1
|
Viral Interactions with Adaptor-Protein Complexes: A Ubiquitous Trait among Viral Species. Int J Mol Sci 2021; 22:ijms22105274. [PMID: 34067854 PMCID: PMC8156722 DOI: 10.3390/ijms22105274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
Numerous viruses hijack cellular protein trafficking pathways to mediate cell entry or to rearrange membrane structures thereby promoting viral replication and antagonizing the immune response. Adaptor protein complexes (AP), which mediate protein sorting in endocytic and secretory transport pathways, are one of the conserved viral targets with many viruses possessing AP-interacting motifs. We present here different mechanisms of viral interference with AP complexes and the functional consequences that allow for efficient viral propagation and evasion of host immune defense. The ubiquity of this phenomenon is evidenced by the fact that there are representatives for AP interference in all major viral families, covered in this review. The best described examples are interactions of human immunodeficiency virus and human herpesviruses with AP complexes. Several other viruses, like Ebola, Nipah, and SARS-CoV-2, are pointed out as high priority disease-causative agents supporting the need for deeper understanding of virus-AP interplay which can be exploited in the design of novel antiviral therapies.
Collapse
|
2
|
Carlin CR. New Insights to Adenovirus-Directed Innate Immunity in Respiratory Epithelial Cells. Microorganisms 2019; 7:microorganisms7080216. [PMID: 31349602 PMCID: PMC6723309 DOI: 10.3390/microorganisms7080216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) family of transcription factors is a key component of the host innate immune response to infectious adenoviruses and adenovirus vectors. In this review, we will discuss a regulatory adenoviral protein encoded by early region 3 (E3) called E3-RIDα, which targets NFκB through subversion of novel host cell pathways. E3-RIDα down-regulates an EGF receptor signaling pathway, which overrides NFκB negative feedback control in the nucleus, and is induced by cell stress associated with viral infection and exposure to the pro-inflammatory cytokine TNF-α. E3-RIDα also modulates NFκB signaling downstream of the lipopolysaccharide receptor, Toll-like receptor 4, through formation of membrane contact sites controlling cholesterol levels in endosomes. These innate immune evasion tactics have yielded unique perspectives regarding the potential physiological functions of host cell pathways with important roles in infectious disease.
Collapse
Affiliation(s)
- Cathleen R Carlin
- Department of Molecular Biology and Microbiology and the Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
3
|
Cianciola NL, Chung S, Manor D, Carlin CR. Adenovirus Modulates Toll-Like Receptor 4 Signaling by Reprogramming ORP1L-VAP Protein Contacts for Cholesterol Transport from Endosomes to the Endoplasmic Reticulum. J Virol 2017; 91:e01904-16. [PMID: 28077646 PMCID: PMC5331795 DOI: 10.1128/jvi.01904-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/05/2017] [Indexed: 12/27/2022] Open
Abstract
Human adenoviruses (Ads) generally cause mild self-limiting infections but can lead to serious disease and even be fatal in high-risk individuals, underscoring the importance of understanding how the virus counteracts host defense mechanisms. This study had two goals. First, we wished to determine the molecular basis of cholesterol homeostatic responses induced by the early region 3 membrane protein RIDα via its direct interaction with the sterol-binding protein ORP1L, a member of the evolutionarily conserved family of oxysterol-binding protein (OSBP)-related proteins (ORPs). Second, we wished to determine how this interaction regulates innate immunity to adenovirus. ORP1L is known to form highly dynamic contacts with endoplasmic reticulum-resident VAP proteins that regulate late endosome function under regulation of Rab7-GTP. Our studies have demonstrated that ORP1L-VAP complexes also support transport of LDL-derived cholesterol from endosomes to the endoplasmic reticulum, where it was converted to cholesteryl esters stored in lipid droplets when ORP1L was bound to RIDα. The virally induced mechanism counteracted defects in the predominant cholesterol transport pathway regulated by the late endosomal membrane protein Niemann-Pick disease type C protein 1 (NPC1) arising during early stages of viral infection. However, unlike NPC1, RIDα did not reconstitute transport to endoplasmic reticulum pools that regulate SREBP transcription factors. RIDα-induced lipid trafficking also attenuated proinflammatory signaling by Toll-like receptor 4, which has a central role in Ad pathogenesis and is known to be tightly regulated by cholesterol-rich "lipid rafts." Collectively, these data show that RIDα utilizes ORP1L in a way that is distinct from its normal function in uninfected cells to fine-tune lipid raft cholesterol that regulates innate immunity to adenovirus in endosomes.IMPORTANCE Early region 3 proteins encoded by human adenoviruses that attenuate immune-mediated pathology have been a particularly rich source of information regarding intracellular protein trafficking. Our studies with the early region 3-encoded RIDα protein also provided fundamental new information regarding mechanisms of nonvesicular lipid transport and the flow of molecular information at membrane contacts between different organelles. We describe a new pathway that delivers cholesterol from endosomes to the endoplasmic reticulum, where it is esterified and stored in lipid droplets. Although lipid droplets are attracting renewed interest from the standpoint of normal physiology and human diseases, including those resulting from viral infections, experimental model systems for evaluating how and why they accumulate are still limited. Our studies also revealed an intriguing relationship between lipid droplets and innate immunity that may represent a new paradigm for viruses utilizing these organelles.
Collapse
Affiliation(s)
- Nicholas L Cianciola
- Departments of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Stacey Chung
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Danny Manor
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- the Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Cathleen R Carlin
- Departments of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- the Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
4
|
The tripartite leader sequence is required for ectopic expression of HAdV-B and HAdV-E E3 CR1 genes. Virology 2017; 505:139-147. [PMID: 28259047 DOI: 10.1016/j.virol.2017.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/23/2017] [Indexed: 01/09/2023]
Abstract
The unique repertoire of genes that characterizes the early region 3 (E3) of the different species of human adenovirus (HAdV) likely contributes to their distinct pathogenic traits. The function of many E3 CR1 proteins remains unknown possibly due to unidentified intrinsic properties that make them difficult to express ectopically. This study shows that the species HAdV-B- and HAdV-E-specific E3 CR1 genes can be expressed from vectors carrying the HAdV tripartite leader (TPL) sequence but not from traditional mammalian expression vectors. Insertion of the TPL sequence upstream of the HAdV-B and HAdV-E E3 CR1 open reading frames was sufficient to rescue protein expression from pCI-neo constructs in transfected 293T cells. The detection of higher levels of HAdV-B and HAdV-E E3 CR1 transcripts suggests that the TPL sequence may enhance gene expression at both the transcriptional and translational levels. Our findings will facilitate the characterization of additional AdV E3 proteins.
