1
|
Frumkin I, Laub MT. Selection of a de novo gene that can promote survival of Escherichia coli by modulating protein homeostasis pathways. Nat Ecol Evol 2023; 7:2067-2079. [PMID: 37945946 PMCID: PMC10697842 DOI: 10.1038/s41559-023-02224-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/12/2023] [Indexed: 11/12/2023]
Abstract
Cellular novelty can emerge when non-functional loci become functional genes in a process termed de novo gene birth. But how proteins with random amino acid sequences beneficially integrate into existing cellular pathways remains poorly understood. We screened ~108 genes, generated from random nucleotide sequences and devoid of homology to natural genes, for their ability to rescue growth arrest of Escherichia coli cells producing the ribonuclease toxin MazF. We identified ~2,000 genes that could promote growth, probably by reducing transcription from the promoter driving toxin expression. Additionally, one random protein, named Random antitoxin of MazF (RamF), modulated protein homeostasis by interacting with chaperones, leading to MazF proteolysis and a consequent loss of its toxicity. Finally, we demonstrate that random proteins can improve during evolution by identifying beneficial mutations that turned RamF into a more efficient inhibitor. Our work provides a mechanistic basis for how de novo gene birth can produce functional proteins that effectively benefit cells evolving under stress.
Collapse
Affiliation(s)
- Idan Frumkin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
2
|
Xu J, Wang Y, Liu F, Duan G, Yang H. Genome mining reveals the prevalence and extensive diversity of toxin-antitoxin systems in Staphylococcus aureus. Front Microbiol 2023; 14:1165981. [PMID: 37293231 PMCID: PMC10244574 DOI: 10.3389/fmicb.2023.1165981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Staphylococcus aureus (S. aureus) is a highly pathogenic and adaptable Gram-positive bacterium that exhibits persistence in various environments. The toxin-antitoxin (TA) system plays a crucial role in the defense mechanism of bacterial pathogens, allowing them to survive in stressful conditions. While TA systems in clinical pathogens have been extensively studied, there is limited knowledge regarding the diversity and evolutionary complexities of TA systems in S. aureus. Methods We conducted a comprehensive in silico survey using 621 publicly available S. aureus isolates. We employed bioinformatic search and prediction tools, including SLING, TADB2.0, and TASmania, to identify TA systems within the genomes of S. aureus. Results Our analysis revealed a median of seven TA systems per genome, with three type II TA groups (HD, HD_3, and YoeB) being present in over 80% of the strains. Additionally, we observed that TA genes were predominantly encoded in the chromosomal DNA, with some TA systems also found within the Staphylococcal Cassette Chromosomal mec (SCCmec) genomic islands. Discussion This study provides a comprehensive overview of the diversity and prevalence of TA systems in S. aureus. The findings enhance our understanding of these putative TA genes and their potential implications in S. aureus ecology and disease management. Moreover, this knowledge could guide the development of novel antimicrobial strategies.
Collapse
Affiliation(s)
| | | | | | | | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
tRNA fMet Inactivating Mycobacterium tuberculosis VapBC Toxin-Antitoxin Systems as Therapeutic Targets. Antimicrob Agents Chemother 2022; 66:e0189621. [PMID: 35404073 DOI: 10.1128/aac.01896-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mycobacterium tuberculosis genome contains an abundance of toxin-antitoxin (TA) systems, 50 of which belong to the VapBC family. The activity of VapC toxins is controlled by dynamic association with their cognate antitoxins-the toxin is inactive when complexed with VapB antitoxin but active when freed. Here, we determined the cellular target of two phylogenetically related VapC toxins and demonstrate how their properties can be harnessed for drug development. First, we used a specialized RNA sequencing (RNA-seq) approach, 5' RNA-seq, to accurately identify the in vivo RNA target of M. tuberculosis VapC2 and VapC21 toxins. Both toxins exclusively disable initiator tRNAfMet through cleavage at a single, identical site within their anticodon loop. Consistent with the essential role and global requirement for initiator tRNAfMet in bacteria, expression of each VapC toxin resulted in potent translation inhibition followed by growth arrest and cell death. Guided by previous structural studies, we then mutated two conserved amino acids in the antitoxin (WR→AA) that resided in the toxin-antitoxin interface and were predicted to inhibit toxin activity. Both mutants were markedly less efficient in rescuing growth over time, suggesting that screens for high-affinity small-molecule inhibitors against this or other crucial VapB-VapC interaction sites could drive constitutive inactivation of tRNAfMet by these VapC toxins. Collectively, the properties of the VapBC2 and VapBC21 TA systems provide a framework for development of bactericidal antitubercular agents with high specificity for M. tuberculosis cells.
Collapse
|
4
|
Lite TLV, Grant RA, Nocedal I, Littlehale ML, Guo MS, Laub MT. Uncovering the basis of protein-protein interaction specificity with a combinatorially complete library. eLife 2020; 9:e60924. [PMID: 33107822 PMCID: PMC7669267 DOI: 10.7554/elife.60924] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
Protein-protein interaction specificity is often encoded at the primary sequence level. However, the contributions of individual residues to specificity are usually poorly understood and often obscured by mutational robustness, sequence degeneracy, and epistasis. Using bacterial toxin-antitoxin systems as a model, we screened a combinatorially complete library of antitoxin variants at three key positions against two toxins. This library enabled us to measure the effect of individual substitutions on specificity in hundreds of genetic backgrounds. These distributions allow inferences about the general nature of interface residues in promoting specificity. We find that positive and negative contributions to specificity are neither inherently coupled nor mutually exclusive. Further, a wild-type antitoxin appears optimized for specificity as no substitutions improve discrimination between cognate and non-cognate partners. By comparing crystal structures of paralogous complexes, we provide a rationale for our observations. Collectively, this work provides a generalizable approach to understanding the logic of molecular recognition.
Collapse
Affiliation(s)
- Thuy-Lan V Lite
- Department of Biology Massachusetts Institute of TechnologyCambridgeUnited States
| | - Robert A Grant
- Department of Biology Massachusetts Institute of TechnologyCambridgeUnited States
| | - Isabel Nocedal
- Department of Biology Massachusetts Institute of TechnologyCambridgeUnited States
| | - Megan L Littlehale
- Department of Biology Massachusetts Institute of TechnologyCambridgeUnited States
| | - Monica S Guo
- Department of Biology Massachusetts Institute of TechnologyCambridgeUnited States
| | - Michael T Laub
- Department of Biology Massachusetts Institute of TechnologyCambridgeUnited States
- Howard Hughes Medical Institute Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
5
|
Xue L, Yue J, Ke J, Khan MH, Wen W, Sun B, Zhu Z, Niu L. Distinct oligomeric structures of the YoeB-YefM complex provide insights into the conditional cooperativity of type II toxin-antitoxin system. Nucleic Acids Res 2020; 48:10527-10541. [PMID: 32845304 PMCID: PMC7544224 DOI: 10.1093/nar/gkaa706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
YoeB-YefM, the widespread type II toxin-antitoxin (TA) module, binds to its own promoter to autoregulate its transcription: repress or induce transcription under normal or stress conditions, respectively. It remains unclear how YoeB-YefM regulates its transcription depending on the YoeB to YefM TA ratio. We find that YoeB-YefM complex from S.aureus exists as two distinct oligomeric assemblies: heterotetramer (YoeB-YefM2-YoeB) and heterohexamer (YoeB-YefM2-YefM2-YoeB) with low and high DNA-binding affinities, respectively. Structures of the heterotetramer alone and heterohexamer bound to promoter DNA reveals that YefM C-terminal domain undergoes disorder to order transition upon YoeB binding, which allosterically affects the conformation of N-terminal DNA-binding domain. At TA ratio of 1:2, unsaturated binding of YoeB to the C-terminal regions of YefM dimer forms an optimal heterohexamer for DNA binding, and two YefM dimers with N-terminal domains dock into the adjacent major grooves of DNA to specifically recognize the 5'-TTGTACAN6AGTACAA-3' palindromic sequence, resulting in transcriptional repression. In contrast, at TA ratio of 1:1, binding of two additional YoeB molecules onto the heterohexamer induces the completely ordered conformation of YefM and disassembles the heterohexamer into two heterotetramers, which are unable to bind the promoter DNA optimally due to steric clashes, hence derepresses TA operon transcription.
Collapse
Affiliation(s)
- Lu Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian Yue
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiyuan Ke
- Lead Discovery Department, H3 Biomedicine Inc, 300 Technology Square FL 5, Cambridge, MA 02139, USA
| | - Muhammad Hidayatullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen Wen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Baolin Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhongliang Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
6
|
in 't Zandt MH, Frank J, Yilmaz P, Cremers G, Jetten MSM, Welte CU. Long-term enriched methanogenic communities from thermokarst lake sediments show species-specific responses to warming. FEMS MICROBES 2020; 1:xtaa008. [PMID: 37333957 PMCID: PMC10117432 DOI: 10.1093/femsmc/xtaa008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/14/2020] [Indexed: 04/05/2024] Open
Abstract
Thermokarst lakes are large potential greenhouse gas (GHG) sources in a changing Arctic. In a warming world, an increase in both organic matter availability and temperature is expected to boost methanogenesis and potentially alter the microbial community that controls GHG fluxes. These community shifts are, however, challenging to detect by resolution-limited 16S rRNA gene-based approaches. Here, we applied full metagenome sequencing on long-term thermokarst lake sediment enrichments on acetate and trimethylamine at 4°C and 10°C to unravel species-specific responses to the most likely Arctic climate change scenario. Substrate amendment was used to mimic the increased organic carbon availability upon permafrost thaw. By performing de novo assembly, we reconstructed five high-quality and five medium-quality metagenome-assembled genomes (MAGs) that represented 59% of the aligned metagenome reads. Seven bacterial MAGs belonged to anaerobic fermentative bacteria. Within the Archaea, the enrichment of methanogenic Methanosaetaceae/Methanotrichaceae under acetate amendment and Methanosarcinaceae under trimethylamine (TMA) amendment was not unexpected. Surprisingly, we observed temperature-specific methanogenic (sub)species responses with TMA amendment. These highlighted distinct and potentially functional climate-induced shifts could not be revealed with 16S rRNA gene-based analyses. Unraveling these temperature- and nutrient-controlled species-level responses is essential to better comprehend the mechanisms that underlie GHG production from Arctic lakes in a warming world.
