1
|
The topogenic function of S4 promotes membrane insertion of the voltage-sensor domain in the KvAP channel. Biochem J 2016; 473:4361-4372. [PMID: 27694387 DOI: 10.1042/bcj20160746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/20/2016] [Accepted: 09/30/2016] [Indexed: 11/17/2022]
Abstract
Voltage-dependent K+ (KV) channels control K+ permeability in response to shifts in the membrane potential. Voltage sensing in KV channels is mediated by the positively charged transmembrane domain S4. The best-characterized KV channel, KvAP, lacks the distinct hydrophilic region corresponding to the S3-S4 extracellular loop that is found in other K+ channels. In the present study, we evaluated the topogenic properties of the transmembrane regions within the voltage-sensing domain in KvAP. S3 had low membrane insertion activity, whereas S4 possessed a unique type-I signal anchor (SA-I) function, which enabled it to insert into the membrane by itself. S4 was also found to function as a stop-transfer signal for retention in the membrane. The length and structural nature of the extracellular S3-S4 loop affected the membrane insertion of S3 and S4, suggesting that S3 membrane insertion was dependent on S4. Replacement of charged residues within the transmembrane regions with residues of opposite charge revealed that Asp72 in S2 and Glu93 in S3 contributed to membrane insertion of S3 and S4, and increased the stability of S4 in the membrane. These results indicate that the SA-I function of S4, unique among K+ channels studied to date, promotes the insertion of S3 into the membrane, and that the charged residues essential for voltage sensing contribute to the membrane-insertion of the voltage sensor domain in KvAP.
Collapse
|
2
|
Sasaki T, Tsuchiya Y, Ariyoshi M, Ryan PR, Furuichi T, Yamamoto Y. A domain-based approach for analyzing the function of aluminum-activated malate transporters from wheat (Triticum aestivum) and Arabidopsis thaliana in Xenopus oocytes. PLANT & CELL PHYSIOLOGY 2014; 55:2126-38. [PMID: 25311199 DOI: 10.1093/pcp/pcu143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Wheat and Arabidopsis plants respond to aluminum (Al) ions by releasing malate from their root apices via Al-activated malate transporter. Malate anions bind with the toxic Al ions and contribute to the Al tolerance of these species. The genes encoding the transporters in wheat and Arabidopsis, TaALMT1 and AtALMT1, respectively, were expressed in Xenopus laevis oocytes and characterized electrophysiologically using the two-electrode voltage clamp system. The Al-activated currents generated by malate efflux were detected for TaALMT1 but not for AtALMT1. Chimeric proteins were generated by swapping the N- and C-terminal halves of TaALMT1 and AtALMT1 (Ta::At and At::Ta). When these chimeras were characterized in oocytes, Al-activated malate efflux was detected for the Ta::At chimera but not for At::Ta, suggesting that the N-terminal half of TaALMT1 is necessary for function in oocytes. An additional chimera, Ta(48)::At, generated by swapping 17 residues from the N-terminus of AtALMT1 with the equivalent 48 residues from TaALMT1, was sufficient to support transport activity. This 48 residue region includes a helical region with a putative transmembrane domain which is absent in AtALMT1. The deletion of this domain from Ta(48)::At led to the complete loss of transport activity. Furthermore, truncations and a deletion at the C-terminal end of TaALMT1 indicated that a putative helical structure in this region was also required for transport function. This study provides insights into the structure-function relationships of Al-activated ALMT proteins by identifying specific domains on the N- and C-termini of TaALMT1 that are critical for basal transport function and Al responsiveness in oocytes.
Collapse
Affiliation(s)
- Takayuki Sasaki
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
| | - Yoshiyuki Tsuchiya
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
| | - Michiyo Ariyoshi
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
| | - Peter R Ryan
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Takuya Furuichi
- Department of Health and Nutrition, Faculty of Home Economics, Gifu Women's University, Taromaru 80, Gifu, 501-2592 Japan
| | - Yoko Yamamoto
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
3
|
Schmitt N, Grunnet M, Olesen SP. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 2014; 94:609-53. [PMID: 24692356 DOI: 10.1152/physrev.00022.2013] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K+ channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K+ channels drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K+ channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure. The underlying posttranscriptional and posttranslational remodeling of the individual K+ channels changes their activity and significance relative to each other, and they must be viewed together to understand their role in keeping a stable heart rhythm, also under menacing conditions like attacks of reentry arrhythmia.
