increased infarct size, heart weight, and MMP2 and MMP9 expression post-MI compared with littermates. NKRF inhibits CF migration and invasion in vitro by downregulating MMP2 and MMP9 expression. Mechanistically, NKRF inhibits human antigen R (HuR) transcription by binding to the classical negative regulatory element within the HuR promoter via an NF-κB-dependent mechanism. This decreases HuR-targeted Mmp2 and Mmp9 mRNA stability. This study suggests that NKRF is a therapeutic target for pathological cardiac remodeling.
Collapse
Affiliation(s)
- Chenghu Guo
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Wei Ji
- Department of UltrasonographyAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinan250014China
| | - Wei Yang
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Qiming Deng
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Tengfei Zheng
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Zunzhe Wang
- Department of Geriatric CardiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021China
| | - Wenhai Sui
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Chungang Zhai
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Fangpu Yu
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Bo Xi
- Department of EpidemiologySchool of Public HealthCheeloo College of MedicineShandong UniversityJinan250012China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of EducationDepartment of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012China
| | - Feng Xu
- Department of Emergency MedicineChest Pain CenterShandong Provincial Clinical Research Center for Emergency and Critical Care MedicineQilu HospitalShandong UniversityJinan250012China
| | - Qunye Zhang
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Wencheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Jing Kong
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Meng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
- Cardiovascular Disease Research Center of Shandong First Medical UniversityCentral Hospital Affiliated to Shandong First Medical UniversityJinan250013China
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
- Cardiovascular Disease Research Center of Shandong First Medical UniversityCentral Hospital Affiliated to Shandong First Medical UniversityJinan250013China
| |
Collapse
|
9
|
Prasad S, Kumar V, Singh C, Singh A. Crosstalk between phytochemicals and inflammatory signaling pathways. Inflammopharmacology 2023; 31:1117-1147. [PMID: 37022574 DOI: 10.1007/s10787-023-01206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Novel bioactive constituents from natural sources are actively being investigated. The phytochemicals in these phenolic compounds are believed to have a variety of beneficial effects on human health. Several phenolic compounds have been found in plants. The antioxidant potential of phenols has been discussed in numerous studies along with their anti-inflammatory effects on pro-inflammatory cytokine, inducible cyclooxygenase-2, and nitric oxide synthase. Through current study, an attempt is made to outline and highlight a wide variety of inflammation-associated signaling pathways that have been modified by several natural compounds. These signaling pathways include nuclear factor-kappa B (NF-кB), activator protein (AP)-1, protein tyrosine kinases (PTKs), mitogen-activated protein kinases (MAPKs), nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factors, tyrosine phosphatidylinositol 3-kinase (PI3K)/AKT, and the ubiquitin-proteasome system. In light of the influence of natural substances on signaling pathways, their impact on the production of inflammatory mediator is highlighted in this review.
Collapse
Affiliation(s)
- Sonima Prasad
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, H.N.B. Garhwal University, Srinagar, Garhwal, 246174, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| |
Collapse
|
10
|
Chen Y, Qin H, Zheng L. Research progress on RNA-binding proteins in breast cancer. Front Oncol 2022; 12:974523. [PMID: 36059653 PMCID: PMC9433872 DOI: 10.3389/fonc.2022.974523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most common malignancy in women and has a high incidence rate and mortality. Abnormal regulation of gene expression plays an important role in breast cancer occurrence and development. RNA-binding proteins (RBPs) are one kind of the key regulators for gene expression. By interacting with RNA, RBPs are widely involved in RNA cutting, transport, editing, intracellular localization, and translation regulation. RBPs are important during breast cancer occurrence and progression by engaging in many aspects, like proliferation, migration, invasion, and stemness. Therefore, comprehensively understanding the role of RBPs in breast cancer progression can facilitate early diagnosis, timely treatment, and long-term survival and quality of life of breast cancer patients.
Collapse
Affiliation(s)
- Ying Chen
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Hai Qin
- Department of Clinical Laboratory, Guizhou Provincial Orthopedic Hospital, Guiyang, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Zhu HJ, Sun X, Guo ZN, Qu Y, Sun YY, Jin H, Wang MQ, Xu BF, Yang Y. Prognostic values of serum alkaline phosphatase and globulin levels in patients undergoing intravenous thrombolysis. Front Mol Neurosci 2022; 15:932075. [PMID: 35909453 PMCID: PMC9335123 DOI: 10.3389/fnmol.2022.932075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background In previous studies, alkaline phosphatase (ALP) level was a prognostic factor for patients with ischemic stroke, and globulin level was associated with hemorrhagic transformation (HT) after intravenous thrombolysis (IVT). However, the association between these serum biomarkers and prognosis in patients with acute ischemic stroke (AIS) who undergo IVT remains unclear. This study aimed to investigate the characteristics of serum ALP and globulin levels after IVT and to assess the relationship between these serum biomarkers and prognosis. Materials and methods This retrospective study used a prospectively collected database. We included patients with AIS who received recombinant tissue plasminogen activator (rt-PA) IVT. Demographic information, vascular risk factors, laboratory test results, and other stroke-related data were collected for analysis. Clinical outcomes included HT and 3-month poor outcome (modified Rankin Scale scores ≥ 2) after IVT. The association of ALP and globulin levels with HT and poor outcome was investigated using multivariate logistic regression analysis. An individualized prediction model based on ALP and globulin levels for functional outcomes was established. Results We enrolled 750 patients in this study; 452 patients (60.3%) had poor outcome, and 117 patients (15.6%) had HT after IVT. After adjusting for all confounders, serum globulin level [OR = 1.055; 95% confidence intervals (CI): 1.006–1.107; P = 0.028] was independently associated with HT in patients with IVT. Serum ALP (OR = 1.009; 95% CI: 1.002–1.016; P = 0.010) and globulin levels (OR = 1.062; 95% CI: 1.020–1.107; P = 0.004) were associated with 3-month poor outcome in these patients. The constructed individualized prediction model for the 3-month poor outcome comprised the National Institutes of Health Stroke Scale (NIHSS) score, Trial of Org 10172 in Acute Stroke Treatment (TOAST), history of antihypertensive therapy, ALP and globulin levels. The area under the curve of the training and validation sets were 0.726 and 0.706, respectively, revealing that the model had good discriminating power. The P-values for the Hosmer-Lemeshow test in the training and validation sets were 0.978 and 0.148, respectively, indicating the model had good calibration. Conclusion This study found that higher serum globulin levels were independently associated with HT. Additionally, higher serum ALP and globulin levels were independently associated with a poor outcome in patients after IVT.
Collapse
Affiliation(s)
- Hong-Jing Zhu
- Department of Neurology, China National Comprehensive Stroke Center, The First Hospital of Jilin University, Changchun, China
- Neuroscience Research Centre, The First Hospital of Jilin University, Changchun, China
| | - Xin Sun
- Department of Neurology, China National Comprehensive Stroke Center, The First Hospital of Jilin University, Changchun, China
- Neuroscience Research Centre, The First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, China National Comprehensive Stroke Center, The First Hospital of Jilin University, Changchun, China
- Neuroscience Research Centre, The First Hospital of Jilin University, Changchun, China
| | - Yang Qu
- Department of Neurology, China National Comprehensive Stroke Center, The First Hospital of Jilin University, Changchun, China
- Neuroscience Research Centre, The First Hospital of Jilin University, Changchun, China
| | - Ying-Ying Sun
- Department of Neurology, China National Comprehensive Stroke Center, The First Hospital of Jilin University, Changchun, China
- Neuroscience Research Centre, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Department of Neurology, China National Comprehensive Stroke Center, The First Hospital of Jilin University, Changchun, China
- Neuroscience Research Centre, The First Hospital of Jilin University, Changchun, China
| | - Mei-Qi Wang
- Department of Neurology, China National Comprehensive Stroke Center, The First Hospital of Jilin University, Changchun, China
- Neuroscience Research Centre, The First Hospital of Jilin University, Changchun, China
| | - Bao-Feng Xu
- Department of Neurology, China National Comprehensive Stroke Center, The First Hospital of Jilin University, Changchun, China
- Neuroscience Research Centre, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Bao-Feng Xu,
| | - Yi Yang
- Department of Neurology, China National Comprehensive Stroke Center, The First Hospital of Jilin University, Changchun, China
- Neuroscience Research Centre, The First Hospital of Jilin University, Changchun, China
- Yi Yang,
| |
Collapse
|
12
|
Lachiondo-Ortega S, Delgado TC, Baños-Jaime B, Velázquez-Cruz A, Díaz-Moreno I, Martínez-Chantar ML. Hu Antigen R (HuR) Protein Structure, Function and Regulation in Hepatobiliary Tumors. Cancers (Basel) 2022; 14:2666. [PMID: 35681645 PMCID: PMC9179498 DOI: 10.3390/cancers14112666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Hu antigen R (HuR) is a 36-kDa ubiquitous member of the ELAV/Hu family of RNA-binding proteins (RBPs), which plays an important role as a post-transcriptional regulator of specific RNAs under physiological and pathological conditions, including cancer. Herein, we review HuR protein structure, function, and its regulation, as well as its implications in the pathogenesis, progression, and treatment of hepatobiliary cancers. In particular, we focus on hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), tumors where the increased cytoplasmic localization of HuR and activity are proposed, as valuable diagnostic and prognostic markers. An overview of the main regulatory axes involving HuR, which are associated with cell proliferation, invasion, metastasis, apoptosis, and autophagy in HCC, is provided. These include the transcriptional, post-transcriptional, and post-translational modulators of HuR function, in addition to HuR target transcripts. Finally, whereas studies addressing the relevance of targeting HuR in CCA are limited, in the past few years, HuR has emerged as a potential therapeutic target in HCC. In fact, the therapeutic efficacy of some pharmacological inhibitors of HuR has been evaluated, in early experimental models of HCC. We, further, discuss the major findings and future perspectives of therapeutic approaches that specifically block HuR interactions, either with post-translational modifiers or cognate transcripts in hepatobiliary cancers.