Collapse
Affiliation(s)
- Michiel H in 't Zandt
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
- Netherlands Earth System Science Centre, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, the Netherlands
| | - Jeroen Frank
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Polen Yilmaz
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Geert Cremers
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
- Netherlands Earth System Science Centre, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| |
Collapse
|
7
|
Li Y, Liu X, Tang K, Wang W, Guo Y, Wang X. Prophage encoding toxin/antitoxin system PfiT/PfiA inhibits Pf4 production in Pseudomonas aeruginosa. Microb Biotechnol 2020; 13:1132-1144. [PMID: 32246813 PMCID: PMC7264888 DOI: 10.1111/1751-7915.13570] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
Pf prophages are ssDNA filamentous prophages that are prevalent among various Pseudomonas aeruginosa strains. The genomes of Pf prophages contain not only core genes encoding functions involved in phage replication, structure and assembly but also accessory genes. By studying the accessory genes in the Pf4 prophage in P. aeruginosa PAO1, we provided experimental evidence to demonstrate that PA0729 and the upstream ORF Rorf0727 near the right attachment site of Pf4 form a type II toxin/antitoxin (TA) pair. Importantly, we found that the deletion of the toxin gene PA0729 greatly increased Pf4 phage production. We thus suggest the toxin PA0729 be named PfiT for Pf4 inhibition toxin and Rorf0727 be named PfiA for PfiT antitoxin. The PfiT toxin directly binds to PfiA and functions as a corepressor of PfiA for the TA operon. The PfiAT complex exhibited autoregulation by binding to a palindrome (5'-AATTCN5 GTTAA-3') overlapping the -35 region of the TA operon. The deletion of pfiT disrupted TA autoregulation and activated pfiA expression. Additionally, the deletion of pfiT also activated the expression of the replication initiation factor gene PA0727. Moreover, the Pf4 phage released from the pfiT deletion mutant overcame the immunity provided by the phage repressor Pf4r. Therefore, this study reveals that the TA systems in Pf prophages can regulate phage production and phage immunity, providing new insights into the function of TAs in mobile genetic elements.
Collapse
Affiliation(s)
- Yangmei Li
- Key Laboratory of Tropical Marine Bio‐resources and EcologyGuangdong Key Laboratory of Marine Materia MedicaRNAM Center for Marine MicrobiologySouth China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
- Innovation Academy of South China Sea Ecology and Environmental EngineeringChinese Academy of SciencesGuangzhou510301China
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio‐resources and EcologyGuangdong Key Laboratory of Marine Materia MedicaRNAM Center for Marine MicrobiologySouth China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
- Innovation Academy of South China Sea Ecology and Environmental EngineeringChinese Academy of SciencesGuangzhou510301China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio‐resources and EcologyGuangdong Key Laboratory of Marine Materia MedicaRNAM Center for Marine MicrobiologySouth China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
- Innovation Academy of South China Sea Ecology and Environmental EngineeringChinese Academy of SciencesGuangzhou510301China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio‐resources and EcologyGuangdong Key Laboratory of Marine Materia MedicaRNAM Center for Marine MicrobiologySouth China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
- Innovation Academy of South China Sea Ecology and Environmental EngineeringChinese Academy of SciencesGuangzhou510301China
- University of Chinese Academy of SciencesBeijingChina
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio‐resources and EcologyGuangdong Key Laboratory of Marine Materia MedicaRNAM Center for Marine MicrobiologySouth China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
- Innovation Academy of South China Sea Ecology and Environmental EngineeringChinese Academy of SciencesGuangzhou510301China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio‐resources and EcologyGuangdong Key Laboratory of Marine Materia MedicaRNAM Center for Marine MicrobiologySouth China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
- Innovation Academy of South China Sea Ecology and Environmental EngineeringChinese Academy of SciencesGuangzhou510301China
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
8
|
Kim DH, Kang SM, Park SJ, Jin C, Yoon HJ, Lee BJ. Functional insights into the Streptococcus pneumoniae HicBA toxin-antitoxin system based on a structural study. Nucleic Acids Res 2019; 46:6371-6386. [PMID: 29878152 PMCID: PMC6159526 DOI: 10.1093/nar/gky469] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/15/2018] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pneumonia has attracted increasing attention due to its resistance to existing antibiotics. TA systems are essential for bacterial persistence under stressful conditions such as nutrient deprivation, antibiotic treatment, and immune system attacks. In particular, S. pneumoniae expresses the HicBA TA gene, which encodes the stable HicA toxin and the labile HicB antitoxin. These proteins interact to form a non-toxic TA complex under normal conditions, but the toxin is activated by release from the antitoxin in response to unfavorable growth conditions. Here, we present the first crystal structure showing the complete conformation of the HicBA complex from S. pneumonia. The structure reveals that the HicA toxin contains a double-stranded RNA-binding domain that is essential for RNA recognition and that the C-terminus of the HicB antitoxin folds into a ribbon-helix-helix DNA-binding motif. The active site of HicA is sterically blocked by the N-terminal region of HicB. RNase activity assays show that His36 is essential for the ribonuclease activity of HicA, and nuclear magnetic resonance (NMR) spectra show that several residues of HicB participate in binding to the promoter DNA of the HicBA operon. A toxin-mimicking peptide that inhibits TA complex formation and thereby increases toxin activity was designed, providing a novel approach to the development of new antibiotics.
Collapse
Affiliation(s)
- Do-Hee Kim
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sung-Min Kang
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 534-2 Yeonsu-dong, Yeonsu-gu, Incheon 13120, Republic of Korea
| | - Chenglong Jin
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Abstract
Persisters are drug-tolerant bacteria that account for the majority of bacterial infections. They are not mutants, rather, they are slow-growing cells in an otherwise normally growing population. It is known that the frequency of persisters in a population is correlated with the number of toxin–antitoxin systems in the organism. Our previous work provided a mechanistic link between the two by showing how multiple toxin–antitoxin systems, which are present in nearly all bacteria, can cooperate to induce bistable toxin concentrations that result in a heterogeneous population of slow- and fast-growing cells. As such, the slow-growing persisters are a bet-hedging subpopulation maintained under normal conditions. For technical reasons, the model assumed that the kinetic parameters of the various toxin–antitoxin systems in the cell are identical, but experimental data indicate that they differ, sometimes dramatically. Thus, a critical question remains: whether toxin–antitoxin systems from the diverse families, often found together in a cell, with significantly different kinetics, can cooperate in a similar manner. Here, we characterize the interaction of toxin–antitoxin systems from many families that are unrelated and kinetically diverse, and identify the essential determinant for their cooperation. The generic architecture of toxin–antitoxin systems provides the potential for bistability, and our results show that even when they do not exhibit bistability alone, unrelated systems can be coupled by the growth rate to create a strongly bistable, hysteretic switch between normal (fast-growing) and persistent (slow-growing) states. Different combinations of kinetic parameters can produce similar toxic switching thresholds, and the proximity of the thresholds is the primary determinant of bistability. Stochastic fluctuations can spontaneously switch all of the toxin–antitoxin systems in a cell at once. The spontaneous switch creates a heterogeneous population of growing and non-growing cells, typical of persisters, that exist under normal conditions, rather than only as an induced response. The frequency of persisters in the population can be tuned for a particular environmental niche by mixing and matching unrelated systems via mutation, horizontal gene transfer and selection.
Collapse
Affiliation(s)
- Rick A Fasani
- Department of Biomedical Engineering and Microbiology Graduate Group, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michael A Savageau
- Department of Biomedical Engineering and Microbiology Graduate Group, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
10
|
Identification and characterization of the chromosomal yefM-yoeB toxin-antitoxin system of Streptococcus suis. Sci Rep 2015; 5:13125. [PMID: 26272287 PMCID: PMC4536659 DOI: 10.1038/srep13125] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/20/2015] [Indexed: 01/06/2023] Open
Abstract
Toxin-antitoxin (TA) systems are widely prevalent in the genomes of bacteria and archaea. These modules have been identified in Escherichia coli and various other bacteria. However, their presence in the genome of Streptococcus suis, an important zoonotic pathogen, has received little attention. In this study, we describe the identification and characterization of a type II TA system, comprising the chromosomal yefM-yoeB locus of S. suis. The yefM-yoeB locus is present in the genome of most serotypes of S. suis. Overproduction of S. suis YoeB toxin inhibited the growth of E. coli, and the toxicity of S. suis YoeB could be alleviated by the antitoxin YefM from S. suis and Streptococcus pneumoniae, but not by E. coli YefM. More importantly, introduction of the S. suis yefM-yoeB system into E. coli could affect cell growth. In a murine infection model, deletion of the yefM-yoeB locus had no effect on the virulence of S. suis serotype 2. Collectively, our data suggested that the yefM-yoeB locus of S. suis is an active TA system without the involvement of virulence.
