1
|
García-Guerrero AE, Marvin RG, Blackwell AM, Sigala PA. Biogenesis of Cytochromes c and c1 in the Electron Transport Chain of Malaria Parasites. ACS Infect Dis 2025; 11:813-826. [PMID: 39481007 PMCID: PMC11991887 DOI: 10.1021/acsinfecdis.4c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Plasmodium malaria parasites retain an essential mitochondrional electron transport chain (ETC) that is critical for growth within humans and mosquitoes and is a key antimalarial drug target. ETC function requires cytochromes c and c1, which are unusual among heme proteins due to their covalent binding to heme via conserved CXXCH sequence motifs. Heme attachment to these proteins in most eukaryotes requires the mitochondrial enzyme holocytochrome c synthase (HCCS) that binds heme and the apo cytochrome to facilitate the biogenesis of the mature cytochrome c or c1. Although humans encode a single bifunctional HCCS that attaches heme to both proteins, Plasmodium parasites are like yeast and encode two separate HCCS homologues thought to be specific for heme attachment to cyt c (HCCS) or cyt c1 (HCC1S). To test the function and specificity of Plasmodium falciparum HCCS and HCC1S, we used CRISPR/Cas9 to tag both genes for conditional expression. HCC1S knockdown selectively impaired cyt c1 biogenesis and caused lethal ETC dysfunction that was not reversed by the overexpression of HCCS. Knockdown of HCCS caused a more modest growth defect but strongly sensitized parasites to mitochondrial depolarization by proguanil, revealing key defects in ETC function. These results and prior heterologous studies in Escherichia coli of cyt c hemylation by P. falciparum HCCS and HCC1S strongly suggest that both homologues are essential for mitochondrial ETC function and have distinct specificities for the biogenesis of cyt c and c1, respectively, in parasites. This study lays a foundation to develop novel strategies to selectively block ETC function in malaria parasites.
Collapse
Affiliation(s)
- Aldo E. García-Guerrero
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Rebecca G. Marvin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| |
Collapse
|
2
|
Childs PL, Lowder EP, Mendez DL, Babbitt SE, Martinie A, Huynh JQ, Kranz RG. Structural Insights into Mechanisms Underlying Mitochondrial and Bacterial Cytochrome c Synthases. Biomolecules 2024; 14:1483. [PMID: 39766190 PMCID: PMC11727520 DOI: 10.3390/biom14121483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 01/15/2025] Open
Abstract
Mitochondrial holocytochrome c synthase (HCCS) is an essential protein in assembling cytochrome c (cyt c) of the electron transport system. HCCS binds heme and covalently attaches the two vinyls of heme to two cysteine thiols of the cyt c CXXCH motif. Human HCCS recognizes both cyt c and cytochrome c1 of complex III (cytochrome bc1). HCCS is mutated in some human diseases and it has been investigated recombinantly by mutational, biochemical, and reconstitution studies in the past decade. Here, we employ structural prediction programs (e.g., AlphaFold 3) on HCCS and its two substrates, heme and cytochrome c. The results, when combined with spectroscopic and functional analyses of HCCS and variants, provide insights into the structural basis for heme binding, apocyt c binding, covalent attachment, and release of the holocyt c product. Results from in vitro reconstitution of purified human HCCS using cyt c and cyt c1 peptides as acceptors are consistent with the structural modeling of substrate binding. Reconstitution of HCCS and cyt c1 provides an approach to studying cyt c1 assembly, which has been refractile to recombinant in vivo reconstitution (unlike HCCS and cyt c). We propose a structural basis for release of the holocyt c product from HCCS based on in vitro studies and on cryoEM structures of the bacterial cyt c synthase (CcsBA) active site. We analyze the kinetoplastid mitochondrial synthase (KCCS), and hypothesize a molecular evolutionary path from mitochondrial endosymbiosis to the current HCCS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Robert G. Kranz
- Department of Biology, Washington University, St. Louis, MO 63146, USA; (P.L.C.); (E.P.L.); (D.L.M.); (S.E.B.); (A.M.); (J.Q.H.)
| |
Collapse
|
3
|
García-Guerrero AE, Marvin RG, Blackwell AM, Sigala PA. Biogenesis of cytochromes c and c 1 in the electron transport chain of malaria parasites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.575742. [PMID: 38352463 PMCID: PMC10862854 DOI: 10.1101/2024.02.01.575742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Plasmodium malaria parasites retain an essential mitochondrional electron transport chain (ETC) that is critical for growth within humans and mosquitoes and a key antimalarial drug target. ETC function requires cytochromes c and c 1 that are unusual among heme proteins due to their covalent binding to heme via conserved CXXCH sequence motifs. Heme attachment to these proteins in most eukaryotes requires the mitochondrial enzyme holocytochrome c synthase (HCCS) that binds heme and the apo cytochrome to facilitate biogenesis of the mature cytochrome c or c 1. Although humans encode a single bifunctional HCCS that attaches heme to both proteins, Plasmodium parasites are like yeast and encode two separate HCCS homologs thought to be specific for heme attachment to cyt c (HCCS) or cyt c 1 (HCC1S). To test the function and specificity of P. falciparum HCCS and HCC1S, we used CRISPR/Cas9 to tag both genes for conditional expression. HCC1S knockdown selectively impaired cyt c 1 biogenesis and caused lethal ETC dysfunction that was not reversed by over-expression of HCCS. Knockdown of HCCS caused a more modest growth defect but strongly sensitized parasites to mitochondrial depolarization by proguanil, revealing key defects in ETC function. These results and prior heterologous studies in E. coli of cyt c hemylation by P. falciparum HCCS and HCC1S strongly suggest that both homologs are essential for mitochondrial ETC function and have distinct specificities for biogenesis of cyt c and c 1, respectively, in parasites. This study lays a foundation to develop novel strategies to selectively block ETC function in malaria parasites.
Collapse
Affiliation(s)
- Aldo E. García-Guerrero
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Rebecca G. Marvin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| |
Collapse
|
4
|
Li H, Akella S, Engstler C, Omini JJ, Rodriguez M, Obata T, Carrie C, Cerutti H, Mower JP. Recurrent evolutionary switches of mitochondrial cytochrome c maturation systems in Archaeplastida. Nat Commun 2024; 15:1548. [PMID: 38378784 PMCID: PMC10879542 DOI: 10.1038/s41467-024-45813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Mitochondrial cytochrome c maturation (CCM) requires heme attachment via distinct pathways termed systems I and III. The mosaic distribution of these systems in Archaeplastida raises questions about the genetic mechanisms and evolutionary forces promoting repeated evolution. Here, we show a recurrent shift from ancestral system I to the eukaryotic-specific holocytochrome c synthase (HCCS) of system III in 11 archaeplastid lineages. Archaeplastid HCCS is sufficient to rescue mutants of yeast system III and Arabidopsis system I. Algal HCCS mutants exhibit impaired growth and respiration, and altered biochemical and metabolic profiles, likely resulting from deficient CCM and reduced cytochrome c-dependent respiratory activity. Our findings demonstrate that archaeplastid HCCS homologs function as system III components in the absence of system I. These results elucidate the evolutionary trajectory and functional divergence of CCM pathways in Archaeplastida, providing insight into the causes, mechanisms, and consequences of repeated cooption of an entire biological pathway.
