1
|
Liu JCY, Ackermann L, Hoffmann S, Gál Z, Hendriks IA, Jain C, Morlot L, Tatham MH, McLelland GL, Hay RT, Nielsen ML, Brummelkamp T, Haahr P, Mailand N. Concerted SUMO-targeted ubiquitin ligase activities of TOPORS and RNF4 are essential for stress management and cell proliferation. Nat Struct Mol Biol 2024; 31:1355-1367. [PMID: 38649616 PMCID: PMC11402782 DOI: 10.1038/s41594-024-01294-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Protein SUMOylation provides a principal driving force for cellular stress responses, including DNA-protein crosslink (DPC) repair and arsenic-induced PML body degradation. In this study, using genome-scale screens, we identified the human E3 ligase TOPORS as a key effector of SUMO-dependent DPC resolution. We demonstrate that TOPORS promotes DPC repair by functioning as a SUMO-targeted ubiquitin ligase (STUbL), combining ubiquitin ligase activity through its RING domain with poly-SUMO binding via SUMO-interacting motifs, analogous to the STUbL RNF4. Mechanistically, TOPORS is a SUMO1-selective STUbL that complements RNF4 in generating complex ubiquitin landscapes on SUMOylated targets, including DPCs and PML, stimulating efficient p97/VCP unfoldase recruitment and proteasomal degradation. Combined loss of TOPORS and RNF4 is synthetic lethal even in unstressed cells, involving defective clearance of SUMOylated proteins from chromatin accompanied by cell cycle arrest and apoptosis. Our findings establish TOPORS as a STUbL whose parallel action with RNF4 defines a general mechanistic principle in crucial cellular processes governed by direct SUMO-ubiquitin crosstalk.
Collapse
Affiliation(s)
- Julio C Y Liu
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Leena Ackermann
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Saskia Hoffmann
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Zita Gál
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Ivo A Hendriks
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Charu Jain
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Louise Morlot
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gian-Luca McLelland
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael Lund Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Thijn Brummelkamp
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Peter Haahr
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Cellular and Molecular Medicine, Center for Gene Expression, University of Copenhagen, Copenhagen, Denmark.
| | - Niels Mailand
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Ketosugbo KF, Bushnell HL, Johnson RI. A screen for E3 ubiquitination ligases that genetically interact with the adaptor protein Cindr during Drosophila eye patterning. PLoS One 2017; 12:e0187571. [PMID: 29117266 PMCID: PMC5678704 DOI: 10.1371/journal.pone.0187571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023] Open
Abstract
Ubiquitination is a crucial post-translational modification that can target proteins for degradation. The E3 ubiquitin ligases are responsible for recognizing substrate proteins for ubiquitination, hence providing specificity to the process of protein degradation. Here, we describe a genetic modifier screen that identified E3 ligases that modified the rough-eye phenotype generated by expression of cindrRNAi transgenes during Drosophila eye development. In total, we identified 36 E3 ligases, as well as 4 Cullins, that modified the mild cindrRNA mis-patterning phenotype. This indicates possible roles for these E3s/Cullins in processes that require Cindr function, including cytoskeletal regulation, cell adhesion, cell signaling and cell survival. Three E3 ligases identified in our screen had previously been linked to regulating JNK signaling.