Collapse
|
11
|
Loris R, Garcia-Pino A. Disorder- and Dynamics-Based Regulatory Mechanisms in Toxin–Antitoxin Modules. Chem Rev 2014; 114:6933-47. [DOI: 10.1021/cr400656f] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Remy Loris
- Molecular
Recognition Unit, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural
Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Abel Garcia-Pino
- Molecular
Recognition Unit, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural
Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| |
Collapse
|
12
|
Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins (Basel) 2014; 6:1002-20. [PMID: 24662523 PMCID: PMC3968373 DOI: 10.3390/toxins6031002] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 12/26/2022] Open
Abstract
The hallmark of Mycobacterium tuberculosis is its ability to persist for a long-term in host granulomas, in a non-replicating and drug-tolerant state, and later awaken to cause disease. To date, the cellular factors and the molecular mechanisms that mediate entry into the persistence phase are poorly understood. Remarkably, M. tuberculosis possesses a very high number of toxin-antitoxin (TA) systems in its chromosome, 79 in total, regrouping both well-known (68) and novel (11) families, with some of them being strongly induced in drug-tolerant persisters. In agreement with the capacity of stress-responsive TA systems to generate persisters in other bacteria, it has been proposed that activation of TA systems in M. tuberculosis could contribute to its pathogenesis. Herein, we review the current knowledge on the multiple TA families present in this bacterium, their mechanism, and their potential role in physiology and virulence.
Collapse
|
13
|
Bertram R, Schuster CF. Post-transcriptional regulation of gene expression in bacterial pathogens by toxin-antitoxin systems. Front Cell Infect Microbiol 2014; 4:6. [PMID: 24524029 PMCID: PMC3905216 DOI: 10.3389/fcimb.2014.00006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/13/2014] [Indexed: 01/27/2023] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic elements ubiquitous in prokaryotic genomes that encode toxic proteins targeting various vital cellular functions. Typically, toxin activity is controlled by adjacently encoded protein or RNA antitoxins and unleashed as a consequence of genetic fluctuations or stressful conditions. Whereas some TA systems interfere with replication or cell wall synthesis, most of them influence transcriptional and post-transcriptional gene regulation. Antitoxin proteins often act as DNA binding transcriptional regulators and many TA toxins exhibit endoribonuclease activity to selectively degrade different RNA species and thus alter gene expression patterns. Some TA RNases cleave tRNA, tmRNAs or rRNAs, whereas most commonly mRNAs either in association with the ribosome or as free transcripts, are targeted. Examples are provided on how TA toxins differentially shape gene expression in bacterial pathogens by creating specialized ribosomes or by altering the transcriptome and how this may be tied in the control of pathogenicity factors.
Collapse
Affiliation(s)
- Ralph Bertram
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen Tübingen, Germany
| | - Christopher F Schuster
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen Tübingen, Germany
| |
Collapse
|
14
|
Ning D, Liu S, Xu W, Zhuang Q, Wen C, Tang X. Transcriptional and proteolytic regulation of the toxin-antitoxin locus vapBC10 (ssr2962/slr1767) on the chromosome of Synechocystis sp. PCC 6803. PLoS One 2013; 8:e80716. [PMID: 24260461 PMCID: PMC3834315 DOI: 10.1371/journal.pone.0080716] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/07/2013] [Indexed: 12/01/2022] Open
Abstract
VapBC toxin-antitoxin (TA) systems are defined by the association of a PIN-domain toxin with a DNA-binding antitoxin, and are thought to play important physiological roles in bacteria and archaea. Recently, the PIN-associated gene pair PIN-COG2442 was proposed to encode VapBC-family TA system and found to be abundant in cyanobacteria. However, the features of these predicted TA loci remain under investigation. We here report characterization of the PIN-COG2442 locus vapBC10 (ssr2962/slr1767) on the chromosome of Synechocystis sp. PCC 6803. RT-PCR analysis revealed that the vapBC10 genes were co-transcribed under normal growth conditions. Ectopic expression of the PIN-domain protein VapC10 caused growth arrest of Escherichia coli that does not possess vapBC TA locus. Coincidentally, this growth-inhibition effect could be neutralized by either simultaneous or subsequent production of the COG2442-domain protein VapB10 through formation of the TA complex VapBC10 in vivo. In contrast to the transcription repression activity of the well-studied antitoxins, VapB10 positively auto-regulated the transcription of its own operon via specific binding to the promoter region. Furthermore, in vivo experiments in E. coli demonstrated that the Synechocystis protease ClpXP2s, rather than Lons, could cleave VapB10 and proteolytically activate the VapC10 toxicity. Our results show that the PIN-COG2442 locus vapBC10 encodes a functional VapBC TA system with an alternative mechanism for the transcriptional auto-regulation of its own operon.
Collapse
Affiliation(s)
- Degang Ning
- Department of Environment Sciences, School of the Environment, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shuibing Liu
- Department of Environment Sciences, School of the Environment, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weidong Xu
- Department of Pharmaceutical engineering, School of Pharmacy, Jiangsu University, Xuefu Road, Zhenjiang, Jiangsu, China
| | - Qiang Zhuang
- Department of Environment Sciences, School of the Environment, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chongwei Wen
- Department of Pharmaceutical engineering, School of Pharmacy, Jiangsu University, Xuefu Road, Zhenjiang, Jiangsu, China
| | - Xiaoxia Tang
- Department of Environment Sciences, School of the Environment, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
15
|
Toxin-antitoxin genes of the Gram-positive pathogen Streptococcus pneumoniae: so few and yet so many. Microbiol Mol Biol Rev 2013. [PMID: 23204366 DOI: 10.1128/mmbr.00030-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pneumococcal infections cause up to 2 million deaths annually and raise a large economic burden and thus constitute an important threat to mankind. Because of the increase in the antibiotic resistance of Streptococcus pneumoniae clinical isolates, there is an urgent need to find new antimicrobial approaches to triumph over pneumococcal infections. Toxin-antitoxin (TA) systems (TAS), which are present in most living bacteria but not in eukaryotes, have been proposed as an effective strategy to combat bacterial infections. Type II TAS comprise a stable toxin and a labile antitoxin that form an innocuous TA complex under normal conditions. Under stress conditions, TA synthesis will be triggered, resulting in the degradation of the labile antitoxin and the release of the toxin protein, which would poison the host cells. The three functional chromosomal TAS from S. pneumoniae that have been studied as well as their molecular characteristics are discussed in detail in this review. Furthermore, a meticulous bioinformatics search has been performed for 48 pneumococcal genomes that are found in public databases, and more putative TAS, homologous to well-characterized ones, have been revealed. Strikingly, several unusual putative TAS, in terms of components and genetic organizations previously not envisaged, have been discovered and are further discussed. Previously, we reported a novel finding in which a unique pneumococcal DNA signature, the BOX element, affected the regulation of the pneumococcal yefM-yoeB TAS. This BOX element has also been found in some of the other pneumococcal TAS. In this review, we also discuss possible relationships between some of the pneumococcal TAS with pathogenicity, competence, biofilm formation, persistence, and an interesting phenomenon called bistability.
Collapse
|
16
|
Reschner A, Scohy S, Vandermeulen G, Daukandt M, Jacques C, Michel B, Nauwynck H, Xhonneux F, Préat V, Vanderplasschen A, Szpirer C. Use of Staby(®) technology for development and production of DNA vaccines free of antibiotic resistance gene. Hum Vaccin Immunother 2013; 9:2203-10. [PMID: 24051431 DOI: 10.4161/hv.25086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The appearance of new viruses and the cost of developing certain vaccines require that new vaccination strategies now have to be developed. DNA vaccination seems to be a particularly promising method. For this application, plasmid DNA is injected into the subject (man or animal). This plasmid DNA encodes an antigen that will be expressed by the cells of the subject. In addition to the antigen, the plasmid also encodes a resistance to an antibiotic, which is used during the construction and production steps of the plasmid. However, regulatory agencies (FDA, USDA and EMA) recommend to avoid the use of antibiotics resistance genes. Delphi Genetics developed the Staby(®) technology to replace the antibiotic-resistance gene by a selection system that relies on two bacterial genes. These genes are small in size (approximately 200 to 300 bases each) and consequently encode two small proteins. They are naturally present in the genomes of bacteria and on plasmids. The technology is already used successfully for production of recombinant proteins to achieve higher yields and without the need of antibiotics. In the field of DNA vaccines, we have now the first data validating the innocuousness of this Staby(®) technology for eukaryotic cells and the feasibility of an industrial production of an antibiotic-free DNA vaccine. Moreover, as a proof of concept, mice have been successfully vaccinated with our antibiotic-free DNA vaccine against a deadly disease, pseudorabies (induced by Suid herpesvirus-1).
Collapse
Affiliation(s)
- Anca Reschner
- University of Liège; Immunology-Vaccinology; Faculty of Veterinary Medicine; Liège, Belgium
| | | | - Gaëlle Vandermeulen
- Université catholique de Louvain; Louvain Drug Research Institute; Pharmaceutics and Drug Delivery; Brussels, Belgium
| | | | | | | | - Hans Nauwynck
- Ghent University; Laboratory of Virology, Faculty of Veterinary Medicine; Merelbeke, Belgium
| | | | - Véronique Préat
- Université catholique de Louvain; Louvain Drug Research Institute; Pharmaceutics and Drug Delivery; Brussels, Belgium
| | - Alain Vanderplasschen
- University of Liège; Immunology-Vaccinology; Faculty of Veterinary Medicine; Liège, Belgium
| | | |
Collapse
|
17
|
Unterholzner SJ, Poppenberger B, Rozhon W. Toxin-antitoxin systems: Biology, identification, and application. Mob Genet Elements 2013; 3:e26219. [PMID: 24251069 PMCID: PMC3827094 DOI: 10.4161/mge.26219] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 02/07/2023] Open
Abstract
Toxin–antitoxin (TA) systems are small genetic elements composed of a toxin gene and its cognate antitoxin. The toxins of all known TA systems are proteins while the antitoxins are either proteins or non-coding RNAs. Based on the molecular nature of the antitoxin and its mode of interaction with the toxin the TA modules are currently grouped into five classes. In general, the toxin is more stable than the antitoxin but the latter is expressed to a higher level. If supply of the antitoxin stops, for instance under special growth conditions or by plasmid loss in case of plasmid encoded TA systems, the antitoxin is rapidly degraded and can no longer counteract the toxin. Consequently, the toxin becomes activated and can act on its cellular targets. Typically, TA toxins act on crucial cellular processes including translation, replication, cytoskeleton formation, membrane integrity, and cell wall biosynthesis. TA systems and their components are also versatile tools for a multitude of purposes in basic research and biotechnology. Currently, TA systems are frequently used for selection in cloning and for single protein expression in living bacterial cells. Since several TA toxins exhibit activity in yeast and mammalian cells they may be useful for applications in eukaryotic systems. TA modules are also considered as promising targets for the development of antibacterial drugs and their potential to combat viral infection may aid in controlling infectious diseases.