Collapse
|
5
|
Windheim M, Höning S, Leppard KN, Butler L, Seed C, Ponnambalam S, Burgert HG. Sorting Motifs in the Cytoplasmic Tail of the Immunomodulatory E3/49K Protein of Species D Adenoviruses Modulate Cell Surface Expression and Ectodomain Shedding. J Biol Chem 2016; 291:6796-812. [PMID: 26841862 DOI: 10.1074/jbc.m115.684787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 11/06/2022] Open
Abstract
The E3 transcription unit of human species C adenoviruses (Ads) encodes immunomodulatory proteins that mediate direct protection of infected cells. Recently, we described a novel immunomodulatory function for E3/49K, an E3 protein uniquely expressed by species D Ads. E3/49K of Ad19a/Ad64, a serotype that causes epidemic keratokonjunctivitis, is synthesized as a highly glycosylated type I transmembrane protein that is subsequently cleaved, resulting in secretion of its large ectodomain (sec49K). sec49K binds to CD45 on leukocytes, impairing activation and functions of natural killer cells and T cells. E3/49K is localized in the Golgi/trans-Golgi network (TGN), in the early endosomes, and on the plasma membrane, yet the cellular compartment where E3/49K is cleaved and the protease involved remained elusive. Here we show that TGN-localized E3/49K comprises both newly synthesized and recycled molecules. Full-length E3/49K was not detected in late endosomes/lysosomes, but the C-terminal fragment accumulated in this compartment at late times of infection. Inhibitor studies showed that cleavage occurs in a post-TGN compartment and that lysosomotropic agents enhance secretion. Interestingly, the cytoplasmic tail of E3/49K contains two potential sorting motifs, YXXΦ (where Φ represents a bulky hydrophobic amino acid) and LL, that are important for binding the clathrin adaptor proteins AP-1 and AP-2in vitro Surprisingly, mutating the LL motif, either alone or together with YXXΦ, did not prevent proteolytic processing but increased cell surface expression and secretion. Upon brefeldin A treatment, cell surface expression was rapidly lost, even for mutants lacking all known endocytosis motifs. Together with immunofluorescence data, we propose a model for intracellular E3/49K transport whereby cleavage takes place on the cell surface by matrix metalloproteases.
Collapse
Affiliation(s)
- Mark Windheim
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom, the Institute of Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Höning
- the Institute for Biochemistry I and Center for Molecular Medicine Cologne, 50931 Cologne, Germany, and
| | - Keith N Leppard
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Larissa Butler
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Christina Seed
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sreenivasan Ponnambalam
- the School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Hans-Gerhard Burgert
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom,
| |
Collapse
|
6
|
Comparison of the Life Cycles of Genetically Distant Species C and Species D Human Adenoviruses Ad6 and Ad26 in Human Cells. J Virol 2015; 89:12401-17. [PMID: 26423951 DOI: 10.1128/jvi.01534-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/25/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Our understanding of adenovirus (Ad) biology is largely extrapolated from human species C Ad5. Most humans are immune to Ad5, so lower-seroprevalence viruses like human Ad6 and Ad26 are being tested as therapeutic vectors. Ad6 and Ad26 differ at the DNA level by 34%. To better understand how this might impact their biology, we examined the life cycle of the two viruses in human lung cells in vitro. Both viruses infected A549 cells with similar efficiencies, executed DNA replication with identical kinetics within 12 h, and began killing cells within 72 h. While Ad6-infected cells remained adherent until death, Ad26-infected cells detached within 12 h of infection but remained viable. Next-generation sequencing (NGS) of mRNA from infected cells demonstrated that viral transcripts constituted 1% of cellular mRNAs within 6 h and 8 to 16% within 12 h. Quantitative PCR and NGS revealed the activation of key early genes at 6 h and transition to late gene activation by 12 h by both viruses. There were marked differences in the balance of E1A and E1B activation by the two viruses and in the expression of E3 immune evasion mRNAs. Ad6 was markedly more effective at suppressing major histocompatibility complex class I (MHC I) display on the cell surface and in evading TRAIL-mediated apoptosis than was Ad26. These data demonstrate shared as well as divergent life cycles in these genetically distant human adenoviruses. An understanding of these differences expands the knowledge of alternative Ad species and may inform the selection of related Ads for therapeutic development. IMPORTANCE A burgeoning number of adenoviruses (Ads) are being harnessed as therapeutics, yet the biology of these viruses is generally extrapolated from Ad2 and Ad5. Here, we are the first to compare the transcriptional programs of two genetically distant Ads by mRNA next-generation sequencing (NGS). Species C Ad6 and Ad26 are being pursued as lower-seroprevalence Ad vectors but differ at the DNA level by 34%. Head-to-head comparison in human lung cells by NGS revealed that the two viruses generally conform to our general understanding of the Ad transcriptional program. However, fine mapping revealed subtle and strong differences in how these two viruses execute these programs, including differences in the balance of E1A and E1B mRNAs and in E3 immune evasion genes. This suggests that not all adenoviruses behave like Ad2 and Ad5 and that they may have unique strategies to infect cells and evade the immune system.
Collapse
|
7
|
A unique secreted adenovirus E3 protein binds to the leukocyte common antigen CD45 and modulates leukocyte functions. Proc Natl Acad Sci U S A 2013; 110:E4884-93. [PMID: 24218549 DOI: 10.1073/pnas.1312420110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The E3 transcription unit of human adenoviruses (Ads) encodes immunomodulatory proteins. Interestingly, the size and composition of the E3 region differs considerably among Ad species, suggesting that distinct sets of immunomodulatory E3 proteins may influence their interaction with the human host and the disease pattern. However, to date, only common immune evasion functions of species C E3 proteins have been described. Here we report on the immunomodulatory activity of a species D-specific E3 protein, E3/49K. Unlike all other E3 proteins that act on infected cells, E3/49K seems to target uninfected cells. Initially synthesized as an 80- to 100-kDa type I transmembrane protein, E3/49K is subsequently cleaved, with the large ectodomain (sec49K) secreted. We found that purified sec49K exhibits specific binding to lymphoid cell lines and all primary leukocytes, but not to fibroblasts or epithelial cells. Consistent with this binding profile and the molecular mass, the sec49K receptor was identified as the cell surface protein tyrosine phosphatase CD45. Antibody-blocking studies suggested that sec49K binds to the membrane proximal domains present in all CD45 isoforms. Functional studies showed that sec49K can suppress the activation and cytotoxicity of natural killer cells as well as the activation, signaling, and cytokine production of T cells. Thus, we have discovered an adenovirus protein that is actively secreted and describe immunomodulatory activities of an E3 protein uniquely expressed by a single Ad species.
