1
|
Ren D, Li W, Zeng R, Liu X, Liang H, Xiong W, Yang C, Jin X. Retinoblastoma-associated protein is important for TRIM24-mediated activation of the mTOR signaling pathway through DUSP2 action in prostate cancer. Cell Death Differ 2024; 31:592-604. [PMID: 38514847 PMCID: PMC11094112 DOI: 10.1038/s41418-024-01282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
RB transcriptional corepressor 1 (RB) deletion is the most important genomic factor associated with the prognosis of castration-resistant prostate cancer (CRPC) patients receiving androgen receptor (AR) signaling inhibitor therapy. Loss of RB could support prostate cancer cell growth in a hormone-independent manner, but the underlying mechanism by which RB regulates tumor progression extends far beyond the cell cycle pathway. A previous study indicated that RB inactivates AKT signaling but has no effect on mTOR signaling in cancer cells. Here, we found that the S249/T252 site in RB is key to regulating the transcriptional activity of the tumor-promoting factor TRIM24 in CRPC, as identified through FXXXV mapping. The RB/TRIM24 complex functions through DUSP2, which serves as an intermediate bridge, to activate the mTOR pathway and promote prostate cancer progression. Accordingly, we designed RB-linker-proteolysis-targeting chimera (PROTAC) molecules, which decreased TRIM24 protein levels and inactivated the mTOR signaling pathway, thereby inhibiting prostate cancer. Therefore, this study not only elucidates the novel function of RB but also provides a theoretical basis for the development of new drugs for treating prostate cancer.
Collapse
Affiliation(s)
- Da Ren
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Ruijiang Zeng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Xinlin Liu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Huaiyuan Liang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Wei Xiong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Liang H, Yang C, Zeng R, Song Y, Wang J, Xiong W, Yan B, Jin X. Targeting CBX3 with a Dual BET/PLK1 Inhibitor Enhances the Antitumor Efficacy of CDK4/6 Inhibitors in Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302368. [PMID: 37949681 PMCID: PMC10754129 DOI: 10.1002/advs.202302368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/10/2023] [Indexed: 11/12/2023]
Abstract
The development of castration-resistant prostate cancer (CRPC) is a significant factor that reduces life expectancy among patients with prostate cancer. Previously, it is reported that CDK4/6 inhibitors can overcome the resistance of CRPC to BET inhibitors by destabilizing BRD4, suggesting that the combination of CDK4/6 inhibitors and BET inhibitors is a promising approach for treating CRPC. In this study, candidates that affect the combined antitumor effect of CDK4/6 inhibitors and BET inhibitors on CRPC is aimed to examine. The data demonstrates that CBX3 is abnormally upregulated in CDK4/6 inhibitors-resistant cells. CBX3 is almost positively correlated with the cell cycle in multiple malignancies and is downregulated by BET inhibitors. Mechanistically, it is showed that CBX3 is transcriptionally upregulated by BRD4 in CRPC cells. Moreover, it is demonstrated that CBX3 modulated the sensitivity of CRPC to CDK4/6 inhibitors by binding with RB1 to release E2F1. Furthermore, it is revealed that PLK1 phosphorylated CBX3 to enhance the interaction between RB1 and CBX3, and desensitize CRPC cells to CDK4/6 inhibitors. Given that BRD4 regulates CBX3 expression and PLK1 affects the binding between RB1 and CBX3, it is proposed that a dual BRD4/PLK1 inhibitor can increase the sensitivity of CRPC cells to CDK4/6 inhibitors partially through CBX3.
Collapse
Affiliation(s)
- Huaiyuan Liang
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Uro‐Oncology Institute of Central South UniversityChangshaHunan410011China
| | - Chunguang Yang
- Department of UrologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Ruijiang Zeng
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Uro‐Oncology Institute of Central South UniversityChangshaHunan410011China
| | - Yingqiu Song
- Cancer centerUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jianxi Wang
- Department of UrologyThe Third Hospital of ChangshaChangshaHunan410011China
| | - Wei Xiong
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Uro‐Oncology Institute of Central South UniversityChangshaHunan410011China
| | - Binyuan Yan
- Department of UrologyPelvic Floor Disorders CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107China
| | - Xin Jin
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Uro‐Oncology Institute of Central South UniversityChangshaHunan410011China
| |
Collapse
|
3
|
Wang Q, Zou L, Liu W, Hao W, Tashiro SI, Onodera S, Ikejima T. Inhibiting NF-κB activation and ROS production are involved in the mechanism of silibinin's protection against D-galactose-induced senescence. Pharmacol Biochem Behav 2010; 98:140-9. [PMID: 21167197 DOI: 10.1016/j.pbb.2010.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 12/01/2010] [Accepted: 12/04/2010] [Indexed: 01/10/2023]
Abstract
Aging is featured by intelligence decline, behavioral disorders and cognitive disability. Autophagy is related to senescent development. In this study, we investigated the roles of NF-κB and autophagy in hippocampal neurons of D-galactose-induced senescent mice, and examined the protective roles of silibinin. Senescence was induced in 6-month-old mice by subcutaneous injection of D-galactose (150 mg/kg/d, for 6 weeks). Silibinin (50 mg/kg/d, intramuscular injection, for 6 weeks) or inhibitors (PDTC, 3-MA or rapamycin, 50 mg/kg/d, subcutaneous injection, for 6 weeks) were given 1 h before D-galactose exposure. Senescent control animals received vehicle for the same time. Ethological analysis, immunofluorescence staining, flow cytometric analysis, western blot and enzyme activity assays were used. Compared with senescent controls, silibinin, PDTC or rapamycin-treated mice showed upregulations of spatial recognition memory (P<0.05), cellular oxidoreductase activities (P<0.05) and autophagy (P<0.05) as well as downregulations of MDA (P<0.05) and ROS (P<0.05) levels. We propose in D-galactose-induced murine senescence, autophagy is inhibited by NF-κB, inducing the deactivations of cellular oxidoreductases and upregulation of ROS level. The protection by autophagy and the promotion of cellular oxidoreductase activities via inhibiting NF-κB activation and ROS production are involved in the mechanism of silibinin's protection against D-galactose-induced senescence.