Collapse
Affiliation(s)
- Simon J Unterholzner
- 1 Biotechnology of Horticultural Crops; Technische Universität München; Freising, Germany
| | | | | |
Collapse
|
18
|
Feng S, Chen Y, Kamada K, Wang H, Tang K, Wang M, Gao YG. YoeB-ribosome structure: a canonical RNase that requires the ribosome for its specific activity. Nucleic Acids Res 2013; 41:9549-56. [PMID: 23945936 PMCID: PMC3814384 DOI: 10.1093/nar/gkt742] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As a typical endoribonuclease, YoeB mediates cellular adaptation in diverse bacteria by degrading mRNAs on its activation. Although the catalytic core of YoeB is thought to be identical to well-studied nucleases, this enzyme specifically targets mRNA substrates that are associated with ribosomes in vivo. However, the molecular mechanism of mRNA recognition and cleavage by YoeB, and the requirement of ribosome for its optimal activity, largely remain elusive. Here, we report the structure of YoeB bound to 70S ribosome in pre-cleavage state, revealing that both the 30S and 50S subunits participate in YoeB binding. The mRNA is recognized by the catalytic core of YoeB, of which the general base/acid (Glu46/His83) are within hydrogen-bonding distance to their reaction atoms, demonstrating an active conformation of YoeB on ribosome. Also, the mRNA orientation involves the universally conserved A1493 and G530 of 16S rRNA. In addition, mass spectrometry data indicated that YoeB cleaves mRNA following the second position at the A-site codon, resulting in a final product with a 3′–phosphate at the newly formed 3′ end. Our results demonstrate a classical acid-base catalysis for YoeB-mediated RNA hydrolysis and provide insight into how the ribosome is essential for its specific activity.
Collapse
Affiliation(s)
- Shu Feng
- School of Biological Science, Nanyang Technological University, 637551 Singapore, RIKEN Advanced Science Institute, Saitama 351-0198, Japan, Swiss Light Source, Paul Scherrer Institut, CH-5232, Switzerland and Institute of Molecular and Cell Biology, A-STAR, 138673, Singapore
| | | | | | | | | | | | | |
Collapse
|
19
|
Regulation of toxin–antitoxin systems by proteolysis. Plasmid 2013; 70:33-41. [DOI: 10.1016/j.plasmid.2013.01.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 11/19/2022]
|
20
|
Abstract
Escherichia coli mazEF is a toxin-antitoxin stress-induced module mediating cell death. It requires the quorum-sensing signal (QS) “extracellular death factor” (EDF), the penta-peptide NNWNN (EcEDF), enhancing the endoribonucleolytic activity of E. coli toxin MazF. Here we discovered that E. coli mazEF-mediated cell death could be triggered by QS peptides from the supernatants (SN) of the Gram-positive bacterium Bacillus subtilis and the Gram-negative bacterium Pseudomonas aeruginosa. In the SN of B. subtilis, we found one EDF, the hexapeptide RGQQNE, called BsEDF. In the SN of P. aeruginosa, we found three EDFs: the nonapeptide INEQTVVTK, called PaEDF-1, and two hexadecapeptides, VEVSDDGSGGNTSLSQ, called PaEDF-2, and APKLSDGAAAGYVTKA, called PaEDF-3. When added to a diluted E. coli cultures, each of these peptides acted as an interspecies EDF that triggered mazEF-mediated death. Furthermore, though their sequences are very different, each of these EDFs amplified the endoribonucleolytic activity of E. coli MazF, probably by interacting with different sites on E. coli MazF. Finally, we suggest that EDFs may become the basis for a new class of antibiotics that trigger death from outside the bacterial cells. Bacteria communicate with one another via quorum-sensing signal (QS) molecules. QS provides a mechanism for bacteria to monitor each other’s presence and to modulate gene expression in response to population density. Previously, we added E. coli EDF (EcEDF), the peptide NNWNN, to this list of QS molecules. Here we extended the group of QS peptides to several additional different peptides. The new EDFs are produced by two other bacteria, Bacillus subtilis and Pseudomonas aeruginosa. Thus, in this study we established a “new family of EDFs.” This family provides the first example of quorum-sensing molecules participating in interspecies bacterial cell death. Furthermore, each of these peptides provides the basis of a new class of antibiotics triggering death by acting from outside the cell.
Collapse
|
21
|
Sberro H, Leavitt A, Kiro R, Koh E, Peleg Y, Qimron U, Sorek R. Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Mol Cell 2013; 50:136-48. [PMID: 23478446 DOI: 10.1016/j.molcel.2013.02.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 11/21/2012] [Accepted: 01/31/2013] [Indexed: 01/21/2023]
Abstract
Toxin-antitoxin (TA) modules, composed of a toxic protein and a counteracting antitoxin, play important roles in bacterial physiology. We examined the experimental insertion of 1.5 million genes from 388 microbial genomes into an Escherichia coli host using more than 8.5 million random clones. This revealed hundreds of genes (toxins) that could only be cloned when the neighboring gene (antitoxin) was present on the same clone. Clustering of these genes revealed TA families widespread in bacterial genomes, some of which deviate from the classical characteristics previously described for such modules. Introduction of these genes into E. coli validated that the toxin toxicity is mitigated by the antitoxin. Infection experiments with T7 phage showed that two of the new modules can provide resistance against phage. Moreover, our experiments revealed an "antidefense" protein in phage T7 that neutralizes phage resistance. Our results expose active fronts in the arms race between bacteria and phage.
Collapse
Affiliation(s)
- Hila Sberro
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
22
|
Park SJ, Son WS, Lee BJ. Structural overview of toxin-antitoxin systems in infectious bacteria: a target for developing antimicrobial agents. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1155-67. [PMID: 23459128 DOI: 10.1016/j.bbapap.2013.02.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 11/17/2022]
Abstract
The bacterial toxin-antitoxin (TA) system is a module that may play a role in cell survival under stress conditions. Generally, toxin molecules act as negative regulators in cell survival and antitoxin molecules as positive regulators. Thus, the expression levels and interactions between toxins and antitoxins should be systematically harmonized so that bacteria can escape such harmful conditions. Since TA systems are able to control the fate of bacteria, they are considered potent targets for the development of new antimicrobial agents. TA systems are widely prevalent with a variety of systems existing in bacteria: there are three types of bacterial TA systems depending on the property of the antitoxin which binds either the protein toxin or mRNA coding the toxin protein. Moreover, the multiplicity of TA genes has been observed even in species of bacteria. Therefore, knowledge on TA systems such as the individual characteristics of TA systems, integrative working mechanisms of various TA systems in bacteria, interactions between toxin molecules and cellular targets, and so on is currently limited due to their complexity. In this regard, it would be helpful to know the structural characteristics of TA modules for understanding TA systems in bacteria. Until now, 85 out of the total structures deposited in PDB have been bacterial TA system proteins including TA complexes or isolated toxins/antitoxins. Here, we summarized the structural information of TA systems and analyzed the structural characteristics of known TA modules from several bacteria, especially focusing on the TA modules of several infectious bacteria.
Collapse
Affiliation(s)
- Sung Jean Park
- College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
| | | | | |
Collapse
|
23
|
Brown BL, Lord DM, Grigoriu S, Peti W, Page R. The Escherichia coli toxin MqsR destabilizes the transcriptional repression complex formed between the antitoxin MqsA and the mqsRA operon promoter. J Biol Chem 2012; 288:1286-94. [PMID: 23172222 DOI: 10.1074/jbc.m112.421008] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bacterial biofilms are complex communities of cells containing an increased prevalence of dormant cells known as persisters, which are characterized by an up-regulation of genes known as toxin-antitoxin (TA) modules. The association of toxins with their cognate antitoxins neutralizes toxin activity, allowing for normal cell growth. Additionally, protein antitoxins bind their own promoters and repress transcription, whereas the toxins serve as co-repressors. Recently, TA pairs have been shown to regulate their own transcription through a phenomenon known as conditional cooperativity, where the TA complexes bind operator DNA and repress transcription only when present in the proper stoichiometric amounts. The most differentially up-regulated gene in persister cells is mqsR, a gene that, with the antitoxin mqsA, constitutes a TA module. Here, we reveal that, unlike other TA systems, MqsR is not a transcription co-repressor but instead functions to destabilize the MqsA-DNA complex. We further show that DNA binding is not regulated by conditional cooperativity. Finally, using biophysical studies, we show that complex formation between MqsR and MqsA results in an exceptionally stable interaction, resulting in a subnanomolar dissociation constant that is similar to that observed between MqsA and DNA. In combination with crystallographic studies, this work reveals that MqsA binding to DNA and MqsR is mutually exclusive. To our knowledge, this is the first TA system in which the toxin does not function as a transcriptional co-repressor, but instead functions to destabilize the antitoxin-operator complex under all conditions, and thus defines another unique feature of the mqsRA TA module.