Collapse
Affiliation(s)
- Kwami F. Ketosugbo
- Biology Department, Wesleyan University, Middletown, Connecticut, United States of America
| | - Henry L. Bushnell
- Biology Department, Wesleyan University, Middletown, Connecticut, United States of America
| | - Ruth I. Johnson
- Biology Department, Wesleyan University, Middletown, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
3
|
Braun KR, DeWispelaere AM, Bressler SL, Fukai N, Kenagy RD, Chen L, Clowes AW, Kinsella MG. Inhibition of PDGF-B induction and cell growth by syndecan-1 involves the ubiquitin and SUMO-1 ligase, Topors. PLoS One 2012; 7:e43701. [PMID: 22912899 PMCID: PMC3422340 DOI: 10.1371/journal.pone.0043701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/23/2012] [Indexed: 01/14/2023] Open
Abstract
Syndecans are receptors for soluble ligands, including heparin-binding growth factors, and matrix proteins. However, intracellular targets of syndecan-1 (Sdc-1)-mediated signaling are not fully understood. A yeast two-hybrid protein interaction screening of a mouse embryo library identified the ubiquitin and SUMO-1 E3 ligase, Topors, as a novel ligand of the Sdc-1 cytoplasmic domain (S1CD), a finding confirmed by ligand blotting and co-precipitation with Sdc-1 from cell lysates. Deletion mutagenesis identified an 18-amino acid sequence of Topors required for the interaction with the S1CD. By immunohistochemistry, Topors and Sdc-1 co-localized near the cell periphery in normal murine mammary gland (NMuMG) cells in vitro and in mouse embryonic epithelia in vivo. Finally, siRNA-mediated knockdown of Topors demonstrated that Topors is a growth promoter for murine arterial smooth muscle cells and is required for the inhibitory effect of Sdc-1 on cell growth and platelet-derived growth factor-B induction. These data suggest a novel mechanism for the inhibitory effects of Sdc-1 on cell growth that involves the interaction between the cytoplasmic domain of Sdc-1 and the SUMO-1 E3 ligase, Topors.
Collapse
Affiliation(s)
- Kathleen R. Braun
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Allison M. DeWispelaere
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Steven L. Bressler
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Nozomi Fukai
- Department of Surgery, University of Washington, Seattle, Washington, United States of America
| | - Richard D. Kenagy
- Department of Surgery, University of Washington, Seattle, Washington, United States of America
| | - Lihua Chen
- Department of Surgery, University of Washington, Seattle, Washington, United States of America
| | - Alexander W. Clowes
- Department of Surgery, University of Washington, Seattle, Washington, United States of America
| | - Michael G. Kinsella
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
4
|
Nuclear structure and chromosome segregation in Drosophila male meiosis depend on the ubiquitin ligase dTopors. Genetics 2011; 189:779-93. [PMID: 21900273 DOI: 10.1534/genetics.111.133819] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In many organisms, homolog pairing and synapsis at meiotic prophase depend on interactions between chromosomes and the nuclear membrane. Male Drosophila lack synapsis, but nonetheless, their chromosomes closely associate with the nuclear periphery at prophase I. To explore the functional significance of this association, we characterize mutations in nuclear blebber (nbl), a gene required for both spermatocyte nuclear shape and meiotic chromosome transmission. We demonstrate that nbl corresponds to dtopors, the Drosophila homolog of the mammalian dual ubiquitin/small ubiquitin-related modifier (SUMO) ligase Topors. We show that mutations in dtopors cause abnormalities in lamin localizations, centriole separation, and prophase I chromatin condensation and also cause anaphase I bridges that likely result from unresolved homolog connections. Bridge formation does not require mod(mdg4) in meiosis, suggesting that bridges do not result from misregulation of the male homolog conjunction complex. At the ultrastructural level, we observe disruption of nuclear shape, an uneven perinuclear space, and excess membranous structures. We show that dTopors localizes to the nuclear lamina at prophase, and also transiently to intranuclear foci. As a role of dtopors at gypsy insulator has been reported, we also asked whether these new alleles affected expression of the gypsy-induced mutation ct(6) and found that it was unaltered in dtopors homozygotes. Our results indicate that dTopors is required for germline nuclear structure and meiotic chromosome segregation, but in contrast, is not necessary for gypsy insulator function. We suggest that dtopors plays a structural role in spermatocyte lamina that is critical for multiple aspects of meiotic chromosome transmission.
