1
|
Matsuda S, Nakayama M, Do Y, Ishiuchi T, Yagi M, Wanrooij S, Nakada K, Wei FY, Ichiyanagi K, Sasaki H, Kang D, Yasukawa T. TEFM facilitates transition from RNA synthesis to DNA synthesis at H-strand replication origin of mtDNA. Commun Biol 2025; 8:202. [PMID: 39922921 PMCID: PMC11807126 DOI: 10.1038/s42003-025-07645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
Transcription of human mitochondrial DNA (mtDNA) begins from specific transcription promoters. In strand-asynchronous mtDNA replication, transcripts from the light-strand promoter serve as primers for leading-strand synthesis at the origin of the H-strand replication (OH). A 7S DNA strand, a presumed aborted replication product, is also synthesized from OH. Transition from RNA synthesis to DNA synthesis at OH is crucial for balancing replication with transcription, yet the mechanism remains unclear. Herein, we examine the role of mitochondrial transcription elongation factor (TEFM) in this process. TEFM knockout results in decreased 7S DNA, strand-asynchronous replication intermediates, and mtDNA copy number, all of which are concordant with downregulation of RNA-to-DNA transition at OH. Conversely, levels of tRNAs encoded near transcription promoters increase, indicating enhanced transcription initiation frequency. Taken together, we propose that, in addition to conferring processivity to the mitochondrial RNA polymerase, TEFM plays a crucial role in maintaining the balance between mitochondrial transcription and replication.
Collapse
Affiliation(s)
- Shigeru Matsuda
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai-shi, Miyagi, Japan
| | - Masunari Nakayama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan
| | - Takashi Ishiuchi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka-shi, Fukuoka, Japan
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Kazuto Nakada
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai-shi, Miyagi, Japan
| | - Kenji Ichiyanagi
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya-shi, Aichi, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka-shi, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan
- Kashiigaoka Rehabilitation Hospital, Fukuoka-shi, Fukuoka, Japan
| | - Takehiro Yasukawa
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan.
- Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
2
|
Sonongbua J, Thong T, Panthum T, Budi T, Singchat W, Kraichak E, Chaiyes A, Muangmai N, Duengkae P, Sitdhibutr R, Kasorndorkbua C, Srikulnath K. Insights into Mitochondrial Rearrangements and Selection in Accipitrid Mitogenomes, with New Data on Haliastur indus and Accipiter badius poliopsis. Genes (Basel) 2024; 15:1439. [PMID: 39596639 PMCID: PMC11593783 DOI: 10.3390/genes15111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Accipitridae mitogenomes exhibit unique structural variations, including duplicated control regions (CRs) that undergo gradual degeneration into pseudo-CRs, revealing a complex evolutionary landscape. However, annotation of this characteristic in a subset of accipitrid genomes is lacking. Due to the taxonomic diversity of Accipitridae and the presence of understudied species, comprehensive mitogenomic studies are essential. This study sought to expand and investigate the evolutionary characteristics of Accipitridae mitogenomes. METHODS A comparative analysis was conducted using the newly acquired complete mitogenomes of Haliastur indus and Accipiter badius poliopsis along with 22 available accipitrid mitogenomes. Codon usage, selective pressure, phylogenetic relationships, and structural variations were comparatively analyzed. RESULTS Accipitrid mitogenomes showed a strong AT bias with adenine preference. Most protein-coding genes (PCGs) were under purifying selection except for ND3, which underwent positive selection. The ATP8 gene exhibited relaxed purifying selection on codon usage patterns and showed high genetic variation. Selection for ATP8 and ND3 genes was specific to certain clades of accipitrids. Gene order re-examination revealed both non-degenerate CRs and highly degenerate CR2 fragments in the Accipitridae family. Non-degenerate CRs were found in early diverging species, such as Elanus caeruleus and Pernis ptilorhynchus orientalis, while more recent lineages had highly degenerate CR2 fragments with missing conserved element. Repeat motifs and sequence variations were observed in the functional CR. CONCLUSIONS These findings suggest that ATP8 and ND3 genes reflect metabolic adaptations, while CRs indicate potential diversification of these accipitrid species. This study provides valuable insights into mitochondrial genome evolution within the Accipitridae family.
Collapse
Affiliation(s)
- Jumaporn Sonongbua
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.S.); (T.T.); (T.P.); (T.B.); (W.S.); (E.K.); (A.C.); (P.D.)
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Faculty of Interdisciplinary Studies, Khon Kaen University, Nong Khai Campus, Nong Khai 43000, Thailand
| | - Thanyapat Thong
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.S.); (T.T.); (T.P.); (T.B.); (W.S.); (E.K.); (A.C.); (P.D.)
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.S.); (T.T.); (T.P.); (T.B.); (W.S.); (E.K.); (A.C.); (P.D.)
| | - Trifan Budi
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.S.); (T.T.); (T.P.); (T.B.); (W.S.); (E.K.); (A.C.); (P.D.)
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.S.); (T.T.); (T.P.); (T.B.); (W.S.); (E.K.); (A.C.); (P.D.)
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Ekaphan Kraichak
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.S.); (T.T.); (T.P.); (T.B.); (W.S.); (E.K.); (A.C.); (P.D.)
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Aingorn Chaiyes
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.S.); (T.T.); (T.P.); (T.B.); (W.S.); (E.K.); (A.C.); (P.D.)
- School of Agriculture and Cooperatives, Sukhothai Thammathirat Open University, Nonthaburi 11120, Thailand
| | - Narongrit Muangmai
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand;
| | - Prateep Duengkae
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.S.); (T.T.); (T.P.); (T.B.); (W.S.); (E.K.); (A.C.); (P.D.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Ratiwan Sitdhibutr
- Raptor Rehabilitation Unit, Kasetsart University Veterinary Teaching Hospital Kamphaengsaen Campus, Nakhon Pathom 73140, Thailand;
| | - Chaiyan Kasorndorkbua
- Raptor Rehabilitation Unit, Kasetsart University Veterinary Teaching Hospital Kamphaengsaen Campus, Nakhon Pathom 73140, Thailand;
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Raptor Research and Conservation Medicine, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.S.); (T.T.); (T.P.); (T.B.); (W.S.); (E.K.); (A.C.); (P.D.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Bernardino Gomes TM, Vincent AE, Menger KE, Stewart JB, Nicholls TJ. Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation. Biochem J 2024; 481:683-715. [PMID: 38804971 PMCID: PMC11346376 DOI: 10.1042/bcj20230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Human mitochondria possess a multi-copy circular genome, mitochondrial DNA (mtDNA), that is essential for cellular energy metabolism. The number of copies of mtDNA per cell, and their integrity, are maintained by nuclear-encoded mtDNA replication and repair machineries. Aberrant mtDNA replication and mtDNA breakage are believed to cause deletions within mtDNA. The genomic location and breakpoint sequences of these deletions show similar patterns across various inherited and acquired diseases, and are also observed during normal ageing, suggesting a common mechanism of deletion formation. However, an ongoing debate over the mechanism by which mtDNA replicates has made it difficult to develop clear and testable models for how mtDNA rearrangements arise and propagate at a molecular and cellular level. These deletions may impair energy metabolism if present in a high proportion of the mtDNA copies within the cell, and can be seen in primary mitochondrial diseases, either in sporadic cases or caused by autosomal variants in nuclear-encoded mtDNA maintenance genes. These mitochondrial diseases have diverse genetic causes and multiple modes of inheritance, and show notoriously broad clinical heterogeneity with complex tissue specificities, which further makes establishing genotype-phenotype relationships challenging. In this review, we aim to cover our current understanding of how the human mitochondrial genome is replicated, the mechanisms by which mtDNA replication and repair can lead to mtDNA instability in the form of large-scale rearrangements, how rearranged mtDNAs subsequently accumulate within cells, and the pathological consequences when this occurs.
Collapse
Affiliation(s)
- Tiago M. Bernardino Gomes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- NHS England Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - James B. Stewart
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| |
Collapse
|
4
|
Mei X, Wang X, Wu X, Liu G, Chen Y, Zhou S, Shang Y, Liu Z, Yang X, Sha W, Zhang H. Mitochondrial Genomic Evidence of Selective Constraints in Small-Bodied Terrestrial Cetartiodactyla. Animals (Basel) 2024; 14:1434. [PMID: 38791652 PMCID: PMC11117313 DOI: 10.3390/ani14101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Body size may drive the molecular evolution of mitochondrial genes in response to changes in energy requirements across species of different sizes. In this study, we perform selection pressure analysis and phylogenetic independent contrasts (PIC) to investigate the association between molecular evolution of mitochondrial genome protein-coding genes (mtDNA PCGs) and body size in terrestrial Cetartiodactyla. Employing selection pressure analysis, we observe that the average non-synonymous/synonymous substitution rate ratio (ω) of mtDNA PCGs is significantly reduced in small-bodied species relative to their medium and large counterparts. PIC analysis further confirms that ω values are positively correlated with body size (R2 = 0.162, p = 0.0016). Our results suggest that mtDNA PCGs of small-bodied species experience much stronger purifying selection as they need to maintain a heightened metabolic rate. On the other hand, larger-bodied species may face less stringent selective pressures on their mtDNA PCGs, potentially due to reduced relative energy expenditure per unit mass. Furthermore, we identify several genes that undergo positive selection, possibly linked to species adaptation to specific environments. Therefore, despite purifying selection being the predominant force in the evolution of mtDNA PCGs, positive selection can also occur during the process of adaptive evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Honghai Zhang
- School of Life Science, Qufu Normal University, Qufu 273165, China; (X.M.)