Collapse
Affiliation(s)
- Huang Li
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Soujanya Akella
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Carina Engstler
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität München, D-82152, Planegg-Martinsried, Germany
| | - Joy J Omini
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Moira Rodriguez
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Toshihiro Obata
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Chris Carrie
- School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Heriberto Cerutti
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
5
|
Chen CL, Kang PT, Zhang L, Xiao K, Zweier JL, Chilian WM, Chen YR. Reperfusion mediates heme impairment with increased protein cysteine sulfonation of mitochondrial complex III in the post-ischemic heart. J Mol Cell Cardiol 2021; 161:23-38. [PMID: 34331972 PMCID: PMC8629835 DOI: 10.1016/j.yjmcc.2021.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022]
Abstract
A serious consequence of myocardial ischemia-reperfusion injury (I/R) is oxidative damage, which causes mitochondrial dysfunction. The cascading ROS can propagate and potentially induce heme bleaching and protein cysteine sulfonation (PrSO3H) of the mitochondrial electron transport chain. Herein we studied the mechanism of I/R-mediated irreversible oxidative injury of complex III in mitochondria from rat hearts subjected to 30-min of ischemia and 24-h of reperfusion in vivo. In the I/R region, the catalytic activity of complex III was significantly impaired. Spectroscopic analysis indicated that I/R mediated the destruction of hemes b and c + c1 in the mitochondria, supporting I/R-mediated complex III impairment. However, no significant impairment of complex III activity and heme damage were observed in mitochondria from the risk region of rat hearts subjected only to 30-min ischemia, despite a decreased state 3 respiration. In the I/R mitochondria, carbamidomethylated C122/C125 of cytochrome c1 via alkylating complex III with a down regulation of HCCS was exclusively detected, supporting I/R-mediated thioether defect of heme c1. LC-MS/MS analysis showed that I/R mitochondria had intensely increased complex III PrSO3H levels at the C236 ligand of the [2Fe2S] cluster of the Rieske iron‑sulfur protein (uqcrfs1), thus impairing the electron transport activity. MS analysis also indicated increased PrSO3H of the hinge protein at C65 and of cytochrome c1 at C140 and C220, which are confined in the intermembrane space. MS analysis also showed that I/R extensively enhanced the PrSO3H of the core 1 (uqcrc1) and core 2 (uqcrc2) subunits in the matrix compartment, thus supporting the conclusion that complex III releases ROS to both sides of the inner membrane during reperfusion. Analysis of ischemic mitochondria indicated a modest reduction from the basal level of complex III PrSO3H detected in the mitochondria of sham control hearts, suggesting that the physiologic hyperoxygenation and ROS overproduction during reperfusion mediated the enhancement of complex III PrSO3H. In conclusion, reperfusion-mediated heme damage with increased PrSO3H controls oxidative injury to complex III and aggravates mitochondrial dysfunction in the post-ischemic heart.
Collapse
Affiliation(s)
- Chwen-Lih Chen
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, United States of America
| | - Patrick T Kang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, United States of America
| | - Liwen Zhang
- Campus Chemical Instrument Center, Proteomics and Mass Spectrometry Facility, The Ohio State University, Columbus, OH 43210, United States of America
| | - Kunhong Xiao
- Department of Pharmacology and Chemical Biology and Biomedical Mass Spectrometry Center, University of Pittsburgh, PA 15261, United States of America
| | - Jay L Zweier
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, United States of America
| | - William M Chilian
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, United States of America
| | - Yeong-Renn Chen
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, United States of America.
| |
Collapse
|
6
|
Dietz JV, Fox JL, Khalimonchuk O. Down the Iron Path: Mitochondrial Iron Homeostasis and Beyond. Cells 2021; 10:cells10092198. [PMID: 34571846 PMCID: PMC8468894 DOI: 10.3390/cells10092198] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cellular iron homeostasis and mitochondrial iron homeostasis are interdependent. Mitochondria must import iron to form iron–sulfur clusters and heme, and to incorporate these cofactors along with iron ions into mitochondrial proteins that support essential functions, including cellular respiration. In turn, mitochondria supply the cell with heme and enable the biogenesis of cytosolic and nuclear proteins containing iron–sulfur clusters. Impairment in cellular or mitochondrial iron homeostasis is deleterious and can result in numerous human diseases. Due to its reactivity, iron is stored and trafficked through the body, intracellularly, and within mitochondria via carefully orchestrated processes. Here, we focus on describing the processes of and components involved in mitochondrial iron trafficking and storage, as well as mitochondrial iron–sulfur cluster biogenesis and heme biosynthesis. Recent findings and the most pressing topics for future research are highlighted.
Collapse
Affiliation(s)
- Jonathan V. Dietz
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
| | - Jennifer L. Fox
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA;
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Fred and Pamela Buffett Cancer Center, Omaha, NE 68198, USA
- Correspondence:
| |
Collapse
|
7
|
Indrieri A, Franco B. Linear Skin Defects with Multiple Congenital Anomalies (LSDMCA): An Unconventional Mitochondrial Disorder. Genes (Basel) 2021; 12:genes12020263. [PMID: 33670341 PMCID: PMC7918533 DOI: 10.3390/genes12020263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial disorders, although heterogeneous, are traditionally described as conditions characterized by encephalomyopathy, hypotonia, and progressive postnatal organ failure. Here, we provide a systematic review of Linear Skin Defects with Multiple Congenital Anomalies (LSDMCA), a rare, unconventional mitochondrial disorder which presents as a developmental disease; its main clinical features include microphthalmia with different degrees of severity, linear skin lesions, and central nervous system malformations. The molecular basis of this disorder has been elusive for several years. Mutations were eventually identified in three X-linked genes, i.e., HCCS, COX7B, and NDUFB11, which are all endowed with defined roles in the mitochondrial respiratory chain. A peculiar feature of this condition is its inheritance pattern: X-linked dominant male-lethal. Only female or XX male individuals can be observed, implying that nullisomy for these genes is incompatible with normal embryonic development in mammals. All three genes undergo X-inactivation that, according to our hypothesis, may contribute to the extreme variable expressivity observed in this condition. We propose that mitochondrial dysfunction should be considered as an underlying cause in developmental disorders. Moreover, LSDMCA should be taken into consideration by clinicians when dealing with patients with microphthalmia with or without associated skin phenotypes.
Collapse
Affiliation(s)
- Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy;
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 20090 Milan, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy;
- Medical Genetics, Department of Translational Medical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-1923-0615
| |
Collapse
|
8
|
Fernandez-Vizarra E, Zeviani M. Mitochondrial disorders of the OXPHOS system. FEBS Lett 2020; 595:1062-1106. [PMID: 33159691 DOI: 10.1002/1873-3468.13995] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/21/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are among the most frequent inborn errors of metabolism, their primary cause being the dysfunction of the oxidative phosphorylation system (OXPHOS). OXPHOS is composed of the electron transport chain (ETC), formed by four multimeric enzymes and two mobile electron carriers, plus an ATP synthase [also called complex V (cV)]. The ETC performs the redox reactions involved in cellular respiration while generating the proton motive force used by cV to synthesize ATP. OXPHOS biogenesis involves multiple steps, starting from the expression of genes encoded in physically separated genomes, namely the mitochondrial and nuclear DNA, to the coordinated assembly of components and cofactors building each individual complex and eventually the supercomplexes. The genetic cause underlying around half of the diagnosed mitochondrial disease cases is currently known. Many of these cases result from pathogenic variants in genes encoding structural subunits or additional factors directly involved in the assembly of the ETC complexes. Here, we review the historical and most recent findings concerning the clinical phenotypes and the molecular pathological mechanisms underlying this particular group of disorders.
Collapse
Affiliation(s)
- Erika Fernandez-Vizarra
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Massimo Zeviani
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Neurosciences, University of Padova, Italy
| |
Collapse
|
9
|
Swenson SA, Moore CM, Marcero JR, Medlock AE, Reddi AR, Khalimonchuk O. From Synthesis to Utilization: The Ins and Outs of Mitochondrial Heme. Cells 2020; 9:E579. [PMID: 32121449 PMCID: PMC7140478 DOI: 10.3390/cells9030579] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
Heme is a ubiquitous and essential iron containing metallo-organic cofactor required for virtually all aerobic life. Heme synthesis is initiated and completed in mitochondria, followed by certain covalent modifications and/or its delivery to apo-hemoproteins residing throughout the cell. While the biochemical aspects of heme biosynthetic reactions are well understood, the trafficking of newly synthesized heme-a highly reactive and inherently toxic compound-and its subsequent delivery to target proteins remain far from clear. In this review, we summarize current knowledge about heme biosynthesis and trafficking within and outside of the mitochondria.
Collapse
Affiliation(s)
| | - Courtney M. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Jason R. Marcero
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
- Augusta University/University of Georgia Medical Partnership, Athens, GA 30602, USA
| | - Amit R. Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Fred and Pamela Buffett Cancer Center, Omaha, NE 68105, USA
| |
Collapse
|
10
|
Barros MH, McStay GP. Modular biogenesis of mitochondrial respiratory complexes. Mitochondrion 2019; 50:94-114. [PMID: 31669617 DOI: 10.1016/j.mito.2019.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 10/10/2019] [Indexed: 11/29/2022]
Abstract
Mitochondrial function relies on the activity of oxidative phosphorylation to synthesise ATP and generate an electrochemical gradient across the inner mitochondrial membrane. These coupled processes are mediated by five multi-subunit complexes that reside in this inner membrane. These complexes are the product of both nuclear and mitochondrial gene products. Defects in the function or assembly of these complexes can lead to mitochondrial diseases due to deficits in energy production and mitochondrial functions. Appropriate biogenesis and function are mediated by a complex number of assembly factors that promote maturation of specific complex subunits to form the active oxidative phosphorylation complex. The understanding of the biogenesis of each complex has been informed by studies in both simple eukaryotes such as Saccharomyces cerevisiae and human patients with mitochondrial diseases. These studies reveal each complex assembles through a pathway using specific subunits and assembly factors to form kinetically distinct but related assembly modules. The current understanding of these complexes has embraced the revolutions in genomics and proteomics to further our knowledge on the impact of mitochondrial biology in genetics, medicine, and evolution.