Collapse
|
4
|
Confronting Fusion Protein-Based Membrane Protein Topology Mapping with Reality: The Escherichia coli ClcA H+/Cl− Exchange Transporter. J Mol Biol 2008; 381:860-6. [DOI: 10.1016/j.jmb.2008.06.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 06/11/2008] [Accepted: 06/13/2008] [Indexed: 11/20/2022]
|
5
|
Voltage-gated K Channels - IV. Biophys J 2008. [DOI: 10.1016/s0006-3495(08)79076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Zhang L, Sato Y, Hessa T, von Heijne G, Lee JK, Kodama I, Sakaguchi M, Uozumi N. Contribution of hydrophobic and electrostatic interactions to the membrane integration of the Shaker K+ channel voltage sensor domain. Proc Natl Acad Sci U S A 2007; 104:8263-8. [PMID: 17488813 PMCID: PMC1899110 DOI: 10.1073/pnas.0611007104] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane-embedded voltage-sensor domains in voltage-dependent potassium channels (K(v) channels) contain an impressive number of charged residues. How can such highly charged protein domains be efficiently inserted into biological membranes? In the plant K(v) channel KAT1, the S2, S3, and S4 transmembrane helices insert cooperatively, because the S3, S4, and S3-S4 segments do not have any membrane insertion ability by themselves. Here we show that, in the Drosophila Shaker K(v) channel, which has a more hydrophobic S3 helix than KAT1, S3 can both insert into the membrane by itself and mediate the insertion of the S3-S4 segment in the absence of S2. An engineered KAT1 S3-S4 segment in which the hydrophobicity of S3 was increased or where S3 was replaced by Shaker S3 behaves as Shaker S3-S4. Electrostatic interactions among charged residues in S2, S3, and S4, including the salt bridges between E283 or E293 in S2 and R368 in S4, are required for fully efficient membrane insertion of the Shaker voltage-sensor domain. These results suggest that cooperative insertion of the voltage-sensor transmembrane helices is a property common to K(v) channels and that the degree of cooperativity depends on a balance between electrostatic and hydrophobic forces.
Collapse
Affiliation(s)
- Liyan Zhang
- *Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Yoko Sato
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Tara Hessa
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Gunnar von Heijne
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jong-Kook Lee
- Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan; and
| | - Itsuo Kodama
- Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan; and
| | - Masao Sakaguchi
- Graduate School of Life Science, University of Hyogo, Ako Hyogo 678-1297, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
- *Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
7
|
Gambale F, Uozumi N. Properties of shaker-type potassium channels in higher plants. J Membr Biol 2006; 210:1-19. [PMID: 16794778 DOI: 10.1007/s00232-006-0856-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 02/17/2006] [Indexed: 10/24/2022]
Abstract
Potassium (K(+)), the most abundant cation in biological organisms, plays a crucial role in the survival and development of plant cells, modulation of basic mechanisms such as enzyme activity, electrical membrane potentials, plant turgor and cellular homeostasis. Due to the absence of a Na(+)/K(+) exchanger, which widely exists in animal cells, K(+) channels and some type of K(+) transporters function as K(+) uptake systems in plants. Plant voltage-dependent K(+) channels, which display striking topological and functional similarities with the voltage-dependent six-transmembrane segment animal Shaker-type K(+) channels, have been found to play an important role in the plasma membrane of a variety of tissues and organs in higher plants. Outward-rectifying, inward-rectifying and weakly-rectifying K(+) channels have been identified and play a crucial role in K(+) homeostasis in plant cells. To adapt to the environmental conditions, plants must take advantage of the large variety of Shaker-type K(+) channels naturally present in the plant kingdom. This review summarizes the extensive data on the structure, function, membrane topogenesis, heteromerization, expression, localization, physiological roles and modulation of Shaker-type K(+) channels from various plant species. The accumulated results also help in understanding the similarities and differences in the properties of Shaker-type K(+) channels in plants in comparison to those of Shaker channels in animals and bacteria.