Collapse
Affiliation(s)
- Breann L Brown
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | |
Collapse
|
24
|
Moll I, Engelberg-Kulka H. Selective translation during stress in Escherichia coli. Trends Biochem Sci 2012; 37:493-8. [PMID: 22939840 DOI: 10.1016/j.tibs.2012.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 12/18/2022]
Abstract
The bacterial stress response, a strategy to cope with environmental changes, is generally known to operate on the transcriptional level. Here, we discuss a novel paradigm for stress adaptation at the post-transcriptional level, based on the recent discovery of a stress-induced modified form of the translation machinery in Escherichia coli that is generated by MazF, the toxin component of the toxin-antitoxin (TA) module mazEF. Under stress, the induced endoribonuclease MazF removes the 3'-terminal 43 nucleotides of the 16S rRNA of ribosomes and, concomitantly, the 5'-untranslated regions (UTRs) of specific transcripts. This elegant mechanism enables selective translation due to the complementary effect of MazF on ribosomes and mRNAs, and also represents the first example of functional ribosome heterogeneity based on rRNA alteration.
Collapse
Affiliation(s)
- Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria.
| | | |
Collapse
|
25
|
Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol 2012; 10:e1001281. [PMID: 22412352 PMCID: PMC3295820 DOI: 10.1371/journal.pbio.1001281] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 01/26/2012] [Indexed: 12/17/2022] Open
Abstract
A newly discovered apoptotic-like death is inhibited by the previously described mazEF-mediated death pathway, revealing two programmed cell death systems in Escherichia coli. In eukaryotes, the classical form of programmed cell death (PCD) is apoptosis, which has as its specific characteristics DNA fragmentation and membrane depolarization. In Escherichia coli a different PCD system has been reported. It is mediated by the toxin–antitoxin system module mazEF. The E. coli mazEF module is one of the most thoroughly studied toxin–antitoxin systems. mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. mazEF-mediated cell death is a population phenomenon requiring the quorum-sensing pentapeptide NNWNN designated Extracellular Death Factor (EDF). mazEF is triggered by several stressful conditions, including severe damage to the DNA. Here, using confocal microscopy and FACS analysis, we show that under conditions of severe DNA damage, the triggered mazEF-mediated cell death pathway leads to the inhibition of a second cell death pathway. The latter is an apoptotic-like death (ALD); ALD is mediated by recA and lexA. The mazEF-mediated pathway reduces recA mRNA levels. Based on these results, we offer a molecular model for the maintenance of an altruistic characteristic in cell populations. In our model, the ALD pathway is inhibited by the altruistic EDF-mazEF-mediated death pathway. The enteric bacterium Escherichia coli, like most other bacteria, carries on its chromosome a pair of genes, mazE and mazF (mazEF): mazF specifies a toxin, and mazE specifies an antitoxin. Previously, we have shown that E. coli mazEF is responsible for bacterial programmed cell death in response to stressors such as DNA damage. Here, we report that extensive DNA damage can induce a second mode of cell death, which we call apoptotic-like death (ALD). ALD is like apoptosis—a mode of cell death that has previously been recorded only in eukaryotes. During ALD, the cell membrane is depolarized, and the DNA is fragmented and can be detected using the classical TUNEL assay. The MazEF death pathway, however, shows neither of those features, yet also kills the cell. We show that ALD is mediated by two proteins, RecA and LexA, which are noteworthy because LexA is an inhibitor of the SOS response (which is a global response to DNA damage in which the cell cycle is arrested and DNA repair is induced). This defines ALD as a form of SOS response. Furthermore, MazEF and its downstream components cause reduction of recA mRNA levels, which could explain how the MazEF pathway inhibits the ALD pathway. We conclude that the E. coli ALD pathway is a back-up system for the traditional mazEF cell death pathway. Should one of the components of the mazEF pathway be inactivated, bacterial cell death would occur through ALD. These findings also have implications for the mechanisms of “altruistic” cell death among bacterial populations.
Collapse
|
26
|
Abstract
Almost all bacteria and many archaea contain genes whose expression inhibits cell growth and may lead to cell death when overproduced, reminiscent of apoptotic genes in higher systems. The cellular targets of these toxins are quite diverse and include DNA replication, mRNA stability, protein synthesis, cell-wall biosynthesis, and ATP synthesis. These toxins are co-expressed and neutralized with their cognate antitoxins from a TA (toxin-antitoxin) operon in normally growing cells. Antitoxins are more labile than toxins and are readily degraded under stress conditions, allowing the toxins to exert their toxic effect. Presence of at least 33 TA systems in Escherichia coli and more than 60 TA systems in Mycobacterium tuberculosis suggests that the TA systems are involved not only in normal bacterial physiology but also in pathogenicity of bacteria. The elucidation of their cellular function and regulation is thus crucial for our understanding of bacterial physiology under various stress conditions.
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- Department of Biochemistry, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
27
|
Zou T, Yao X, Qin B, Zhang M, Cai L, Shang W, Svergun DI, Wang M, Cui S, Jin Q. Crystal structure of Pseudomonas aeruginosa Tsi2 reveals a stably folded superhelical antitoxin. J Mol Biol 2012; 417:351-61. [PMID: 22310046 DOI: 10.1016/j.jmb.2012.01.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/14/2012] [Accepted: 01/25/2012] [Indexed: 11/25/2022]
Abstract
In the competition for niches in natural resources, Pseudomonas aeruginosa utilizes the type VI secretion system to inject the toxic protein effector Tse2 into bacteria on cell-cell contact. The cytoplasm toxin immunity protein Tsi2 can neutralize Tse2 by physical interaction with the toxin, providing essential protection from toxin activity. Except for orthologues in P. aeruginosa, Tsi2 antitoxin does not share detectable sequence homology with known proteins in public databases. The mechanism underlying toxin neutralization by Tsi2 remains unknown. We report here the crystal structure of Tsi2 at 2.28 Å resolution. Our structural and biophysical analyses demonstrate that the antitoxin adopts a previously unobserved superhelical conformation. Tsi2 is highly thermostable in the absence of the toxin in solution. Tsi2 assembles a dimer with 2-fold rotational symmetry, similar to that observed in other toxin-antitoxin systems. Dimerization is essential for the stable folding of Tsi2.
Collapse
Affiliation(s)
- Tingting Zou
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Beijing 100730, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hayes F, Van Melderen L. Toxins-antitoxins: diversity, evolution and function. Crit Rev Biochem Mol Biol 2011; 46:386-408. [PMID: 21819231 DOI: 10.3109/10409238.2011.600437] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genes for toxin-antitoxin (TA) complexes are widespread in prokaryote genomes, and species frequently possess tens of plasmid and chromosomal TA loci. The complexes are categorized into three types based on genetic organization and mode of action. The toxins universally are proteins directed against specific intracellular targets, whereas the antitoxins are either proteins or small RNAs that neutralize the toxin or inhibit toxin synthesis. Within the three types of complex, there has been extensive evolutionary shuffling of toxin and antitoxin genes leading to considerable diversity in TA combinations. The intracellular targets of the protein toxins similarly are varied. Numerous toxins, many of which are sequence-specific endoribonucleases, dampen protein synthesis levels in response to a range of stress and nutritional stimuli. Key resources are conserved as a result ensuring the survival of individual cells and therefore the bacterial population. The toxin effects generally are transient and reversible permitting a set of dynamic, tunable responses that reflect environmental conditions. Moreover, by harboring multiple toxins that intercede in protein synthesis in response to different physiological cues, bacteria potentially sense an assortment of metabolic perturbations that are channeled through different TA complexes. Other toxins interfere with the action of topoisomersases, cell wall assembly, or cytoskeletal structures. TAs also play important roles in bacterial persistence, biofilm formation and multidrug tolerance, and have considerable potential both as new components of the genetic toolbox and as targets for novel antibacterial drugs.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, UK.
| | | |
Collapse
|
29
|
Wang X, Kim Y, Hoon Hong S, Ma Q, Brown BL, Pu M, Tarone AM, Benedik MJ, Peti W, Page R, Wood TK. Antitoxin MqsA helps mediate the bacterial general stress response. Nat Chem Biol 2011; 7:359-66. [PMID: 21516113 PMCID: PMC3097263 DOI: 10.1038/nchembio.560] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 02/10/2011] [Indexed: 01/19/2023]
Abstract
Although it is well recognized that bacteria respond to environmental stress through global networks, the mechanism by which stress is relayed to the interior of the cell is poorly understood. Here we show that enigmatic toxin-antitoxin systems are vital in mediating the environmental stress response. Specifically, the antitoxin MqsA represses rpoS, which encodes the master regulator of stress. Repression of rpoS by MqsA reduces the concentration of the internal messenger 3,5-cyclic diguanylic acid, leading to increased motility and decreased biofilm formation. Furthermore, the repression of rpoS by MqsA decreases oxidative stress resistance via catalase activity. Upon oxidative stress, MqsA is rapidly degraded by Lon protease, resulting in induction of rpoS. Hence, we show that external stress alters gene regulation controlled by toxin-antitoxin systems, such that the degradation of antitoxins during stress leads to a switch from the planktonic state (high motility) to the biofilm state (low motility).