| |
Collapse
|
5
|
Vallbona-Garcia A, Lindsey PJ, Kamps R, Stassen APM, Nguyen N, van Tienen FHJ, Hamers IHJ, Hardij R, van Gisbergen MW, Benedikter BJ, de Coo IFM, Webers CAB, Gorgels TGMF, Smeets HJM. Mitochondrial DNA D-loop variants correlate with a primary open-angle glaucoma subgroup. FRONTIERS IN OPHTHALMOLOGY 2024; 3:1309836. [PMID: 38983060 PMCID: PMC11182222 DOI: 10.3389/fopht.2023.1309836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/29/2023] [Indexed: 07/11/2024]
Abstract
Introduction Primary open-angle glaucoma (POAG) is a characteristic optic neuropathy, caused by degeneration of the optic nerve-forming neurons, the retinal ganglion cells (RGCs). High intraocular pressure (IOP) and aging have been identified as major risk factors; yet the POAG pathophysiology is not fully understood. Since RGCs have high energy requirements, mitochondrial dysfunction may put the survivability of RGCs at risk. We explored in buffy coat DNA whether mtDNA variants and their distribution throughout the mtDNA could be risk factors for POAG. Methods The mtDNA was sequenced from age- and sex-matched study groups, being high tension glaucoma (HTG, n=71), normal tension glaucoma patients (NTG, n=33), ocular hypertensive subjects (OH, n=7), and cataract controls (without glaucoma; n=30), all without remarkable comorbidities. Results No association was found between the number of mtDNA variants in genes encoding proteins, tRNAs, rRNAs, and in non-coding regions in the different study groups. Next, variants that controls shared with the other groups were discarded. A significantly higher number of exclusive variants was observed in the D-loop region for the HTG group (~1.23 variants/subject), in contrast to controls (~0.35 variants/subject). In the D-loop, specifically in the 7S DNA sub-region within the Hypervariable region 1 (HV1), we found that 42% of the HTG and 27% of the NTG subjects presented variants, while this was only 14% for the controls and OH subjects. As we have previously reported a reduction in mtDNA copy number in HTG, we analysed if specific D-loop variants could explain this. While the majority of glaucoma patients with the exclusive D-loop variants m.72T>C, m.16163 A>G, m.16186C>T, m.16298T>C, and m.16390G>A presented a mtDNA copy number below controls median, no significant association between these variants and low copy number was found and their possible negative role in mtDNA replication remains uncertain. Approximately 38% of the HTG patients with reduced copy number did not carry any exclusive D-loop or other mtDNA variants, which indicates that variants in nuclear-encoded mitochondrial genes, environmental factors, or aging might be involved in those cases. Conclusion In conclusion, we found that variants in the D-loop region may be a risk factor in a subgroup of POAG, possibly by affecting mtDNA replication.
Collapse
Affiliation(s)
- Antoni Vallbona-Garcia
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Patrick J Lindsey
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Rick Kamps
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Alphons P M Stassen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Nhan Nguyen
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Florence H J van Tienen
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Ilse H J Hamers
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Rianne Hardij
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Marike W van Gisbergen
- Department of Dermatology, Maastricht University Medical Center, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Birke J Benedikter
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Irenaeus F M de Coo
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Hubert J M Smeets
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
6
|
Xu D, Huang Y, Luo L, Tang L, Lu M, Cao H, Wang F, Diao Y, Lyubchenko L, Kapranov P. Genome-Wide Profiling of Endogenous Single-Stranded DNA Using the SSiNGLe-P1 Method. Int J Mol Sci 2023; 24:12062. [PMID: 37569439 PMCID: PMC10418711 DOI: 10.3390/ijms241512062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Endogenous single-stranded DNA (essDNA) can form in a mammalian genome as the result of a variety of molecular processes and can both play important roles inside the cell as well as have detrimental consequences to genome integrity, much of which remains to be fully understood. Here, we established the SSiNGLe-P1 approach based on limited digestion by P1 endonuclease for high-throughput genome-wide identification of essDNA regions. We applied this method to profile essDNA in both human mitochondrial and nuclear genomes. In the mitochondrial genome, the profiles of essDNA provide new evidence to support the strand-displacement model of mitochondrial DNA replication. In the nuclear genome, essDNA regions were found to be enriched in certain types of functional genomic elements, particularly, the origins of DNA replication, R-loops, and to a lesser degree, in promoters. Furthermore, interestingly, many of the essDNA regions identified by SSiNGLe-P1 have not been annotated and thus could represent yet unknown functional elements.
Collapse
Affiliation(s)
- Dongyang Xu
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China; (D.X.)
| | - Yu Huang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China; (D.X.)
| | - Lingcong Luo
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China; (D.X.)
| | - Lu Tang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China; (D.X.)
| | - Meng Lu
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China; (D.X.)
| | - Huifen Cao
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China; (D.X.)
| | - Fang Wang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China; (D.X.)
| | - Yong Diao
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China; (D.X.)
| | - Liudmila Lyubchenko
- National Medical Research Center for Radiology, Ministry of Health of Russia, 125284 Moscow, Russia
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China; (D.X.)
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
7
|
Xu D, Luo L, Huang Y, Lu M, Tang L, Diao Y, Kapranov P. Dynamic Patterns of Mammalian Mitochondrial DNA Replication Uncovered Using SSiNGLe-5'ES. Int J Mol Sci 2023; 24:ijms24119711. [PMID: 37298662 DOI: 10.3390/ijms24119711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The proper replication of mitochondrial DNA is key to the maintenance of this crucial organelle. Multiple studies aimed at understanding the mechanisms of replication of the mitochondrial genome have been conducted in the past several decades; however, while highly informative, they were conducted using relatively low-sensitivity techniques. Here, we established a high-throughput approach based on next-generation sequencing to identify replication start sites with nucleotide-level resolution and applied it to the genome of mitochondria from different human and mouse cell types. We found complex and highly reproducible patterns of mitochondrial initiation sites, both previously annotated and newly discovered in this work, that showed differences among different cell types and species. These results suggest that the patterns of the replication initiation sites are dynamic and might reflect, in some yet unknown ways, the complexities of mitochondrial and cellular physiology. Overall, this work suggests that much remains unknown about the details of mitochondrial DNA replication in different biological states, and the method established here opens up a new avenue in the study of the replication of mitochondrial and potentially other genomes.
Collapse
Affiliation(s)
- Dongyang Xu
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Lingcong Luo
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Yu Huang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Meng Lu
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Lu Tang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Yong Diao
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
8
|
Menger KE, Chapman J, Díaz-Maldonado H, Khazeem M, Deen D, Erdinc D, Casement JW, Di Leo V, Pyle A, Rodríguez-Luis A, Cowell I, Falkenberg M, Austin C, Nicholls T. Two type I topoisomerases maintain DNA topology in human mitochondria. Nucleic Acids Res 2022; 50:11154-11174. [PMID: 36215039 PMCID: PMC9638942 DOI: 10.1093/nar/gkac857] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/03/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
Genetic processes require the activity of multiple topoisomerases, essential enzymes that remove topological tension and intermolecular linkages in DNA. We have investigated the subcellular localisation and activity of the six human topoisomerases with a view to understanding the topological maintenance of human mitochondrial DNA. Our results indicate that mitochondria contain two topoisomerases, TOP1MT and TOP3A. Using molecular, genomic and biochemical methods we find that both proteins contribute to mtDNA replication, in addition to the decatenation role of TOP3A, and that TOP1MT is stimulated by mtSSB. Loss of TOP3A or TOP1MT also dysregulates mitochondrial gene expression, and both proteins promote transcription elongation in vitro. We find no evidence for TOP2 localisation to mitochondria, and TOP2B knockout does not affect mtDNA maintenance or expression. Our results suggest a division of labour between TOP3A and TOP1MT in mtDNA topology control that is required for the proper maintenance and expression of human mtDNA.
Collapse
Affiliation(s)
- Katja E Menger
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - James Chapman
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Héctor Díaz-Maldonado
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Mushtaq M Khazeem
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dasha Deen
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Direnis Erdinc
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - John W Casement
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Valeria Di Leo
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Alejandro Rodríguez-Luis
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ian G Cowell
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Caroline A Austin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Thomas J Nicholls
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
9
|
Wang L, Yang Z, He X, Pu S, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Front Mol Neurosci 2022; 15:974480. [PMID: 36157077 PMCID: PMC9489860 DOI: 10.3389/fnmol.2022.974480] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are essential organelles for neuronal function and cell survival. Besides the well-known bioenergetics, additional mitochondrial roles in calcium signaling, lipid biogenesis, regulation of reactive oxygen species, and apoptosis are pivotal in diverse cellular processes. The mitochondrial proteome encompasses about 1,500 proteins encoded by both the nuclear DNA and the maternally inherited mitochondrial DNA. Mutations in the nuclear or mitochondrial genome, or combinations of both, can result in mitochondrial protein deficiencies and mitochondrial malfunction. Therefore, mitochondrial quality control by proteins involved in various surveillance mechanisms is critical for neuronal integrity and viability. Abnormal proteins involved in mitochondrial bioenergetics, dynamics, mitophagy, import machinery, ion channels, and mitochondrial DNA maintenance have been linked to the pathogenesis of a number of neurological diseases. The goal of this review is to give an overview of these pathways and to summarize the interconnections between mitochondrial protein dysfunction and neurological diseases.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyun Yang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiumei He
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Abstract
R-loops forming inadvertently during transcription can threaten genome stability, but R-loops are also formed intentionally, as a means of regulating transcription and other aspects of DNA metabolism. The study of R-loops in mitochondria is in its infancy, and yet there is already clear evidence that they are predominantly located in the major regulatory region of the mammalian mitochondrial genome. Here, we describe how mitochondrial R-loops have been characterized to date, with the emphasis on the problems of their being extremely labile, and how to minimize their loss during extraction. The oft-overlooked issues of RNA-DNA hybrids not being synonymous with R-loops, and adventitious RNA hybridization to DNA, are tackled head on; and possible new approaches are described and placed in the context of future research lines that could reveal the detailed roles of R-loops in the metabolism of mitochondrial DNA.