Collapse
Affiliation(s)
- Qiong Wang
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Yu F, Megyesi J, Safirstein RL, Price PM. Involvement of the CDK2-E2F1 pathway in cisplatin cytotoxicity in vitro and in vivo. Am J Physiol Renal Physiol 2007; 293:F52-9. [PMID: 17459956 DOI: 10.1152/ajprenal.00119.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
E2F1 is a key regulator that links cell cycle progression and cell death. E2F1 activity is controlled by Cdk2-cyclin complexes via several mechanisms, such as phosphorylation of retinoblastoma protein (pRb) to release E2F1, direct phosphorylation, and stable physical interaction. We have demonstrated that cisplatin cytotoxicity depends on Cdk2 activity, and Cdk2 inhibition protects kidney cells from cisplatin-induced cell death in vitro and in vivo. Now we show that E2F1 is an important downstream effector of Cdk2 that accumulates in mouse kidneys and in cultured mouse proximal tubular cells (TKPTS) after cisplatin exposure by a Cdk2-dependent mechanism. Direct inhibition of E2F1 by transduction with adenoviruses expressing an E2F1-binding protein (TopBP1) protected TKPTS cells from cisplatin-induced apoptosis, whereas overexpression of E2F1 caused cell death. Moreover, E2F1 knockout mice were markedly protected against cisplatin nephrotoxicity by both functional and histological criteria. Collectively, cisplatin-induced cell death is dependent on Cdk2 activity, which is at least partly through the Cdk2-E2F1 pathway both in vitro and in vivo.
Collapse
Affiliation(s)
- Fang Yu
- Dept. of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, USA
| | | | | | | |
Collapse
|
5
|
Abstract
Rb is a tumor suppressor that represses the expression of E2F regulated genes required for cell cycle progression. It is inactivated in melanomas and other cancer cells by phosphorylation catalyzed by persistent cyclin dependent kinase (CDK) activity. CDK activity is sustained in melanoma cells mostly by the elimination of the CDK inhibitor p16INK4A and by high levels of cyclins whose expression is maintained by stimuli emanating from activated cell surface receptors and/or mutated intracellular intermediates, such as N-Ras and B-Raf. However, Rb also suppresses the expression of apoptosis genes, and its presence protects normal melanocytes from cell death. Its high expression in human melanoma cells and tumors suggests a similar role in malignant cells as well. The differential release and suppression of E2F transcriptional activity is likely to depend on promoter-specific E2F/Rb interaction. Phosphorylated Rb is displaced from cell cycle genes but not from others. In addition, Rb gene repression is dependent on the nature of Rb-E2F interaction and the activity of the Rb-bound proteins recruited to the promoter. Deciphering the differences in Rb/E2F complex formation in normal and malignant melanocytes is likely to shed light on the mechanism by which Rb can exert tumor suppressing and promoting activities in this cellular system. The Rb/E2F pathway provides opportunities for efficient therapy at multiple levels. Novel drugs can reactivate Rb potential to suppress growth cycle promoting genes. In addition, the high E2F transcriptional activity in melanoma cells can be exploited to deliver cytotoxic molecules specifically to tumors, sparing the normal tissues.
Collapse
Affiliation(s)
- Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, 15 York Street, P.O. Box 208059, New Haven, CT, 06520-8059, USA.
| |
Collapse
|
6
|
Albrecht M, Choubey D, Lengauer T. The HIN domain of IFI-200 proteins consists of two OB folds. Biochem Biophys Res Commun 2005; 327:679-87. [PMID: 15649401 DOI: 10.1016/j.bbrc.2004.12.056] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2004] [Indexed: 02/07/2023]
Abstract
The interferon-inducible p200 (IFI-200/HIN-200) family of proteins regulates cell growth and differentiation, and confers resistance to the development of tumors and virus infections. IFI-200 family members are thought to exert their biological effects by modulation of the transcriptional activities of numerous factors and interaction with other proteins through the C-terminal HIN domains. However, the HIN domain structure and function have remained obscure. Therefore, we performed a comprehensive bioinformatics analysis and assembled a structure-based multiple sequence alignment of IFI-200 proteins. The application of fold recognition methods revealed that the HIN domain consists of two consecutive OB domains. Our structural models of DNA-binding HIN domains afford the long-sought interpretations for many previous experimental observations. Our results also raise the possibility of as yet unexplored functional roles of IFI-200 proteins as transcriptional regulators and as interaction partners of proteins involved in immunomodulatory and apoptotic processes.
Collapse
Affiliation(s)
- Mario Albrecht
- Max-Planck-Institute for Informatics, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany.
| | | | | |
Collapse
|