Collapse
|
8
|
Rusnati M, Chiodelli P, Bugatti A, Urbinati C. Bridging the past and the future of virology: surface plasmon resonance as a powerful tool to investigate virus/host interactions. Crit Rev Microbiol 2013; 41:238-60. [PMID: 24059853 DOI: 10.3109/1040841x.2013.826177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite decades of antiviral drug research and development, viruses still remain a top global healthcare problem. Compared to eukaryotic cells, viruses are composed by a limited numbers of proteins that, nevertheless, set up multiple interactions with cellular components, allowing the virus to take control of the infected cell. Each virus/host interaction can be considered as a therapeutical target for new antiviral drugs but, unfortunately, the systematic study of a so huge number of interactions is time-consuming and expensive, calling for models overcoming these drawbacks. Surface plasmon resonance (SPR) is a label-free optical technique to study biomolecular interactions in real time by detecting reflected light from a prism-gold film interface. Launched 20 years ago, SPR has become a nearly irreplaceable technology for the study of biomolecular interactions. Accordingly, SPR is increasingly used in the field of virology, spanning from the study of biological interactions to the identification of putative antiviral drugs. From the literature available, SPR emerges as an ideal link between conventional biological experimentation and system biology studies functional to the identification of highly connected viral or host proteins that act as nodal points in virus life cycle and thus considerable as therapeutical targets for the development of innovative antiviral strategies.
Collapse
Affiliation(s)
- Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia , Brescia , Italy
| | | | | | | |
Collapse
|
9
|
The transmembrane domain of the adenovirus E3/19K protein acts as an endoplasmic reticulum retention signal and contributes to intracellular sequestration of major histocompatibility complex class I molecules. J Virol 2013; 87:6104-17. [PMID: 23514889 DOI: 10.1128/jvi.03391-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human adenovirus E3/19K protein is a type I transmembrane glycoprotein of the endoplasmic reticulum (ER) that abrogates cell surface transport of major histocompatibility complex class I (MHC-I) and MHC-I-related chain A and B (MICA/B) molecules. Previous data suggested that E3/19K comprises two functional modules: a luminal domain for interaction with MHC-I and MICA/B molecules and a dilysine motif in the cytoplasmic tail that confers retrieval from the Golgi apparatus back to the ER. This study was prompted by the unexpected phenotype of an E3/19K molecule that was largely retained intracellularly despite having a mutated ER retrieval motif. To identify additional structural determinants responsible for ER localization, chimeric molecules were generated containing the luminal E3/19K domain and the cytoplasmic and/or transmembrane domain (TMD) of the cell surface protein MHC-I K(d). These chimeras were analyzed for transport, cell surface expression, and impact on MHC-I and MICA/B downregulation. As with the retrieval mutant, replacement of the cytoplasmic tail of E3/19K allowed only limited transport of the chimera to the cell surface. Efficient cell surface expression was achieved only by additionally replacing the TMD of E3/19K with that of MHC-I, suggesting that the E3/19K TMD may confer static ER retention. This was verified by ER retention of an MHC-I K(d) molecule with the TMD replaced by that of E3/19K. Thus, we have identified the E3/19K TMD as a novel functional element that mediates static ER retention, thereby increasing the concentration of E3/19K in the ER. Remarkably, the ER retrieval signal alone, without the E3/19K TMD, did not mediate efficient HLA downregulation, even in the context of infection. This suggests that the TMD is required together with the ER retrieval function to ensure efficient ER localization and transport inhibition of MHC-I and MICA/B molecules.
Collapse
|
10
|
Yakimovich A, Gumpert H, Burckhardt CJ, Lütschg VA, Jurgeit A, Sbalzarini IF, Greber UF. Cell-free transmission of human adenovirus by passive mass transfer in cell culture simulated in a computer model. J Virol 2012; 86:10123-37. [PMID: 22787215 PMCID: PMC3446567 DOI: 10.1128/jvi.01102-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/03/2012] [Indexed: 01/10/2023] Open
Abstract
Viruses spread between cells, tissues, and organisms by cell-free and cell-cell transmissions. Both mechanisms enhance disease development, but it is difficult to distinguish between them. Here, we analyzed the transmission mode of human adenovirus (HAdV) in monolayers of epithelial cells by wet laboratory experimentation and a computer simulation. Using live-cell fluorescence microscopy and replication-competent HAdV2 expressing green fluorescent protein, we found that the spread of infection invariably occurred after cell lysis. It was affected by convection and blocked by neutralizing antibodies but was independent of second-round infections. If cells were overlaid with agarose, convection was blocked and round plaques developed around lytic infected cells. Infected cells that did not lyse did not give rise to plaques, highlighting the importance of cell-free transmission. Key parameters for cell-free virus transmission were the time from infection to lysis, the dose of free viruses determining infection probability, and the diffusion of single HAdV particles in aqueous medium. With these parameters, we developed an in silico model using multiscale hybrid dynamics, cellular automata, and particle strength exchange. This so-called white box model is based on experimentally determined parameters and reproduces viral infection spreading as a function of the local concentration of free viruses. These analyses imply that the extent of lytic infections can be determined by either direct plaque assays or can be predicted by calculations of virus diffusion constants and modeling.