Collapse
Affiliation(s)
- Mario H Barros
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil.
| | - Gavin P McStay
- Department of Biological Sciences, Staffordshire University, Stoke-on-Trent, United Kingdom.
| |
Collapse
|
11
|
Indrieri A, Carrella S, Romano A, Spaziano A, Marrocco E, Fernandez-Vizarra E, Barbato S, Pizzo M, Ezhova Y, Golia FM, Ciampi L, Tammaro R, Henao-Mejia J, Williams A, Flavell RA, De Leonibus E, Zeviani M, Surace EM, Banfi S, Franco B. miR-181a/b downregulation exerts a protective action on mitochondrial disease models. EMBO Mol Med 2019; 11:e8734. [PMID: 30979712 PMCID: PMC6505685 DOI: 10.15252/emmm.201708734] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial diseases (MDs) are a heterogeneous group of devastating and often fatal disorders due to defective oxidative phosphorylation. Despite the recent advances in mitochondrial medicine, effective therapies are still not available for these conditions. Here, we demonstrate that the microRNAs miR-181a and miR-181b (miR-181a/b) regulate key genes involved in mitochondrial biogenesis and function and that downregulation of these miRNAs enhances mitochondrial turnover in the retina through the coordinated activation of mitochondrial biogenesis and mitophagy. We thus tested the effect of miR-181a/b inactivation in different animal models of MDs, such as microphthalmia with linear skin lesions and Leber's hereditary optic neuropathy. We found that miR-181a/b downregulation strongly protects retinal neurons from cell death and significantly ameliorates the disease phenotype in all tested models. Altogether, our results demonstrate that miR-181a/b regulate mitochondrial homeostasis and that these miRNAs may be effective gene-independent therapeutic targets for MDs characterized by neuronal degeneration.
Collapse
Affiliation(s)
- Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
| | - Sabrina Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Caserta CE, Italy
| | - Alessia Romano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Elena Marrocco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Sara Barbato
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Mariateresa Pizzo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Yulia Ezhova
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Francesca M Golia
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Ludovica Ciampi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute of Cellular Biology and Neurobiology "ABT", CNR, Roma, Italy
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Enrico M Surace
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Caserta CE, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
12
|
Babbitt SE, Hsu J, Kranz RG. Molecular Basis Behind Inability of Mitochondrial Holocytochrome c Synthase to Mature Bacterial Cytochromes: DEFINING A CRITICAL ROLE FOR CYTOCHROME c α HELIX-1. J Biol Chem 2016; 291:17523-34. [PMID: 27387500 DOI: 10.1074/jbc.m116.741231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial holocytochrome c synthase (HCCS) is required for cytochrome c (cyt c) maturation and therefore respiration. HCCS efficiently attaches heme via two thioethers to CXXCH of mitochondrial but not bacterial cyt c even though they are functionally conserved. This inability is due to residues in the bacterial cyt c N terminus, but the molecular basis is unknown. Human cyts c with deletions of single residues in α helix-1, which mimic bacterial cyt c, are poorly matured by human HCCS. Focusing on ΔM13 cyt c, we co-purified this variant with HCCS, demonstrating that HCCS recognizes the bacterial-like cytochrome. Although an HCCS-WT cyt c complex contains two covalent links, HCCS-ΔM13 cyt c contains only one thioether attachment. Using multiple approaches, we show that the single attachment is to the second thiol of C(15)SQC(18)H, indicating that α helix-1 is required for positioning the first cysteine for covalent attachment, whereas the histidine of CXXCH positions the second cysteine. Modeling of the N-terminal structure suggested that the serine residue (of CSQCH) would be anchored where the first cysteine should be in ΔM13 cyt c An engineered cyt c with a CQCH motif in the ΔM13 background is matured at higher levels (2-3-fold), providing further evidence for α helix-1 positioning the first cysteine. Bacterial cyt c biogenesis pathways (Systems I and II) appear to recognize simply the CXXCH motif, not requiring α helix-1. Results here explain mechanistically how HCCS (System III) requires an extended region adjacent to CXXCH for maturation.
Collapse
Affiliation(s)
- Shalon E Babbitt
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Jennifer Hsu
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Robert G Kranz
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
| |
Collapse
|
13
|
Babbitt SE, Sutherland MC, San Francisco B, Mendez DL, Kranz RG. Mitochondrial cytochrome c biogenesis: no longer an enigma. Trends Biochem Sci 2015; 40:446-55. [PMID: 26073510 DOI: 10.1016/j.tibs.2015.05.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 12/31/2022]
Abstract
Cytochromes c (cyt c) and c1 are heme proteins that are essential for aerobic respiration. Release of cyt c from mitochondria is an important signal in apoptosis initiation. Biogenesis of c-type cytochromes involves covalent attachment of heme to two cysteines (at a conserved CXXCH sequence) in the apocytochrome. Heme attachment is catalyzed in most mitochondria by holocytochrome c synthase (HCCS), which is also necessary for the import of apocytochrome c (apocyt c). Thus, HCCS affects cellular levels of cyt c, impacting mitochondrial physiology and cell death. Here, we review the mechanisms of HCCS function and the roles of heme and residues in the CXXCH motif. Additionally, we consider concepts emerging within the two prokaryotic cytochrome c biogenesis pathways.
Collapse
Affiliation(s)
- Shalon E Babbitt
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | | | | | - Deanna L Mendez
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | - Robert G Kranz
- Department of Biology, Washington University, St Louis, MO 63130, USA.
| |
Collapse
|
14
|
van Rahden V, Fernandez-Vizarra E, Alawi M, Brand K, Fellmann F, Horn D, Zeviani M, Kutsche K. Mutations in NDUFB11, encoding a complex I component of the mitochondrial respiratory chain, cause microphthalmia with linear skin defects syndrome. Am J Hum Genet 2015; 96:640-50. [PMID: 25772934 DOI: 10.1016/j.ajhg.2015.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/02/2015] [Indexed: 01/07/2023] Open
Abstract
Microphthalmia with linear skin defects (MLS) syndrome is an X-linked male-lethal disorder also known as MIDAS (microphthalmia, dermal aplasia, and sclerocornea). Additional clinical features include neurological and cardiac abnormalities. MLS syndrome is genetically heterogeneous given that heterozygous mutations in HCCS or COX7B have been identified in MLS-affected females. Both genes encode proteins involved in the structure and function of complexes III and IV, which form the terminal segment of the mitochondrial respiratory chain (MRC). However, not all individuals with MLS syndrome carry a mutation in either HCCS or COX7B. The majority of MLS-affected females have severe skewing of X chromosome inactivation, suggesting that mutations in HCCS, COX7B, and other as-yet-unidentified X-linked gene(s) cause selective loss of cells in which the mutated X chromosome is active. By applying whole-exome sequencing and filtering for X-chromosomal variants, we identified a de novo nonsense mutation in NDUFB11 (Xp11.23) in one female individual and a heterozygous 1-bp deletion in a second individual, her asymptomatic mother, and an affected aborted fetus of the subject's mother. NDUFB11 encodes one of 30 poorly characterized supernumerary subunits of NADH:ubiquinone oxidoreductase, known as complex I (cI), the first and largest enzyme of the MRC. By shRNA-mediated NDUFB11 knockdown in HeLa cells, we demonstrate that NDUFB11 is essential for cI assembly and activity as well as cell growth and survival. These results demonstrate that X-linked genetic defects leading to the complete inactivation of complex I, III, or IV underlie MLS syndrome. Our data reveal an unexpected role of cI dysfunction in a developmental phenotype, further underscoring the existence of a group of mitochondrial diseases associated with neurocutaneous manifestations.