Collapse
Affiliation(s)
- Ian J Holt
- Biodonostia Health Research Institute, San Sebastián, Spain.
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), Madrid, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Universidad de País Vasco, Bilbao, Spain.
| |
Collapse
|
11
|
Kosar M, Piccini D, Foiani M, Giannattasio M. A rapid method to visualize human mitochondrial DNA replication through rotary shadowing and transmission electron microscopy. Nucleic Acids Res 2021; 49:e121. [PMID: 34500456 PMCID: PMC8643652 DOI: 10.1093/nar/gkab770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/15/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022] Open
Abstract
We report a rapid experimental procedure based on high-density in vivo psoralen inter-strand DNA cross-linking coupled to spreading of naked purified DNA, positive staining, low-angle rotary shadowing, and transmission electron microscopy (TEM) that allows quick visualization of the dynamic of heavy strand (HS) and light strand (LS) human mitochondrial DNA replication. Replication maps built on linearized mitochondrial genomes and optimized rotary shadowing conditions enable clear visualization of the progression of the mitochondrial DNA synthesis and visualization of replication intermediates carrying long single-strand DNA stretches. One variant of this technique, called denaturing spreading, allowed the inspection of the fine chromatin structure of the mitochondrial genome and was applied to visualize the in vivo three-strand DNA structure of the human mitochondrial D-loop intermediate with unprecedented clarity.
Collapse
Affiliation(s)
- Martin Kosar
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy
| | - Daniele Piccini
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy
| | - Marco Foiani
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Dipartimento di Oncologia & Emato-Oncologia, Università degli Studi di Milano, Milano, Italy
| | - Michele Giannattasio
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Dipartimento di Oncologia & Emato-Oncologia, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
12
|
Sanchez-Contreras M, Sweetwyne MT, Kohrn BF, Tsantilas KA, Hipp MJ, Schmidt EK, Fredrickson J, Whitson JA, Campbell MD, Rabinovitch PS, Marcinek DJ, Kennedy SR. A replication-linked mutational gradient drives somatic mutation accumulation and influences germline polymorphisms and genome composition in mitochondrial DNA. Nucleic Acids Res 2021; 49:11103-11118. [PMID: 34614167 PMCID: PMC8565317 DOI: 10.1093/nar/gkab901] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) cause maternally inherited diseases, while somatic mutations are linked to common diseases of aging. Although mtDNA mutations impact health, the processes that give rise to them are under considerable debate. To investigate the mechanism by which de novo mutations arise, we analyzed the distribution of naturally occurring somatic mutations across the mouse and human mtDNA obtained by Duplex Sequencing. We observe distinct mutational gradients in G→A and T→C transitions delimited by the light-strand origin and the mitochondrial Control Region (mCR). The gradient increases unequally across the mtDNA with age and is lost in the absence of DNA polymerase γ proofreading activity. In addition, high-resolution analysis of the mCR shows that important regulatory elements exhibit considerable variability in mutation frequency, consistent with them being mutational ‘hot-spots’ or ‘cold-spots’. Collectively, these patterns support genome replication via a deamination prone asymmetric strand-displacement mechanism as the fundamental driver of mutagenesis in mammalian DNA. Moreover, the distribution of mtDNA single nucleotide polymorphisms in humans and the distribution of bases in the mtDNA across vertebrate species mirror this gradient, indicating that replication-linked mutations are likely the primary source of inherited polymorphisms that, over evolutionary timescales, influences genome composition during speciation.
Collapse
Affiliation(s)
- Monica Sanchez-Contreras
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Mariya T Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Michael J Hipp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth K Schmidt
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jeanne Fredrickson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jeremy A Whitson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Matthew D Campbell
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Peter S Rabinovitch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Inatomi T, Matsuda S, Ishiuchi T, Do Y, Nakayama M, Abe S, Kasho K, Wanrooij S, Nakada K, Ichiyanagi K, Sasaki H, Yasukawa T, Kang D. TFB2M and POLRMT are essential for mammalian mitochondrial DNA replication. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119167. [PMID: 34744028 DOI: 10.1016/j.bbamcr.2021.119167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022]
Abstract
Two classes of replication intermediates have been observed from mitochondrial DNA (mtDNA) in many mammalian tissue and cells with two-dimensional agarose gel electrophoresis. One is assigned to leading-strand synthesis in the absence of synchronous lagging-strand synthesis (strand-asynchronous replication), and the other has properties of coupled leading- and lagging-strand synthesis (strand-coupled replication). While strand-asynchronous replication is primed by long noncoding RNA synthesized from a defined transcription initiation site, little is known about the commencement of strand-coupled replication. To investigate it, we attempted to abolish strand-asynchronous replication in cultured human cybrid cells by knocking out the components of the transcription initiation complexes, mitochondrial transcription factor B2 (TFB2M/mtTFB2) and mitochondrial RNA polymerase (POLRMT/mtRNAP). Unexpectedly, removal of either protein resulted in complete mtDNA loss, demonstrating for the first time that TFB2M and POLRMT are indispensable for the maintenance of human mtDNA. Moreover, a lack of TFB2M could not be compensated for by mitochondrial transcription factor B1 (TFB1M/mtTFB1). These findings indicate that TFB2M and POLRMT are crucial for the priming of not only strand-asynchronous but also strand-coupled replication, providing deeper insights into the molecular basis of mtDNA replication initiation.
Collapse
Affiliation(s)
- Teppei Inatomi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Shigeru Matsuda
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan; Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryocho, Aoba-ku, Sendai-shi, Miyagi 980-8575, Japan
| | - Takashi Ishiuchi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Masunari Nakayama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Shusaku Abe
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Kazutoshi Kasho
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Kazuto Nakada
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba-shi, Ibaraki 305-8572, Japan
| | - Kenji Ichiyanagi
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Aichi 464-8601, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Takehiro Yasukawa
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan; Department of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| |
Collapse
|
14
|
Urantówka AD, Kroczak A, Strzała T, Zaniewicz G, Kurkowski M, Mackiewicz P. Mitogenomes of Accipitriformes and Cathartiformes Were Subjected to Ancestral and Recent Duplications Followed by Gradual Degeneration. Genome Biol Evol 2021; 13:evab193. [PMID: 34432018 PMCID: PMC8435663 DOI: 10.1093/gbe/evab193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2021] [Indexed: 11/25/2022] Open
Abstract
The rearrangement of 37 genes with one control region, firstly identified in Gallus gallus mitogenome, is believed to be ancestral for all Aves. However, mitogenomic sequences obtained in recent years revealed that many avian mitogenomes contain duplicated regions that were omitted in previous genomic versions. Their evolution and mechanism of duplication are still poorly understood. The order of Accipitriformes is especially interesting in this context because its representatives contain a duplicated control region in various stages of degeneration. Therefore, we applied an appropriate PCR strategy to look for duplications within the mitogenomes of the early diverged species Sagittarius serpentarius and Cathartiformes, which is a sister order to Accipitriformes. The analyses revealed the same duplicated gene order in all examined taxa and the common ancestor of these groups. The duplicated regions were subjected to gradual degeneration and homogenization during concerted evolution. The latter process occurred recently in the species of Cathartiformes as well as in the early diverged lineages of Accipitriformes, that is, Sagittarius serpentarius and Pandion haliaetus. However, in other lineages, that is, Pernis ptilorhynchus, as well as representatives of Aegypiinae, Aquilinae, and five related subfamilies of Accipitriformes (Accipitrinae, Circinae, Buteoninae, Haliaeetinae, and Milvinae), the duplications were evolving independently for at least 14-47 Myr. Different portions of control regions in Cathartiformes showed conflicting phylogenetic signals indicating that some sections of these regions were homogenized at a frequency higher than the rate of speciation, whereas others have still evolved separately.
Collapse
Affiliation(s)
- Adam Dawid Urantówka
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Aleksandra Kroczak
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, Wrocław University, Poland
| | - Tomasz Strzała
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Grzegorz Zaniewicz
- Department of Vertebrate Ecology and Zoology, Avian Ecophysiology Unit, University of Gdańsk, Poland
| | - Marcin Kurkowski
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, Wrocław University, Poland
| |
Collapse
|
15
|
Menger KE, Rodríguez-Luis A, Chapman J, Nicholls TJ. Controlling the topology of mammalian mitochondrial DNA. Open Biol 2021; 11:210168. [PMID: 34547213 PMCID: PMC8455175 DOI: 10.1098/rsob.210168] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genome of mitochondria, called mtDNA, is a small circular DNA molecule present at thousands of copies per human cell. MtDNA is packaged into nucleoprotein complexes called nucleoids, and the density of mtDNA packaging affects mitochondrial gene expression. Genetic processes such as transcription, DNA replication and DNA packaging alter DNA topology, and these topological problems are solved by a family of enzymes called topoisomerases. Within mitochondria, topoisomerases are involved firstly in the regulation of mtDNA supercoiling and secondly in disentangling interlinked mtDNA molecules following mtDNA replication. The loss of mitochondrial topoisomerase activity leads to defects in mitochondrial function, and variants in the dual-localized type IA topoisomerase TOP3A have also been reported to cause human mitochondrial disease. We review the current knowledge on processes that alter mtDNA topology, how mtDNA topology is modulated by the action of topoisomerases, and the consequences of altered mtDNA topology for mitochondrial function and human health.