Collapse
Affiliation(s)
- Sofia Lachiondo-Ortega
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (S.L.-O.); (T.C.D.)
| | - Teresa Cardoso Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (S.L.-O.); (T.C.D.)
| | - Blanca Baños-Jaime
- Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Instituto de Investigaciones Químicas (IIQ), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41092 Sevilla, Spain; (B.B.-J.); (A.V.-C.); (I.D.-M.)
| | - Alejandro Velázquez-Cruz
- Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Instituto de Investigaciones Químicas (IIQ), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41092 Sevilla, Spain; (B.B.-J.); (A.V.-C.); (I.D.-M.)
| | - Irene Díaz-Moreno
- Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Instituto de Investigaciones Químicas (IIQ), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41092 Sevilla, Spain; (B.B.-J.); (A.V.-C.); (I.D.-M.)
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (S.L.-O.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, 28029 Madrid, Spain
| |
Collapse
|
13
|
Predictive Value of Globulin to Prealbumin Ratio for 3-Month Functional Outcomes in Acute Ischemic Stroke Patients. DISEASE MARKERS 2022; 2022:1120192. [PMID: 35340417 PMCID: PMC8947872 DOI: 10.1155/2022/1120192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 01/15/2023]
Abstract
Objective We aimed to evaluate and compare the association between globulin to albumin ratio (GAR) and globulin to prealbumin ratio (GPR) and 3-month functional prognosis of acute ischemic stroke (AIS) patients receiving intravenous thrombolysis therapy. Methods 234 AIS patients undergoing intravenous thrombolysis were retrospectively enrolled with acute ischemic stroke from February 2016 to October 2019. Blood sample was collected within 24 h after admission. Poor outcome was defined as the modified Rankin Scale (mRS) ≥ 3 and a favorable outcome as mRS < 3. Severe stroke was defined as the National Institutes of Health Stroke Scale (NIHSS) score > 10 on admission. Student's t-test, Mann–Whitney U test, Chi-square test, logistics' regression analysis, and receiver operating characteristic (ROC) analysis were performed. Results Patients with poor functional outcome had higher GAR and GPR levels compared with favorable functional group (p = 0.001, p < 0.001, respectively). Severe stroke was also associated with these two increasing variables. After adjustment for confounding factors, multivariate logistic regression analysis indicated that GPR was an independent indicator predictor of AIS. Conclusions The 24 h GPR level can predict the 3-month functional outcome in AIS patients accepting recombinant tissue plasminogen activator (r-tPA) intravenous thrombosis.
Collapse
|
14
|
Abstract
RNA-binding proteins (RBPs) are of fundamental importance for post-transcriptional gene regulation and protein synthesis. They are required for pre-mRNA processing and for RNA transport, degradation and translation into protein, and can regulate every step in the life cycle of their RNA targets. In addition, RBP function can be modulated by RNA binding. RBPs also participate in the formation of ribonucleoprotein complexes that build up macromolecular machineries such as the ribosome and spliceosome. Although most research has focused on mRNA-binding proteins, non-coding RNAs are also regulated and sequestered by RBPs. Functional defects and changes in the expression levels of RBPs have been implicated in numerous diseases, including neurological disorders, muscular atrophy and cancers. RBPs also contribute to a wide spectrum of kidney disorders. For example, human antigen R has been reported to have a renoprotective function in acute kidney injury (AKI) but might also contribute to the development of glomerulosclerosis, tubulointerstitial fibrosis and diabetic kidney disease (DKD), loss of bicaudal C is associated with cystic kidney diseases and Y-box binding protein 1 has been implicated in the pathogenesis of AKI, DKD and glomerular disorders. Increasing data suggest that the modulation of RBPs and their interactions with RNA targets could be promising therapeutic strategies for kidney diseases.
Collapse
|
15
|
Raguraman R, Shanmugarama S, Mehta M, Elle Peterson J, Zhao YD, Munshi A, Ramesh R. Drug delivery approaches for HuR-targeted therapy for lung cancer. Adv Drug Deliv Rev 2022; 180:114068. [PMID: 34822926 PMCID: PMC8724414 DOI: 10.1016/j.addr.2021.114068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023]
Abstract
Lung cancer (LC) is often diagnosed at an advanced stage and conventional treatments for disease management have limitations associated with them. Novel therapeutic targets are thus avidly sought for the effective management of LC. RNA binding proteins (RBPs) have been convincingly established as key players in tumorigenesis, and their dysregulation is linked to multiple cancers, including LC. In this context, we review the role of Human antigen R (HuR), an RBP that is overexpressed in LC, and further associated with various aspects of LC tumor growth and response to therapy. Herein, we describe the role of HuR in LC progression and outline the evidences supporting various pharmacologic and biologic approaches for inhibiting HuR expression and function. These approaches, including use of small molecule inhibitors, siRNAs and shRNAs, have demonstrated favorable results in reducing tumor cell growth, invasion and migration, angiogenesis and metastasis. Hence, HuR has significant potential as a key therapeutic target in LC. Use of siRNA-based approaches, however, have certain limitations that prevent their maximal exploitation as cancer therapies. To address this, in the conclusion of this review, we provide a list of nanomedicine-based HuR targeting approaches currently being employed for siRNA and shRNA delivery, and provide a rationale for the immense potential therapeutic benefits offered by nanocarrier-based HuR targeting and its promise for treating patients with LC.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Meghna Mehta
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jo Elle Peterson
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yan D Zhao
- Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anupama Munshi
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
16
|
Aloufi N, Alluli A, Eidelman DH, Baglole CJ. Aberrant Post-Transcriptional Regulation of Protein Expression in the Development of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:ijms222111963. [PMID: 34769392 PMCID: PMC8584689 DOI: 10.3390/ijms222111963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an incurable and prevalent respiratory disorder that is characterized by chronic inflammation and emphysema. COPD is primarily caused by cigarette smoke (CS). CS alters numerous cellular processes, including the post-transcriptional regulation of mRNAs. The identification of RNA-binding proteins (RBPs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) as main factors engaged in the regulation of RNA biology opens the door to understanding their role in coordinating physiological cellular processes. Dysregulation of post-transcriptional regulation by foreign particles in CS may lead to the development of diseases such as COPD. Here we review current knowledge about post-transcriptional events that may be involved in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Noof Aloufi
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
- Department of Medical Laboratory Technology, Applied Medical Science, Taibah University, Universities Road, Medina P.O. Box 344, Saudi Arabia
| | - Aeshah Alluli
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
| | - David H. Eidelman
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Carolyn J. Baglole
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada;
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
- Correspondence:
| |
Collapse
|
17
|
Wu M, Tong CWS, Yan W, To KKW, Cho WCS. The RNA Binding Protein HuR: A Promising Drug Target for Anticancer Therapy. Curr Cancer Drug Targets 2020; 19:382-399. [PMID: 30381077 DOI: 10.2174/1568009618666181031145953] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/24/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
Abstract
The stability of mRNA is one of the key factors governing the regulation of eukaryotic gene expression and function. Human antigen R (HuR) is an RNA-binding protein that regulates the stability, translation, and nucleus-to-cytoplasm shuttling of its target mRNAs. While HuR is normally localized within the nucleus, it has been shown that HuR binds mRNAs in the nucleus and then escorts the mRNAs to the cytoplasm where HuR protects them from degradation. It contains several RNA recognition motifs, which specifically bind to adenylate and uridylate-rich regions within the 3'-untranslated region of the target mRNA to mediate its effect. Many of the HuR target mRNAs encode proteins important for cell growth, tumorigenesis, angiogenesis, tumor inflammation, invasion and metastasis. HuR overexpression is known to correlate well with high-grade malignancy and poor prognosis in many tumor types. Thus, HuR has emerged as an attractive drug target for cancer therapy. Novel small molecule HuR inhibitors have been identified by high throughput screening and new formulations for targeted delivery of HuR siRNA to tumor cells have been developed with promising anticancer activity. This review summarizes the significant role of HuR in cancer development, progression, and poor treatment response. We will discuss the potential and challenges of targeting HuR therapeutically.
Collapse
Affiliation(s)
- Mingxia Wu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Christy W S Tong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Wei Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong
| |
Collapse
|
18
|
Targeting the interaction between RNA-binding protein HuR and FOXQ1 suppresses breast cancer invasion and metastasis. Commun Biol 2020; 3:193. [PMID: 32332873 PMCID: PMC7181695 DOI: 10.1038/s42003-020-0933-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/07/2020] [Indexed: 01/02/2023] Open
Abstract
Patients diagnosed with metastatic breast cancer have a dismal 5-year survival rate of only 24%. The RNA-binding protein Hu antigen R (HuR) is upregulated in breast cancer, and elevated cytoplasmic HuR correlates with high-grade tumors and poor clinical outcome of breast cancer. HuR promotes tumorigenesis by regulating numerous proto-oncogenes, growth factors, and cytokines that support major tumor hallmarks including invasion and metastasis. Here, we report a HuR inhibitor KH-3, which potently suppresses breast cancer cell growth and invasion. Furthermore, KH-3 inhibits breast cancer experimental lung metastasis, improves mouse survival, and reduces orthotopic tumor growth. Mechanistically, we identify FOXQ1 as a direct target of HuR. KH-3 disrupts HuR–FOXQ1 mRNA interaction, leading to inhibition of breast cancer invasion. Our study suggests that inhibiting HuR is a promising therapeutic strategy for lethal metastatic breast cancer. Wu et al. identify an inhibitor to the RNA-binding protein HuR, KH-3, that disrupts the interaction between HuR and target RNAs and inhibits human cancer growth and metastasis in mouse xenograft assays. This study suggests the therapeutic potential of targeting HuR in breast cancer with HuR overexpression.