Collapse
|
5
|
Barry KC, Abed M, Kenyagin D, Werwie TR, Boico O, Orian A, Parkhurst SM. The Drosophila STUbL protein Degringolade limits HES functions during embryogenesis. Development 2011; 138:1759-69. [PMID: 21486924 DOI: 10.1242/dev.058420] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Degringolade (Dgrn) encodes a Drosophila SUMO-targeted ubiquitin ligase (STUbL) protein similar to that of mammalian RNF4. Dgrn facilitates the ubiquitylation of the HES protein Hairy, which disrupts the repressive activity of Hairy by inhibiting the recruitment of its cofactor Groucho. We show that Hey and all HES family members, except Her, interact with Dgrn and are substrates for its E3 ubiquitin ligase activity. Dgrn displays dynamic subcellular localization, accumulates in the nucleus at times when HES family members are active and limits Hey and HES family activity during sex determination, segmentation and neurogenesis. We show that Dgrn interacts with the Notch signaling pathway by it antagonizing the activity of E(spl)-C proteins. dgrn null mutants are female sterile, producing embryos that arrest development after two or three nuclear divisions. These mutant embryos exhibit fragmented or decondensed nuclei and accumulate higher levels of SUMO-conjugated proteins, suggesting a role for Dgrn in genome stability.
Collapse
Affiliation(s)
- Kevin C Barry
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Abed M, Barry KC, Kenyagin D, Koltun B, Phippen TM, Delrow JJ, Parkhurst SM, Orian A. Degringolade, a SUMO-targeted ubiquitin ligase, inhibits Hairy/Groucho-mediated repression. EMBO J 2011; 30:1289-301. [PMID: 21343912 PMCID: PMC3094120 DOI: 10.1038/emboj.2011.42] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 01/26/2011] [Indexed: 11/09/2022] Open
Abstract
Transcriptional cofactors are essential for proper embryonic development. One such cofactor in Drosophila, Degringolade (Dgrn), encodes a RING finger/E3 ubiquitin ligase. Dgrn and its mammalian ortholog RNF4 are SUMO-targeted ubiquitin ligases (STUbLs). STUbLs bind to SUMOylated proteins via their SUMO interaction motif (SIM) domains and facilitate substrate ubiquitylation. In this study, we show that Dgrn is a negative regulator of the repressor Hairy and its corepressor Groucho (Gro/transducin-like enhancer (TLE)) during embryonic segmentation and neurogenesis, as dgrn heterozygosity suppresses Hairy mutant phenotypes and embryonic lethality. Mechanistically Dgrn functions as a molecular selector: it targets Hairy for SUMO-independent ubiquitylation that inhibits the recruitment of its corepressor Gro, without affecting the recruitment of its other cofactors or the stability of Hairy. Concomitantly, Dgrn specifically targets SUMOylated Gro for sequestration and antagonizes Gro functions in vivo. Our findings suggest that by targeting SUMOylated Gro, Dgrn serves as a molecular switch that regulates cofactor recruitment and function during development. As Gro/TLE proteins are conserved universal corepressors, this may be a general paradigm used to regulate the Gro/TLE corepressors in other developmental processes.
Collapse
Affiliation(s)
- Mona Abed
- Cancer and Vascular Biology Research Center, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Marshall H, Bhaumik M, Aviv H, Moore D, Yao M, Dutta J, Rahim H, Gounder M, Ganesan S, Saleem A, Rubin E. Deficiency of the dual ubiquitin/SUMO ligase Topors results in genetic instability and an increased rate of malignancy in mice. BMC Mol Biol 2010; 11:31. [PMID: 20429939 PMCID: PMC2873312 DOI: 10.1186/1471-2199-11-31] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 04/29/2010] [Indexed: 01/07/2023] Open
Abstract