Collapse
Affiliation(s)
- Artur Yakimovich
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Heidi Gumpert
- MOSAIC Group, Institute of Theoretical Computer Science and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | | | - Verena A. Lütschg
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Andreas Jurgeit
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Ivo F. Sbalzarini
- MOSAIC Group, Institute of Theoretical Computer Science and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Urs F. Greber
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Jelcic I, Reichel J, Schlude C, Treutler E, Sinzger C, Steinle A. The polymorphic HCMV glycoprotein UL20 is targeted for lysosomal degradation by multiple cytoplasmic dileucine motifs. Traffic 2011; 12:1444-56. [PMID: 21689255 DOI: 10.1111/j.1600-0854.2011.01236.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human cytomegalovirus (HCMV) is a widespread and persistent beta-herpesvirus. The large DNA genome of HCMV encodes many proteins that are non-essential for viral replication including numerous proteins subverting host immunosurveillance. One of them is the barely characterized UL20, which is encoded adjacent to the well-defined immunoevasins UL16 and UL18. UL20 is a type I transmembrane glycoprotein with an immunoglobulin-like ectodomain that is highly polymorphic among HCMV strains. Here, we show that the homodimeric UL20, by virtue of its cytoplasmic domain, does not reach the cell surface but is targeted to endosomes and lysosomes. Accordingly, UL20 exhibits a short half-life because of rapid lysosomal degradation. Trafficking of UL20 to lysosomes is determined by several, independently functioning dileucine-based sorting motifs in the cytoplasmic domain of UL20 and involves the adaptor protein (AP) complex AP-1. Combined substitution of three dileucine motifs allowed strong cell surface expression of UL20 comparable to UL20 mutants lacking the cytoplasmic tail. Finally, we show that the intracellularly located UL20 also is subject to lysosomal degradation in the context of viral infection. Altogether, from these data, we hypothesize that UL20 is destined to efficiently sequester yet-to-be defined cellular proteins for degradation in lysosomes.
Collapse
Affiliation(s)
- Ivan Jelcic
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Robinson CM, Rajaiya J, Zhou X, Singh G, Dyer DW, Chodosh J. The E3 CR1-gamma gene in human adenoviruses associated with epidemic keratoconjunctivitis. Virus Res 2011; 160:120-7. [PMID: 21683743 DOI: 10.1016/j.virusres.2011.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 01/06/2023]
Abstract
Human adenovirus species D type 37 (HAdV-D37) is an important etiologic agent of epidemic keratoconjunctivitis. Annotation of the whole genome revealed an open reading frame (ORF) in the E3 transcription unit predicted to encode a 31.6kDa protein. This ORF, also known as CR1-γ, is predicted to be an integral membrane protein containing N-terminal signal sequence, luminal, transmembrane, and cytoplasmic domains. HAdV-D19 (C), another viral pathogen causing epidemic keratoconjunctivitis, contains an ORF 100% identical to its HAdV-D37 homologue but only 66% identical to other HAdV-D homologues. Kinetics of RNA expression and confirmation of splicing to the adenovirus tripartite leader sequence suggest a role for the protein product of CR1-γ in the late stages of the viral replication cycle. Confocal microscopy is consistent with expression in the cytoplasm. Sequence analysis reveals a hypervariable luminal domain and a conserved cytoplasmic domain. The luminal domain is predicted to contain multiple N-glycosylation sites. The cytoplasmic domain contains a putative protein kinase C phosphorylation site and potential YXXϕ and dileucine (LL) motifs suggesting a potential role in modification of host proteins.
Collapse
Affiliation(s)
- Christopher M Robinson
- Howe Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
13
|
Robinson CM, Seto D, Jones MS, Dyer DW, Chodosh J. Molecular evolution of human species D adenoviruses. INFECTION GENETICS AND EVOLUTION 2011; 11:1208-17. [PMID: 21570490 DOI: 10.1016/j.meegid.2011.04.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 12/15/2022]
Abstract
Adenoviruses are medium-sized double stranded DNA viruses that infect vertebrates. Human adenoviruses cause an array of diseases. Currently there are 56 human adenovirus types recognized and characterized within seven species (A-G). Of those types, a majority belongs to species D. In this review, the genomic conservation and diversity are examined among human adenoviruses within species D, particularly in contrast to other human adenovirus species. Specifically, homologous recombination is presented as a driving force for the molecular evolution of human adenoviruses and the emergence of new adenovirus pathogens.
Collapse
Affiliation(s)
- Christopher M Robinson
- Howe Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA. USA
| | | | | | | | | |
Collapse
|
14
|
Rudraraju R, Ramsay AJ. Single-shot immunization with recombinant adenovirus encoding vaccinia virus glycoprotein A27L is protective against a virulent respiratory poxvirus infection. Vaccine 2010; 28:4997-5004. [PMID: 20653083 DOI: 10.1016/j.vaccine.2010.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Significant safety issues have emerged concerning the general use of DRYVAX vaccine. Vaccination with replication-defective recombinant adenovirus (rAd) vaccines may offer a safer and effective alternative to live vaccinia virus (VV) vaccination. Six individual poxvirus glycoproteins: A33R, A34R, A36R, B5R, A27L or L1R that are normally expressed on the surface of infectious vaccinia virus were encoded in rAd vaccines and tested in mice in this study. A single-shot intramuscular injection of rAd encoding A27L protected mice against a lethal intranasal challenge with VV at 4 weeks post-vaccination. By 10 weeks post-vaccination, a significant decrease in post-challenge morbidity was observed that correlated with potent neutralizing antibody responses and the emergence of specific polyfunctional T cell responses. The immunogenicity and protective efficacy of rAd-A27L immunization persisted for at least 35 weeks post-vaccination. This study is the first demonstration that a single-shot subunit vaccine encoding a poxvirus protein confers protection against the mortality and morbidity associated with poxvirus infection.