Collapse
|
19
|
Cui Y, Feng Q, Liu Q, Li H, Song X, Hu Z, Xu Z, Li J, Li M, Zheng W, Li Z, Pan H. Posttranscriptional regulation of MMP‐9 by HuR contributes to IL‐1β‐induced pterygium fibroblast migration and invasion. J Cell Physiol 2019; 235:5130-5140. [PMID: 31691974 DOI: 10.1002/jcp.29387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/30/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Yu‐Hong Cui
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical SciencesGuangzhou Medical University Guangzhou China
- Department of Histology and Embryology, School of Basic Medical SciencesGuangzhou Medical University Guangzhou China
| | - Qing‐Yang Feng
- Department of OphthalmologyGuangdong Women and Children Hospital Guangzhou China
- Institute of Ophthalmology, School of MedicineJinan University Guangzhou China
| | - Qun Liu
- Department of Histology and Embryology, School of Basic Medical SciencesGuangzhou Medical University Guangzhou China
| | - Hong‐Yang Li
- Department of OphthalmologyGuangdong No. 2 Provincial People's Hospital Guangzhou China
- Department of Ophthalmology, Guangzhou Red Cross HospitalThe Fourth Affiliated Hospital of Jinan University Guangzhou China
| | - Xi‐Ling Song
- Department of Public Health and Preventive MedicineJinan University Guangzhou China
| | - Zi‐Xuan Hu
- Department of Public Health and Preventive MedicineJinan University Guangzhou China
| | - Zhi‐Yi Xu
- Department of Ophthalmology, The First Affiliated HospitalJinan University Guangzhou China
- Institute of Ophthalmology, School of MedicineJinan University Guangzhou China
| | - Jia‐Hui Li
- Department of Public Health and Preventive MedicineJinan University Guangzhou China
| | - Mei‐Jun Li
- Department of Ophthalmology, The First Affiliated HospitalJinan University Guangzhou China
- Institute of Ophthalmology, School of MedicineJinan University Guangzhou China
| | - Wen‐Lin Zheng
- Department of Public Health and Preventive MedicineJinan University Guangzhou China
| | - Zhi‐Jie Li
- Institute of Ophthalmology, School of MedicineJinan University Guangzhou China
| | - Hong‐Wei Pan
- Department of Public Health and Preventive MedicineJinan University Guangzhou China
- Department of Ophthalmology, The First Affiliated HospitalJinan University Guangzhou China
- Institute of Ophthalmology, School of MedicineJinan University Guangzhou China
| |
Collapse
|
20
|
Wang J, Leavenworth JW, Hjelmeland AB, Smith R, Patel N, Borg B, Si Y, King PH. Deletion of the RNA regulator HuR in tumor-associated microglia and macrophages stimulates anti-tumor immunity and attenuates glioma growth. Glia 2019; 67:2424-2439. [PMID: 31400163 DOI: 10.1002/glia.23696] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/20/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022]
Abstract
Glioblastoma is a malignant brain tumor that portends a poor prognosis. Its resilience, in part, is related to a remarkable capacity for manipulating the microenvironment to promote its growth and survival. Microglia/macrophages are prime targets, being drawn into the tumor and stimulated to produce factors that support tumor growth and evasion from the immune system. Here we show that the RNA regulator, HuR, plays a key role in the tumor-promoting response of microglia/macrophages. Knockout (KO) of HuR led to reduced tumor growth and proliferation associated with prolonged survival in a murine model of glioblastoma. Analysis of tumor composition by flow cytometry showed that tumor-associated macrophages (TAMs) were decreased, more polarized toward an M1-like phenotype, and had reduced PD-L1 expression. There was an overall increase in infiltrating CD4+ cells, including Th1 and cytotoxic effector cells, and a concomitant reduction in tumor-associated polymorphonuclear myeloid-derived suppressor cells. Molecular and cellular analyses of HuR KO TAMs and cultured microglia showed changes in migration, chemoattraction, and chemokine/cytokine profiles that provide potential mechanisms for the altered tumor microenvironment and reduced tumor growth in HuR KO mice. In summary, HuR is a key modulator of pro-glioma responses by microglia/macrophages through the molecular regulation of chemokines, cytokines, and other factors. Our findings underscore the relevance of HuR as a therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Jiping Wang
- Department of Neurology, University of Alabama, Birmingham, Alabama
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama, Birmingham, Alabama.,Department of Microbiology, University of Alabama, Birmingham, Alabama
| | - Anita B Hjelmeland
- Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama
| | - Reed Smith
- Department of Neurology, University of Alabama, Birmingham, Alabama
| | - Neha Patel
- Department of Neurology, University of Alabama, Birmingham, Alabama
| | - Ben Borg
- Department of Neurology, University of Alabama, Birmingham, Alabama
| | - Ying Si
- Department of Neurology, University of Alabama, Birmingham, Alabama
| | - Peter H King
- Department of Neurology, University of Alabama, Birmingham, Alabama.,Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
21
|
Post-Translational Modification-Dependent Activity of Matrix Metalloproteinases. Int J Mol Sci 2019; 20:ijms20123077. [PMID: 31238509 PMCID: PMC6627178 DOI: 10.3390/ijms20123077] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
Due to their capacity to process different proteins of the extracellular matrix (ECM), matrix metalloproteinases (MMPs) were initially described as a family of secreted proteases, functioning as main ECM regulators. However, through proteolytic processing of various biomolecules, MMPs also modulate intra- and extracellular pathways and networks. Thereby, they are functionally implicated in the regulation of multiple physiological and pathological processes. Consequently, MMP activity is tightly regulated through a combination of epigenetic, transcriptional, and post-transcriptional control of gene expression, proteolytic activation, post-translational modifications (PTMs), and extracellular inhibition. In addition, MMPs, their substrates and ECM binding partners are frequently modified by PTMs, which suggests an important role of PTMs in modulating the pleiotropic activities of these proteases. This review summarizes the recent progress towards understanding the role of PTMs (glycosylation, phosphorylation, glycosaminoglycans) on the activity of several members of the MMP family.
Collapse
|
22
|
Pan H, Strickland A, Madhu V, Johnson ZI, Chand SN, Brody JR, Fertala A, Zheng Z, Shapiro IM, Risbud MV. RNA binding protein HuR regulates extracellular matrix gene expression and pH homeostasis independent of controlling HIF-1α signaling in nucleus pulposus cells. Matrix Biol 2019; 77:23-40. [PMID: 30092282 PMCID: PMC6367062 DOI: 10.1016/j.matbio.2018.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 12/19/2022]
Abstract
Nucleus pulposus (NP) cells reside in the hypoxic niche of the intervertebral disc. Studies have demonstrated that RNA-binding protein HuR modulates hypoxic signaling in several cancers, however, its function in the disc is unknown. HuR did not show cytoplasmic translocation in hypoxia and its silencing did not alter levels of Hif-1α or HIF-targets in NP cells. RNA-Sequencing data revealed that important extracellular matrix-related genes including several collagens, MMPs, aggrecan, Tgf-β3 and Sdc4 were regulated by HuR. Further analysis of HuR-silenced NP cells confirmed that HuR maintained expression of these matrix genes. We confirmed decreased levels of secreted collagen I and Sdc4 and increased pro-MMP13 in HuR-knockdown cells. In addition, messenger ribonucleoprotein immunoprecipitation demonstrated HuR binding to Tgf-β3 and Sdc4 mRNAs. Interestingly, while HuR bound to Hif-1α and Vegf mRNAs, it was clear that compensatory mechanisms sustained their expression when HuR was silenced. Noteworthy, despite the presence of multiple HuR-binding sites and reported interaction in other cell types, HuR showed no binding to Pgk1, Eno1, Pdk1 and Pfkfb3 in NP cells. Metabolic studies showed a significant decrease in the extracellular acidification rate (ECAR) and mitochondrial oxygen consumption rate (OCR) and acidic pH in HuR-silenced NP cells, without appreciable change in total OCR. These changes were likely due to decreased Ca12 expression in HuR silenced cells. Taken together, our study demonstrates for the first time that HuR regulates extracellular matrix (ECM) and pH homeostasis of NP cells and has important implications in the maintenance of intervertebral disc health.