Collapse
Affiliation(s)
- Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alejandro Rodríguez-Luis
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - James Chapman
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
16
|
Zakirova EG, Muzyka VV, Mazunin IO, Orishchenko KE. Natural and Artificial Mechanisms of Mitochondrial Genome Elimination. Life (Basel) 2021; 11:life11020076. [PMID: 33498399 PMCID: PMC7909434 DOI: 10.3390/life11020076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/11/2023] Open
Abstract
The generally accepted theory of the genetic drift of mitochondrial alleles during mammalian ontogenesis is based on the presence of a selective bottleneck in the female germline. However, there is a variety of different theories on the pathways of genetic regulation of mitochondrial DNA (mtDNA) dynamics in oogenesis and adult somatic cells. The current review summarizes present knowledge on the natural mechanisms of mitochondrial genome elimination during mammalian development. We also discuss the variety of existing and developing methodologies for artificial manipulation of the mtDNA heteroplasmy level. Understanding of the basics of mtDNA dynamics will shed the light on the pathogenesis and potential therapies of human diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Elvira G. Zakirova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
| | - Vladimir V. Muzyka
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ilya O. Mazunin
- Skolkovo Institute of Science and Technology, 143026 Skolkovo, Russia;
| | - Konstantin E. Orishchenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
17
|
Oliveira MT, Pontes CDB, Ciesielski GL. Roles of the mitochondrial replisome in mitochondrial DNA deletion formation. Genet Mol Biol 2020; 43:e20190069. [PMID: 32141473 PMCID: PMC7197994 DOI: 10.1590/1678-4685-gmb-2019-0069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/12/2019] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) deletions are a common cause of human mitochondrial
diseases. Mutations in the genes encoding components of the mitochondrial
replisome, such as DNA polymerase gamma (Pol γ) and the mtDNA helicase Twinkle,
have been associated with the accumulation of such deletions and the development
of pathological conditions in humans. Recently, we demonstrated that changes in
the level of wild-type Twinkle promote mtDNA deletions, which implies that not
only mutations in, but also dysregulation of the stoichiometry between the
replisome components is potentially pathogenic. The mechanism(s) by which
alterations to the replisome function generate mtDNA deletions is(are) currently
under debate. It is commonly accepted that stalling of the replication fork at
sites likely to form secondary structures precedes the deletion formation. The
secondary structural elements can be bypassed by the replication-slippage
mechanism. Otherwise, stalling of the replication fork can generate single- and
double-strand breaks, which can be repaired through recombination leading to the
elimination of segments between the recombination sites. Here, we discuss
aberrances of the replisome in the context of the two debated outcomes, and
suggest new mechanistic explanations based on replication restart and template
switching that could account for all the deletion types reported for
patients.
Collapse
Affiliation(s)
- Marcos T Oliveira
- Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | | | | |
Collapse
|
18
|
Abstract
DNA replication in human mitochondria has been studied for several decades; however, its mechanism still remains unclear. During the last 15 years, many new experimental data on the mitochondrial replication have appeared, although extremely contradictory. Two asynchronous (strand displacement and RITOLS) and one synchronous (strand-coupled) replication models have been proposed. In the asynchronous models, replication from the origin in the H-chain starts earlier, so that the replication of the two chains ends at different times. The synchronous model is more traditional and implies two replication forks with leading and lagging strands initiated at the same origin. For each of the three models, both confirming and contradicting experimental data exist. Most likely, there is no single model of mitochondrial replication. It is possible that the unique mitochondrial replication machinery that has originated as a results of endosymbiosis has an unexpected variety of replication strategies to maintain the mitochondrial genome. An unusual combination of enzymes of different origin (phage, bacterial, eukaryotic) and unique features of the mitochondrial genome (existance of heavy and light chains, insertions of ribonucleotides, a variety of origins) can allow replication through different mechanisms. In human mitochondria, asynchronous replication seems to dominate; however, synchronous replication is also possible under certain conditions. In the human heart mitochondria, circular mitochondrial DNA (mtDNA) molecules can rearrange in a network of rapidly replicating linear genomes, thereby suggesting possible existence of a wide range of replication mechanisms in the mitochondria. The review describes the main stages of mtDNA replication and enzymes involved in this process, as well as discusses the prospects of mitochondrial replication studies.
Collapse
Affiliation(s)
- L A Zinovkina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.
| |
Collapse
|
19
|
Holt IJ. The mitochondrial R-loop. Nucleic Acids Res 2019; 47:5480-5489. [PMID: 31045202 PMCID: PMC6582354 DOI: 10.1093/nar/gkz277] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/11/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
The DNA in mitochondria contributes essential components of the organelle’s energy producing machinery that is essential for life. In 1971, many mitochondrial DNA molecules were found to have a third strand of DNA that maps to a region containing critical regulatory elements for transcription and replication. Forty-five years later, a third strand of RNA in the same region has been reported. This mitochondrial R-loop is present on thousands of copies of mitochondrial DNA per cell making it potentially the most abundant R-loop in nature. Here, I assess the discovery of the mitochondrial R-loop, discuss why it remained unrecognized for almost half a century and propose for it central roles in the replication, organization and expression of mitochondrial DNA, which if compromised can lead to disease states.
Collapse
Affiliation(s)
- Ian J Holt
- Biodonostia Health Research Institute, 20014 San Sebastián, Spain & IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK.,CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), Madrid, Spain
| |
Collapse
|
20
|
Brieba LG. Structure-Function Analysis Reveals the Singularity of Plant Mitochondrial DNA Replication Components: A Mosaic and Redundant System. PLANTS 2019; 8:plants8120533. [PMID: 31766564 PMCID: PMC6963530 DOI: 10.3390/plants8120533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Plants are sessile organisms, and their DNA is particularly exposed to damaging agents. The integrity of plant mitochondrial and plastid genomes is necessary for cell survival. During evolution, plants have evolved mechanisms to replicate their mitochondrial genomes while minimizing the effects of DNA damaging agents. The recombinogenic character of plant mitochondrial DNA, absence of defined origins of replication, and its linear structure suggest that mitochondrial DNA replication is achieved by a recombination-dependent replication mechanism. Here, I review the mitochondrial proteins possibly involved in mitochondrial DNA replication from a structural point of view. A revision of these proteins supports the idea that mitochondrial DNA replication could be replicated by several processes. The analysis indicates that DNA replication in plant mitochondria could be achieved by a recombination-dependent replication mechanism, but also by a replisome in which primers are synthesized by three different enzymes: Mitochondrial RNA polymerase, Primase-Helicase, and Primase-Polymerase. The recombination-dependent replication model and primers synthesized by the Primase-Polymerase may be responsible for the presence of genomic rearrangements in plant mitochondria.
Collapse
Affiliation(s)
- Luis Gabriel Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato C.P. 36821, Mexico
| |
Collapse
|
21
|
Mackiewicz P, Urantówka AD, Kroczak A, Mackiewicz D. Resolving Phylogenetic Relationships within Passeriformes Based on Mitochondrial Genes and Inferring the Evolution of Their Mitogenomes in Terms of Duplications. Genome Biol Evol 2019; 11:2824-2849. [PMID: 31580435 PMCID: PMC6795242 DOI: 10.1093/gbe/evz209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial genes are placed on one molecule, which implies that they should carry consistent phylogenetic information. Following this advantage, we present a well-supported phylogeny based on mitochondrial genomes from almost 300 representatives of Passeriformes, the most numerous and differentiated Aves order. The analyses resolved the phylogenetic position of paraphyletic Basal and Transitional Oscines. Passerida occurred divided into two groups, one containing Paroidea and Sylvioidea, whereas the other, Passeroidea and Muscicapoidea. Analyses of mitogenomes showed four types of rearrangements including a duplicated control region (CR) with adjacent genes. Mapping the presence and absence of duplications onto the phylogenetic tree revealed that the duplication was the ancestral state for passerines and was maintained in early diverged lineages. Next, the duplication could be lost and occurred independently at least four times according to the most parsimonious scenario. In some lineages, two CR copies have been inherited from an ancient duplication and highly diverged, whereas in others, the second copy became similar to the first one due to concerted evolution. The second CR copies accumulated over twice as many substitutions as the first ones. However, the second CRs were not completely eliminated and were retained for a long time, which suggests that both regions can fulfill an important role in mitogenomes. Phylogenetic analyses based on CR sequences subjected to the complex evolution can produce tree topologies inconsistent with real evolutionary relationships between species. Passerines with two CRs showed a higher metabolic rate in relation to their body mass.
Collapse
Affiliation(s)
- Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Poland
| | - Adam Dawid Urantówka
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Aleksandra Kroczak
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Poland
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Dorota Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Poland
| |
Collapse
|
22
|
Cluett TJ, Akman G, Reyes A, Kazak L, Mitchell A, Wood SR, Spinazzola A, Spelbrink JN, Holt IJ. Transcript availability dictates the balance between strand-asynchronous and strand-coupled mitochondrial DNA replication. Nucleic Acids Res 2019; 46:10771-10781. [PMID: 30239839 PMCID: PMC6237803 DOI: 10.1093/nar/gky852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/12/2018] [Indexed: 11/15/2022] Open
Abstract
Mammalian mitochondria operate multiple mechanisms of DNA replication. In many cells and tissues a strand-asynchronous mechanism predominates over coupled leading and lagging-strand DNA synthesis. However, little is known of the factors that control or influence the different mechanisms of replication, and the idea that strand-asynchronous replication entails transient incorporation of transcripts (aka bootlaces) is controversial. A firm prediction of the bootlace model is that it depends on mitochondrial transcripts. Here, we show that elevated expression of Twinkle DNA helicase in human mitochondria induces bidirectional, coupled leading and lagging-strand DNA synthesis, at the expense of strand-asynchronous replication; and this switch is accompanied by decreases in the steady-state level of some mitochondrial transcripts. However, in the so-called minor arc of mitochondrial DNA where transcript levels remain high, the strand-asynchronous replication mechanism is instated. Hence, replication switches to a strand-coupled mechanism only where transcripts are scarce, thereby establishing a direct correlation between transcript availability and the mechanism of replication. Thus, these findings support a critical role of mitochondrial transcripts in the strand-asynchronous mechanism of mitochondrial DNA replication; and, as a corollary, mitochondrial RNA availability and RNA/DNA hybrid formation offer means of regulating the mechanisms of DNA replication in the organelle.