Collapse
Affiliation(s)
- Rajeev Rudraraju
- Gene Therapy Program, and Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | |
Collapse
|
15
|
Open reading frame E3-10.9K of subspecies B1 human adenoviruses encodes a family of late orthologous proteins that vary in their predicted structural features and subcellular localization. J Virol 2010; 84:11310-22. [PMID: 20739542 DOI: 10.1128/jvi.00512-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Subspecies B1 human adenoviruses (HAdV-B1s) are important causative agents of acute respiratory disease, but the molecular bases of their distinct pathobiology are still poorly understood. Marked differences in genetic content between HAdV-B1s and the well-characterized HAdV-Cs that may contribute to distinct pathogenic properties map to the E3 region. Between the highly conserved E3-19K and E3-10.4K/RIDα open reading frames (ORFs), and in the same location as the HAdV-C ADP/E3-11.6K ORF, HAdV-B1s carry ORFs E3-20.1K and E3-20.5K and a polymorphic third ORF, designated E3-10.9K, that varies in the size of its predicted product among HAdV-B1 serotypes and genomic variants. As an initial effort to define the function of the E3-10.9K ORF, we carried out a biochemical characterization of E3-10.9K-encoded orthologous proteins and investigated their expression in infected cells. Sequence-based predictions suggested that E3-10.9K orthologs with a hydrophobic domain are integral membrane proteins. Ectopically expressed, C-terminally tagged (with enhanced green fluorescent protein [EGFP]) E3-10.9K and E3-9K localized primarily to the plasma membrane, while E3-7.7K localized primarily to a juxtanuclear compartment that could not be identified. EGFP fusion proteins with a hydrophobic domain were N and O glycosylated. EGFP-tagged E3-4.8K, which lacked the hydrophobic domain, displayed diffuse cellular localization similar to that of the EGFP control. E3-10.9K transcripts from the major late promoter were detected at late time points postinfection. A C-terminally hemagglutinin-tagged version of E3-9K was detected by immunoprecipitation at late times postinfection in the membrane fraction of mutant virus-infected cells. These data suggest a role for ORF E3-10.9K-encoded proteins at late stages of HAdV-B1 replication, with potentially important functional implications for the documented ORF polymorphism.
Collapse
|
16
|
Sester M, Koebernick K, Owen D, Ao M, Bromberg Y, May E, Stock E, Andrews L, Groh V, Spies T, Steinle A, Menz B, Burgert HG. Conserved amino acids within the adenovirus 2 E3/19K protein differentially affect downregulation of MHC class I and MICA/B proteins. THE JOURNAL OF IMMUNOLOGY 2009; 184:255-67. [PMID: 19949079 DOI: 10.4049/jimmunol.0902343] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Successful establishment and persistence of adenovirus (Ad) infections are facilitated by immunosubversive functions encoded in the early transcription unit 3 (E3). The E3/19K protein has a dual role, preventing cell surface transport of MHC class I/HLA class I (MHC-I/HLA-I) Ags and the MHC-I-like molecules (MHC-I chain-related chain A and B [MICA/B]), thereby inhibiting both recognition by CD8 T cells and NK cells. Although some crucial functional elements in E3/19K have been identified, a systematic analysis of the functional importance of individual amino acids is missing. We now have substituted alanine for each of 21 aas in the luminal domain of Ad2 E3/19K conserved among Ads and investigated the effects on HLA-I downregulation by coimmunoprecipitation, pulse-chase analysis, and/or flow cytometry. Potential structural alterations were monitored using conformation-dependent E3/19K-specific mAbs. The results revealed that only a small number of mutations abrogated HLA-I complex formation (e.g., substitutions W52, M87, and W96). Mutants M87 and W96 were particularly interesting as they exhibited only minimal structural changes suggesting that these amino acids make direct contacts with HLA-I. The considerable number of substitutions with little functional defects implied that E3/19K may have additional cellular target molecules. Indeed, when assessing MICA/B cell-surface expression we found that mutation of T14 and M82 selectively compromised MICA/B downregulation with essentially no effect on HLA-I modulation. In general, downregulation of HLA-I was more severely affected than that of MICA/B; for example, substitutions W52, M87, and W96 essentially abrogated HLA-I modulation while largely retaining the ability to sequester MICA/B. Thus, distinct conserved amino acids seem preferentially important for a particular functional activity of E3/19K.
Collapse
Affiliation(s)
- Martina Sester
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Imelli N, Ruzsics Z, Puntener D, Gastaldelli M, Greber UF. Genetic reconstitution of the human adenovirus type 2 temperature-sensitive 1 mutant defective in endosomal escape. Virol J 2009; 6:174. [PMID: 19860872 PMCID: PMC2771014 DOI: 10.1186/1743-422x-6-174] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 10/27/2009] [Indexed: 12/05/2022] Open
Abstract
Human Adenoviruses infect the upper and lower respiratory tracts, the urinary and digestive tracts, lymphoid systems and heart, and give rise to epidemic conjunctivitis. More than 51 human serotypes have been identified to-date, and classified into 6 species A-F. The species C Adenoviruses Ad2 and Ad5 (Ad2/5) cause upper and lower respiratory disease, but how viral structure relates to the selection of particular infectious uptake pathways is not known. An adenovirus mutant, Ad2-ts1 had been isolated upon chemical mutagenesis in the past, and shown to have unprocessed capsid proteins. Ad2-ts1 fails to package the viral protease L3/p23, and Ad2-ts1 virions do not efficiently escape from endosomes. It had been suggested that the C22187T point mutation leading to the substitution of the conserved proline 137 to leucine (P137L) in the L3/p23 protease was at least in part responsible for this phenotype. To clarify if the C22187T mutation is necessary and sufficient for the Ad2-ts1 phenotype, we sequenced the genes encoding the structural proteins of Ad2-ts1, and confirmed that the Ad2-ts1 DNA carries the point mutation C22187T. Introduction of C22187T to the wild-type Ad2 genome in a bacterial artificial chromosome (Ad2-BAC) gave Ad2-BAC46 virions with the full Ad2-ts1 phenotype. Reversion of Ad2-BAC46 gave wild-type Ad2 particles indicating that P137L is necessary and sufficient for the Ad2-ts1 phenotype. The kinetics of Ad2-ts1 uptake into cells were comparable to Ad2 suggesting similar endocytic uptake mechanisms. Surprisingly, infectious Ad2 or Ad5 but not Ad2-ts1 uptake required CALM (clathrin assembly lymphoid myeloid protein), which controls clathrin-mediated endocytosis and membrane transport between endosomes and the trans-Golgi-network. The data show that no other mutations than P137L in the viral protease are necessary to give rise to particles that are defective in capsid processing and endosomal escape. This provides a basis for genetic analyses of distinct host requirements for Ad endocytosis and escape from endosomes.