Collapse
Affiliation(s)
- F Gambale
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova, Italy.
| | | |
Collapse
|
8
|
Lu CW, Lin JH, Rajawat YS, Jerng H, Rami TG, Sanchez X, DeFreitas G, Carabello B, DeMayo F, Kearney DL, Miller G, Li H, Pfaffinger PJ, Bowles NE, Khoury DS, Towbin JA. Functional and clinical characterization of a mutation in KCNJ2 associated with Andersen-Tawil syndrome. J Med Genet 2006; 43:653-9. [PMID: 16571646 PMCID: PMC2564587 DOI: 10.1136/jmg.2006.040816] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Andersen-Tawil syndrome (ATS) is a rare inherited disorder, characterised by periodic paralysis, cardiac dysarrhythmias, and dysmorphic features, and is caused by mutations in the gene KCNJ2, which encodes the inward rectifier potassium channel, Kir2.1. This study sought to analyse KCNJ2 in patients with familial ATS and to determine the functional characteristics of the mutated gene. METHODS AND RESULTS We screened a family with inherited ATS for the mutation in KCNJ2, using direct DNA sequencing. A missense mutation (T75R) of Kir2.1, located in the highly conserved cytoplasmic N-terminal domain, was identified in three affected members of this family. Using the Xenopus oocyte expression system and whole cell voltage clamp analyses, we found that the T75R mutant was non-functional and possessed a strong dominant negative effect when co-expressed with the same amount of wild type Kir2.1. Transgenic (Tg) mice expressing the mutated form of Kir2.1 in the heart had prolonged QTc intervals compared with mice expressing the wild type protein. Ventricular tachyarrhythmias were observed in 5 of 14 T75R-Tg mice compared with 1 of 7 Wt-Tg and none of 6 non-transgenic littermates. In three of five T75R-Tg mice with ventricular tachycardia, their ECG disclosed bidirectional tachycardia as in our proband. CONCLUSIONS The in vitro studies revealed that the T75R mutant of Kir2.1 had a strong dominant negative effect in the Xenopus oocyte expression system. It still preserved the ability to co-assemble and traffic to the cell membrane in mammalian cells. For in vivo studies, the T75R-Tg mice had bidirectional ventricular tachycardia after induction and longer QT intervals.
Collapse
Affiliation(s)
- C-W Lu
- Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sun Park W, Kyoung Son Y, Kim N, Boum Youm J, Joo H, Warda M, Ko JH, Earm YE, Han J. The protein kinase A inhibitor, H-89, directly inhibits KATP and Kir channels in rabbit coronary arterial smooth muscle cells. Biochem Biophys Res Commun 2006; 340:1104-10. [PMID: 16403438 DOI: 10.1016/j.bbrc.2005.12.116] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 12/19/2005] [Indexed: 11/25/2022]
Abstract
The effects of the protein kinase A (PKA) inhibitor H-89 on ATP-sensitive K+ (KATP) and inward rectifier K+ (Kir) currents were examined in rabbit coronary arterial smooth muscle cells using the patch clamp technique. The H-89, in a dose-dependent manner, inhibited KATP and Kir currents with apparent Kd values of 1.19+/-0.18 and 3.78+/-0.37 microM, respectively. H-85, which is considered as an inactive form of H-89, inhibited KATP and Kir currents, similar to the result of H-89. KATP and Kir currents were not affected by either Rp-8-CPT-cAMPs, which is a membrane-permeable selective PKA inhibitor, or KT 5720, which is also known as a PKA inhibitor. Also, these two drugs did not significantly alter the effects of H-89 on the KATP and Kir currents. These results suggest that H-89 directly inhibits the KATP and Kir currents of rabbit coronary arterial smooth muscle cells independently of PKA inhibition.