Background Topors is a nuclear protein that co-localizes with promyelocytic leukemia bodies and has both ubiquitin and SUMO E3 ligase activity. Expression studies implicated Topors as a tumor suppressor in various malignancies. To gain insight into the function of Topors, we generated a Topors-deficient mouse strain. Results Mice homozygous for a mutant Topors allele exhibited a high rate of perinatal mortality and decreased lifespan. In addition, heterozygotes were found to have an increased incidence of malignancy, involving a variety of tissues. Consistent with this finding, primary embryonic fibroblasts lacking Topors exhibited an increased rate of malignant transformation, associated with aneuploidy and defective chromosomal segregation. While loss of Topors did not alter sensitivity to DNA-damaging or microtubule-targeting agents, cells lacking Topors exhibited altered pericentric heterochromatin, manifested by mislocalization of HP1α and an increase in transcription from pericentric major satellite DNA. Topors-deficient cells exhibited a transcriptional profile similar to that of cells treated with histone deacetylase inhibitors, and were resistant to the anti-proliferative effects of the histone deacetylase inhibitor trichostatin A. Conclusion These results indicate a unique role for Topors in the maintenance of genomic stability and pericentric heterochromatin, as well as in cellular sensitivity to histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Henderson Marshall
- Department of Pharmacology, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Guan B, Pungaliya P, Li X, Uquillas C, Mutton LN, Rubin EH, Bieberich CJ. Ubiquitination by TOPORS regulates the prostate tumor suppressor NKX3.1. J Biol Chem 2007; 283:4834-40. [PMID: 18077445 DOI: 10.1074/jbc.m708630200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NKX3.1 gene located at 8p21.2 encodes a homeodomain-containing transcription factor that acts as a haploinsufficient tumor suppressor in prostate cancer. Diminished protein expression of NKX3.1 has been observed in prostate cancer precursors and carcinomas. TOPORS is a ubiquitously expressed E3 ubiquitin ligase that can ubiquitinate tumor suppressor p53. Here we report interaction between NKX3.1 and TOPORS. NKX3.1 can be ubiquitinated by TOPORS in vitro and in vivo, and overexpression of TOPORS leads to NKX3.1 proteasomal degradation in prostate cancer cells. Conversely, small interfering RNA-mediated knockdown of TOPORS leads to an increased steady-state level and prolonged half-life of NKX3.1. These data establish TOPORS as a negative regulator of NKX3.1 and implicate TOPORS in prostate cancer progression.
Collapse
Affiliation(s)
- Bin Guan
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Chakarova CF, Papaioannou MG, Khanna H, Lopez I, Waseem N, Shah A, Theis T, Friedman J, Maubaret C, Bujakowska K, Veraitch B, Abd El-Aziz MM, Prescott DQ, Parapuram SK, Bickmore WA, Munro PMG, Gal A, Hamel CP, Marigo V, Ponting CP, Wissinger B, Zrenner E, Matter K, Swaroop A, Koenekoop RK, Bhattacharya SS. Mutations in TOPORS cause autosomal dominant retinitis pigmentosa with perivascular retinal pigment epithelium atrophy. Am J Hum Genet 2007; 81:1098-103. [PMID: 17924349 PMCID: PMC2265653 DOI: 10.1086/521953] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 07/17/2007] [Indexed: 11/03/2022] Open
Abstract
We report mutations in the gene for topoisomerase I-binding RS protein (TOPORS) in patients with autosomal dominant retinitis pigmentosa (adRP) linked to chromosome 9p21.1 (locus RP31). A positional-cloning approach, together with the use of bioinformatics, identified TOPORS (comprising three exons and encoding a protein of 1,045 aa) as the gene responsible for adRP. Mutations that include an insertion and a deletion have been identified in two adRP-affected families--one French Canadian and one German family, respectively. Interestingly, a distinct phenotype is noted at the earlier stages of the disease, with an unusual perivascular cuff of retinal pigment epithelium atrophy, which was found surrounding the superior and inferior arcades in the retina. TOPORS is a RING domain-containing E3 ubiquitin ligase and localizes in the nucleus in speckled loci that are associated with promyelocytic leukemia bodies. The ubiquitous nature of TOPORS expression and a lack of mutant protein in patients are highly suggestive of haploinsufficiency, rather than a dominant negative effect, as the molecular mechanism of the disease and make rescue of the clinical phenotype amenable to somatic gene therapy.