Collapse
Affiliation(s)
- Nicola Imelli
- Institute of Zoology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Menz B, Sester M, Koebernick K, Schmid R, Burgert HG. Structural analysis of the adenovirus type 2 E3/19K protein using mutagenesis and a panel of conformation-sensitive monoclonal antibodies. Mol Immunol 2008; 46:16-26. [DOI: 10.1016/j.molimm.2008.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 06/10/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022]
|
19
|
Adenovirus E3/19K promotes evasion of NK cell recognition by intracellular sequestration of the NKG2D ligands major histocompatibility complex class I chain-related proteins A and B. J Virol 2008; 82:4585-94. [PMID: 18287244 DOI: 10.1128/jvi.02251-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The adenovirus (Ad) early transcription unit 3 (E3) encodes multiple immunosubversive functions that are presumed to facilitate the establishment and persistence of infection. Indeed, the capacity of E3/19K to inhibit transport of HLA class I (HLA-I) to the cell surface, thereby preventing peptide presentation to CD8(+) T cells, has long been recognized as a paradigm for viral immune evasion. However, HLA-I downregulation has the potential to render Ad-infected cells vulnerable to natural killer (NK) cell recognition. Furthermore, expression of the immediate-early Ad gene E1A is associated with efficient induction of ligands for the key NK cell-activating receptor NKG2D. Here we show that while infection with wild-type Ad enhances synthesis of the NKG2D ligands, major histocompatibility complex class I chain-related proteins A and B (MICA and MICB), their expression on the cell surface is actively suppressed. Both MICA and MICB are retained within the endoplasmic reticulum as immature endoglycosidase H-sensitive forms. By analyzing a range of cell lines and viruses carrying mutated versions of the E3 gene region, E3/19K was identified as the gene responsible for this activity. The structural requirements within E3/19K necessary to sequester MICA/B and HLA-I are similar. In functional assays, deletion of E3/19K rendered Ad-infected cells more sensitive to NK cell recognition. We report the first NK evasion function in the Adenoviridae and describe a novel function for E3/19K. Thus, E3/19K has a dual function: inhibition of T-cell recognition and NK cell activation.
Collapse
|
20
|
Shah AH, Cianciola NL, Mills JL, Sönnichsen FD, Carlin C. Adenovirus RIDalpha regulates endosome maturation by mimicking GTP-Rab7. ACTA ACUST UNITED AC 2007; 179:965-80. [PMID: 18039930 PMCID: PMC2099200 DOI: 10.1083/jcb.200702187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The small guanosine triphosphatase Rab7 regulates late endocytic trafficking. Rab7-interacting lysosomal protein (RILP) and oxysterol-binding protein-related protein 1L (ORP1L) are guanosine triphosphate (GTP)-Rab7 effectors that instigate minus end-directed microtubule transport. We demonstrate that RILP and ORP1L both interact with the group C adenovirus protein known as receptor internalization and degradation alpha (RIDalpha), which was previously shown to clear the cell surface of several membrane proteins, including the epidermal growth factor receptor and Fas (Carlin, C.R., A.E. Tollefson, H.A. Brady, B.L. Hoffman, and W.S. Wold. 1989. Cell. 57:135-144; Shisler, J., C. Yang, B. Walter, C.F. Ware, and L.R. Gooding. 1997. J. Virol. 71:8299-8306). RIDalpha localizes to endocytic vesicles but is not homologous to Rab7 and is not catalytically active. We show that RIDalpha compensates for reduced Rab7 or dominant-negative (DN) Rab7(T22N) expression. In vitro, Cu(2+) binding to RIDalpha residues His75 and His76 facilitates the RILP interaction. Site-directed mutagenesis of these His residues results in the loss of RIDalpha-RILP interaction and RIDalpha activity in cells. Additionally, expression of the RILP DN C-terminal region hinders RIDalpha activity during an acute adenovirus infection. We conclude that RIDalpha coordinates recruitment of these GTP-Rab7 effectors to compartments that would ordinarily be perceived as early endosomes, thereby promoting the degradation of selected cargo.
Collapse
Affiliation(s)
- Ankur H Shah
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
21
|
Cianciola NL, Crooks D, Shah AH, Carlin C. A tyrosine-based signal plays a critical role in the targeting and function of adenovirus RIDalpha protein. J Virol 2007; 81:10437-50. [PMID: 17634224 PMCID: PMC2045482 DOI: 10.1128/jvi.00399-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early region 3 genes of human adenoviruses contribute to the virus life cycle by altering the trafficking of cellular proteins involved in adaptive immunity and inflammatory responses. The ability of early region 3 genes to target specific molecules suggests that they could be used to curtail pathological processes associated with these molecules and treat human disease. However, this approach requires genetic dissection of the multiple functions attributed to early region 3 genes. The purpose of this study was to determine the role of targeting on the ability of the early region 3-encoded protein RIDalpha to downregulate the EGF receptor. A fusion protein between the RIDalpha cytoplasmic tail and glutathione S-transferase was used to isolate clathrin-associated adaptor 1 and adaptor 2 protein complexes from mammalian cells. Deletion and site-directed mutagenesis studies showed that residues 71-AYLRH of RIDalpha are necessary for in vitro binding to both adaptor complexes and that Tyr72 has an important role in these interactions. In addition, RIDalpha containing a Y72A point mutation accumulates in the trans-Golgi network and fails to downregulate the EGF receptor when it is introduced into mammalian cells as a transgene. Altogether, our data suggest a model where RIDalpha is trafficked directly from the trans-Golgi network to an endosomal compartment, where it intercepts EGF receptors undergoing constitutive recycling to the plasma membrane and redirects them to lysosomes.
Collapse
Affiliation(s)
- Nicholas L Cianciola
- Department of Physiology and Biophysics, Case Western Reserve University Cancer Center, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4970, USA
| | | | | | | |
Collapse
|
22
|
Chin YR, Horwitz MS. Adenovirus RID complex enhances degradation of internalized tumour necrosis factor receptor 1 without affecting its rate of endocytosis. J Gen Virol 2006; 87:3161-3167. [PMID: 17030848 DOI: 10.1099/vir.0.82001-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The receptor internalization and degradation (RID) complex of adenovirus plays an important role in modulating the immune response by downregulating the surface levels of tumour necrosis factor receptor 1 (TNFR1), thereby inhibiting NF-κB activation. Total cellular content of TNFR1 is also reduced in the presence of RID, which can be inhibited by treatment with lysosomotropic agents. In this report, surface biotinylation experiments revealed that, although RID and TNFR1 were able to form a complex on the cell surface, the rate of TNFR1 endocytosis was not affected by RID. However, the degradation of internalized TNFR1 was enhanced significantly in the presence of RID. Therefore, these data suggest that RID downregulates TNFR1 levels by altering the fate of internalized TNFR1 that becomes associated with RID at the plasma membrane, probably by promoting its sorting into endosomal/lysosomal degradation compartments.