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Chemical Engineering, Texas A & M University, College Station, Texas 77843-3122
| | - Younghoon Kim
- Department of Chemical Engineering, Texas A & M University, College Station, Texas 77843-3122
| | - Seok Hoon Hong
- Department of Chemical Engineering, Texas A & M University, College Station, Texas 77843-3122
| | - Qun Ma
- Department of Chemical Engineering, Texas A & M University, College Station, Texas 77843-3122
| | - Breann L. Brown
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912
| | - Mingming Pu
- Department of Chemical Engineering, Texas A & M University, College Station, Texas 77843-3122
| | - Aaron M. Tarone
- Department of Entomology, Texas A & M University, College Station, Texas 77843-3122
| | - Michael J. Benedik
- Department of Biology, Texas A & M University, College Station, Texas 77843-3122
| | - Wolfgang Peti
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912
| | - Rebecca Page
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Thomas K. Wood
- Department of Chemical Engineering, Texas A & M University, College Station, Texas 77843-3122
- Department of Biology, Texas A & M University, College Station, Texas 77843-3122
| |
Collapse
|
30
|
The Escherichia coli Extracellular Death Factor EDF Induces the Endoribonucleolytic Activities of the Toxins MazF and ChpBK. Mol Cell 2011; 41:625-35. [DOI: 10.1016/j.molcel.2011.02.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 10/17/2010] [Accepted: 12/24/2010] [Indexed: 01/15/2023]
|
31
|
Han KD, Matsuura A, Ahn HC, Kwon AR, Min YH, Park HJ, Won HS, Park SJ, Kim DY, Lee BJ. Functional identification of toxin-antitoxin molecules from Helicobacter pylori 26695 and structural elucidation of the molecular interactions. J Biol Chem 2011; 286:4842-53. [PMID: 21123184 PMCID: PMC3039379 DOI: 10.1074/jbc.m109.097840] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 11/02/2010] [Indexed: 01/15/2023] Open
Abstract
Bacterial toxin-antitoxin (TA) systems are associated with many important cellular processes including antibiotic resistance and microorganism virulence. Here, we identify and structurally characterize TA molecules from the gastric pathogen, Helicobacter pylori. The HP0894 protein had been previously suggested, through our structural genomics approach, to be a putative toxin molecule. In this study, the intrinsic RNase activity and the bacterial cell growth-arresting activity of HP0894 were established. The RNA-binding surface was identified at three residue clusters: (Lys(8) and Ser(9)), (Lys(50)-Lys(54) and Glu(58)), and (Arg(80) and His(84)-Phe(88)). In particular, the -UA- and -CA- sequences in RNA were preferentially cleaved by HP0894, and residues Lys(52), Trp(53), and Ser(85)-Lys(87) were observed to be the main contributors to sequence recognition. The action of HP0894 could be inhibited by the HP0895 protein, and the HP0894-HP0895 complex formed an oligomer with a binding stoichiometry of 1:1. The N and C termini of HP0894 constituted the binding sites to HP0895. In contrast, the unstructured C-terminal region of HP0895 was responsible for binding to HP0894 and underwent a conformational change in the process. Finally, DNA binding activity was observed for both HP0895 and the HP0894-0895 complex but not for HP0894 alone. Taken together, it is concluded that the HP0894-HP0895 protein couple is a TA system in H. pylori, where HP0894 is a toxin with an RNase function, whereas HP0895 is an antitoxin functioning by binding to both the toxin and DNA.
Collapse
Affiliation(s)
- Kyung-Doo Han
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Kwanak-Gu, Seoul 151-742, Korea
| | - Atsushi Matsuura
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Kwanak-Gu, Seoul 151-742, Korea
| | - Hee-Chul Ahn
- the Advanced Analysis Center, Korea Institute of Science and Technology, Seoungbuk-gu, Seoul 136-791, Korea
| | - Ae-Ran Kwon
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Kwanak-Gu, Seoul 151-742, Korea
- the Department of Herbal Skin Care, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 712-715, Korea
| | - Yu-Hong Min
- the Department of Herbal Skin Care, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 712-715, Korea
| | - Hyo-Ju Park
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Kwanak-Gu, Seoul 151-742, Korea
| | - Hyung-Sik Won
- the School of Medicine, Konkuk University, Chungju, Chungcheongbuk-do 380-701, Korea
| | - Sung-Jean Park
- the Graduate School of Medicine, Gachon University School of Medicine and Science, Yeonsu-gu, Incheon 406-799, Korea, and
| | - Do-Young Kim
- Davidson College, Davidson, North Carolina 28035
| | - Bong-Jin Lee
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Kwanak-Gu, Seoul 151-742, Korea
| |
Collapse
|
32
|
Kroll J, Klinter S, Schneider C, Voss I, Steinbüchel A. Plasmid addiction systems: perspectives and applications in biotechnology. Microb Biotechnol 2010; 3:634-57. [PMID: 21255361 PMCID: PMC3815339 DOI: 10.1111/j.1751-7915.2010.00170.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/17/2010] [Indexed: 11/26/2022] Open
Abstract
Biotechnical production processes often operate with plasmid-based expression systems in well-established prokaryotic and eukaryotic hosts such as Escherichia coli or Saccharomyces cerevisiae, respectively. Genetically engineered organisms produce important chemicals, biopolymers, biofuels and high-value proteins like insulin. In those bioprocesses plasmids in recombinant hosts have an essential impact on productivity. Plasmid-free cells lead to losses in the entire product recovery and decrease the profitability of the whole process. Use of antibiotics in industrial fermentations is not an applicable option to maintain plasmid stability. Especially in pharmaceutical or GMP-based fermentation processes, deployed antibiotics must be inactivated and removed. Several plasmid addiction systems (PAS) were described in the literature. However, not every system has reached a full applicable state. This review compares most known addiction systems and is focusing on biotechnical applications.
Collapse
Affiliation(s)
- Jens Kroll
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
33
|
Diago-Navarro E, Hernandez-Arriaga AM, López-Villarejo J, Muñoz-Gómez AJ, Kamphuis MB, Boelens R, Lemonnier M, Díaz-Orejas R. parD toxin-antitoxin system of plasmid R1 - basic contributions, biotechnological applications and relationships with closely-related toxin-antitoxin systems. FEBS J 2010; 277:3097-117. [DOI: 10.1111/j.1742-4658.2010.07722.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Prozorov AA, Danilenko VN. Toxin-antitoxin systems in bacteria: Apoptotic tools or metabolic regulators? Microbiology (Reading) 2010. [DOI: 10.1134/s0026261710020013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Neira JL, Contreras LM, de los Paños OR, Sánchez-Hidalgo M, Martínez-Bueno M, Maqueda M, Rico M. Structural characterisation of the natively unfolded enterocin EJ97. Protein Eng Des Sel 2010; 23:507-18. [PMID: 20385607 DOI: 10.1093/protein/gzq020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteriocins belong to the wide variety of antimicrobial ribosomal peptides synthesised by bacteria. Enterococci are Gram-positive, catalase-negative bacteria that produce lactic acid as the major end product of glucose fermentation. Many enterococcal strains produce bacteriocins, named enterocins. We describe in this work, the structural characterisation of the 44 residues-long enterocin EJ97, produced by Enterococcus faecalis EJ97. To this end, we have used a combined theoretical and experimental approach. First, we have characterised experimentally the conformational properties of EJ97 in solution under different conditions by using a number of spectroscopic techniques, namely fluorescence, CD, FTIR and NMR. Then, we have used several bioinformatic tools as an aid to complement the experimental information about the conformational properties of EJ97. We have shown that EJ97 is monomeric in aqueous solution and that it appears to be chiefly unfolded, save some flickering helical- or turn-like structures, probably stabilised by hydrophobic clustering. Accordingly, EJ97 does not show a cooperative sigmoidal transition when heated or upon addition of GdmCl. These conformational features are essentially pH-independent, as shown by NMR assignments at pHs 5.9 and 7.0. The computational results were puzzling, since some algorithms revealed the natively unfolded character of EJ97 (FoldIndex, the mean scaled hydropathy), whereas some others suggested the presence of ordered structure in its central region (PONDR, RONN and IUPRED). A future challenge is to produce much more experimental results to aid the development of accurate software tools for predicting disorder in proteins.
Collapse
Affiliation(s)
- José L Neira
- Instituto de Biología Molecular y Celular, Edificio Torregaitán, 50009 Zaragoza, Spain.
| | | | | | | | | | | | | |
Collapse
|
36
|
A new member of the ribbon-helix-helix transcription factor superfamily from the plant pathogen Xanthomonas axonopodis pv. citri. J Struct Biol 2010; 170:21-31. [DOI: 10.1016/j.jsb.2009.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 11/11/2009] [Accepted: 12/22/2009] [Indexed: 11/19/2022]
|
37
|
Kim Y, Wang X, Zhang XS, Grigoriu S, Page R, Peti W, Wood TK. Escherichia coli toxin/antitoxin pair MqsR/MqsA regulate toxin CspD. Environ Microbiol 2010; 12:1105-21. [PMID: 20105222 DOI: 10.1111/j.1462-2920.2009.02147.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previously we identified that the Escherichia coli protein MqsR (YgiU) functions as a toxin and that it is involved in the regulation of motility by quorum sensing signal autoinducer-2 (AI-2). Furthermore, MqsR is directly associated with biofilm development and is linked to the development of persister cells. Here we show that MqsR and MqsA (YgiT) are a toxin/antitoxin (TA) pair, which, in significant difference to other TA pairs, regulates additional loci besides its own. We have recently identified that MqsR functions as an RNase. However, using three sets of whole-transcriptome studies and two nickel-enrichment DNA binding microarrays coupled with cell survival studies in which MqsR was overproduced in isogenic mutants, we identified eight genes (cspD, clpX, clpP, lon, yfjZ, relB, relE and hokA) that are involved in a mode of MqsR toxicity in addition to its RNase activity. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) showed that (i) the MqsR/MqsA complex (and MqsA alone) represses the toxin gene cspD, (ii) MqsR overproduction induces cspD, (iii) stress induces cspD, and (iv) stress fails to induce cspD when MqsR/MqsA are overproduced or when mqsRA is deleted. Electrophoretic mobility shift assays show that the MqsA/MqsR complex binds the promoter of cspD. In addition, proteases Lon and ClpXP are necessary for MqsR toxicity. Together, these results indicate the MqsR/MqsA complex represses cspD which may be derepressed by titrating MqsA with MqsR or by degrading MqsA via stress conditions through proteases Lon and ClpXP. Hence, we demonstrate that the MqsR/MqsA TA system controls cell physiology via its own toxicity as well as through its regulation of another toxin, CspD.