Collapse
|
15
|
Babbitt SE, San Francisco B, Mendez DL, Lukat-Rodgers GS, Rodgers KR, Bretsnyder EC, Kranz RG. Mechanisms of mitochondrial holocytochrome c synthase and the key roles played by cysteines and histidine of the heme attachment site, Cys-XX-Cys-His. J Biol Chem 2014; 289:28795-807. [PMID: 25170082 DOI: 10.1074/jbc.m114.593509] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial cytochrome c assembly requires the covalent attachment of heme by thioether bonds between heme vinyl groups and a conserved CXXCH motif of cytochrome c/c1. The enzyme holocytochrome c synthase (HCCS) binds heme and apocytochrome c substrate to catalyze this attachment, subsequently releasing holocytochrome c for proper folding to its native structure. We address mechanisms of assembly using a functional Escherichia coli recombinant system expressing human HCCS. Human cytochrome c variants with individual cysteine, histidine, double cysteine, and triple cysteine/histidine substitutions (of CXXCH) were co-purified with HCCS. Single and double mutants form a complex with HCCS but not the triple mutant. Resonance Raman and UV-visible spectroscopy support the proposal that heme puckering induced by both thioether bonds facilitate release of holocytochrome c from the complex. His-19 (of CXXCH) supplies the second axial ligand to heme in the complex, the first axial ligand was previously shown to be from HCCS residue His-154. Substitutions of His-19 in cytochrome c to seven other residues (Gly, Ala, Met, Arg, Lys, Cys, and Tyr) were used with various approaches to establish other roles played by His-19. Three roles for His-19 in HCCS-mediated assembly are suggested: (i) to provide the second axial ligand to the heme iron in preparation for covalent attachment; (ii) to spatially position the two cysteinyl sulfurs adjacent to the two heme vinyl groups for thioether formation; and (iii) to aid in release of the holocytochrome c from the HCCS active site. Only H19M is able to carry out these three roles, albeit at lower efficiencies than the natural His-19.
Collapse
Affiliation(s)
- Shalon E Babbitt
- From the Department of Biology, Washington University, St. Louis, Missouri 63130 and
| | - Brian San Francisco
- From the Department of Biology, Washington University, St. Louis, Missouri 63130 and
| | - Deanna L Mendez
- From the Department of Biology, Washington University, St. Louis, Missouri 63130 and
| | - Gudrun S Lukat-Rodgers
- the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102
| | - Kenton R Rodgers
- the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102
| | - Eric C Bretsnyder
- From the Department of Biology, Washington University, St. Louis, Missouri 63130 and
| | - Robert G Kranz
- From the Department of Biology, Washington University, St. Louis, Missouri 63130 and
| |
Collapse
|
16
|
Babbitt SE, San Francisco B, Bretsnyder EC, Kranz RG. Conserved residues of the human mitochondrial holocytochrome c synthase mediate interactions with heme. Biochemistry 2014; 53:5261-71. [PMID: 25054239 PMCID: PMC4139152 DOI: 10.1021/bi500704p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
C-type cytochromes are distinguished by the covalent attachment of a heme cofactor, a modification that is typically required for its subsequent folding, stability, and function. Heme attachment takes place in the mitochondrial intermembrane space and, in most eukaryotes, is mediated by holocytochrome c synthase (HCCS). HCCS is the primary component of the eukaryotic cytochrome c biogenesis pathway, known as System III. The catalytic function of HCCS depends on its ability to coordinate interactions between its substrates: heme and cytochrome c. Recent advancements in the recombinant expression and purification of HCCS have facilitated comprehensive analyses of the roles of conserved residues in HCCS, as demonstrated in this study. Previously, we proposed a four-step model describing HCCS-mediated cytochrome c assembly, identifying a conserved histidine residue (His154) as an axial ligand to the heme iron. In this study, we performed a systematic mutational analysis of 17 conserved residues in HCCS, and we provide evidence that the enzyme contains two heme-binding domains. Our data indicate that heme contacts mediated by residues within these domains modulate the dynamics of heme binding and contribute to the stability of the HCCS-heme-cytochrome c steady state ternary complex. While some residues are essential for initial heme binding (step 1), others impact the subsequent release of the holocytochrome c product (step 4). Certain HCCS mutants that were defective in heme binding were corrected for function by exogenous aminolevulinic acid (ALA, the precursor to heme). This chemical "correction" supports the proposed role of heme binding for the corresponding residues.
Collapse
Affiliation(s)
- Shalon E Babbitt
- Department of Biology, Washington University , St. Louis, Missouri 63130, United States
| | | | | | | |
Collapse
|
17
|
Zhang Y, Stevens JM, Ferguson SJ. Substrate recognition of holocytochrome c synthase: N-terminal region and CXXCH motif of mitochondrial cytochrome c. FEBS Lett 2014; 588:3367-74. [PMID: 25084480 PMCID: PMC4158909 DOI: 10.1016/j.febslet.2014.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 11/25/2022]
Abstract
Holocytochrome c synthase (HCCS) does not attach heme to cytochromes lacking the histidine in the CXXCH motif. HCCS can recognise C-terminally truncated cytochromes c. The aromatic nature of, or possibly shape complementarity to, F15 in cytochrome c is important for recognition by HCCS. The spacing of the phenylalanine relative to the CXXCH is a recognition feature.
Holocytochrome c synthase (HCCS) attaches heme covalently to mitochondrial respiratory cytochromes c. Little is known about the reaction of heme attachment to apocytochromes c by HCCS, although recently it has been established that the CXXCH motif and the N-terminus of the apocytochrome polypeptide are important protein–protein recognition motifs. Here, we explore further the important features of the N-terminal sequence and investigate what variations in the CXXCH residues are productively recognised by HCCS in its substrate.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Julie M Stevens
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| | - Stuart J Ferguson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
18
|
Korolnek T, Hamza I. Like iron in the blood of the people: the requirement for heme trafficking in iron metabolism. Front Pharmacol 2014; 5:126. [PMID: 24926267 PMCID: PMC4045156 DOI: 10.3389/fphar.2014.00126] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/12/2014] [Indexed: 12/17/2022] Open
Abstract
Heme is an iron-containing porphyrin ring that serves as a prosthetic group in proteins that function in diverse metabolic pathways. Heme is also a major source of bioavailable iron in the human diet. While the synthesis of heme has been well-characterized, the pathways for heme trafficking remain poorly understood. It is likely that heme transport across membranes is highly regulated, as free heme is toxic to cells. This review outlines the requirement for heme delivery to various subcellular compartments as well as possible mechanisms for the mobilization of heme to these compartments. We also discuss how these trafficking pathways might function during physiological events involving inter- and intra-cellular mobilization of heme, including erythropoiesis, erythrophagocytosis, heme absorption in the gut, as well as heme transport pathways supporting embryonic development. Lastly, we aim to question the current dogma that heme, in toto, is not mobilized from one cell or tissue to another, outlining the evidence for these pathways and drawing parallels to other well-accepted paradigms for copper, iron, and cholesterol homeostasis.
Collapse
Affiliation(s)
- Tamara Korolnek
- Department of Animal & Avian Sciences, University of Maryland, College Park MD, USA ; Department of Cell Biology & Molecular Genetics, University of Maryland, College Park MD, USA
| | - Iqbal Hamza
- Department of Animal & Avian Sciences, University of Maryland, College Park MD, USA ; Department of Cell Biology & Molecular Genetics, University of Maryland, College Park MD, USA
| |
Collapse
|
19
|
Hildenbeutel M, Hegg EL, Stephan K, Gruschke S, Meunier B, Ott M. Assembly factors monitor sequential hemylation of cytochrome b to regulate mitochondrial translation. ACTA ACUST UNITED AC 2014; 205:511-24. [PMID: 24841564 PMCID: PMC4033779 DOI: 10.1083/jcb.201401009] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial respiratory chain complexes convert chemical energy into a membrane potential by connecting electron transport with charge separation. Electron transport relies on redox cofactors that occupy strategic positions in the complexes. How these redox cofactors are assembled into the complexes is not known. Cytochrome b, a central catalytic subunit of complex III, contains two heme bs. Here, we unravel the sequence of events in the mitochondrial inner membrane by which cytochrome b is hemylated. Heme incorporation occurs in a strict sequential process that involves interactions of the newly synthesized cytochrome b with assembly factors and structural complex III subunits. These interactions are functionally connected to cofactor acquisition that triggers the progression of cytochrome b through successive assembly intermediates. Failure to hemylate cytochrome b sequesters the Cbp3-Cbp6 complex in early assembly intermediates, thereby causing a reduction in cytochrome b synthesis via a feedback loop that senses hemylation of cytochrome b.