Collapse
Affiliation(s)
- Hehai Pan
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Adam Strickland
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vedavathi Madhu
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zariel I Johnson
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Saswati N Chand
- Department of Surgery, The Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jonathan R Brody
- Department of Surgery, The Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, Ramos C, Garcia-Hernandez AA, Falfan-Valencia R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol 2019; 137:57-83. [PMID: 31014516 DOI: 10.1016/j.critrevonc.2019.02.010] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) participate from the initial phases of cancer onset to the settlement of a metastatic niche in a second organ. Their role in cancer progression is related to their involvement in the extracellular matrix (ECM) degradation and in the regulation and processing of adhesion and cytoskeletal proteins, growth factors, chemokines and cytokines. MMPs participation in cancer progression makes them an attractive target for cancer therapy. MMPs have also been used for theranostic purposes in the detection of primary tumor and metastatic tissue in which a particular MMP is overexpressed, to follow up on therapy responses, and in the activation of cancer cytotoxic pro-drugs as part of nano-delivery-systems that increase drug concentration in a specific tumor target. Herein, we review MMPs molecular characteristics, their synthesis regulation and enzymatic activity, their participation in the metastatic process, and how their functions have been used to improve cancer treatment.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | | | - Carlos Ramos
- Laboratorio de Biología Celular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - A Armando Garcia-Hernandez
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Ramces Falfan-Valencia
- Laboratorio de HLA, Departamento de Inmunogenética y Alergia, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
24
|
Mérei Á, Nagy B, Woth G, Lantos J, Kövér F, Bogár L, Mühl D. Comparison of the perioperative time courses of matrix metalloproteinase-9 (MMP-9) and its inhibitor (TIMP-1) during carotid artery stenting (CAS) and carotid endarterectomy (CEA). BMC Neurol 2018; 18:128. [PMID: 30157791 PMCID: PMC6114896 DOI: 10.1186/s12883-018-1133-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 08/20/2018] [Indexed: 12/29/2022] Open
Abstract
Background Our aim was to compare the perioperative time courses of matrix metalloproteinase-9 (MMP-9) and its inhibitor (TIMP-1) in during carotid endarterectomy (CEA) and carotid artery stenting (CAS). Methods In our prospective study, twenty-five patients who were scheduled to undergo CAS were enrolled. We used a matched, historical CEA group as controls. Blood samples were collected at four time points: T1: preoperative; T2: 60 min after stent insertion; T3: first postoperative morning; and T4: third postoperative morning. Plasma MMP-9 and TIMP-1 levels were measured by ELISA. Results In the CEA group, the plasma levels of MMP-9 were significantly elevated at T3 compared to T1. In the CAS group, there was no significant difference in MMP-9 levels in the perioperative period. MMP-9 levels were significantly higher in the T3 samples of the CEA group compared to the CAS group. Significantly lower TIMP-1 levels were measured in both groups at T2 than at T1 in both groups. MMP-9/TIMP-1 at T3 was significantly higher than that at T1 in the CEA group compared to both T1 and the CAS group. Conclusions CAS triggers smaller changes in the MMP-9-TIMP-1 system during the perioperative period, which may correlate with a lower incidence of central nervous system complications. Additional studies as well as cognitive and functional surveys are warranted to determine the clinical relevance of our findings. Trial registration NIH U.S. National Library of Medicine, Clinicaltrials.gov,NCT03410576, 24.01.2018, Retrospectively registered
Collapse
Affiliation(s)
- Ákos Mérei
- Department of Anaesthesiology and Intensive Therapy, Medical School, University of Pécs, Ifjúság Str. 13, Pécs, HU-7624, Hungary. .,Medical Skills Lab, Medical School, University of Pécs, Szigeti Str. 12, Pécs, HU-7624, Hungary.
| | - Bálint Nagy
- Department of Anaesthesiology and Intensive Therapy, Medical School, University of Pécs, Ifjúság Str. 13, Pécs, HU-7624, Hungary.,Medical Skills Lab, Medical School, University of Pécs, Szigeti Str. 12, Pécs, HU-7624, Hungary.,Department of Operational Medicine, Medical School, University of Pécs, Szigeti Str. 12, Pécs, HU-7624, Hungary
| | - Gábor Woth
- Department of Anaesthesiology and Intensive Therapy, Medical School, University of Pécs, Ifjúság Str. 13, Pécs, HU-7624, Hungary.,Medical Skills Lab, Medical School, University of Pécs, Szigeti Str. 12, Pécs, HU-7624, Hungary.,Department of Operational Medicine, Medical School, University of Pécs, Szigeti Str. 12, Pécs, HU-7624, Hungary
| | - János Lantos
- Department of Surgical Research and Techniques, Medical School, University of Pécs, Szigeti Str. 12, Pécs, HU-7624, Hungary
| | - Ferenc Kövér
- Department of Neurosurgery, Medical School, University of Pécs, Rét Str. 2, Pécs, HU-7623, Hungary
| | - Lajos Bogár
- Department of Anaesthesiology and Intensive Therapy, Medical School, University of Pécs, Ifjúság Str. 13, Pécs, HU-7624, Hungary.,Department of Operational Medicine, Medical School, University of Pécs, Szigeti Str. 12, Pécs, HU-7624, Hungary
| | - Diána Mühl
- Department of Anaesthesiology and Intensive Therapy, Medical School, University of Pécs, Ifjúság Str. 13, Pécs, HU-7624, Hungary
| |
Collapse
|
25
|
Zybura-Broda K, Wolder-Gontarek M, Ambrozek-Latecka M, Choros A, Bogusz A, Wilemska-Dziaduszycka J, Rylski M. HuR (Elavl1) and HuB (Elavl2) Stabilize Matrix Metalloproteinase-9 mRNA During Seizure-Induced Mmp-9 Expression in Neurons. Front Neurosci 2018; 12:224. [PMID: 29686606 PMCID: PMC5900018 DOI: 10.3389/fnins.2018.00224] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/22/2018] [Indexed: 01/28/2023] Open
Abstract
Matrix metalloproteinase-9 (Mmp-9) is involved in different general and cell-type–specific processes, both in neuronal and non-neuronal cells. Moreover, it is implicated in an induction or progression of various human disorders, including diseases of the central nervous system. Mechanisms regulating activity-driven Mmp-9 expression in neurons are still not fully understood. Here, we show that stabilization of Mmp-9 mRNA is one of the factors responsible for the neuronal activity-evoked upregulation of Mmp-9 mRNA expression in hippocampal neurons. Furthermore, we demonstrate that the molecular mechanism related to this stabilization is dependent on the neuronal seizure-triggered transiently increased binding of the mRNA stability-inducing protein, HuR, to ARE1 and ARE4 motifs of the 3′UTR for Mmp-9 mRNA as well as the stably augmented association of another mRNA-stabilizing protein, HuB, to the ARE1 element of the 3′UTR. Intriguingly, we demonstrate further that both HuR and HuB are crucial for an incidence of Mmp-9 mRNA stabilization after neuronal activation. This study identifies Mmp-9 mRNA as the first HuB target regulated by mRNA stabilization in neurons. Moreover, these results are the first to describe an existence of HuR-dependent mRNA stabilization in neurons of the brain.
Collapse
Affiliation(s)
- Katarzyna Zybura-Broda
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | | | - Artur Choros
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Agnieszka Bogusz
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Marcin Rylski
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
26
|
Fus ŁP, Pihowicz P, Koperski Ł, Marczewska JM, Górnicka B. High cytoplasmic HuR expression is associated with advanced pT stage, high grade and increased microvessel density in urothelial bladder carcinoma. Ann Diagn Pathol 2017; 33:40-44. [PMID: 29566946 DOI: 10.1016/j.anndiagpath.2017.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/15/2017] [Accepted: 12/09/2017] [Indexed: 11/17/2022]
Abstract
PURPOSE HuR (human antigen R) protein is a RNA binding protein that stabilizes the mRNA and controls the translation of genes involved in cell proliferation, differentiation, and carcinogenesis. Overexpression of HuR was reported in a variety of cancers, however its clinical significance in urothelial bladder cancer (UBC) is still unknown. Our aim is to investigate the association between HuR expression and selected histopathological factors, such as tumor grade, pT stage, regional lymph nodes status and microvessel density (MVD). METHODS We studied expression of HuR protein in 119 patients with UBC in stages pTis and pTa-pT4 using immunohistochemistry (IHC). Tumor MVD was evaluated immunohistochemically using anti-CD31 antibody. RESULTS We observed no association between nuclear HuR immunoreactivity and tumor grade, stage or MVD. We found a significant association between cytoplasmic HuR positivity and high tumor grade, pT stage and MVD (p<0,001). We also observed significantly higher MVD values in cases with positive cytoplasmic HuR expression (p<0,001). No association between HuR immunoreactivity and lymph nodes status was found. CONCLUSIONS Our results may suggest that HuR is involved in the process of acquiring malignant histopathological features and ability to invade the muscularis propria by UBC cells. Considering frequent difficulties in diagnosing UBC in specimens obtained from transurethral tumor resection and the risk of understaging, cytoplasmic HuR expression would suggest an advanced disease and necessitate serial sectioning of the specimen in search of muscle invasion. Association between HuR expression and MVD could suggest HuR involvement in the process of angiogenesis in UBC.