Collapse
Affiliation(s)
- Younghoon Kim
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Kim Y, Wood TK. Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochem Biophys Res Commun 2010; 391:209-13. [PMID: 19909729 PMCID: PMC2812665 DOI: 10.1016/j.bbrc.2009.11.033] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 11/30/2022]
Abstract
Persisters are cells which evade stresses like antibiotics and which are characterized by reduced metabolism and a lack of genetic alterations required to achieve this state. We showed previously that MqsR and MqsA of Escherichia coli are a toxin-antitoxin pair that influence cell physiology (e.g., biofilm formation and motility) via RNase activity as well as through regulation of toxin CspD. Here, we show that deletion of the mqsRA locus decreases persister cell formation and, consistent with this result, over production of MqsR increases persister cell formation. Furthermore, toxins Hha, CspD, and HokA increase persister cell formation. In addition, by overproducing MqsR in a series of isogenic mutants, we show that Hha and CspD are necessary for persister cell formation via MqsR overexpression. Surprisingly, Hfq, a small RNA chaperone, decreases persistence. A whole-transcriptome study shows that Hfq induces transport-related genes (opp genes and dppA), outer membrane protein-related genes (ybfM and ybfN), toxins (hha), and proteases (clpX, clpP, and lon). Taken together, these results indicate that toxins CspD, Hha, and HokA influence persister cell formation via MqsR and that Hfq plays an important role in the regulation of persister cell formation via regulation of transport or outer membrane proteins OppA and YbfM.
Collapse
Affiliation(s)
- Younghoon Kim
- Department of Chemical Engineering, Texas A & M University, College Station, Texas 77843-3122
| | - Thomas K. Wood
- Department of Chemical Engineering, Texas A & M University, College Station, Texas 77843-3122
| |
Collapse
|
39
|
Proteolytic regulation of toxin-antitoxin systems by ClpPC in Staphylococcus aureus. J Bacteriol 2009; 192:1416-22. [PMID: 20038589 DOI: 10.1128/jb.00233-09] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial toxin-antitoxin (TA) systems typically consist of a small, labile antitoxin that inactivates a specific longer-lived toxin. In Escherichia coli, such antitoxins are proteolytically regulated by the ATP-dependent proteases Lon and ClpP. Under normal conditions, antitoxin synthesis is sufficient to replace this loss from proteolysis, and the bacterium remains protected from the toxin. However, if TA production is interrupted, antitoxin levels decrease, and the cognate toxin is free to inhibit the specific cellular component, such as mRNA, DnaB, or gyrase. To date, antitoxin degradation has been studied only in E. coli, so it remains unclear whether similar mechanisms of regulation exist in other organisms. To address this, we followed antitoxin levels over time for the three known TA systems of the major human pathogen Staphylococcus aureus, mazEF, axe1-txe1, and axe2-txe2. We observed that the antitoxins of these systems, MazE(sa), Axe1, and Axe2, respectively, were all degraded rapidly (half-life [t(1/2)], approximately 18 min) at rates notably higher than those of their E. coli counterparts, such as MazE (t(1/2), approximately 30 to 60 min). Furthermore, when S. aureus strains deficient for various proteolytic systems were examined for changes in the half-lives of these antitoxins, only strains with clpC or clpP deletions showed increased stability of the molecules. From these studies, we concluded that ClpPC serves as the functional unit for the degradation of all known antitoxins in S. aureus.
Collapse
|
40
|
Kolodkin-Gal I, Verdiger R, Shlosberg-Fedida A, Engelberg-Kulka H. A differential effect of E. coli toxin-antitoxin systems on cell death in liquid media and biofilm formation. PLoS One 2009; 4:e6785. [PMID: 19707553 PMCID: PMC2727947 DOI: 10.1371/journal.pone.0006785] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 07/24/2009] [Indexed: 11/17/2022] Open
Abstract
Toxin-antitoxin (TA) modules are gene pairs specifying for a toxin and its antitoxin and are found on the chromosomes of many bacteria including pathogens. Here we report how each of five such TA systems in E. coli affect bacterial cell death differently in liquid media and during biofilm formation. Of all these systems, only the TA system mazEF mediated cell death both in liquid media and during biofilm formation. At the other extreme, as our results have revealed here, the TA system dinJ-YafQ is unique in that it is involved only in the death process during biofilm formation. Cell death governed by mazEF and dinJ-YafQ seems to participate in biofilm formation through a novel mechanism.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Department of Molecular Biology, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| | - Reut Verdiger
- Department of Molecular Biology, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| | - Ayalla Shlosberg-Fedida
- Department of Molecular Biology, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| | - Hanna Engelberg-Kulka
- Department of Molecular Biology, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
41
|
Zhang Y, Inouye M. The inhibitory mechanism of protein synthesis by YoeB, an Escherichia coli toxin. J Biol Chem 2009; 284:6627-38. [PMID: 19124462 DOI: 10.1074/jbc.m808779200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
YoeB is a toxin encoded by the yefM-yoeB antitoxin-toxin operon in the Escherichia coli genome. Here we show that YoeB, a highly potent protein synthesis inhibitor, specifically blocks translation initiation. In in vivo primer extension experiments using two different mRNAs, a major band was detected after YoeB induction at three bases downstream of the initiation codon at 2.5 min. An identical band was also detected in in vitro toeprinting experiments after the addition of YoeB to the reaction mixtures containing 70 S ribosomes and the same mRNAs, even in the absence of tRNA(f)(Met). Notably, this band was not detected in the presence of YoeB alone, indicating that YoeB by itself does not have endoribonuclease activity under the conditions used. The 70 S ribosomes increased upon YoeB induction, and YoeB was found to be specifically associated with 50 S subunits. Using tetracycline and hygromycin B, we demonstrated that YoeB binds to the 50 S ribosomal subunit in 70 S ribosomes and interacts with the A site leading to mRNA cleavage at this site. As a result, the 3'-end portion of the mRNA was released from ribosomes, and translation initiation was effectively inhibited. These results demonstrate that YoeB primarily inhibits translation initiation.
Collapse
Affiliation(s)
- Yonglong Zhang
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
42
|
Yamaguchi Y, Inouye M. mRNA interferases, sequence-specific endoribonucleases from the toxin-antitoxin systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:467-500. [PMID: 19215780 DOI: 10.1016/s0079-6603(08)00812-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Escherichia coli contains a large number of suicide or toxin genes, whose expression leads to cell growth arrest and eventual cell death. One such toxin, MazF, is an ACA-specific endoribonuclease, termed "mRNA interferase."E. coli contains other mRNA interferases with different sequence specificities, which are considered to play important roles in growth regulation under stress conditions, and also in eliminating stress-damaged cells from a population. Recently, MazF homologues with 5-base recognition sequences have been identified, for example, those from Mycobacterium tuberculosis. These sequences are significantly underrepresented in the genes for protein families playing a role in the immunity and pathogenesis of M. tuberculosis. An mRNA interferase in Myxococcus xanthus is essential for programmed cell death during fruiting body formation. We propose that mRNA interferases play roles not only in cell growth regulation and programmed cell death, but also in regulation of specific gene expression (either positively or negatively) in bacteria.
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
43
|
Influence of operator site geometry on transcriptional control by the YefM-YoeB toxin-antitoxin complex. J Bacteriol 2008; 191:762-72. [PMID: 19028895 DOI: 10.1128/jb.01331-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YefM-YoeB is among the most prevalent and well-characterized toxin-antitoxin complexes. YoeB toxin is an endoribonuclease whose activity is inhibited by YefM antitoxin. The regions 5' of yefM-yoeB in diverse bacteria possess conserved sequence motifs that mediate transcriptional autorepression. The yefM-yoeB operator site arrangement is exemplified in Escherichia coli: a pair of palindromes with core hexamer motifs and a center-to-center distance of 12 bp overlap the yefM-yoeB promoter. YefM is an autorepressor that initially recognizes a long palindrome containing the core hexamer, followed by binding to a short repeat. YoeB corepressor greatly enhances the YefM-operator interaction. Scanning mutagenesis demonstrated that the short repeat is crucial for correct interaction of YefM-YoeB with the operator site in vivo and in vitro. Moreover, altering the relative positions of the two palindromes on the DNA helix abrogated YefM-YoeB cooperative interactions with the repeats: complex binding to the long repeat was maintained but was perturbed to the short repeat. Although YefM lacks a canonical DNA binding motif, dual conserved arginine residues embedded in a basic patch of the protein are crucial for operator recognition. Deciphering the molecular basis of toxin-antitoxin transcriptional control will provide key insights into toxin-antitoxin activation and function.