Collapse
Affiliation(s)
- Tricia J Cluett
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB1 9SY, UK
| | | | - Aurelio Reyes
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB1 9SY, UK
| | - Lawrence Kazak
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB1 9SY, UK
| | - Alice Mitchell
- Department of Clinical Movement Neurosciences, Institute of Neurology, Royal Free Campus, University College London, London NW3 2PF, UK
| | - Stuart R Wood
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB1 9SY, UK
| | - Antonella Spinazzola
- Department of Clinical Movement Neurosciences, Institute of Neurology, Royal Free Campus, University College London, London NW3 2PF, UK.,MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Johannes N Spelbrink
- Department of Pediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Geert Grooteplein 10, 6500 HB, Nijmegen, The Netherlands
| | - Ian J Holt
- Department of Clinical Movement Neurosciences, Institute of Neurology, Royal Free Campus, University College London, London NW3 2PF, UK.,Biodonostia Health Research Institute, 20014 San Sebastián, Spain and IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
23
|
Abstract
Replication stalling has been associated with the formation of pathological mitochondrial DNA (mtDNA) rearrangements. Yet, almost nothing is known about the fate of stalled replication intermediates in mitochondria. We show here that replication stalling in mitochondria leads to replication fork regression and mtDNA double-strand breaks. The resulting mtDNA fragments are normally degraded by a mechanism involving the mitochondrial exonuclease MGME1, and the loss of this enzyme results in accumulation of linear and recombining mtDNA species. Additionally, replication stress promotes the initiation of alternative replication origins as an apparent means of rescue by fork convergence. Besides demonstrating an interplay between two major mechanisms rescuing stalled replication forks – mtDNA degradation and homology-dependent repair – our data provide evidence that mitochondria employ similar mechanisms to cope with replication stress as known from other genetic systems.
Collapse
|
24
|
Xia X. Is there a mutation gradient along vertebrate mitochondrial genome mediated by genome replication? Mitochondrion 2019; 46:30-40. [DOI: 10.1016/j.mito.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/07/2018] [Accepted: 06/13/2018] [Indexed: 11/29/2022]
|
25
|
Mitochondrial DNA Integrity: Role in Health and Disease. Cells 2019; 8:cells8020100. [PMID: 30700008 PMCID: PMC6406942 DOI: 10.3390/cells8020100] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/06/2023] Open
Abstract
As the primary cellular location for respiration and energy production, mitochondria serve in a critical capacity to the cell. Yet, by virtue of this very function of respiration, mitochondria are subject to constant oxidative stress that can damage one of the unique features of this organelle, its distinct genome. Damage to mitochondrial DNA (mtDNA) and loss of mitochondrial genome integrity is increasingly understood to play a role in the development of both severe early-onset maladies and chronic age-related diseases. In this article, we review the processes by which mtDNA integrity is maintained, with an emphasis on the repair of oxidative DNA lesions, and the cellular consequences of diminished mitochondrial genome stability.
Collapse
|
26
|
Yasukawa T, Kang D. An overview of mammalian mitochondrial DNA replication mechanisms. J Biochem 2018; 164:183-193. [PMID: 29931097 PMCID: PMC6094444 DOI: 10.1093/jb/mvy058] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/15/2018] [Indexed: 11/14/2022] Open
Abstract
While the majority of DNA is enclosed within the nucleus, the mitochondria also contain their own, separate DNA, the mitochondrial DNA (mtDNA). Mutations in mtDNA are associated with various human diseases, demonstrating the importance of mtDNA. Intensive studies over the last 18 years have demonstrated the presence of two distinct classes of mtDNA replication intermediates in mammals. One involves leading-strand DNA synthesis in the absence of synchronous lagging-strand DNA synthesis. Currently there are competing models in which the lagging-strand template is either systematically hybridized to processed mitochondrial transcripts, or coated with protein, until the lagging-strand DNA synthesis takes place. The other class of mtDNA replication intermediates has many properties of conventional, coupled leading- and lagging-strand DNA synthesis. Additionally, the highly unusual arrangement of DNA in human heart mitochondria suggests a third mechanism of replication. These findings indicate that the mtDNA replication systems of humans and other mammals are far more complex than previously thought, and thereby will require further research to understand the full picture of mtDNA replication.
Collapse
Affiliation(s)
- Takehiro Yasukawa
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
27
|
Pohjoismäki JLO, Forslund JME, Goffart S, Torregrosa-Muñumer R, Wanrooij S. Known Unknowns of Mammalian Mitochondrial DNA Maintenance. Bioessays 2018; 40:e1800102. [DOI: 10.1002/bies.201800102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/18/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Jaakko L. O. Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland; 80101 Joensuu Finland
| | | | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland; 80101 Joensuu Finland
| | - Rubén Torregrosa-Muñumer
- Department of Environmental and Biological Sciences, University of Eastern Finland; 80101 Joensuu Finland
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University; 90187 Umeå Sweden
| |
Collapse
|
28
|
Loutre R, Heckel AM, Jeandard D, Tarassov I, Entelis N. Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner. PLoS One 2018; 13:e0199258. [PMID: 29912984 PMCID: PMC6005506 DOI: 10.1371/journal.pone.0199258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022] Open
Abstract
Mutations in mitochondrial DNA are an important source of severe and incurable human diseases. The vast majority of these mutations are heteroplasmic, meaning that mutant and wild-type genomes are present simultaneously in the same cell. Only a very high proportion of mutant mitochondrial DNA (heteroplasmy level) leads to pathological consequences. We previously demonstrated that mitochondrial targeting of small RNAs designed to anneal with mutant mtDNA can decrease the heteroplasmy level by specific inhibition of mutant mtDNA replication, thus representing a potential therapy. We have also shown that 5S ribosomal RNA, partially imported into human mitochondria, can be used as a vector to deliver anti-replicative oligoribonucleotides into human mitochondria. So far, the efficiency of cellular expression of recombinant 5S rRNA molecules bearing therapeutic insertions remained very low. In the present study, we designed new versions of anti-replicative recombinant 5S rRNA targeting a large deletion in mitochondrial DNA which causes the KSS syndrome, analyzed their specific annealing to KSS mitochondrial DNA and demonstrated their import into mitochondria of cultured human cells. To obtain an increased level of the recombinant 5S rRNA stable expression, we created transmitochondrial cybrid cell line bearing a site for Flp-recombinase and used this system for the recombinase-mediated integration of genes coding for the anti-replicative recombinant 5S rRNAs into nuclear genome. We demonstrated that stable expression of anti-replicative 5S rRNA versions in human transmitochondrial cybrid cells can induce a shift in heteroplasmy level of KSS mutation in mtDNA. This shift was directly dependent on the level of the recombinant 5S rRNA expression and the sequence of the anti-replicative insertion. Quantification of mtDNA copy number in transfected cells revealed the absence of a non-specific effect on wild type mtDNA replication, indicating that the decreased proportion between mutant and wild type mtDNA molecules is not a consequence of a random repopulation of depleted pool of mtDNA genomes. The heteroplasmy change could be also modulated by cell growth conditions, namely increased by cells culturing in a carbohydrate-free medium, thus forcing them to use oxidative phosphorylation and providing a selective advantage for cells with improved respiration capacities. We discuss the advantages and limitations of this approach and propose further development of the anti-replicative strategy based on the RNA import into human mitochondria.
Collapse
Affiliation(s)
- Romuald Loutre
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg, France
| | - Anne-Marie Heckel
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg, France
| | - Damien Jeandard
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg, France
| | - Ivan Tarassov
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg, France
| | - Nina Entelis
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg, France
| |
Collapse
|
29
|
Abstract
Eukaryotic PrimPol is a recently discovered DNA-dependent DNA primase and translesion synthesis DNA polymerase found in the nucleus and mitochondria. Although PrimPol has been shown to be required for repriming of stalled replication forks in the nucleus, its role in mitochondria has remained unresolved. Here we demonstrate in vivo and in vitro that PrimPol can reinitiate stalled mtDNA replication and can prime mtDNA replication from nonconventional origins. Our results not only help in the understanding of how mitochondria cope with replicative stress but can also explain some controversial features of the lagging-strand replication.
Collapse
|
30
|
Roubicek DA, Souza-Pinto NCD. Mitochondria and mitochondrial DNA as relevant targets for environmental contaminants. Toxicology 2017; 391:100-108. [PMID: 28655544 DOI: 10.1016/j.tox.2017.06.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
The mitochondrial DNA (mtDNA) is a closed circular molecule that encodes, in humans, 13 polypeptides components of the oxidative phosphorylation complexes. Integrity of the mitochondrial genome is essential for mitochondrial function and cellular homeostasis, and mutations and deletions in the mtDNA lead to oxidative stress, mitochondrial dysfunction and cell death. In vitro and in situ studies suggest that when exposed to certain genotoxins, mtDNA accumulates more damage than nuclear DNA, likely owing to its organization and localization in the mitochondrial matrix, which tends to accumulate lipophilic, positively charged molecules. In that regard, several relevant environmental and occupational contaminants have physical-chemical characteristics that indicate that they might accumulate in mitochondria and target mtDNA. Nonetheless, very little is known so far about mtDNA damage and mitochondrial dysfunction due to environmental exposure, either in model organisms or in humans. In this article, we discuss some of the characteristics of mtDNA which render it a potentially relevant target for damage by environmental contaminants, as well as possible functional consequences of damage/mutation accumulation. In addition, we review the data available in the literature focusing on mitochondrial effects of the most common classes of environmental pollutants. From that, we conclude that several lines of experimental evidence support the idea that mitochondria and mtDNA are susceptible and biologically relevant targets for pollutants, and more studies, including mechanistic ones, are needed to shed more light into the contribution of mitochondrial dysfunction to the environmental and human health effects of chemical exposure.