Collapse
Affiliation(s)
- Łukasz Piotr Fus
- Department of Pathology, Medical University of Warsaw, Pawińskiego 7, 02-106 Warsaw, Poland.
| | - Paweł Pihowicz
- Department of Pathology, Medical University of Warsaw, Pawińskiego 7, 02-106 Warsaw, Poland
| | - Łukasz Koperski
- Department of Pathology, Medical University of Warsaw, Pawińskiego 7, 02-106 Warsaw, Poland
| | - Janina Maja Marczewska
- Department of Pathology, Medical University of Warsaw, Pawińskiego 7, 02-106 Warsaw, Poland
| | - Barbara Górnicka
- Department of Pathology, Medical University of Warsaw, Pawińskiego 7, 02-106 Warsaw, Poland
| |
Collapse
|
27
|
Shang J, Zhao Z. Emerging role of HuR in inflammatory response in kidney diseases. Acta Biochim Biophys Sin (Shanghai) 2017; 49:753-763. [PMID: 28910975 DOI: 10.1093/abbs/gmx071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022] Open
Abstract
Human antigen R (HuR) is a member of the embryonic lethal abnormal vision (ELAV) family which can bind to the A/U rich elements in 3' un-translated region of mRNA and regulate mRNA splicing, transportation, and stability. Unlike other members of the ELAV family, HuR is ubiquitously expressed. Early studies mainly focused on HuR function in malignant diseases. As researches proceed, more and more proofs demonstrate its relationship with inflammation. Since most kidney diseases involve pathological changes of inflammation, HuR is now suggested to play a pivotal role in glomerular nephropathy, tubular ischemia-reperfusion damage, renal fibrosis and even renal tumors. By regulating the mRNAs of target genes, HuR is causally linked to the onset and progression of kidney diseases. Reports on this topic are steadily increasing, however, the detailed function and mechanism of action of HuR are still not well understood. The aim of this review article is to summarize the present understanding of the role of HuR in inflammation in kidney diseases, and we anticipate that future research will ultimately elucidate the therapeutic value of this novel target.
Collapse
Affiliation(s)
- Jin Shang
- Nephrology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhanzheng Zhao
- Nephrology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
28
|
Cheng Y, Zhao G, Zhang S, Nigim F, Zhou G, Yu Z, Song Y, Chen Y, Li Y. AS1411-Induced Growth Inhibition of Glioma Cells by Up-Regulation of p53 and Down-Regulation of Bcl-2 and Akt1 via Nucleolin. PLoS One 2016; 11:e0167094. [PMID: 27907160 PMCID: PMC5132312 DOI: 10.1371/journal.pone.0167094] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023] Open
Abstract
AS1411 binds nucleolin (NCL) and is the first oligodeoxynucleotide aptamer to reach phase I and II clinical trials for the treatment of several cancers. However, the mechanisms by which AS1411 targets and kills glioma cells and tissues remain unclear. Here we report that AS1411 induces cell apoptosis and cycle arrest, and inhibits cell viability by up-regulation of p53 and down-regulation of Bcl-2 and Akt1 in human glioma cells. NCL was overexpressed in both nucleus and cytoplasm in human glioma U87, U251 and SHG44 cells compared to normal human astrocytes (NHA). AS1411 bound NCL and inhibited the proliferation of glioma cells but not NHA, which was accompanied with up-regulation of p53 and down-regulation of Bcl-2 and Akt1. Moreover, AS1411 treatment resulted in the G2/M cell cycle arrest in glioma cells, which was however abolished by overexpression of NCL. Further, AS1411 induced cell apoptosis, which was prevented by silencing of p53 and overexpression of Bcl-2. In addition, AS1411 inhibited the migration and invasion of glioma cells in an Akt1-dependent manner. Importantly, AS1411 inhibited the growth of glioma xenograft and prolonged the survival time of glioma tumor-bearing mice. These results revealed a promising treatment of glioma by oligodeoxynucleotide aptamer.
Collapse
Affiliation(s)
- Ye Cheng
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
- Department of Neurosurgery, Harvard Medical School, Boston, United States of America
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Siwen Zhang
- Department of Endocrine, The First Hospital of Jilin University, Changchun, China
| | - Fares Nigim
- Department of Neurosurgery, Harvard Medical School, Boston, United States of America
| | - Guangtong Zhou
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Zhiyun Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yang Song
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yunqian Li
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Feigerlová E, Battaglia-Hsu SF. Role of post-transcriptional regulation of mRNA stability in renal pathophysiology: focus on chronic kidney disease. FASEB J 2016; 31:457-468. [PMID: 27849555 DOI: 10.1096/fj.201601087rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/07/2016] [Indexed: 11/11/2022]
Abstract
Chronic kidney disease (CKD) represents an important public health problem. Its progression to end-stage renal disease is associated with increased morbidity and mortality. The determinants of renal function decline are not fully understood. Recent progress in the understanding of post-transcriptional regulation of mRNA stability has helped the identification of both the trans- and cis-acting elements of mRNA as potential markers and therapeutic targets for difficult-to-diagnose and -treat diseases, including CKDs such as diabetic nephropathy. Human antigen R (HuR), a trans-acting element of mRNA, is an RNA binding factor (RBF) best known for its ability to stabilize AU-rich-element-containing mRNAs. Deregulated HuR subcellular localization or expression occurs in a wide range of renal diseases, such as metabolic acidosis, ischemia, and fibrosis. Besides RBFs, recent evidence revealed that noncoding RNA, such as microRNA and long noncoding RNA, participates in regulating mRNA stability and that aberrant noncoding RNA expression accounts for many pathologic renal conditions. The goal of this review is to provide an overview of our current understanding of the post-transcriptional regulation of mRNA stability in renal pathophysiology and to offer perspectives for this class of diseases. We use examples of diverse renal diseases to illustrate different mRNA stability pathways in specific cellular compartments and discuss the roles and impacts of both the cis- and trans-activating factors on the regulation of mRNA stability in these diseases.-Feigerlová, E., Battaglia-Hsu, S.-F. Role of post-transcriptional regulation of mRNA stability in renal pathophysiology: focus on chronic kidney disease.
Collapse
Affiliation(s)
- Eva Feigerlová
- Service d'Endocrinologie, Centre Hospitalier Universitaire de Poitiers, Pôle DUNE, Poitiers, France; .,Université de Poitiers, Unité de Formation et de Recherche Médecine Pharmacie, Poitiers, France.,Clinical Investigation Centre 1402, Unité 1082, INSERM, Poitiers, France; and
| | - Shyue-Fang Battaglia-Hsu
- Nutrition Génétique et Exposition aux Risques Environnementaux, INSERM Unité 954, Université de Lorraine et Centre Hospitalier Regional Universitaire de Nancy, Vandœuvre les Nancy, France
| |
Collapse
|
30
|
Dysregulation of TTP and HuR plays an important role in cancers. Tumour Biol 2016; 37:14451-14461. [DOI: 10.1007/s13277-016-5397-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022] Open
|
31
|
Wang Z, Bhattacharya A, Ivanov DN. Identification of Small-Molecule Inhibitors of the HuR/RNA Interaction Using a Fluorescence Polarization Screening Assay Followed by NMR Validation. PLoS One 2015; 10:e0138780. [PMID: 26390015 PMCID: PMC4577092 DOI: 10.1371/journal.pone.0138780] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/03/2015] [Indexed: 01/25/2023] Open
Abstract
The human antigen R (HuR) stabilizes many mRNAs of proto-oncogene, transcription factors, cytokines and growth factors by recognizing AU-rich elements (AREs) presented in their 3’ or 5’ untranslated region (UTR). Multiple lines of experimental evidence suggest that this process plays a key role in cancer development. Thus, destabilizing HuR/RNA interaction by small molecules presents an opportunity for cancer treatment/prevention. Here we present an integrated approach to identify inhibitors of HuR/RNA interaction using a combination of fluorescence-based and NMR-based high throughput screening (HTS). The HTS assay with fluorescence polarization readout and Z’-score of 0.8 was used to perform a screen of the NCI diversity set V library in a 384 well plate format. An NMR-based assay with saturation transfer difference (STD) detection was used for hits validation. Protein NMR spectroscopy was used to demonstrate that some hit compounds disrupt formation of HuR oligomer, whereas others block RNA binding. Thus, our integrated high throughput approach provides a new avenue for identification of small molecules targeting HuR/RNA interaction.
Collapse
Affiliation(s)
- Zhonghua Wang
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
- * E-mail:
| | - Akash Bhattacharya
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| | - Dmitri N. Ivanov
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| |
Collapse
|
32
|
Affiliation(s)
- Yunfeng Zhou
- Shenzhen University Diabetes Center, AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaoyan Zhang
- Shenzhen University Diabetes Center, AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen, China
| | - Youfei Guan
- Shenzhen University Diabetes Center, AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen, China.
| |
Collapse
|
33
|
Missan DS, Mitchell K, Subbaram S, DiPersio CM. Integrin α3β1 signaling through MEK/ERK determines alternative polyadenylation of the MMP-9 mRNA transcript in immortalized mouse keratinocytes. PLoS One 2015; 10:e0119539. [PMID: 25751421 PMCID: PMC4353714 DOI: 10.1371/journal.pone.0119539] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/13/2015] [Indexed: 12/15/2022] Open
Abstract
Integrin α3β1 is highly expressed in both normal and tumorigenic epidermal keratinocytes where it regulates genes that control cellular function and extracellular matrix remodeling during normal and pathological tissue remodeling processes, including wound healing and development of squamous cell carcinoma (SCC). Previous studies identified a role for α3β1 in immortalized and transformed keratinocytes in the regulation of genes that promote tumorigenesis, invasion, and pro-angiogenic crosstalk to endothelial cells. One such gene, matrix metalloproteinase-9 (MMP-9), is induced by α3β1 through a post-transcriptional mechanism of enhanced mRNA stability. In the current study, we sought to investigate the mechanism through which α3β1 controls MMP-9 mRNA stability. First, we utilized a luciferase reporter assay to show that AU-rich elements (AREs) residing within the 3’-untranslated region (3’-UTR) of the MMP-9 mRNA renders the transcript unstable in a manner that is independent of α3β1. Next, we cloned a truncated variant of the MMP-9 mRNA which is generated through usage of an alternative, upstream polyadenylation signal and lacks the 3’-UTR region containing the destabilizing AREs. Using an RNase protection assay to distinguish “long” (full-length 3’-UTR) and “short” (truncated 3’-UTR) MMP-9 mRNA variants, we demonstrated that the shorter, more stable mRNA that lacks 3’-UTR AREs was preferentially generated in α3β1-expressing keratinocytes compared with α3β1-deficient (i.e., α3-null) keratinocytes. Moreover, we determined that α3β1-dependent alternative polyadenylation was acquired by immortalized keratinocytes, as primary neonatal keratinocytes did not display α3β1-dependent differences in the long and short transcripts. Finally, pharmacological inhibition of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway in α3β1-expressing keratinocytes caused a shift towards long variant expression, while Raf-1-mediated activation of ERK in α3-null keratinocytes dramatically enhanced short variant expression, indicating a role for ERK/MAPK signaling in α3β1-mediated selection of the proximal polyadenylation site. These findings identify a novel mode of integrin α3β1-mediated gene regulation through alternative polyadenylation.