Collapse
Affiliation(s)
- Won Sun Park
- Mitochondrial Signaling Laboratory, Department of Physiology and Biophysics, College of Medicine, Biohealth Products Research Center, Cardiovascular and Metabolic disease Center, Inje University, Busan, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cuthbertson JM, Doyle DA, Sansom MSP. Transmembrane helix prediction: a comparative evaluation and analysis. Protein Eng Des Sel 2005; 18:295-308. [PMID: 15932905 DOI: 10.1093/protein/gzi032] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The prediction of transmembrane (TM) helices plays an important role in the study of membrane proteins, given the relatively small number (approximately 0.5% of the PDB) of high-resolution structures for such proteins. We used two datasets (one redundant and one non-redundant) of high-resolution structures of membrane proteins to evaluate and analyse TM helix prediction. The redundant (non-redundant) dataset contains structure of 434 (268) TM helices, from 112 (73) polypeptide chains. Of the 434 helices in the dataset, 20 may be classified as 'half-TM' as they are too short to span a lipid bilayer. We compared 13 TM helix prediction methods, evaluating each method using per segment, per residue and termini scores. Four methods consistently performed well: SPLIT4, TMHMM2, HMMTOP2 and TMAP. However, even the best methods were in error by, on average, about two turns of helix at the TM helix termini. The best and worst case predictions for individual proteins were analysed. In particular, the performance of the various methods and of a consensus prediction method, were compared for a number of proteins (e.g. SecY, ClC, KvAP) containing half-TM helices. The difficulties of predicting half-TM helices suggests that current prediction methods successfully embody the two-state model of membrane protein folding, but do not accommodate a third stage in which, e.g., short helices and re-entrant loops fold within a bundle of stable TM helices.
Collapse
|
11
|
van Dalen A, de Kruijff B. The role of lipids in membrane insertion and translocation of bacterial proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:97-109. [PMID: 15546660 DOI: 10.1016/j.bbamcr.2004.03.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 02/03/2004] [Accepted: 03/01/2004] [Indexed: 11/20/2022]
Abstract
Phospholipids are essential building blocks of membranes and maintain the membrane permeability barrier of cells and organelles. They provide not only the bilayer matrix in which the functional membrane proteins reside, but they also can play direct roles in many essential cellular processes. In this review, we give an overview of the lipid involvement in protein translocation across and insertion into the Escherichia coli inner membrane. We describe the key and general roles that lipids play in these processes in conjunction with the protein components involved. We focus on the Sec-mediated insertion of leader peptidase. We describe as well the more direct roles that lipids play in insertion of the small coat proteins Pf3 and M13. Finally, we focus on the role of lipids in membrane assembly of oligomeric membrane proteins, using the potassium channel KcsA as model protein. In all cases, the anionic lipids and lipids with small headgroups play important roles in either determining the efficiency of the insertion and assembly process or contributing to the directionality of the insertion process.
Collapse
Affiliation(s)
- Annemieke van Dalen
- Department Biochemistry of Membranes, Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
12
|
van den Brink-van der Laan E, Killian JA, de Kruijff B. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1666:275-88. [PMID: 15519321 DOI: 10.1016/j.bbamem.2004.06.010] [Citation(s) in RCA: 337] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 06/16/2004] [Accepted: 06/24/2004] [Indexed: 11/23/2022]
Abstract
Nonbilayer lipids can be defined as cone-shaped lipids with a preference for nonbilayer structures with a negative curvature, such as the hexagonal phase. All membranes contain these lipids in large amounts. Yet, the lipids in biological membranes are organized in a bilayer. This leads to the question: what is the physiological role of nonbilayer lipids? Different models are discussed in this review, with a focus on the lateral pressure profile within the membrane. Based on this lateral pressure model, predictions can be made for the effect of nonbilayer lipids on peripheral and integral membrane proteins. Recent data on the catalytic domain of Leader Peptidase and the potassium channel KcsA are discussed in relation to these predictions and in relation to the different models on the function of nonbilayer lipids. The data suggest a general mechanism for the interaction between nonbilayer lipids and membrane proteins via the membrane lateral pressure.
Collapse
Affiliation(s)
- Els van den Brink-van der Laan
- Department Biochemistry of Membranes, Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | | | | |
Collapse
|
13
|
Sato Y, Ariyoshi N, Mihara K, Sakaguchi M. Topogenesis of NHE1: direct insertion of the membrane loop and sequestration of cryptic glycosylation and processing sites just after TM9. Biochem Biophys Res Commun 2004; 324:281-7. [PMID: 15465015 DOI: 10.1016/j.bbrc.2004.09.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Indexed: 10/26/2022]
Abstract
Multispanning membrane proteins are synthesized by membrane-bound ribosomes and integrated into the endoplasmic reticulum membrane cotranslationally. To uncover the topogenic process of membrane loop, of which both ends are in the same side of the membrane, we examined topogenesis of a relatively hydrophobic lumenal loop segment (H10 segment) between TM9 and TM10 of human Na(+)/H(+) exchanger isoform 1 using an in vitro expression system. The H10 segment was translocated through the membrane. Any potential sites created within the H10 segment were not glycosylated. Just after TM9, there are potential glycosylation and signal peptidase processing sites. When the reporter domain of prolactin was fused at the position preceding the H10 segment, these sites were modified by the enzymes, while they were not modified in the original molecule. Thus, we concluded that the H10 segment was translocated through the membrane and directly inserted into the membrane and that its membrane insertion caused sequestration of the preceding processing and glycosylation sites from the lumenal modifying enzymes. This topogenic process shows clear contrast to that of pore loops of K(+) channels, which are once exposed in the lumen and accessible to glycosylation enzyme.