Collapse
Affiliation(s)
- Deborah A Roubicek
- Dept. of Environmental Analyses, São Paulo State Environmental Agency, CETESB, Av. Prof. Frederico Hermann Jr, 345, 05459-900, São Paulo, SP, Brazil
| | - Nadja C de Souza-Pinto
- Depto. de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo SP 05508-000, Brazil.
| |
Collapse
|
31
|
Mitochondrial DNA replication: a PrimPol perspective. Biochem Soc Trans 2017; 45:513-529. [PMID: 28408491 PMCID: PMC5390496 DOI: 10.1042/bst20160162] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/20/2022]
Abstract
PrimPol, (primase-polymerase), the most recently identified eukaryotic polymerase, has roles in both nuclear and mitochondrial DNA maintenance. PrimPol is capable of acting as a DNA polymerase, with the ability to extend primers and also bypass a variety of oxidative and photolesions. In addition, PrimPol also functions as a primase, catalysing the preferential formation of DNA primers in a zinc finger-dependent manner. Although PrimPol's catalytic activities have been uncovered in vitro, we still know little about how and why it is targeted to the mitochondrion and what its key roles are in the maintenance of this multicopy DNA molecule. Unlike nuclear DNA, the mammalian mitochondrial genome is circular and the organelle has many unique proteins essential for its maintenance, presenting a differing environment within which PrimPol must function. Here, we discuss what is currently known about the mechanisms of DNA replication in the mitochondrion, the proteins that carry out these processes and how PrimPol is likely to be involved in assisting this vital cellular process.
Collapse
|
32
|
Berglund AK, Navarrete C, Engqvist MKM, Hoberg E, Szilagyi Z, Taylor RW, Gustafsson CM, Falkenberg M, Clausen AR. Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA. PLoS Genet 2017; 13:e1006628. [PMID: 28207748 PMCID: PMC5336301 DOI: 10.1371/journal.pgen.1006628] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/03/2017] [Accepted: 02/09/2017] [Indexed: 01/22/2023] Open
Abstract
Previous work has demonstrated the presence of ribonucleotides in human mitochondrial DNA (mtDNA) and in the present study we use a genome-wide approach to precisely map the location of these. We find that ribonucleotides are distributed evenly between the heavy- and light-strand of mtDNA. The relative levels of incorporated ribonucleotides reflect that DNA polymerase γ discriminates the four ribonucleotides differentially during DNA synthesis. The observed pattern is also dependent on the mitochondrial deoxyribonucleotide (dNTP) pools and disease-causing mutations that change these pools alter both the absolute and relative levels of incorporated ribonucleotides. Our analyses strongly suggest that DNA polymerase γ-dependent incorporation is the main source of ribonucleotides in mtDNA and argues against the existence of a mitochondrial ribonucleotide excision repair pathway in human cells. Furthermore, we clearly demonstrate that when dNTP pools are limiting, ribonucleotides serve as a source of building blocks to maintain DNA replication. Increased levels of embedded ribonucleotides in patient cells with disturbed nucleotide pools may contribute to a pathogenic mechanism that affects mtDNA stability and impair new rounds of mtDNA replication. Human mitochondria contain a small double-stranded DNA genome (mtDNA) of only 16,569 base pairs (bp) that encodes 13 essential subunits of the oxidative phosphorylation system. Depletion of mtDNA and different types of mtDNA mutations cause mitochondrial disease, and are also implicated in biological ageing. For almost half a century it has been known that mtDNA contains ribonucleotides, but their identity and precise location are not known. The source of these ribonucleotides and their relevance for mitochondrial genome stability in healthy individuals and in patients with mitochondrial defects has not been addressed. We have used a combination of next-generation sequencing, and in vivo and in vitro biochemistry to address some of these questions. Our findings demonstrate that DNA polymerase γ-dependent incorporation is the main source of ribonucleotides in mtDNA and argues against the existence of ribonucleotide excision repair pathways in human mitochondria. Our data also reveal that when dNTP pools are limiting, ribonucleotides serves as a second line of building blocks for DNA synthesis. We also demonstrate increased levels of embedded ribonucleotides in patient cells with disturbed nucleotide pools, which may constitute a new pathogenic mechanism that affects mtDNA stability and impairs later rounds of mtDNA replication.
Collapse
Affiliation(s)
| | - Clara Navarrete
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Emily Hoberg
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Zsolt Szilagyi
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Maria Falkenberg
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- * E-mail: (MF); (ARC)
| | - Anders R. Clausen
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- * E-mail: (MF); (ARC)
| |
Collapse
|
33
|
Darbandi S, Darbandi M, Khorshid HRK, Sadeghi MR, Al-Hasani S, Agarwal A, Shirazi A, Heidari M, Akhondi MM. Experimental strategies towards increasing intracellular mitochondrial activity in oocytes: A systematic review. Mitochondrion 2016; 30:8-17. [PMID: 27234976 DOI: 10.1016/j.mito.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/04/2016] [Accepted: 05/20/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE The mitochondrial complement is critical in sustaining the earliest stages of life. To improve the Assisted Reproductive Technology (ART), current methods of interest were evaluated for increasing the activity and copy number of mitochondria in the oocyte cell. METHODS This covered the researches from 1966 to September 2015. RESULTS The results provided ten methods that can be studied individually or simultaneously. CONCLUSION Though the use of these techniques generated great concern about heteroplasmy observation in humans, it seems that with study on these suggested methods there is real hope for effective treatments of old oocyte or oocytes containing mitochondrial problems in the near future.
Collapse
Affiliation(s)
- Sara Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahsa Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | | | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Safaa Al-Hasani
- Reproductive Medicine Unit, University of Schleswig-Holstein, Luebeck, Germany.
| | - Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahnaz Heidari
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran. M.@avicenna.ar.ir
| | - Mohammad Mehdi Akhondi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
34
|
Abstract
Recent advances in the field of mitochondrial DNA (mtDNA) replication highlight the diversity of both the mechanisms utilized and the structural and functional organization of the proteins at mtDNA replication fork, despite the relative simplicity of the animal mtDNA genome. DNA polymerase γ, mtDNA helicase and mitochondrial single-stranded DNA-binding protein-the key replisome proteins, have evolved distinct structural features and biochemical properties. These appear to be correlated with mtDNA genomic features in different metazoan taxa and with their modes of DNA replication, although substantial integrative research is warranted to establish firmly these links. To date, several modes of mtDNA replication have been described for animals: rolling circle, theta, strand-displacement, and RITOLS/bootlace. Resolution of a continuing controversy relevant to mtDNA replication in mammals/vertebrates will have a direct impact on the mechanistic interpretation of mtDNA-related human diseases. Here we review these subjects, integrating earlier and recent data to provide a perspective on the major challenges for future research.
Collapse
Affiliation(s)
- G L Ciesielski
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Michigan State University, East Lansing, MI, United States
| | - M T Oliveira
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - L S Kaguni
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
35
|
Qu J, Yasukawa T, Kang D. Suppression of mitochondrial transcription initiation complexes changes the balance of replication intermediates of mitochondrial DNA and reduces 7S DNA in cultured human cells. J Biochem 2016; 160:49-57. [PMID: 26861994 DOI: 10.1093/jb/mvw010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/20/2016] [Indexed: 11/13/2022] Open
Abstract
Analysis of replicating mammalian mitochondrial DNA (mtDNA) suggested that initiation of the replication occurs not only at the specific position, Ori-H but also across a broad zone in mtDNA. We investigated relationship of mitochondrial transcription initiation which takes place upstream of Ori-H and mtDNA replication initiation through analysing the effect of knockdown of mitochondrial transcription factor B2, TFB2M and mitochondrial RNA polymerase, POLRMT, components of the transcription initiation complexes in cultured human cells. Under the conditions where suppression of the transcription initiation complexes was achieved by simultaneous depletion of TFB2M and POLRMT, decrease of replication intermediates of mtDNA RITOLS replication mode accompanied reduction in mtDNA copy number. On the other hand, replication intermediates of coupled leading and lagging strand DNA replication, another proposed replication mode, appeared to be less affected. The findings support the view that the former mode involves transcription from the light strand promoter (LSP), and suggest that initiation of the latter mode is independent from the transcription and has distinct regulation. Further, knockdown of TFB2M alone caused significant decrease of 7S DNA, which implies that transcription initiation complexes formed at the LSP engage 7S DNA synthesis more frequently than the initiation of productive replication and transcription.
Collapse
Affiliation(s)
- Jianhua Qu
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takehiro Yasukawa
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
36
|
Analysis of Replicating Mitochondrial DNA by In Organello Labeling and Two-Dimensional Agarose Gel Electrophoresis. Methods Mol Biol 2016; 1351:95-113. [PMID: 26530677 DOI: 10.1007/978-1-4939-3040-1_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Our understanding of the mechanisms of DNA replication in a broad range of organisms and viruses has benefited from the application of two-dimensional agarose gel electrophoresis (2D-AGE). The method resolves DNA molecules on the basis of size and shape and is technically straightforward. 2D-AGE sparked controversy in the field of mitochondria when it revealed replicating molecules with lengthy tracts of RNA, a phenomenon never before reported in nature. More recently, radioisotope labeling of the DNA in the mitochondria has been coupled with 2D-AGE. In its first application, this procedure helped to delineate the "bootlace mechanism of mitochondrial DNA replication," in which processed mitochondrial transcripts are hybridized to the lagging strand template at the replication fork as the leading DNA strand is synthesized. This chapter provides details of the method, how it has been applied to date and concludes with some potential future applications of the technique.