Collapse
Affiliation(s)
- Markus Hildenbeutel
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Eric L Hegg
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Katharina Stephan
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Steffi Gruschke
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Brigitte Meunier
- Centre de Génétique Moléculaire du Centre National de la Recherche Scientifique (CNRS), 91198 Gif-sur-Yvette, France
| | - Martin Ott
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
20
|
Verissimo AF, Daldal F. Cytochrome c biogenesis System I: an intricate process catalyzed by a maturase supercomplex? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:989-98. [PMID: 24631867 DOI: 10.1016/j.bbabio.2014.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 11/16/2022]
Abstract
Cytochromes c are ubiquitous heme proteins that are found in most living organisms and are essential for various energy production pathways as well as other cellular processes. Their biosynthesis relies on a complex post-translational process, called cytochrome c biogenesis, responsible for the formation of stereo-specific thioether bonds between the vinyl groups of heme b (protoporphyrin IX-Fe) and the thiol groups of apocytochromes c heme-binding site (C1XXC2H) cysteine residues. In some organisms this process involves up to nine (CcmABCDEFGHI) membrane proteins working together to achieve heme ligation, designated the Cytochrome c maturation (Ccm)-System I. Here, we review recent findings related to the Ccm-System I found in bacteria, archaea and plant mitochondria, with an emphasis on protein interactions between the Ccm components and their substrates (apocytochrome c and heme). We discuss the possibility that the Ccm proteins may form a multi subunit supercomplex (dubbed "Ccm machine"), and based on the currently available data, we present an updated version of a mechanistic model for Ccm. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Andreia F Verissimo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6019, USA
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6019, USA.
| |
Collapse
|
21
|
Fu K, Fan L, Yu C, Li Y, Gao S, Li Y, Chen J. Adenine deaminase is encoded by Tad1 and participates in copper accumulation in Trichoderma reesei. Fungal Genet Biol 2014; 63:17-23. [DOI: 10.1016/j.fgb.2013.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 11/14/2013] [Accepted: 11/17/2013] [Indexed: 11/25/2022]
|
22
|
Abstract
The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes.
Collapse
|
23
|
Reprint of: Biogenesis of the cytochrome bc(1) complex and role of assembly factors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1817:872-82. [PMID: 22564912 DOI: 10.1016/j.bbabio.2012.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 11/24/2022]
Abstract
The cytochrome bc(1) complex is an essential component of the electron transport chain in most prokaryotes and in eukaryotic mitochondria. The catalytic subunits of the complex that are responsible for its redox functions are largely conserved across kingdoms. In eukarya, the bc(1) complex contains supernumerary subunits in addition to the catalytic core, and the biogenesis of the functional bc(1) complex occurs as a modular assembly pathway. Individual steps of this biogenesis have been recently investigated and are discussed in this review with an emphasis on the assembly of the bc(1) complex in the model eukaryote Saccharomyces cerevisiae. Additionally, a number of assembly factors have been recently identified. Their roles in bc(1) complex biogenesis are described, with special emphasis on the maturation and topogenesis of the yeast Rieske iron-sulfur protein and its role in completing the assembly of functional bc(1) complex. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
|
24
|
Indrieri A, Conte I, Chesi G, Romano A, Quartararo J, Tatè R, Ghezzi D, Zeviani M, Goffrini P, Ferrero I, Bovolenta P, Franco B. The impairment of HCCS leads to MLS syndrome by activating a non-canonical cell death pathway in the brain and eyes. EMBO Mol Med 2013; 5:280-93. [PMID: 23239471 PMCID: PMC3569643 DOI: 10.1002/emmm.201201739] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial-dependent (intrinsic) programmed cell death (PCD) is an essential homoeostatic mechanism that selects bioenergetically proficient cells suitable for tissue/organ development. However, the link between mitochondrial dysfunction, intrinsic apoptosis and developmental anomalies has not been demonstrated to date. Now we provide the evidence that non-canonical mitochondrial-dependent apoptosis explains the phenotype of microphthalmia with linear skin lesions (MLS), an X-linked developmental disorder caused by mutations in the holo-cytochrome c-type synthase (HCCS) gene. By taking advantage of a medaka model that recapitulates the MLS phenotype we demonstrate that downregulation of hccs, an essential player of the mitochondrial respiratory chain (MRC), causes increased cell death via an apoptosome-independent caspase-9 activation in brain and eyes. We also show that the unconventional activation of caspase-9 occurs in the mitochondria and is triggered by MRC impairment and overproduction of reactive oxygen species (ROS). We thus propose that HCCS plays a key role in central nervous system (CNS) development by modulating a novel non-canonical start-up of cell death and provide the first experimental evidence for a mechanistic link between mitochondrial dysfunction, intrinsic apoptosis and developmental disorders.
Collapse
|
25
|
Human mitochondrial holocytochrome c synthase's heme binding, maturation determinants, and complex formation with cytochrome c. Proc Natl Acad Sci U S A 2012; 110:E788-97. [PMID: 23150584 DOI: 10.1073/pnas.1213897109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proper functioning of the mitochondrion requires the orchestrated assembly of respiratory complexes with their cofactors. Cytochrome c, an essential electron carrier in mitochondria and a critical component of the apoptotic pathway, contains a heme cofactor covalently attached to the protein at a conserved CXXCH motif. Although it has been known for more than two decades that heme attachment requires the mitochondrial protein holocytochrome c synthase (HCCS), the mechanism remained unknown. We purified membrane-bound human HCCS with endogenous heme and in complex with its cognate human apocytochrome c. Spectroscopic analyses of HCCS alone and complexes of HCCS with site-directed variants of cytochrome c revealed the fundamental steps of heme attachment and maturation. A conserved histidine in HCCS (His154) provided the key ligand to the heme iron. Formation of the HCCS:heme complex served as the platform for interaction with apocytochrome c. Heme was the central molecule mediating contact between HCCS and apocytochrome c. A conserved histidine in apocytochrome c (His19 of CXXCH) supplied the second axial ligand to heme in the trapped HCCS:heme:cytochrome c complex. We also examined the substrate specificity of human HCCS and converted a bacterial cytochrome c into a robust substrate for the HCCS. The results allow us to describe the molecular mechanisms underlying the HCCS reaction.
Collapse
|
26
|
Verissimo AF, Sanders J, Daldal F, Sanders C. Engineering a prokaryotic apocytochrome c as an efficient substrate for Saccharomyces cerevisiae cytochrome c heme lyase. Biochem Biophys Res Commun 2012; 424:130-5. [PMID: 22732413 DOI: 10.1016/j.bbrc.2012.06.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/18/2012] [Indexed: 12/11/2022]
Abstract
Cytochromes c are heme proteins that require multiple maturation components, such as heme lyases, for cofactor incorporation. Saccharomyces cerevisiae has two heme lyases that are specific for apocytochromes c (CCHL) or c(1) (CC(1)HL). CCHL can covalently attach heme b groups to apocytochrome c substrates of eukaryotic but not prokaryotic origin. Besides their conserved Cys-Xxx-Xxx-Cys-His heme-binding motifs, the amino-terminal regions of apocytochrome c substrates appear to be important for CCHL function. In this study, we show for the first time that only two amino acid changes in the amino-terminal region of the non-CCHL substrate apocytochrome c(2) from Rhodobacter capsulatus are necessary and sufficient for efficient holocytochrome c formation by CCHL. This finding led us to propose a consensus sequence located at the amino-terminus of apocytochromes c, and critical for substrate recognition and heme ligation by CCHL.