Collapse
Affiliation(s)
- Dara S. Missan
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Kara Mitchell
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Sita Subbaram
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - C. Michael DiPersio
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Suresh Babu S, Joladarashi D, Jeyabal P, Thandavarayan RA, Krishnamurthy P. RNA-stabilizing proteins as molecular targets in cardiovascular pathologies. Trends Cardiovasc Med 2015; 25:676-83. [PMID: 25801788 DOI: 10.1016/j.tcm.2015.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/31/2015] [Accepted: 02/13/2015] [Indexed: 01/08/2023]
Abstract
The stability of mRNA has emerged as a key step in the regulation of eukaryotic gene expression and function. RNA stabilizing proteins (RSPs) contain several RNA recognition motifs, and selectively bind to adenylate-uridylate-rich elements in the 3' untranslated region of several mRNAs leading to altered processing, stability, and translation. These post-transcriptional gene regulations play a critical role in cellular homeostasis; therefore act as molecular switch between 'normal cell' and 'disease state.' Many mRNA binding proteins have been discovered to date, which either stabilize (HuR/HuA, HuB, HuC, HuD) or destabilize (AUF1, tristetraprolin, KSRP) the target transcripts. Although the function of RSPs has been widely studied in cancer biology, its role in cardiovascular pathologies is only beginning to evolve. The current review provides an overall understanding of the potential role of RSPs, specifically HuR-mediated mRNA stability in myocardial infarction, hypertension and hypertrophy. Also, the effect of RSPs on various cellular processes including inflammation, fibrosis, angiogenesis, cell-death, and proliferation and its relevance to cardiovascular pathophysiological processes is presented. We also discuss the potential clinical implications of RSPs as therapeutic targets in cardiovascular diseases.
Collapse
Affiliation(s)
- Sahana Suresh Babu
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX
| | - Darukeshwara Joladarashi
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX
| | - Prince Jeyabal
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX
| | - Rajarajan A Thandavarayan
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX
| | - Prasanna Krishnamurthy
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX.
| |
Collapse
|
35
|
Dong R, Yang GD, Luo NA, Qu YQ. HuR: a promising therapeutic target for angiogenesis. Gland Surg 2014; 3:203-6. [PMID: 25207213 DOI: 10.3978/j.issn.2227-684x.2014.03.02] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 03/13/2014] [Indexed: 11/14/2022]
Abstract
Multiple angiogenic factors and inhibitors are becoming potential therapeutic targets for ischemia diseases and cancer. Posttranscriptional regulation through the untranslated region of mRNA is emerging as a critical regulating level in nearly all the biological processes. As a kind of RNA binding proteins, HuR plays important role in augmenting the hypoxic or inflammatory signal, stabilizing the resultant angiogenic factors and promoting the proliferation and migration of endothelial cells. These implicate HuR in the proangiogenic factors mediated angiogenesis in the hypoxia and inflammatory. We consider hypotheses that a more effective angiogenesis can be acquired through strengthened and prolonged effects of angiogenic factors, and that progresses in therapeutic angiogensis might also shed light on the implication of HuR in blocking tumor angiogensis. These considerations may help us to explain HuR as a promising therapeutic target for angiogenesis related disease. It may be a candidate in hypoxia therapy and cancer management.
Collapse
Affiliation(s)
- Rui Dong
- 1 Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China ; 2 Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Guo-Dong Yang
- 1 Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China ; 2 Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Nian-An Luo
- 1 Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China ; 2 Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Ya-Qi Qu
- 1 Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China ; 2 Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
36
|
Xing Y, Guo ZN, Yan S, Jin H, Wang S, Yang Y. Increased globulin and its association with hemorrhagic transformation in patients receiving intra-arterial thrombolysis therapy. Neurosci Bull 2014; 30:469-76. [PMID: 24871645 DOI: 10.1007/s12264-013-1440-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/24/2013] [Indexed: 10/25/2022] Open
Abstract
Previous studies have identified a diverse set of predisposing factors for the occurrence of hemorrhagic transformation (HT), but the independent clinical predictors of HT after intraarterial thrombolysis have not been determined. In this retrospective study, we investigated the characteristics of patients with or without HT who had received intra-arterial thrombolysis therapy, using biochemical analysis, renal function test, routine blood test, blood lipid test, coagulation blood test, liver function test, random blood glucose test, time-window for intra-arterial thrombolysis, recanalization, National Institutes of Health Stroke Scale (NIHSS) score and systolic blood pressure before intra-arterial thrombolysis. The mortality rates were similar in the HT and non-HT groups (P = 0.944). In the single-factor analysis, patients with a higher globulin level (P <0.002), prothrombin time activity percentage (PTA; P = 0.026), and NIHSS score (P = 0.002), had a significantly increased risk of developing HT. In the multifactor logistic regression model involving globulin level, PTA, white blood cell count, and NIHSS score, the globulin level (P <0.001; OR, 1.185; 95% confidence interval [CI], 1.090-1.288), PTA (P = 0.018; OR, 1.016; 95% CI, 1.003-1.029), white blood cell count (P = 0.025; OR, 1.097; 95% CI, 1.012-1.190) and NIHSS score (P = 0.003; OR, 1.097; 95% CI, 1.031-1.166) were significantly increased in the HT group. The increase in globulin level is an independent risk factor for HT in patients receiving intra-arterial thrombolysis. The possible mechanisms may involve inflammatory cytokines, matrix metalloproteinase 9, and positive acute-phase reactants synthesized by the liver.
Collapse
Affiliation(s)
- Yingqi Xing
- Department of Neurology, the First Norman Bethune Hospital of Jilin University, Changchun, 130021, China
| | | | | | | | | | | |
Collapse
|
37
|
O'Sullivan S, Medina C, Ledwidge M, Radomski MW, Gilmer JF. Nitric oxide-matrix metaloproteinase-9 interactions: biological and pharmacological significance--NO and MMP-9 interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:603-17. [PMID: 24333402 DOI: 10.1016/j.bbamcr.2013.12.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 12/24/2022]
Abstract
Nitric oxide (NO) and matrix metalloproteinase 9 (MMP-9) levels are found to increase in inflammation states and in cancer, and their levels may be reciprocally modulated. Understanding interactions between NO and MMP-9 is of biological and pharmacological relevance and may prove crucial in designing new therapeutics. The reciprocal interaction between NO and MMP-9 have been studied for nearly twenty years but to our knowledge, are yet to be the subject of a review. This review provides a summary of published data regarding the complex and sometimes contradictory effects of NO on MMP-9. We also analyse molecular mechanisms modulating and mediating NO-MMP-9 interactions. Finally, a potential therapeutic relevance of these interactions is presented.
Collapse
|
38
|
Lee JY, Chung TW, Choi HJ, Lee CH, Eun JS, Han YT, Choi JY, Kim SY, Han CW, Jeong HS, Ha KT. A novel cantharidin analog N-benzylcantharidinamide reduces the expression of MMP-9 and invasive potentials of Hep3B via inhibiting cytosolic translocation of HuR. Biochem Biophys Res Commun 2014; 447:371-7. [PMID: 24735540 DOI: 10.1016/j.bbrc.2014.04.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 12/20/2022]
Abstract
Invasion and metastasis are major causes of malignant tumor-associated mortality. The present study aimed to investigate the molecular events underlying inhibitory effect of N-benzylcantharidinamide, a novel synthetic analog of cantharidin, on matrix metalloproteinase-9 (MMP-9)-mediated invasion in highly metastatic hepatocellular carcinoma Hep3B cells. In this investigation, among six analogs of cantharidin, only N-benzylcantharidinamide has the inhibitory action on MMP-9 expression at non-toxic dose. The MMP-9 expression and invasion of Hep3B cells were significantly suppressed by treatment of N-benzylcantharidinamide in a dose-dependent manner. On the other hand, the transcriptional activity of MMP-9 promoter and nuclear levels of NF-κB and AP-1 as the main transcriptional factors inducing MMP-9 expression were not affected by it although the level of MMP-9 mRNA was reduced by treatment of N-benzylcantharidinamide. Interestingly, the stability of MMP-9 mRNA was significantly reduced by N-benzylcantharidinamide-treatment. In addition, the cytosolic translocation of human antigen R (HuR), which results in the increase of MMP-9 mRNA stability through interaction of HuR with 3'-untranslated region of MMP-9 mRNA, was suppressed by treatment of N-benzylcantharidinamide, in a dose-dependent manner. Taken together, it was demonstrated, for the first time, that N-benzylcantharidinamide suppresses MMP-9 expression by reducing HuR-mediated MMP-9 mRNA stability for the inhibition of invasive potential in highly metastatic Hep3B cells.