Collapse
|
37
|
Torregrosa-Muñumer R, Goffart S, Haikonen JA, Pohjoismäki JLO. Low doses of ultraviolet radiation and oxidative damage induce dramatic accumulation of mitochondrial DNA replication intermediates, fork regression, and replication initiation shift. Mol Biol Cell 2015; 26:4197-208. [PMID: 26399294 PMCID: PMC4642854 DOI: 10.1091/mbc.e15-06-0390] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022] Open
Abstract
Oxidative damage is believed to cause pathological mitochondrial DNA (mtDNA) rearrangements. mtDNA damage induces specific changes in its maintenance, such as formation of x-junctions and changes in replication mode. The findings explain the significance of the different replication mechanisms that have been observed in mitochondria. Mitochondrial DNA is prone to damage by various intrinsic as well as environmental stressors. DNA damage can in turn cause problems for replication, resulting in replication stalling and double-strand breaks, which are suspected to be the leading cause of pathological mtDNA rearrangements. In this study, we exposed cells to subtle levels of oxidative stress or UV radiation and followed their effects on mtDNA maintenance. Although the damage did not influence mtDNA copy number, we detected a massive accumulation of RNA:DNA hybrid–containing replication intermediates, followed by an increase in cruciform DNA molecules, as well as in bidirectional replication initiation outside of the main replication origin, OH. Our results suggest that mitochondria maintain two different types of replication as an adaptation to different cellular environments; the RNA:DNA hybrid–involving replication mode maintains mtDNA integrity in tissues with low oxidative stress, and the potentially more error tolerant conventional strand-coupled replication operates when stress is high.
Collapse
Affiliation(s)
| | - Steffi Goffart
- Department of Biology, University of Eastern Finland, 80101 Joensuu, Finland
| | - Juha A Haikonen
- Department of Biology, University of Eastern Finland, 80101 Joensuu, Finland
| | | |
Collapse
|
38
|
Jemt E, Persson Ö, Shi Y, Mehmedovic M, Uhler JP, Dávila López M, Freyer C, Gustafsson CM, Samuelsson T, Falkenberg M. Regulation of DNA replication at the end of the mitochondrial D-loop involves the helicase TWINKLE and a conserved sequence element. Nucleic Acids Res 2015; 43:9262-75. [PMID: 26253742 PMCID: PMC4627069 DOI: 10.1093/nar/gkv804] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/28/2015] [Indexed: 11/12/2022] Open
Abstract
The majority of mitochondrial DNA replication events are terminated prematurely. The nascent DNA remains stably associated with the template, forming a triple-stranded displacement loop (D-loop) structure. However, the function of the D-loop region of the mitochondrial genome remains poorly understood. Using a comparative genomics approach we here identify two closely related 15 nt sequence motifs of the D-loop, strongly conserved among vertebrates. One motif is at the D-loop 5'-end and is part of the conserved sequence block 1 (CSB1). The other motif, here denoted coreTAS, is at the D-loop 3'-end. Both these sequences may prevent transcription across the D-loop region, since light and heavy strand transcription is terminated at CSB1 and coreTAS, respectively. Interestingly, the replication of the nascent D-loop strand, occurring in a direction opposite to that of heavy strand transcription, is also terminated at coreTAS, suggesting that coreTAS is involved in termination of both transcription and replication. Finally, we demonstrate that the loading of the helicase TWINKLE at coreTAS is reversible, implying that this site is a crucial component of a switch between D-loop formation and full-length mitochondrial DNA replication.
Collapse
Affiliation(s)
- Elisabeth Jemt
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Örjan Persson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Yonghong Shi
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Majda Mehmedovic
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Jay P Uhler
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Marcela Dávila López
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Christoph Freyer
- Department of Laboratory Medicine, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Tore Samuelsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
39
|
Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication. Proc Natl Acad Sci U S A 2015; 112:9334-9. [PMID: 26162680 DOI: 10.1073/pnas.1503653112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Encoding ribonuclease H1 (RNase H1) degrades RNA hybridized to DNA, and its function is essential for mitochondrial DNA maintenance in the developing mouse. Here we define the role of RNase H1 in mitochondrial DNA replication. Analysis of replicating mitochondrial DNA in embryonic fibroblasts lacking RNase H1 reveals retention of three primers in the major noncoding region (NCR) and one at the prominent lagging-strand initiation site termed Ori-L. Primer retention does not lead immediately to depletion, as the persistent RNA is fully incorporated in mitochondrial DNA. However, the retained primers present an obstacle to the mitochondrial DNA polymerase γ in subsequent rounds of replication and lead to the catastrophic generation of a double-strand break at the origin when the resulting gapped molecules are copied. Hence, the essential role of RNase H1 in mitochondrial DNA replication is the removal of primers at the origin of replication.
Collapse
|
40
|
Clausen AR, Lujan SA, Burkholder AB, Orebaugh CD, Williams JS, Clausen MF, Malc EP, Mieczkowski PA, Fargo DC, Smith DJ, Kunkel TA. Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. Nat Struct Mol Biol 2015; 22:185-91. [PMID: 25622295 PMCID: PMC4351163 DOI: 10.1038/nsmb.2957] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022]
Abstract
Ribonucleotides are frequently incorporated into DNA during replication in eukaryotes. Here we map genome-wide distribution of these ribonucleotides as markers of replication enzymology in budding yeast, using a new 5' DNA end-mapping method, hydrolytic end sequencing (HydEn-seq). HydEn-seq of DNA from ribonucleotide excision repair-deficient strains reveals replicase- and strand-specific patterns of ribonucleotides in the nuclear genome. These patterns support the roles of DNA polymerases α and δ in lagging-strand replication and of DNA polymerase ɛ in leading-strand replication. They identify replication origins, termination zones and variations in ribonucleotide incorporation frequency across the genome that exceed three orders of magnitude. HydEn-seq also reveals strand-specific 5' DNA ends at mitochondrial replication origins, thus suggesting unidirectional replication of a circular genome. Given the conservation of enzymes that incorporate and process ribonucleotides in DNA, HydEn-seq can be used to track replication enzymology in other organisms.
Collapse
Affiliation(s)
- Anders R Clausen
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Scott A Lujan
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Adam B Burkholder
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Clinton D Orebaugh
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Jessica S Williams
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Maryam F Clausen
- Department of Genetics, High Throughput Sequencing Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ewa P Malc
- Department of Genetics, High Throughput Sequencing Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Piotr A Mieczkowski
- Department of Genetics, High Throughput Sequencing Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David C Fargo
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, USA
| | - Thomas A Kunkel
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| |
Collapse
|
41
|
Lewis SC, Joers P, Willcox S, Griffith JD, Jacobs HT, Hyman BC. A rolling circle replication mechanism produces multimeric lariats of mitochondrial DNA in Caenorhabditis elegans. PLoS Genet 2015; 11:e1004985. [PMID: 25693201 PMCID: PMC4334201 DOI: 10.1371/journal.pgen.1004985] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/05/2015] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial DNA (mtDNA) encodes respiratory complex subunits essential to almost all eukaryotes; hence respiratory competence requires faithful duplication of this molecule. However, the mechanism(s) of its synthesis remain hotly debated. Here we have developed Caenorhabditis elegans as a convenient animal model for the study of metazoan mtDNA synthesis. We demonstrate that C. elegans mtDNA replicates exclusively by a phage-like mechanism, in which multimeric molecules are synthesized from a circular template. In contrast to previous mammalian studies, we found that mtDNA synthesis in the C. elegans gonad produces branched-circular lariat structures with multimeric DNA tails; we were able to detect multimers up to four mtDNA genome unit lengths. Further, we did not detect elongation from a displacement-loop or analogue of 7S DNA, suggesting a clear difference from human mtDNA in regard to the site(s) of replication initiation. We also identified cruciform mtDNA species that are sensitive to cleavage by the resolvase RusA; we suggest these four-way junctions may have a role in concatemer-to-monomer resolution. Overall these results indicate that mtDNA synthesis in C. elegans does not conform to any previously documented metazoan mtDNA replication mechanism, but instead are strongly suggestive of rolling circle replication, as employed by bacteriophages. As several components of the metazoan mitochondrial DNA replisome are likely phage-derived, these findings raise the possibility that the rolling circle mtDNA replication mechanism may be ancestral among metazoans.
Collapse
Affiliation(s)
- Samantha C. Lewis
- Department of Biology and Interdepartmental Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, California, United States of America
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Priit Joers
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
- Estonian Biocentre, Tartu, Estonia
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Howard T. Jacobs
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
- Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland
| | - Bradley C. Hyman
- Department of Biology and Interdepartmental Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
42
|
Holt IJ, Speijer D, Kirkwood TBL. The road to rack and ruin: selecting deleterious mitochondrial DNA variants. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130451. [PMID: 24864317 DOI: 10.1098/rstb.2013.0451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mitochondria constitute the major energy-producing compartment of the eukaryotic cell. These organelles contain many molecules of DNA that contribute only a handful of proteins required for energy production. Mutations in the DNA of mitochondria were identified as a cause of human disease a quarter of a century ago, and they have subsequently been implicated in ageing. The process whereby deleterious variants come to dominate a cell, tissue or human is the subject of debate. It is likely to involve multiple, often competing, factors, as selection pressures on mitochondrial DNA can be both indirect and intermittent, and are subjected to rapid change. Here, we assess the different models and the prospects for preventing the accumulation of deleterious mitochondrial DNA variants with time.