Collapse
Affiliation(s)
- Andreia F Verissimo
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
27
|
Kim HJ, Khalimonchuk O, Smith PM, Winge DR. Structure, function, and assembly of heme centers in mitochondrial respiratory complexes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1604-16. [PMID: 22554985 DOI: 10.1016/j.bbamcr.2012.04.008] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
Abstract
The sequential flow of electrons in the respiratory chain, from a low reduction potential substrate to O(2), is mediated by protein-bound redox cofactors. In mitochondria, hemes-together with flavin, iron-sulfur, and copper cofactors-mediate this multi-electron transfer. Hemes, in three different forms, are used as a protein-bound prosthetic group in succinate dehydrogenase (complex II), in bc(1) complex (complex III) and in cytochrome c oxidase (complex IV). The exact function of heme b in complex II is still unclear, and lags behind in operational detail that is available for the hemes of complex III and IV. The two b hemes of complex III participate in the unique bifurcation of electron flow from the oxidation of ubiquinol, while heme c of the cytochrome c subunit, Cyt1, transfers these electrons to the peripheral cytochrome c. The unique heme a(3), with Cu(B), form a catalytic site in complex IV that binds and reduces molecular oxygen. In addition to providing catalytic and electron transfer operations, hemes also serve a critical role in the assembly of these respiratory complexes, which is just beginning to be understood. In the absence of heme, the assembly of complex II is impaired, especially in mammalian cells. In complex III, a covalent attachment of the heme to apo-Cyt1 is a prerequisite for the complete assembly of bc(1), whereas in complex IV, heme a is required for the proper folding of the Cox 1 subunit and subsequent assembly. In this review, we provide further details of the aforementioned processes with respect to the hemes of the mitochondrial respiratory complexes. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Hyung J Kim
- University of Utah Health Sciences Center, Department of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
28
|
Corvest V, Murrey DA, Hirasawa M, Knaff DB, Guiard B, Hamel PP. The flavoprotein Cyc2p, a mitochondrial cytochrome c assembly factor, is a NAD(P)H-dependent haem reductase. Mol Microbiol 2012; 83:968-80. [PMID: 22257001 DOI: 10.1111/j.1365-2958.2012.07981.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome c assembly requires sulphydryls at the CXXCH haem binding site on the apoprotein and also chemical reduction of the haem co-factor. In yeast mitochondria, the cytochrome haem lyases (CCHL, CC(1) HL) and Cyc2p catalyse covalent haem attachment to apocytochromes c and c(1) . An in vivo indication that Cyc2p controls a reductive step in the haem attachment reaction is the finding that the requirement for its function can be bypassed by exogenous reductants. Although redox titrations of Cyc2p flavin (E(m) = -290 mV) indicate that reduction of a disulphide at the CXXCH site of apocytochrome c (E(m) = -265 mV) is a thermodynamically favourable reaction, Cyc2p does not act as an apocytochrome c or c(1) CXXCH disulphide reductase in vitro. In contrast, Cyc2p is able to catalyse the NAD(P)H-dependent reduction of hemin, an indication that the protein's role may be to control the redox state of the iron in the haem attachment reaction to apocytochromes c. Using two-hybrid analysis, we show that Cyc2p interacts with CCHL and also with apocytochromes c and c(1) . We postulate that Cyc2p, possibly in a complex with CCHL, reduces the haem iron prior to haem attachment to the apoforms of cytochrome c and c(1) .
Collapse
Affiliation(s)
- Vincent Corvest
- Departments of Molecular Genetics and Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
29
|
Assembly Factors of Human Mitochondrial Respiratory Chain Complexes: Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:65-106. [DOI: 10.1007/978-1-4614-3573-0_4] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Smith PM, Fox JL, Winge DR. Biogenesis of the cytochrome bc(1) complex and role of assembly factors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:276-86. [PMID: 22138626 DOI: 10.1016/j.bbabio.2011.11.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 11/28/2022]
Abstract
The cytochrome bc(1) complex is an essential component of the electron transport chain in most prokaryotes and in eukaryotic mitochondria. The catalytic subunits of the complex that are responsible for its redox functions are largely conserved across kingdoms. In eukarya, the bc(1) complex contains supernumerary subunits in addition to the catalytic core, and the biogenesis of the functional bc(1) complex occurs as a modular assembly pathway. Individual steps of this biogenesis have been recently investigated and are discussed in this review with an emphasis on the assembly of the bc(1) complex in the model eukaryote Saccharomyces cerevisiae. Additionally, a number of assembly factors have been recently identified. Their roles in bc(1) complex biogenesis are described, with special emphasis on the maturation and topogenesis of the yeast Rieske iron-sulfur protein and its role in completing the assembly of functional bc(1) complex. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Pamela M Smith
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | | | | |
Collapse
|
31
|
Richard-Fogal CL, San Francisco B, Frawley ER, Kranz RG. Thiol redox requirements and substrate specificities of recombinant cytochrome c assembly systems II and III. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:911-9. [PMID: 21945855 DOI: 10.1016/j.bbabio.2011.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/01/2011] [Accepted: 09/12/2011] [Indexed: 02/05/2023]
Abstract
The reconstitution of biosynthetic pathways from heterologous hosts can help define the minimal genetic requirements for pathway function and facilitate detailed mechanistic studies. Each of the three pathways for the assembly of cytochrome c in nature (called systems I, II, and III) has been shown to function recombinantly in Escherichia coli, covalently attaching heme to the cysteine residues of a CXXCH motif of a c-type cytochrome. However, recombinant systems I (CcmABCDEFGH) and II (CcsBA) function in the E. coli periplasm, while recombinant system III (CCHL) attaches heme to its cognate receptor in the cytoplasm of E. coli, which makes direct comparisons between the three systems difficult. Here we show that the human CCHL (with a secretion signal) attaches heme to the human cytochrome c (with a signal sequence) in the E. coli periplasm, which is bioenergetically (p-side) analogous to the mitochondrial intermembrane space. The human CCHL is specific for the human cytochrome c, whereas recombinant system II can attach heme to multiple non-cognate c-type cytochromes (possessing the CXXCH motif.) We also show that the recombinant periplasmic systems II and III use components of the natural E. coli periplasmic DsbC/DsbD thiol-reduction pathway. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
|
32
|
Abstract
In c-type cytochromes, heme becomes covalently attached to the polypeptide chain by a reaction between the vinyl groups of the heme and cysteine thiols from the protein. There are two such cytochromes in mitochondria: cytochrome c and cytochrome c(1). The heme attachment is a post-translational modification that is catalysed by different biogenesis proteins in different organisms. Three types of biogenesis system are found or predicted in mitochondria: System I (the cytochrome c maturation system); System III (termed holocytochrome c synthase (HCCS) or heme lyase); and System V. This review focuses primarily on cytochrome c maturation in mitochondria containing HCCS (System III). It describes what is known about the enzymology and substrate specificity of HCCS; the role of HCCS in human disease; import of HCCS into mitochondria; import of apocytochromes c and c(1) into mitochondria and the close relationships with HCCS-dependent heme attachment; and the role of the fungal cytochrome c biogenesis accessory protein Cyc2. System V is also discussed; this is the postulated mitochondrial cytochrome c biogenesis system of trypanosomes and related organisms. No cytochrome c biogenesis proteins have been identified in the genomes of these organisms whose c-type cytochromes also have a unique mode of heme attachment.
Collapse
Affiliation(s)
- James W A Allen
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
33
|
Tripodi KEJ, Menendez Bravo SM, Cricco JA. Role of heme and heme-proteins in trypanosomatid essential metabolic pathways. Enzyme Res 2011; 2011:873230. [PMID: 21603276 PMCID: PMC3092630 DOI: 10.4061/2011/873230] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/07/2011] [Indexed: 11/29/2022] Open
Abstract
Around the world, trypanosomatids are known for being etiological agents of several highly disabling and often fatal diseases like Chagas disease (Trypanosoma cruzi), leishmaniasis (Leishmania spp.), and African trypanosomiasis (Trypanosoma brucei). Throughout their life cycle, they must cope with diverse environmental conditions, and the mechanisms involved in these processes are crucial for their survival. In this review, we describe the role of heme in several essential metabolic pathways of these protozoans. Notwithstanding trypanosomatids lack of the complete heme biosynthetic pathway, we focus our discussion in the metabolic role played for important heme-proteins, like cytochromes. Although several genes for different types of cytochromes, involved in mitochondrial respiration, polyunsaturated fatty acid metabolism, and sterol biosynthesis, are annotated at the Tritryp Genome Project, the encoded proteins have not yet been deeply studied. We pointed our attention into relevant aspects of these protein functions that are amenable to be considered for rational design of trypanocidal agents.
Collapse
Affiliation(s)
- Karina E J Tripodi
- Departamento de Química Biológica and Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | | | | |
Collapse
|
34
|
Kleingardner JG, Bren KL. Comparing substrate specificity between cytochrome c maturation and cytochrome c heme lyase systems for cytochrome c biogenesis. Metallomics 2011; 3:396-403. [PMID: 21380436 PMCID: PMC3081496 DOI: 10.1039/c0mt00086h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hemes c are characterized by their covalent attachment to a polypeptide via a widely conserved CXXCH motif. There are multiple biological systems that facilitate heme c biogenesis. System I, the cytochrome c maturation (CCM) system, is found in many bacteria and is commonly employed in the maturation of bacterial cytochromes c in Escherichia coli-based expression systems. System III, cytochrome c heme lyase (CCHL), is an enzyme found in the mitochondria of many eukaryotes and is used for heterologous expression of mitochondrial holocytochromes c. To test CCM specificity, a series of Hydrogenobacter thermophilus cytochrome c(552) variants was successfully expressed and matured by the CCM system with CX(n)CH motifs where n = 1-4, further extending the known substrate flexibility of the CCM system by successful maturation of a bacterial cytochrome c with a novel CXCH motif. Horse cytochrome c variants with both expanded and contracted attachment motifs (n = 1-3) were also tested for expression and maturation by both CCM and CCHL, allowing direct comparison of CCM and CCHL substrate specificities. Successful maturation of horse cytochrome c by CCHL with an extended CXXXCH motif was observed, demonstrating that CCHL shares the ability of CCM to mature hemes c with extended heme attachment motifs. In contrast, two single amino acid mutants were found in horse cytochrome c that severely limit maturation by CCHL, yet were efficiently matured with CCM. These results identify potentially important residues for the substrate recognition of CCHL.