Collapse
Affiliation(s)
- Y Rebecca Chin
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer Building, Room 411, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Marshall S Horwitz
- Division of Infectious Diseases, Department of Pediatrics, Albert Einstein College of Medicine, Forchheimer Building, Room 411, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer Building, Room 411, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
23
|
Ruzsics Z, Wagner M, Osterlehner A, Cook J, Koszinowski U, Burgert HG. Transposon-assisted cloning and traceless mutagenesis of adenoviruses: Development of a novel vector based on species D. J Virol 2006; 80:8100-13. [PMID: 16873266 PMCID: PMC1563829 DOI: 10.1128/jvi.00687-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Until recently, adenovirus (Ad)-mediated gene therapy was almost exclusively based on human Ad type 5 (Ad5). Preexisting immunity and the limited, coxsackievirus and adenovirus receptor-dependent tropism of Ad5 stimulated attempts to exploit the natural diversity in tropism of the other 50 known human Ad serotypes. Aiming in particular at immunotherapy and vaccination, we have screened representative serotypes from different Ad species for their ability to infect dendritic cells. Ad19a, an Ad from species D, was selected for development as a new vector for vaccination and cancer gene therapy. To clone and manipulate its genome, we have developed a novel methodology, coined "exposon mutagenesis," that allows the rapid and precise introduction of virtually any genetic alteration (deletions, point mutations, or insertions) into recombinant Ad bacterial artificial chromosomes. The versatility of the system was exemplified by deleting the E3 region of Ad19a, by specifically knocking out expression of a species-specific E3 gene, E3/49K, and by reinserting E3/49K into an E3 null Ad19a mutant. The technology requires only limited sequence information and is applicable to other Ad species. Therefore, it should be extremely valuable for the analysis of gene functions from any Ad species. In addition, a basic, replication-defective E1- and E3-deleted Ad19a vector expressing GFP (Ad19aGFP) was generated. This new vector based on species D Ads exhibits a very promising tropism for lymphoid and muscle cells and shows great potential as an alternative vector for transduction of cell types that are resistant to or only poorly transduced by conventional Ad5-based vectors.
Collapse
Affiliation(s)
- Zsolt Ruzsics
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
Delgado-Lopez F, Horwitz MS. Adenovirus RIDalphabeta complex inhibits lipopolysaccharide signaling without altering TLR4 cell surface expression. J Virol 2006; 80:6378-86. [PMID: 16775326 PMCID: PMC1488987 DOI: 10.1128/jvi.02350-05] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The transmembrane heterotrimer complex 10.4K/14.5K, also known as RID (for "receptor internalization and degradation"), is encoded by the adenovirus E3 region, and it down-regulates the cell surface expression of several unrelated receptors. We recently showed that RID expression correlates with down-regulation of the cell surface expression of the tumor necrosis factor (TNF) receptor 1 in several human cells. This observation provided the first mechanistic explanation for the inhibition of TNF alpha-induced chemokines by RID. Here we analyze the immunoregulatory activities of RID on lipopolysaccharide (LPS) and interleukin-1 beta (IL-1beta)-mediated responses. Although both signaling pathways are strongly inhibited by RID, the chemokines up-regulated by IL-1beta stimulation are only marginally inhibited. In addition, RID inhibits signaling induced by LPS without affecting the expression of the LPS receptor Toll-like receptor 4, demonstrating that RID need not target degradation of the receptor to alter signal transduction. Taken together, our data demonstrate the inhibitory effect of RID on two additional cell surface receptor-mediated signaling pathways involved in inflammatory processes. The data suggest that RID has intracellular targets that impair signal transduction and chemokine expression without evidence of receptor down-regulation.
Collapse
Affiliation(s)
- Fernando Delgado-Lopez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 411, Bronx, NY 10461, USA.
| | | |
Collapse
|
25
|
Chin YR, Horwitz MS. Mechanism for removal of tumor necrosis factor receptor 1 from the cell surface by the adenovirus RIDalpha/beta complex. J Virol 2005; 79:13606-17. [PMID: 16227281 PMCID: PMC1262606 DOI: 10.1128/jvi.79.21.13606-13617.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Proteins encoded in adenovirus early region 3 have important immunoregulatory properties. We have recently shown that the E3-10.4K/14.5K (RIDalpha/beta) complex downregulates tumor necrosis factor receptor 1 (TNFR1) expression at the plasma membrane. To study the role of the RIDbeta tyrosine sorting motif in the removal of surface TNFR1, tyrosine 122 on RIDbeta was mutated to alanine or phenylalanine. Both RIDbeta mutations not only abolished the downregulation of surface TNFR1 but paradoxically increased surface TNFR1 levels. RID also downregulates other death receptors, such as FAS; however, surface FAS expression was not increased by RIDbeta mutants, suggesting that regulation of TNFR1 and that of FAS by RID are mechanistically different. In the mixing experiments, the wild-type (WT) RID-mediated TNFR1 downregulation was partially inhibited in the presence of RIDbeta mutants, indicating that the mutants compete for TNFR1 access. Indeed, an association between RIDbeta and TNFR1 was shown by coimmunoprecipitation. In contrast, the mutants did not affect the WT RID-induced downregulation of FAS. These differential effects support a model in which RID associates with TNFR1 on the plasma membrane, whereas RID probably associates with FAS in a cytoplasmic compartment. By using small interfering RNA against the mu2 subunit of adaptor protein 2, dominant negative dynamin construct K44A, and the lysosomotropic agents bafilomycin A1 and ammonium chloride, we also demonstrated that surface TNFR1 was internalized by RID by a clathrin-dependent process involving mu2 and dynamin, followed by degradation of TNFR1 via an endosomal/lysosomal pathway.