Collapse
|
44
|
Kumar P, Issac B, Dodson EJ, Turkenburg JP, Mande SC. Crystal Structure of Mycobacterium tuberculosis YefM Antitoxin Reveals that it is Not an Intrinsically Unstructured Protein. J Mol Biol 2008; 383:482-93. [DOI: 10.1016/j.jmb.2008.08.067] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 08/17/2008] [Accepted: 08/21/2008] [Indexed: 10/21/2022]
|
45
|
Cheng L, Lin H, Fan X, Qiu S, Sun T, Li TY, Zhang Y. A novel toxin-antitoxin operon talA/B from the Gram-positive bacterium Leifsonia xyli subsp. cynodontis. FEBS Lett 2008; 582:3211-6. [PMID: 18722371 DOI: 10.1016/j.febslet.2008.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/31/2008] [Accepted: 08/03/2008] [Indexed: 10/21/2022]
Abstract
Here we report a toxin-antitoxin (TA) operon talAB identified from the Gram-positive bacterium Leifsonia xyli subsp. cynodontis. It is shown that talB encodes a broad-host cytotoxin functioning in different Gram-positive bacteria, while talA encodes its antidote. TalA and TalB form different hetero-oligomers in vitro; these hetero-oligomers, but not the antitoxin TalA, strongly bind to the talAB promoter region containing two inverted repeats. This represents a new mechanism of binding the promoter of a TA operon by the toxin and antitoxin complexes.
Collapse
Affiliation(s)
- Lin Cheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Kumar N, Shukla S, Kumar S, Suryawanshi A, Chaudhry U, Ramachandran S, Maiti S. Intrinsically disordered protein from a pathogenic mesophile Mycobacterium tuberculosis adopts structured conformation at high temperature. Proteins 2008; 71:1123-33. [PMID: 18004752 DOI: 10.1002/prot.21798] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Compared to eukaryotes, the occurrence of "intrinsically disordered" or "natively unfolded" proteins in prokaryotes has not been explored extensively. Here, we report the occurrence of an intrinsically disordered protein from the mesophilic human pathogen Mycobacterium tuberculosis. The Histidine-tagged recombinant Rv3221c biotin-binding protein is intrinsically disordered at ambient and physiological growth temperatures as revealed by circular dichroism and Fourier transform infrared (FTIR) spectroscopic studies. However, an increase in temperature induces a transition from disordered to structured state with a folding temperature of approximately 53 degrees C. Addition of a structure inducing solvent trifluoroethanol (TFE) causes the protein to fold at lower temperatures suggesting that TFE fosters hydrophobic interactions, which drives protein folding. Differential Scanning Calorimetry studies revealed that folding is endothermic and the transition from a disordered to structured state is continuous (higher-order), implying existence of intermediates during folding process. Secondary structure analysis revealed that the protein has propensity to form beta-sheets. This is in conformity with FTIR spectrum that showed an absorption peak at wave number of 1636 cm(-1), indicative of disordered beta-sheet conformation in the native state. These data suggest that although Rv3221c may be disordered under ambient or optimal growth temperature conditions, it has the potential to fold into ordered structure at high temperature driven by increased hydrophobic interactions. In contrast to the generally known behavior of other intrinsically disordered proteins folding at high temperature, Rv3221c does not appear to oligomerize or aggregate as revealed through numerous experiments including Congo red binding, Thioflavin T-binding, turbidity measurements, and examining molar ellipticity as a function of protein concentration. The amino acid composition of Rv3221c reveals that it has 24% charged and 54.9% hydrophobic amino acid residues. In this respect, this protein, although belonging to the class of intrinsically disordered proteins, has distinct features. The intrinsically disordered state and the biotin-binding feature of this protein suggest that it may participate in many biochemical processes requiring biotin as a cofactor and adopt suitable conformations upon binding other folded targets.
Collapse
Affiliation(s)
- Niti Kumar
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Mall Road, Delhi 110 007, India
| | | | | | | | | | | | | |
Collapse
|
47
|
Biophysical characterization of the unstructured cytoplasmic domain of the human neuronal adhesion protein neuroligin 3. Biophys J 2008; 95:1928-44. [PMID: 18456828 DOI: 10.1529/biophysj.107.126995] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cholinesterase-like adhesion molecules (CLAMs) are a family of neuronal cell adhesion molecules with important roles in synaptogenesis, and in maintaining structural and functional integrity of the nervous system. Our earlier study on the cytoplasmic domain of one of these CLAMs, the Drosophila protein, gliotactin, showed that it is intrinsically unstructured in vitro. Bioinformatic analysis suggested that the cytoplasmic domains of other CLAMs are also intrinsically unstructured, even though they bear no sequence homology to each other or to any known protein. In this study, we overexpress and purify the cytoplasmic domain of human neuroligin 3, notwithstanding its high sensitivity to the Escherichia coli endogenous proteases that cause its rapid degradation. Using bioinformatic analysis, sensitivity to proteases, size exclusion chromatography, fluorescence correlation spectroscopy, analytical ultracentrifugation, small angle x-ray scattering, circular dichroism, electron spin resonance, and nuclear magnetic resonance, we show that the cytoplasmic domain of human neuroligin 3 is intrinsically unstructured. However, several of these techniques indicate that it is not fully extended, but becomes significantly more extended under denaturing conditions.
Collapse
|
48
|
Oberer M, Zangger K, Gruber K, Keller W. The solution structure of ParD, the antidote of the ParDE toxin antitoxin module, provides the structural basis for DNA and toxin binding. Protein Sci 2007; 16:1676-88. [PMID: 17656583 PMCID: PMC2203376 DOI: 10.1110/ps.062680707] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ParD is the antidote of the plasmid-encoded toxin-antitoxin (TA) system ParD-ParE. These modules rely on differential stabilities of a highly expressed but labile antidote and a stable toxin expressed from one operon. Consequently, loss of the coding plasmid results in loss of the protective antidote and poisoning of the cell. The antidote protein usually also exhibits an autoregulatory function of the operon. In this paper, we present the solution structure of ParD. The repressor activity of ParD is mediated by the N-terminal half of the protein, which adopts a ribbon-helix-helix (RHH) fold. The C-terminal half of the protein is unstructured in the absence of its cognate binding partner ParE. Based on homology with other RHH proteins, we present a model of the ParD-DNA interaction, with the antiparallel beta-strand being inserted into the major groove of DNA. The fusion of the N-terminal DNA-binding RHH motif to the toxin-binding unstructured C-terminal domain is discussed in its evolutionary context.
Collapse
Affiliation(s)
- Monika Oberer
- Institut für Chemie, Arbeitsgruppe Strukturbiologie, Karl-Franzens-Universität Graz, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
49
|
Cherny I, Overgaard M, Borch J, Bram Y, Gerdes K, Gazit E. Structural and thermodynamic characterization of the Escherichia coli RelBE toxin-antitoxin system: indication for a functional role of differential stability. Biochemistry 2007; 46:12152-63. [PMID: 17924660 DOI: 10.1021/bi701037e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The RelE and RelB proteins constitute the RNA interferase (toxin) and its cognate inhibitor (antitoxin) components of the Escherichia coli relBE toxin-antitoxin system. Despite the well-described functionality and physiological activity of this system in E. coli, no structural study was performed on the folding and stability of the protein pair in solution. Here we structurally and thermodynamically characterize the RelBE system components from E. coli in solution, both separately and in their complexed state. The RelB antitoxin, an alpha-helical protein according to circular dichroism and infrared spectroscopy, forms oligomers in solution, exhibits high thermostability with a TM of 58.5 degrees C, has a considerable heat resistance, and has high unfolding reversibility. In contrast, the RelE toxin includes a large portion of antiparallel beta-sheets, displays lower thermostability with a TM of 52.5 degrees C, and exhibits exceptional sensitivity to heat. Complex formation, accompanied by a structural transition, leads to a 12 degrees C increase in the TM and substantial heat resistance. Moreover, in vivo interaction and protein footprint experiments indicate that the C-terminal part of RelB is responsible for RelB-RelE interaction, being protease sensitive in its free state, while it becomes protected from proteolysis when complexed with RelE. Overall, our findings support the notion that RelB lacks a well-organized hydrophobic core in solution whereas RelE is a well-folded protein. Furthermore, our results support that RelB protein from E. coli is similar to ParD and CcdA antitoxins in both fold and thermodynamic properties. The differential folding state of the proteins is discussed in the context of their physiological activities.
Collapse
Affiliation(s)
- Izhack Cherny
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
50
|
Motiejūnaite R, Armalyte J, Markuckas A, Suziedeliene E. Escherichia coli dinJ-yafQ genes act as a toxin-antitoxin module. FEMS Microbiol Lett 2007; 268:112-9. [PMID: 17263853 DOI: 10.1111/j.1574-6968.2006.00563.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial toxin-antitoxin (TA) systems are operons that code for a stable toxic protein and a labile antitoxin. TA modules are widespread on the chromosomes of free-living Bacteria and Archaea, where they presumably act as stress response elements. The chromosome of Escherichia coli K-12 encodes four known TA pairs, as well as the dinJ-yafQ operon, which is hypothesized to be a TA module based on operon organization similar to known TA genes. Induction of YafQ inhibited cell growth, but its toxicity was counteracted by coexpression of dinJ cloned on a separate plasmid. YafQ(His)(6) and DinJ proteins coeluted in Ni(2+)-affinity and gel filtration chromatography, implying the formation of a specific and stable YafQ-DinJ protein complex with an estimated molecular mass of c. 37.3 kDa. Induction of YafQ reduced protein synthesis up to 40% as judged by incorporation of [(35)S]-methionine, but did not influence the rates of DNA and RNA synthesis. Structure modelling of E. coli YafQ revealed its structural relationship with bacterial toxins of known structure suggesting that it might act as a sequence-specific mRNA endoribonuclease.
Collapse
Affiliation(s)
- Rūta Motiejūnaite
- Department of Biochemistry and Biophysics, Faculty of Natural Sciences of Vilnius University, Vilnius, Lithuania
| | | | | | | |
Collapse
|