Collapse
|
35
|
Bonnard G, Corvest V, Meyer EH, Hamel PP. Redox processes controlling the biogenesis of c-type cytochromes. Antioxid Redox Signal 2010; 13:1385-401. [PMID: 20214494 DOI: 10.1089/ars.2010.3161] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In mitochondria, two mono heme c-type cytochromes are essential electron shuttles of the respiratory chain. They are characterized by the covalent attachment of their heme C to a CXXCH motif in the apoproteins. This post-translational modification occurs in the intermembrane space compartment. Dedicated assembly pathways have evolved to achieve this chemical reaction that requires a strict reducing environment. In mitochondria, two unrelated machineries operate, the rather simple System III in yeast and animals and System I in plants and some protozoans. System I is also found in bacteria and shares some common features with System II that operates in bacteria and plastids. This review aims at presenting how different systems control the chemical requirements for the heme ligation in the compartments where cytochrome c maturation takes place. A special emphasis will be given on the redox processes that are required for the heme attachment reaction onto apocytochromes c.
Collapse
Affiliation(s)
- Géraldine Bonnard
- Institut de Biologie Moléculaire des Plantes, CNRS UPR-Université de Strasbourg, France.
| | | | | | | |
Collapse
|
36
|
c-type cytochrome assembly in Saccharomyces cerevisiae: a key residue for apocytochrome c1/lyase interaction. Genetics 2010; 186:561-71. [PMID: 20697122 DOI: 10.1534/genetics.110.120022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The electron transport chains in the membranes of bacteria and organelles generate proton-motive force essential for ATP production. The c-type cytochromes, defined by the covalent attachment of heme to a CXXCH motif, are key electron carriers in these energy-transducing membranes. In mitochondria, cytochromes c and c(1) are assembled by the cytochrome c heme lyases (CCHL and CC(1)HL) and by Cyc2p, a putative redox protein. A cytochrome c(1) mutant with a CAPCH heme-binding site instead of the wild-type CAACH is strictly dependent upon Cyc2p for assembly. In this context, we found that overexpression of CC(1)HL, as well as mutations of the proline in the CAPCH site to H, L, S, or T residues, can bypass the absence of Cyc2p. The P mutation was postulated to shift the CXXCH motif to an oxidized form, which must be reduced in a Cyc2p-dependent reaction before heme ligation. However, measurement of the redox midpoint potential of apocytochrome c(1) indicates that neither the P nor the T residues impact the thermodynamic propensity of the CXXCH motif to occur in a disulfide vs. dithiol form. We show instead that the identity of the second intervening residue in the CXXCH motif is key in determining the CCHL-dependent vs. CC(1)HL-dependent assembly of holocytochrome c(1). We also provide evidence that Cyc2p is dedicated to the CCHL pathway and is not required for the CC(1)HL-dependent assembly of cytochrome c(1).
Collapse
|
37
|
Abstract
The developing mammalian heart responds to a variety of conditions, including changes in nutrient availability, blood oxygenation, hemodynamics, or tissue homeostasis, with impressive growth plasticity. This ensures the formation of a functional and normal sized organ by birth. During embryonic and fetal development the heart is exposed to various physiological and potentially pathological changes in the intrauterine environment which dramatically impact on normal cardiac function, tissue composition, and morphology. This paper summarizes the mechanisms employed by the embryonic and fetal heart to adapt to various intrauterine challenges to prevent or minimize postnatal consequences of impaired cardiac development. Future investigations of this growth plasticity might lead to new therapeutic strategies for the prevention of cardiac disease in postnatal life.
Collapse
|
38
|
Qidwai K, Pearson DM, Patel GS, Pober BR, Immken LL, Cheung SW, Scott DA. Deletions of Xp provide evidence for the role of holocytochrome C-type synthase (HCCS) in congenital diaphragmatic hernia. Am J Med Genet A 2010; 152A:1588-90. [PMID: 20503342 PMCID: PMC2909827 DOI: 10.1002/ajmg.a.33410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - David M. Pearson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Barbara R. Pober
- Department of Pediatrics, MassGeneral Hospital for Children, Boston, Massachusetts
- Department of Surgery, Children’s Hospital, Boston, Massachusetts
| | | | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
39
|
Yi BA, Wernet O, Chien KR. Pregenerative medicine: developmental paradigms in the biology of cardiovascular regeneration. J Clin Invest 2010; 120:20-8. [PMID: 20051633 DOI: 10.1172/jci40820] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ability to create new functional cardiomyocytes is the holy grail of cardiac regenerative medicine. From studies using model organisms, new insights into the fundamental pathways that drive heart muscle regeneration have begun to arise as well as a growing knowledge of the distinct families of multipotent cardiovascular progenitors that generate diverse lineages during heart development. In this Review, we highlight this intersection of the "pregenerative" biology of heart progenitor cells and heart regeneration and discuss the longer term challenges and opportunities in moving toward a therapeutic goal of regenerative cardiovascular medicine.
Collapse
Affiliation(s)
- B Alexander Yi
- Cardiovascular Research Center, Massachusetts General Hospital, Charles River Plaza/CPZN 3200, 185 Cambridge Street, Boston, MA 02114-2790, USA
| | | | | |
Collapse
|
40
|
Seeber F, Soldati-Favre D. Metabolic Pathways in the Apicoplast of Apicomplexa. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 281:161-228. [DOI: 10.1016/s1937-6448(10)81005-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
41
|
Goddard AD, Stevens JM, Rondelet A, Nomerotskaia E, Allen JWA, Ferguson SJ. Comparing the substrate specificities of cytochrome c biogenesis Systems I and II. FEBS J 2009; 277:726-37. [DOI: 10.1111/j.1742-4658.2009.07517.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
42
|
Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol Mol Biol Rev 2009; 73:510-28, Table of Contents. [PMID: 19721088 DOI: 10.1128/mmbr.00001-09] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Heme is the prosthetic group for cytochromes, which are directly involved in oxidation/reduction reactions inside and outside the cell. Many cytochromes contain heme with covalent additions at one or both vinyl groups. These include farnesylation at one vinyl in hemes o and a and thioether linkages to each vinyl in cytochrome c (at CXXCH of the protein). Here we review the mechanisms for these covalent attachments, with emphasis on the three unique cytochrome c assembly pathways called systems I, II, and III. All proteins in system I (called Ccm proteins) and system II (Ccs proteins) are integral membrane proteins. Recent biochemical analyses suggest mechanisms for heme channeling to the outside, heme-iron redox control, and attachment to the CXXCH. For system II, the CcsB and CcsA proteins form a cytochrome c synthetase complex which specifically channels heme to an external heme binding domain; in this conserved tryptophan-rich "WWD domain" (in CcsA), the heme is maintained in the reduced state by two external histidines and then ligated to the CXXCH motif. In system I, a two-step process is described. Step 1 is the CcmABCD-mediated synthesis and release of oxidized holoCcmE (heme in the Fe(+3) state). We describe how external histidines in CcmC are involved in heme attachment to CcmE, and the chemical mechanism to form oxidized holoCcmE is discussed. Step 2 includes the CcmFH-mediated reduction (to Fe(+2)) of holoCcmE and ligation of the heme to CXXCH. The evolutionary and ecological advantages for each system are discussed with respect to iron limitation and oxidizing environments.