Collapse
Affiliation(s)
- Y Rebecca Chin
- Department of Microbiology and Immunology, Forchheimer Building, Room 411, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | |
Collapse
|
26
|
Tsacoumangos A, Tsacoumango A, Kil SJ, Ma L, Sönnichsen FD, Carlin C. A novel dileucine lysosomal-sorting-signal mediates intracellular EGF-receptor retention independently of protein ubiquitylation. J Cell Sci 2005; 118:3959-71. [PMID: 16105874 DOI: 10.1242/jcs.02527] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the main goals of this study was to understand the relationship between an epidermal growth factor (EGF) receptor dileucine (LL)-motif (679-LL) required for lysosomal sorting and the protein ubiquitin ligase CBL. We show that receptors containing 679-AA (di-alanine) substitutions that are defective for ligand-induced degradation nevertheless bind CBL and undergo reversible protein ubiquitylation similar to wild-type receptors. We also demonstrate that 679-LL but not CBL is required for EGF receptor downregulation by an endosomal membrane protein encoded by human adenoviruses that uncouples internalization from post-endocytic sorting to lysosomes. 679-LL is necessary for endosomal retention as well as degradation by the adenovirus protein, and is also transferable to reporter molecules. Using NMR spectroscopy, we show that peptides with wild-type 679-LL or mutant 679-AA sequences both exhibit alpha-helical structural propensities but that this structure is not stable in water. A similar analysis carried out in hydrophobic media showed that the alpha-helical structure of the wild-type peptide is stabilized by specific interactions mediated by side-chains in both leucine residues. This structure distinguishes 679-LL from other dileucine-based sorting-signals with obligatory amino-terminal acidic residues that are recognized in the form of an extended beta or beta-like conformation. Taken together, these data show that 679-LL is an alpha-helical stabilizing motif that regulates a predominant step during lysosomal sorting, involving intracellular retention under both sub-saturating and saturating conditions.
Collapse
Affiliation(s)
- Amy Tsacoumangos
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
28
|
Fessler SP, Chin YR, Horwitz MS. Inhibition of tumor necrosis factor (TNF) signal transduction by the adenovirus group C RID complex involves downregulation of surface levels of TNF receptor 1. J Virol 2004; 78:13113-21. [PMID: 15542663 PMCID: PMC525002 DOI: 10.1128/jvi.78.23.13113-13121.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Adenoviruses employ multiple genes to inhibit the host antiviral responses. There is increasing evidence that these immunoregulatory genes may function either during lytic or latent infection. Adenovirus early transcription region 3 (E3) encodes at least seven proteins, five of which block the acquired or innate immune response. Previous findings from this laboratory demonstrated that the E3 proteins 10.4K and 14.5K, which form a complex in the plasma membrane, inhibit tumor necrosis factor (TNF)-induced activation of NF-kappaB and the synthesis of chemokines. To determine the mechanism of inhibition of these pathways by the adenovirus E3 10.4K/14.5K proteins, we have examined the effects of this viral complex on the inhibition of AP-1 and NF-kappaB activation by TNF and found a reduction in assembly of the TNF receptor 1 (TNFR1) signaling complex at the plasma membrane accompanied by downregulation of surface levels of TNFR1.
Collapse
Affiliation(s)
- Shawn P Fessler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | |
Collapse
|
29
|
Monick MM, Cameron K, Staber J, Powers LS, Yarovinsky TO, Koland JG, Hunninghake GW. Activation of the epidermal growth factor receptor by respiratory syncytial virus results in increased inflammation and delayed apoptosis. J Biol Chem 2004; 280:2147-58. [PMID: 15542601 DOI: 10.1074/jbc.m408745200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Respiratory syncytial virus (RSV) preferentially infects lung epithelial cells. Infection by RSV leads to an extended inflammatory response, characterized by the release of interleukin-8 (IL-8). Activation of ERK MAP kinase is required for both RSV-induced inflammation and the extended survival of infected cells. In this study, we analyzed the role of the epidermal growth factor receptor (EGFR) in RSV activation of ERK. We demonstrate for the first time that RSV activates EGFR in lung epithelial cells. Activation of EGFR results in increased ERK activity, contributing to both the inflammatory response (IL-8 release) and prolonging the survival of RSV-infected cells. Inhibition of EGFR with siRNA decreased both ERK activation and IL-8 production after RSV. In analyzing the effect of EGFR activation on survival of RSV-infected cells, we found that EGFR activation by RSV resulted in ERK-dependent alterations in the balance of pro- versus anti-apoptotic Bcl2 proteins. RSV altered the balance between pro- and anti-apoptotic Bcl2 proteins (increased BclxL and decreased BimEL) increasing the relative amount of pro-survival proteins. This occurred in an EGFR-dependent manner. This study supports an important role for EGFR activity in the lifespan and inflammatory potential of RSV-infected epithelial cells.
Collapse
Affiliation(s)
- Martha M Monick
- Department of Internal Medicine, University of Iowa Carver College of Medicine and Veterans Administration Medical Center, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Lichtenstein DL, Doronin K, Toth K, Kuppuswamy M, Wold WSM, Tollefson AE. Adenovirus E3-6.7K protein is required in conjunction with the E3-RID protein complex for the internalization and degradation of TRAIL receptor 2. J Virol 2004; 78:12297-307. [PMID: 15507617 PMCID: PMC525093 DOI: 10.1128/jvi.78.22.12297-12307.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Accepted: 06/23/2004] [Indexed: 11/20/2022] Open
Abstract
Adenoviruses (Ads) encode several proteins within the early region 3 (E3) transcription unit that help protect infected cells from elimination by the immune system. Among these immunomodulatory proteins, the receptor internalization and degradation (RID) protein complex, which is composed of the RIDalpha (formerly E3-10.4K) and RIDbeta (formerly E3-14.5K) subunits, stimulates the internalization and degradation of certain members of the tumor necrosis factor (TNF) receptor superfamily, thus blocking apoptosis initiated by Fas and TNF-related apoptosis-inducing ligand (TRAIL). The experiments reported here show that TRAIL receptor 2 (TR2) is cleared from the cell surface in Ad-infected cells. Virus mutants containing deletions that span E3 were used to show that the RID and E3-6.7K proteins are both necessary for the internalization and degradation of TR2, whereas only the RID protein is required for TRAIL receptor 1 downregulation. In addition, replication-defective Ad vectors that express individual E3 proteins were used to establish that the RID and E3-6.7K proteins are sufficient to clear TR2. These data demonstrate that E3-6.7K is an important component of the antiapoptosis arsenal encoded by the E3 transcription unit of subgroup C Ads.
Collapse
Affiliation(s)
- Drew L Lichtenstein
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, 1402 South Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | | | | | |
Collapse
|