Collapse
Affiliation(s)
- Ji-Yeon Lee
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Hee-Jung Choi
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Chang Hyun Lee
- Department of Anatomy, College of Korean Medicine, Woosuk University, Wanju-gun, Jeonbuk, Republic of Korea
| | - Jae Soon Eun
- College of Pharmacy, Woosuk University, Wanju-gun, Jeonbuk, Republic of Korea
| | - Young Taek Han
- College of Pharmacy, Woosuk University, Wanju-gun, Jeonbuk, Republic of Korea
| | - Jun-Yong Choi
- Department of Internal Medicine, Korean Medicine Hospital, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - So-Yeon Kim
- Department of Internal Medicine, Korean Medicine Hospital, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Chang-Woo Han
- Department of Internal Medicine, Korean Medicine Hospital, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Han-Sol Jeong
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea.
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea.
| |
Collapse
|
39
|
Pullmann R, Rabb H. HuR and other turnover- and translation-regulatory RNA-binding proteins: implications for the kidney. Am J Physiol Renal Physiol 2014; 306:F569-76. [PMID: 24431206 DOI: 10.1152/ajprenal.00270.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The posttranscriptional regulation of gene expression occurs through cis RNA regulatory elements by the action of trans factors, which are represented by noncoding RNAs (especially microRNAs) and turnover- and translation-regulatory (TTR) RNA-binding proteins (RBPs). These multifactorial proteins are a group of heterogeneous RBPs primarily implicated in controlling the decay and translation rates of target mRNAs. TTR-RBPs usually shuttle between cellular compartments (the nucleus and cytoplasm) in response to various stimuli and undergo posttranslational modifications such as phosphorylation or methylation to ensure their proper subcellular localization and function. TTR-RBPs are emerging as key regulators of a wide variety of genes influencing kidney physiology and pathology. This review summarizes the current knowledge of TTR-RBPs that influence renal metabolism. We will discuss the role of TTR-RBPs as regulators of kidney ischemia, fibrosis and matrix remodeling, angiogenesis, membrane transport, immunity, vascular tone, hypertension, and acid-base balance as well as anemia, bone mineral disease, and vascular calcification.
Collapse
|
40
|
AngiotensinII induces HuR shuttling by post-transcriptional regulated CyclinD1 in human mesangial cells. Mol Biol Rep 2014; 41:1141-50. [PMID: 24390237 DOI: 10.1007/s11033-013-2960-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 12/21/2013] [Indexed: 12/17/2022]
Abstract
Abnormal proliferation of human mesangial cells was the earliest pathological character in chronic kidney disease and linked to the accumulation of extracellular matrix and glomerular sclerosis. Multifunctional Angiotensin (AngII) had been emerged as a key player in initiation and progression of fibrogenic processes in kidney. In mesangial cells, treatment with the proliferation stimulus AngII triggered the escalated cyclinD1 expression, where its association with HuR increased dramatically. In our study, it was demonstrated that both in vivo and in vitro HuR redistribution in dysregulated mesangial cell proliferation accompanied by an abundant cyclinD1 expression following the AngII treatment. ActinomycinD experiments revealed that AngII stabilized cyclinD1 mRNA in human mesangial cells via HuR. Furthermore, employing the RIP-Chip assay yielded cyclinD1 mRNA with a higher affinity to HuR in mesangial cells induced by AngII compared with the normal ones in vitro study. Analysis of a cyclinD1 mRNA directly implicated HuR in regulating cyclinD1 production: cyclinD1 translation increased in HuR-shuttling cells induced by AngII and declined in cells in which HuR levels were lowered by RNA interference. We proposed that the release of HuR-bound mRNAs via an AngII-cyclinD1-HuR regulatory axis was implicated in the evolution of proliferative kidney diseases, providing us a novel therapeutic strategy to treat glomerular disease.
Collapse
|
41
|
Abstract
Post-transcriptional mechanisms that modulate global and/or transcript-specific mRNA stability and translation contribute to the rapid and flexible control of gene expression in immune effector cells. These mechanisms rely on RNA-binding proteins (RBPs) that direct regulatory complexes (e.g. exosomes, deadenylases, decapping complexes, RNA-induced silencing complexes) to the 3'-untranslated regions of specific immune transcripts. Here, we review the surprising variety of post-transcriptional control mechanisms that contribute to gene expression in the immune system and discuss how defects in these pathways can contribute to autoimmune disease.
Collapse
Affiliation(s)
- Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
42
|
Liu WH, Chen YL, Chang LS. CIL-102 induces matrix metalloproteinase-2 (MMP-2)/MMP-9 down-regulation via simultaneous suppression of genetic transcription and mRNA stability. Int J Biochem Cell Biol 2012; 44:2212-22. [DOI: 10.1016/j.biocel.2012.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 08/10/2012] [Accepted: 08/27/2012] [Indexed: 11/25/2022]
|
43
|
Murphy N, Lynch MA. Activation of the P2X₇ receptor induces migration of glial cells by inducing cathepsin B degradation of tissue inhibitor of metalloproteinase 1. J Neurochem 2012; 123:761-70. [PMID: 23017058 DOI: 10.1111/jnc.12031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/16/2012] [Accepted: 09/19/2012] [Indexed: 12/23/2022]
Abstract
The P2X(7) receptor is an ion-gated channel, which is activated by high extracellular concentrations of adenosine triphosphate (ATP). Activation of P2X(7) receptors has been shown to induce neuroinflammatory changes associated with several neurological conditions. The matrix metalloproteinases (MMPs) are a family of endopeptidases that have several functions including degradation of the extracellular matrix, cell migration and modulation of bioactive molecules. The actions of MMPs are prevented by a family of protease inhibitors called tissue inhibitors of metalloproteinases (TIMPs). In this study, we show that ATP-treated glial cultures from neonatal C57BL/6 mice release and increase MMP-9 activity, which is coupled with a decrease in release of TIMP-1 and an increase in activated cathepsin B within the extracellular space. This process occurs independently of NLRP3-inflammasome formation. Treatment with a P2X(7) receptor antagonist prevents ATP-induced MMP-9 activity, inhibition of active cathepsin B release and allows for TIMP-1 to be released from the cell. We have shown that cathepsin B degrades TIMP-1, and inhibition of cathepsin B allows for release of TIMP-1 and inhibits MMP-9 activity. We also present data that indicate that ATP or cell damage induces glial cell migration, which is inhibited by P2X(7) antagonism, depletion of MMP-9 or inhibition of cathepsin B.
Collapse
Affiliation(s)
- Niamh Murphy
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | | |
Collapse
|
44
|
Abstract
Nucleolin is a multifunctional protein localized primarily in the nucleolus, but also found in the nucleoplasm, cytoplasm and cell membrane. It is involved in several aspects of DNA metabolism, and participates extensively in RNA regulatory mechanisms, including transcription, ribosome assembly, mRNA stability and translation, and microRNA processing. Nucleolin's implication in disease is linked to its ability to associate with target RNAs via its four RNA-binding domains and its arginine/glycin-rich domain. By modulating the post-transcriptional fate of target mRNAs, which typically bear AU-rich and/or G-rich elements, nucleolin has been linked to cellular events that influence disease, notably cell proliferation and protection against apoptotic death. Through its diverse RNA functions, nucleolin is increasingly implicated in pathological processes, particularly cancer and viral infection. Here, we review the RNA-binding activities of nucleolin, its influence on gene expression patterns, and its impact upon diseases. We also discuss the rising interest in targeting nucleolin therapeutically.
Collapse
Affiliation(s)
- Kotb Abdelmohsen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | | |
Collapse
|
45
|
Versatility of RNA-Binding Proteins in Cancer. Comp Funct Genomics 2012; 2012:178525. [PMID: 22666083 PMCID: PMC3359819 DOI: 10.1155/2012/178525] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/28/2012] [Indexed: 01/22/2023] Open
Abstract
Posttranscriptional gene regulation is a rapid and efficient process to adjust the proteome of a cell to a changing environment. RNA-binding proteins (RBPs) are the master regulators of mRNA processing and translation and are often aberrantly expressed in cancer. In addition to well-studied transcription factors, RBPs are emerging as fundamental players in tumor development. RBPs and their mRNA targets form a complex network that plays a crucial role in tumorigenesis. This paper describes mechanisms by which RBPs influence the expression of well-known oncogenes, focusing on precise examples that illustrate the versatility of RBPs in posttranscriptional control of cancer development. RBPs appeared very early in evolution, and new RNA-binding domains and combinations of them were generated in more complex organisms. The identification of RBPs, their mRNA targets, and their mechanism of action have provided novel potential targets for cancer therapy.