Collapse
|
43
|
Fülöp V, Sam KA, Ferguson SJ, Ginger ML, Allen JWA. Structure of a trypanosomatid mitochondrial cytochrome cwith heme attached via only one thioether bond and implications for the substrate recognition requirements of heme lyase. FEBS J 2009; 276:2822-32. [DOI: 10.1111/j.1742-4658.2009.07005.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Vempati UD, Han X, Moraes CT. Lack of cytochrome c in mouse fibroblasts disrupts assembly/stability of respiratory complexes I and IV. J Biol Chem 2009; 284:4383-91. [PMID: 19075019 PMCID: PMC2640958 DOI: 10.1074/jbc.m805972200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 12/01/2008] [Indexed: 11/06/2022] Open
Abstract
Cytochrome c (cyt c) is a heme-containing protein that participates in electron transport in the respiratory chain and as a signaling molecule in the apoptotic cascade. Here we addressed the effect of removing mammalian cyt c on the integrity of the respiratory complexes in mammalian cells. Mitochondria from cyt c knockout mouse cells lacked fully assembled complexes I and IV and had reduced levels of complex III. A redox-deficient mutant of cyt c was unable to rescue the levels of complexes I and IV. We found that cyt c is associated with both complex IV and respiratory supercomplexes, providing a potential mechanism for the requirement for cyt c in the assembly/stability of complex IV.
Collapse
Affiliation(s)
- Uma D Vempati
- Department of Neurology and Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
45
|
Hamel P, Corvest V, Giegé P, Bonnard G. Biochemical requirements for the maturation of mitochondrial c-type cytochromes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:125-38. [DOI: 10.1016/j.bbamcr.2008.06.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/18/2008] [Accepted: 06/26/2008] [Indexed: 11/26/2022]
|
46
|
Drenckhahn JD, Schwarz QP, Gray S, Laskowski A, Kiriazis H, Ming Z, Harvey RP, Du XJ, Thorburn DR, Cox TC. Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development. Dev Cell 2008; 15:521-33. [PMID: 18854137 DOI: 10.1016/j.devcel.2008.09.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 08/18/2008] [Accepted: 09/17/2008] [Indexed: 11/18/2022]
Abstract
Energy generation by mitochondrial respiration is an absolute requirement for cardiac function. Here, we used a heart-specific conditional knockout approach to inactivate the X-linked gene encoding Holocytochrome c synthase (Hccs), an enzyme responsible for activation of respiratory cytochromes c and c1. Heterozygous knockout female mice were thus mosaic for Hccs function due to random X chromosome inactivation. In contrast to midgestational lethality of Hccs knockout males, heterozygous females appeared normal after birth. Analyses of heterozygous embryos revealed the expected 50:50 ratio of Hccs deficient to normal cardiac cells at midgestation; however, diseased tissue contributed progressively less over time and by birth represented only 10% of cardiac tissue volume. This change is accounted for by increased proliferation of remaining healthy cardiac cells resulting in a fully functional heart. These data reveal an impressive regenerative capacity of the fetal heart that can compensate for an effective loss of 50% of cardiac tissue.
Collapse
Affiliation(s)
- Jörg-Detlef Drenckhahn
- Department of Anatomy & Developmental Biology, Monash University, Wellington Road, Clayton VIC 3800, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Allen JWA, Jackson AP, Rigden DJ, Willis AC, Ferguson SJ, Ginger ML. Order within a mosaic distribution of mitochondrial c-type cytochrome biogenesis systems? FEBS J 2008; 275:2385-402. [PMID: 18393999 DOI: 10.1111/j.1742-4658.2008.06380.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mitochondrial cytochromes c and c(1) are present in all eukaryotes that use oxygen as the terminal electron acceptor in the respiratory chain. Maturation of c-type cytochromes requires covalent attachment of the heme cofactor to the protein, and there are at least five distinct biogenesis systems that catalyze this post-translational modification in different organisms and organelles. In this study, we use biochemical data, comparative genomic and structural bioinformatics investigations to provide a holistic view of mitochondrial c-type cytochrome biogenesis and its evolution. There are three pathways for mitochondrial c-type cytochrome maturation, only one of which is present in prokaryotes. We analyze the evolutionary distribution of these biogenesis systems, which include the Ccm system (System I) and the enzyme heme lyase (System III). We conclude that heme lyase evolved once and, in many lineages, replaced the multicomponent Ccm system (present in the proto-mitochondrial endosymbiont), probably as a consequence of lateral gene transfer. We find no evidence of a System III precursor in prokaryotes, and argue that System III is incompatible with multi-heme cytochromes common to bacteria, but absent from eukaryotes. The evolution of the eukaryotic-specific protein heme lyase is strikingly unusual, given that this protein provides a function (thioether bond formation) that is also ubiquitous in prokaryotes. The absence of any known c-type cytochrome biogenesis system from the sequenced genomes of various trypanosome species indicates the presence of a third distinct mitochondrial pathway. Interestingly, this system attaches heme to mitochondrial cytochromes c that contain only one cysteine residue, rather than the usual two, within the heme-binding motif. The isolation of single-cysteine-containing mitochondrial cytochromes c from free-living kinetoplastids, Euglena and the marine flagellate Diplonema papillatum suggests that this unique form of heme attachment is restricted to, but conserved throughout, the protist phylum Euglenozoa.
Collapse
|
48
|
Khalimonchuk O, Winge DR. Function and redox state of mitochondrial localized cysteine-rich proteins important in the assembly of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:618-28. [PMID: 18070608 PMCID: PMC2374233 DOI: 10.1016/j.bbamcr.2007.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/22/2007] [Accepted: 10/30/2007] [Indexed: 11/16/2022]
Abstract
The cytochrome c oxidase (CcO) complex of the mitochondrial respiratory chain exists within the mitochondrial inner membrane (IM). The biogenesis of the complex is a multi-faceted process requiring multiple assembly factors that function on both faces of the IM. Formation of the two copper centers of CcO occurs within the intermembrane space (IMS) and is dependent on assembly factors with critical cysteinyl thiolates. Two classes of assembly factors exist, one group being soluble IMS proteins and the second class being proteins tethered to the IM. A common motif in the soluble assembly factors is a duplicated Cx(9)C sequence motif. Since mitochondrial respiration is a major source of reactive oxygen species, control of the redox state of mitochondrial proteins is an important process. This review documents the role of these cysteinyl CcO assembly factors within the IMS and the necessity of redox control in their function.
Collapse
Affiliation(s)
- Oleh Khalimonchuk
- University of Utah Health Sciences Center, Department of Medicine, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
49
|
Ferguson SJ, Stevens JM, Allen JWA, Robertson IB. Cytochrome c assembly: a tale of ever increasing variation and mystery? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:980-4. [PMID: 18423368 DOI: 10.1016/j.bbabio.2008.03.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 03/18/2008] [Indexed: 01/23/2023]
Abstract
Formation of cytochromes c requires a deceptively simple post-translational modification, the formation of two thioether bonds (or rarely one) between the thiol groups of two cysteine residues found in a CXXCH motif (with some occasional variations) and the vinyl groups of heme. There are three partially characterised systems for facilitating this post-translational modification; within these systems there is also variation. In addition, there are clear indications for two other distinct systems. Here some of the current issues in understanding the systems are analysed.
Collapse
Affiliation(s)
- Stuart J Ferguson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | | | |
Collapse
|
50
|
Saddar S, Dienhart MK, Stuart RA. The F1F0-ATP synthase complex influences the assembly state of the cytochrome bc1-cytochrome oxidase supercomplex and its association with the TIM23 machinery. J Biol Chem 2008; 283:6677-86. [PMID: 18187422 DOI: 10.1074/jbc.m708440200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme complexes involved in mitochondrial oxidative phosphorylation are organized into higher ordered assemblies termed supercomplexes. Subunits e and g (Su e and Su g, respectively) are catalytically nonessential subunits of the F1F0-ATP synthase whose presence is required to directly support the stable dimerization of the ATP synthase complex. We report here that Su g and Su e are also important for securing the correct organizational state of the cytochrome bc1-cytochrome oxidase (COX) supercomplex. Mitochondria isolated from the Delta su e and Delta su g null mutant strains exhibit decreased levels of COX enzyme activity but appear to have normal COX subunit protein levels. An altered stoichiometry of the cytochrome bc1-COX supercomplex was observed in mitochondria deficient in Su e and/or Su g, and a perturbation in the association of Cox4, a catalytically important subunit of the COX complex, was also detected. In addition, an increase in the level of the TIM23 translocase associated with the cytochrome bc1-COX supercomplex is observed in the absence of Su e and Su g. Together, our data highlight that a further level of complexity exists between the oxidative phosphorylation supercomplexes, whereby the organizational state of one complex, i.e. the ATP synthase, may influence that of another supercomplex, namely the cytochrome bc1-COX complex.
Collapse
Affiliation(s)
- Sonika Saddar
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233, USA
| | | | | |
Collapse
|