Collapse
Affiliation(s)
- Ian J Holt
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Dave Speijer
- Department of Medical Biochemistry, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Thomas B L Kirkwood
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
43
|
Cupp JD, Nielsen BL. Minireview: DNA replication in plant mitochondria. Mitochondrion 2014; 19 Pt B:231-7. [PMID: 24681310 PMCID: PMC4177014 DOI: 10.1016/j.mito.2014.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/28/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
Abstract
Higher plant mitochondrial genomes exhibit much greater structural complexity compared to most other organisms. Unlike well-characterized metazoan mitochondrial DNA (mtDNA) replication, an understanding of the mechanism(s) and proteins involved in plant mtDNA replication remains unclear. Several plant mtDNA replication proteins, including DNA polymerases, DNA primase/helicase, and accessory proteins have been identified. Mitochondrial dynamics, genome structure, and the complexity of dual-targeted and dual-function proteins that provide at least partial redundancy suggest that plants have a unique model for maintaining and replicating mtDNA when compared to the replication mechanism utilized by most metazoan organisms.
Collapse
Affiliation(s)
- John D Cupp
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, UT 84602, United States.
| | - Brent L Nielsen
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, UT 84602, United States.
| |
Collapse
|
44
|
Fonseca MM, Harris DJ, Posada D. The inversion of the Control Region in three mitogenomes provides further evidence for an asymmetric model of vertebrate mtDNA replication. PLoS One 2014; 9:e106654. [PMID: 25268704 PMCID: PMC4182315 DOI: 10.1371/journal.pone.0106654] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 08/04/2014] [Indexed: 11/29/2022] Open
Abstract
Mitochondrial genomes are known to have a strong strand-specific compositional bias that is more pronounced at fourfold redundant sites of mtDNA protein-coding genes. This observation suggests that strand asymmetries, to a large extent, are caused by mutational asymmetric mechanisms. In vertebrate mitogenomes, replication and not transcription seems to play a major role in shaping compositional bias. Hence, one can better understand how mtDNA is replicated – a debated issue – through a detailed picture of mitochondrial genome evolution. Here, we analyzed the compositional bias (AT and GC skews) in protein-coding genes of almost 2,500 complete vertebrate mitogenomes. We were able to identify three fish mitogenomes with inverted AT/GC skew coupled with an inversion of the Control Region. These findings suggest that the vertebrate mitochondrial replication mechanism is asymmetric and may invert its polarity, with the leading-strand becoming the lagging-strand and vice-versa, without compromising mtDNA maintenance and expression. The inversion of the strand-specific compositional bias through the inversion of the Control Region is in agreement with the strand-displacement model but it is also compatible with the RITOLS model of mtDNA replication.
Collapse
Affiliation(s)
- Miguel M. Fonseca
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- * E-mail:
| | - D. James Harris
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - David Posada
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| |
Collapse
|
45
|
Holt IJ, Jacobs HT. Unique features of DNA replication in mitochondria: a functional and evolutionary perspective. Bioessays 2014; 36:1024-31. [PMID: 25220172 DOI: 10.1002/bies.201400052] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Last year, we reported a new mechanism of DNA replication in mammals. It occurs inside mitochondria and entails the use of processed transcripts, termed bootlaces, which hybridize with the displaced parental strand as the replication fork advances. Here we discuss possible reasons why such an unusual mechanism of DNA replication might have evolved. The bootlace mechanism can minimize the occurrence and impact of single-strand breaks that would otherwise threaten genome stability. Furthermore, by providing an implicit mismatch recognition system, it should limit the occurrence of replication-dependent deletions and insertions, and defend against invading elements. Such a mechanism may also limit attempts to manipulate the mammalian mitochondrial genome.
Collapse
Affiliation(s)
- Ian J Holt
- MRC National Institute for Medical Research, London, UK
| | | |
Collapse
|
46
|
GC skew and mitochondrial origins of replication. Mitochondrion 2014; 17:56-66. [DOI: 10.1016/j.mito.2014.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 05/09/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022]
|
47
|
Pina M, Basta T, Quax TEF, Joubert A, Baconnais S, Cortez D, Lambert S, Le Cam E, Bell SD, Forterre P, Prangishvili D. Unique genome replication mechanism of the archaeal virus AFV1. Mol Microbiol 2014; 92:1313-25. [PMID: 24779456 DOI: 10.1111/mmi.12630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2014] [Indexed: 12/29/2022]
Abstract
The exceptional genomic content and genome organization of the Acidianus filamentous virus 1 (AFV1) that infects the hyperthermophilic archaeon Acidianus hospitalis suggest that this virus might exploit an unusual mechanism of genome replication. An analysis of replicative intermediates of the viral genome by two-dimensional (2D) agarose gel electrophoresis revealed that viral genome replication starts by the formation of a D-loop and proceeds via strand displacement replication. Characterization of replicative intermediates using dark-field electron microscopy, in combination with the 2D agarose gel electrophoresis data, suggests that recombination plays a key role in the termination of AFV1 genome replication through the formation of terminal loops. A terminal protein was found to be attached to the ends of the viral genome. The results allow us to postulate a model of genome replication that relies on recombination events for initiation and termination.
Collapse
Affiliation(s)
- Mery Pina
- Institut Pasteur, Département de Microbiologie, 25 Rue du Dr. Roux, 75015, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tonin Y, Heckel AM, Vysokikh M, Dovydenko I, Meschaninova M, Rötig A, Munnich A, Venyaminova A, Tarassov I, Entelis N. Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA. J Biol Chem 2014; 289:13323-34. [PMID: 24692550 PMCID: PMC4036341 DOI: 10.1074/jbc.m113.528968] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/20/2014] [Indexed: 12/24/2022] Open
Abstract
Defects in mitochondrial genome can cause a wide range of clinical disorders, mainly neuromuscular diseases. Presently, no efficient therapeutic treatment has been developed against this class of pathologies. Because most of deleterious mitochondrial mutations are heteroplasmic, meaning that wild type and mutated forms of mitochondrial DNA (mtDNA) coexist in the same cell, the shift in proportion between mutant and wild type molecules could restore mitochondrial functions. Recently, we developed mitochondrial RNA vectors that can be used to address anti-replicative oligoribonucleotides into human mitochondria and thus impact heteroplasmy level in cells bearing a large deletion in mtDNA. Here, we show that this strategy can be also applied to point mutations in mtDNA. We demonstrate that specifically designed RNA molecules containing structural determinants for mitochondrial import and 20-nucleotide sequence corresponding to the mutated region of mtDNA, are able to anneal selectively to the mutated mitochondrial genomes. After being imported into mitochondria of living human cells in culture, these RNA induced a decrease of the proportion of mtDNA molecules bearing a pathogenic point mutation in the mtDNA ND5 gene.
Collapse
Affiliation(s)
- Yann Tonin
- From the UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg 67084, France
| | - Anne-Marie Heckel
- From the UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg 67084, France
| | - Mikhail Vysokikh
- From the UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg 67084, France
| | - Ilya Dovydenko
- From the UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg 67084, France
- the Laboratory of RNA Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia, and
| | - Mariya Meschaninova
- the Laboratory of RNA Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia, and
| | - Agnès Rötig
- the Université Paris Descartes-Sorbonne Paris Cité, INSERM U781, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Arnold Munnich
- the Université Paris Descartes-Sorbonne Paris Cité, INSERM U781, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Alya Venyaminova
- the Laboratory of RNA Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia, and
| | - Ivan Tarassov
- From the UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg 67084, France
| | - Nina Entelis
- From the UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg 67084, France
| |
Collapse
|
49
|
Abstract
Human mitochondria harbor an essential, high copy number, 16,569 base pair, circular DNA genome that encodes 13 gene products required for electron transport and oxidative phosphorylation. Mutation of this genome can compromise cellular respiration, ultimately resulting in a variety of progressive metabolic diseases collectively known as 'mitochondrial diseases'. Mutagenesis of mtDNA and the persistence of mtDNA mutations in cells and tissues is a complex topic, involving the interplay of DNA replication, DNA damage and repair, purifying selection, organelle dynamics, mitophagy, and aging. We briefly review these general elements that affect maintenance of mtDNA, and we focus on nuclear genes encoding the mtDNA replication machinery that can perturb the genetic integrity of the mitochondrial genome.
Collapse
Affiliation(s)
- William C Copeland
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709, USA.
| | - Matthew J Longley
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
50
|
Damas J, Samuels DC, Carneiro J, Amorim A, Pereira F. Mitochondrial DNA rearrangements in health and disease--a comprehensive study. Hum Mutat 2013; 35:1-14. [PMID: 24115352 DOI: 10.1002/humu.22452] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/19/2013] [Indexed: 12/12/2022]
Abstract
Mitochondrial DNA (mtDNA) rearrangements cause a wide variety of highly debilitating and often fatal disorders and have been implicated in aging and age-associated disease. Here, we present a meta-analytical study of mtDNA deletions (n = 730) and partial duplications (n = 37) using information from more than 300 studies published over the last 30 years. We show that both classes of mtDNA rearrangements are unequally distributed among disorders and their breakpoints have different genomic locations. We also demonstrate that 100% of cases with sporadic mtDNA deletions and 97.3% with duplications have no breakpoints in the 16,071 breakage hotspot site, in contrast with deletions from healthy and aged tissues. Notably, most deletions removing a section of the D-loop are found in tumors. Deleted mtDNA molecules lacking the origin of L-strand replication (O(L)) represent only 9.5% of all reported cases, whereas extra origins of replication occur in all duplications. As previously shown for deletions, imperfect stretches of homology are common in duplication breakpoints. Finally, we provide a dedicated Website with detailed information on deleted/duplicated mtDNA regions to facilitate the design of efficient methods for identification and screening of rearranged mitochondrial genomes (available at http://www.portugene.com/mtDNArearrangements.html).
Collapse
Affiliation(s)
- Joana Damas
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, Porto, Portugal
| | | | | | | | | |
Collapse
|