Collapse
Affiliation(s)
- Yoko Sato
- Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297, Japan
| | | | | | | |
Collapse
|
14
|
Utsumi T, Nakano K, Funakoshi T, Kayano Y, Nakao S, Sakurai N, Iwata H, Ishisaka R. Vertical-scanning mutagenesis of amino acids in a model N-myristoylation motif reveals the major amino-terminal sequence requirements for protein N-myristoylation. ACTA ACUST UNITED AC 2004; 271:863-74. [PMID: 14764103 DOI: 10.1111/j.1432-1033.2004.03991.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to determine the amino-terminal sequence requirements for protein N-myristoylation, site-directed mutagenesis of the N-terminal region was performed using tumor necrosis factor (TNF) mutants as model substrate proteins. Subsequently, the susceptibility of these mutants to protein N-myristoylation was evaluated by metabolic labeling in an in vitro translation system using rabbit reticulocyte lysate. A TNF mutant having the sequence MGAAAAAAAA at its N-terminus was used as the starting sequence to identify elements critical for protein N-myristoylation. Sequential vertical-scanning mutagenesis of amino acids at a distinct position in this model N-terminal sequence revealed the major sequence requirements for protein N-myristoylation: the combination of amino acids at position 3 and 6 constitutes a major determinant for the susceptibility to protein N-myristoylation. When Ser was located at position 6, 11 amino acids (Gly, Ala, Ser, Cys, Thr, Val, Asn, Leu, Ile, Gln, His) were permitted at position 3 to direct efficient protein N-myristoylation. In this case, the presence of Lys at position 7 was found to affect the amino acid requirement at position 3 and Lys became permitted at this position. When Ser was not located at position 6, only 3 amino acids (Ala, Asn, Gln) were permitted at position 3 to direct efficient protein N-myristoylation. The amino acid requirements found in this study were fully consistent with the N-terminal sequence of 78 N-myristoylated proteins in which N-myristoylation was experimentally verified. These observations strongly indicate that the combination of amino acids at position 3, 6 and 7 is a major determinant for protein N-myristoylation.
Collapse
Affiliation(s)
- Toshihiko Utsumi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Bendahhou S, Donaldson MR, Plaster NM, Tristani-Firouzi M, Fu YH, Ptácek LJ. Defective potassium channel Kir2.1 trafficking underlies Andersen-Tawil syndrome. J Biol Chem 2003; 278:51779-85. [PMID: 14522976 DOI: 10.1074/jbc.m310278200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Andersen-Tawil syndrome is a skeletal and cardiac muscle disease with developmental features caused by mutations in the inward rectifier K+ channel gene KCNJ2. Patients harboring these mutations exhibit extremely variable expressivities. To explore whether these mutations can be correlated with a specific patient phenotype, we expressed both wild-type (WT) and mutant genes cloned into a bi-cistronic vector. Functional expression in human embryonic kidney 293 cells showed that none of the mutant channels express current when present alone. When co-expressed with WT channels, only construct V302M-WT yields inward current. Confocal microscopy fluorescence revealed three patterns of channel expression in the cell: 1) mutations D71V, N216H, R218Q, and pore mutations co-assemble and co-localize to the membrane with the WT and exert a dominant-negative effect on the WT channels; 2) mutation V302M leads to channels that lose their ability to co-assemble with WT and traffic to the cell surface; 3) deletions Delta 95-98 and Delta 314-315 lead to channels that do not traffic to the membrane but retain their ability to co-assemble with WT channels. These data show that the Andersen-Tawil syndrome phenotype may occur through a dominant-negative effect as well as through haplo-insufficiency and reveal amino acids critical in trafficking and conductance of the inward rectifier K+ channels.
Collapse
Affiliation(s)
- Saïd Bendahhou
- Department of Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | | | | | | | |
Collapse
|