Collapse
|
46
|
Schott J, Stoecklin G. Networks controlling mRNA decay in the immune system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:432-56. [PMID: 21956941 DOI: 10.1002/wrna.13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The active control of mRNA degradation has emerged as a key regulatory mechanism required for proper gene expression in the immune system. An adenosine/uridine (AU)-rich element (ARE) is at the heart of a first regulatory system that promotes the rapid degradation of a multitude of cytokine and chemokine mRNAs. AREs serve as binding sites for a number of regulatory proteins that either destabilize or stabilize the mRNA. Several kinase pathways regulate the activity of ARE-binding proteins and thereby coordinate the expression of their target mRNAs. Small regulatory micro (mi)-RNAs represent a second system that enhances the degradation of several mRNAs encoding important components of signal transduction cascades that are activated during adaptive and innate immune responses. Specific miRNAs are important for the differentiation of T helper cells, class switch recombination in B cells, and the maturation of dendritic cells. Excitement in this area of research is fueled by the discovery of novel RNA elements and regulatory proteins that exert control over specific mRNAs, as exemplified by an endonuclease that was found to directly cleave interleukin-6 mRNA. Together, these systems make up an extensive regulatory network that controls decay rates of individual mRNAs in a precise manner and thereby orchestrates the dynamic expression of many factors essential for adaptive and innate immune responses. In this review, we provide an overview of relevant factors regulated at the level of mRNA stability, summarize RNA-binding proteins and miRNAs that control their degradation rates, and discuss signaling pathways operating within this regulatory network.
Collapse
Affiliation(s)
- Johanna Schott
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | |
Collapse
|
47
|
Cyclosporin A and tacrolimus induce renal Erk1/2 pathway via ROS-induced and metalloproteinase-dependent EGF-receptor signaling. Biochem Pharmacol 2011; 83:286-95. [PMID: 22100870 DOI: 10.1016/j.bcp.2011.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 11/21/2022]
Abstract
We previously demonstrated that the widely used immunosuppressive drugs cyclosporin A (CsA) and tacrolimus (FK506), independent of immunophilin binding, can activate profibrogenic transforming growth factor β (TGFβ)/Smad signaling cascades in rat renal mesangial cells (MC). Here we report that both peptidyl-prolyl cis/trans isomerase (PPIase) inhibitors activate the extracellular-signaling regulated kinase (ERK) a member of the mitogen activated protein kinase (MAPK) and induce a rapid and transient increase in ERK phosphorylation. The MEK inhibitor U0126, the reactive oxygen species (ROS) scavenger N-acetyl-cysteine (NAC), a cell-permeant superoxide dismutase (SOD) and stigmatellin, an inhibitor of mitochondrial cytochrome bc1 complex strongly attenuated the increase in ERK1/2 phosphorylation triggered by PPIase inhibitors. Moreover, neutralizing antibodies against heparin binding-epidermal growth factor (HB-EGF), and inhibition of the EGF receptor by either small interfering (si)RNA or AG1478, demonstrate that ERK activation by both PPIase inhibitors is mediated via HB-EGF-induced EGF receptor (EGFR) tyrosine kinase activation. The strong inhibitory effects achieved by GM6001 and TAPI-2 furthermore implicate the involvement of a desintegrin and metalloproteinase 17 (ADAM17). Concomitantly, the PPIase inhibitor-induced ADAM17 secretase activity was significantly reduced by SOD and stigmatellin thus suggesting that mitochondrial ROS play a primary role in PPIase inhibitor-induced and ADAM17-mediated HB-EGF shedding. Functionally, both immunosuppressants caused a strong increase in MC proliferation which was similarly impeded when cells were treated in the presence of NAC, TAPI-2 or AG1478, respectively. Our data suggest that CsA and FK506, via ROS-dependent and ADAM17-catalyzed HB-EGF shedding induce the mitogenic ERK1/2 signaling cascade in renal MC.
Collapse
|
48
|
Karipcin FS, Ensari TA, Kayisli UA, Guzel E, Kallen CB, Seli E. The mRNA-binding protein HuR is regulated in the menstrual cycle and repressed in ectopic endometrium. Reprod Sci 2011; 18:145-55. [PMID: 20889954 PMCID: PMC3343139 DOI: 10.1177/1933719110382307] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cytokines modulate turnover of the endometrium during the menstrual cycle and contribute to the pathogenesis of endometriosis. Gene expression for cytokines is often regulated by proteins that bind to adenosine- and uridine-rich elements (AREs) in their transcripts to stabilize or destabilize bound messenger RNAs (mRNAs). HuR/ELAVL1 is an RNA-binding protein that stabilizes ARE-containing mRNAs. We hypothesized that HuR might play a role in regulating cytokine expression during the menstrual cycle and in endometriosis and characterized the expression and regulation of HuR in eutopic and ectopic human endometrium. Tissue sections obtained from normal (n = 23) and ectopic (n = 16) endometrium were immunostained for HuR, and staining intensity was evaluated by HSCORE. Cultured stromal cells isolated from normal endometrium were treated with vehicle, estradiol (E2), progesterone (P), E2 + P, tumor necrosis factor-α (TNF-α), and interleukin 1β (IL-1β) for 24 hours, and HuR expression was determined by Western blot. HuR immunoreactivity was significantly lower in the early proliferative and late secretory phases (157.5 ± 11.08 and 190.0 ± 15.2, respectively), compared to the mid-late proliferative (270.0 ± 8.0) and early-mid secretory phases (256.6 ± 20.2; P < .01, analysis of variance [ANOVA]). Furthermore, HuR expression was significantly lower in ectopic endometrial cells compared to normal endometrium in mid-late proliferative and early-mid-secretory phases (P < .01). Estrogen, P, or cytokines did not alter HuR expression in cultured endometrial stromal cells. Increased HuR levels in the mid-menstrual phases are likely to contribute to reduced mid-cycle cytokine expression and enhanced cellular survival in eutopic endometrium. In ectopic endometrium, elevated cytokine levels associated with endometriosis likely reduce HuR expression.
Collapse
Affiliation(s)
- Fethiye Sinem Karipcin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
- Currently at the Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Tugba Altun Ensari
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
- Currently at the Etlik Zubeyde Hanim Women’s Health Teaching and Research Hospital, Department of Obstetrics and Gynecology, Ankara, Turkey
| | - Umit A. Kayisli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Elif Guzel
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Caleb B. Kallen
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
49
|
Rickert M, Dreier R, Radons J, Opolka A, Grifka J, Anders S, Grässel S. Interaction of periosteal explants with articular chondrocytes alters expression profile of matrix metalloproteinases. J Orthop Res 2010; 28:1576-85. [PMID: 20973060 DOI: 10.1002/jor.21154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Periosteal tissue is a source of growth factors and of osteochondral progenitor cells which makes it suitable for implantation in chondral defects as known in autologous chondrocyte implantation. The aim of this study was to determine the interaction between periosteal tissue and articular chondrocytes with respect to catabolic effectors such as matrix metalloproteinases (MMPs) and IL-6. Human articular chondrocytes were cultured for up to 28 days as micromass pellets in coculture either with physical contact to periosteal explants or allowing paracrine interactions only. Expression, secretion, and activation of MMPs and IL-6 were analyzed in chondrocytes, periosteum, and culture supernatants. Both coculture conditions influence gene expression levels of MMPs and IL-6 in a time-, culture-, and tissue-dependent manner. Coculturing of periosteum with chondrocytes promotes gene expression and secretion of IL-6. In periosteum, physical contact inhibits MMP-2 and MMP-13 gene expression while paracrine coculture induces expression of IL-6, MMP-2, -7, and -13. Pro-MMP-2, -7, and -13 were detected in supernatants of all culture regimens whereas pro-MMP-9 was secreted from periosteum only. As a balanced amount of MMP activity is likely required to achieve sufficient integration of the regenerate tissue with the surrounding healthy cartilage, an exceeding expression of proteinases might result in degradation, hypertrophy or rejection of the graft.
Collapse
Affiliation(s)
- Matthias Rickert
- Department of Orthopaedic Surgery, Experimental Orthopaedics, University Hospital of Regensburg, 93077 Bad Abbach, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Differential modulation of the cytokine-induced MMP-9/TIMP-1 protease-antiprotease system by the mTOR inhibitor rapamycin. Biochem Pharmacol 2010; 81:134-43. [PMID: 20854798 DOI: 10.1016/j.bcp.2010.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 01/07/2023]
Abstract
The mTOR-inhibitor rapamycin is a potent drug used in many immunosuppressive and antiinflammatory therapeutic regimes. In renal transplantation despite its beneficial roles rapamycin in some cases can promote renal fibrosis in the kidney but the underlying mechanisms are unknown. In this study, we tested for possible modulatory effects of rapamycin on the cytokine-triggered matrix metalloproteinase 9 (MMP-9)/tissue inhibitor of metalloproteinase (TIMP)-1 protease-antiprotease system which is critically involved in renal inflammation and fibrosis. Treatment of rat mesangial cells (MC) with rapamycin dose-dependently reduced the interleukin 1β (IL-1β)-triggered increase in gelatinolytic levels as demonstrated by zymography. The reduction in the extracellular MMP-9 content by rapamycin coincided with an attenuation in cytokine-induced steady-state MMP-9 mRNA levels. Conversely, rapamycin caused a dose-dependent increase in cytokine-evoked TIMP-1 expression in a Smad binding element (SBE)-dependent manner. Surprisingly, the attenuation of MMP-9 mRNA levels by rapamycin is accompanied by a potentiation of IL-1β-induced MMP-9 promoter activity in which the stimulatory effects by rapamycin are mainly attributed to a proximal AP-1 binding site. Furthermore, the rapamycin-dependent potentiation of MMP-9 expression is accompanied by an amplification of cytokine-triggered activities of nuclear factor κB (NF-κB) and activator protein 1 (AP-1) transcription factors. Importantly, rapamycin-triggered increase in MMP-9 promoter activity is fully impaired when we used a MMP-9 reporter construct which is under the additional control of the 3' untranslated region (3'-UTR) of MMP-9. Collectively, these data imply that rapamycin inhibits the cytokine-induced MMP-9 mainly through posttranscriptional events and thereby exerts profibrotic activities.
Collapse
|