Collapse
|
10
|
Ii T, Mullen JR, Slagle CE, Brill SJ. Stimulation of in vitro sumoylation by Slx5-Slx8: evidence for a functional interaction with the SUMO pathway. DNA Repair (Amst) 2007; 6:1679-91. [PMID: 17669696 PMCID: PMC2100399 DOI: 10.1016/j.dnarep.2007.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 06/13/2007] [Accepted: 06/14/2007] [Indexed: 11/15/2022]
Abstract
The yeast genes SLX5 and SLX8 were identified based on their requirement for viability in the absence of the Sgs1 DNA helicase. Loss of these genes results in genome instability, nibbled colonies, and other phenotypes associated with defects in sumoylation. The Slx5 and Slx8 proteins form a stable complex and each subunit contains a single RING-finger domain at its C-terminus. To determine the physiological function of the Slx5-8 complex, we explored its interaction with the SUMO pathway. Curing 2micro circle from the mutants, suppressed their nibbled colony phenotype and partially improved their growth rate, but did not affect their sensitivity to hydroxyurea. The increase in sumoylation observed in slx5Delta and slx8Delta mutants was found to be dependent on the Siz1 SUMO ligase. Physical interactions between the Slx5-8 complex and both Ubc9 and Smt3 were identified and characterized. Using in vitro reactions, we show that Slx5, Slx8, or the Slx5-8 complex stimulates the formation of SUMO chains and the sumoylation of a test substrate. Interestingly, a functional RING-finger domain is not required for this stimulation in vitro. These biochemical data demonstrate for the first time that the Slx5 and Slx8 complex is capable of interacting directly with the SUMO pathway.
Collapse
Affiliation(s)
- Tatsuya Ii
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854 USA
| | - Janet R. Mullen
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854 USA
| | - Christopher E. Slagle
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854 USA
| | - Steven J. Brill
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854 USA
| |
Collapse
|
11
|
Abstract
Over the years, p53 has been shown to sit at the centre of an increasingly complex web of incoming stress signals and outgoing effector pathways. The number and diversity of stress signals that lead to p53 activation illustrates the breadth of p53's remit - responding to a wide variety of potentially oncogenic insults to prevent tumour development. Interestingly, different stress signals can use different and independent pathways to activate p53, and there is some evidence that different stress signals can mediate different responses. How each of the responses to p53 contributes to inhibition of malignant progression is beginning to be clarified, with the hope that identification of responses that are key to tumour suppression will allow a more focused and effective search for new therapeutic targets. In this review, we will highlight some recently identified roles for p53 in tumour suppression, and discuss some of the numerous mechanisms through which p53 can be regulated and activated.
Collapse
Affiliation(s)
- H F Horn
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, UK
| | | |
Collapse
|
12
|
Capelson M, Corces VG. The ubiquitin ligase dTopors directs the nuclear organization of a chromatin insulator. Mol Cell 2005; 20:105-16. [PMID: 16209949 DOI: 10.1016/j.molcel.2005.08.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 08/10/2005] [Accepted: 08/29/2005] [Indexed: 10/25/2022]
Abstract
Chromatin insulators are gene regulatory elements implicated in the establishment of independent chromatin domains. The gypsy insulator of D. melanogaster confers its activity through a protein complex that consists of three known components, Su(Hw), Mod(mdg4)2.2, and CP190. We have identified a factor, Drosophila Topoisomerase I-interacting RS protein (dTopors) that interacts with the insulator protein complex and is required for gypsy insulator function. In the absence of Mod(mdg4)2.2, nuclear clustering of insulator complexes is disrupted and insulator activity is compromised. Overexpression of dTopors in the mod(mdg4)2.2 null mutant rescues insulator activity and restores the formation of nuclear insulator bodies. dTopors associates with the nuclear lamina, and mutations in lamin disrupt dTopors localization as well as nuclear organization and activity of the gypsy insulator. Thus, dTopors appears to be involved in the establishment of chromatin organization through its ability to mediate the association of insulator complexes with a fixed nuclear substrate.
Collapse
Affiliation(s)
- Maya Capelson
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
13
|
Lin L, Ozaki T, Takada Y, Kageyama H, Nakamura Y, Hata A, Zhang JH, Simonds WF, Nakagawara A, Koseki H. topors, a p53 and topoisomerase I-binding RING finger protein, is a coactivator of p53 in growth suppression induced by DNA damage. Oncogene 2005; 24:3385-96. [PMID: 15735665 DOI: 10.1038/sj.onc.1208554] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The RING family zinc-finger protein topors (topoisomerase I-binding protein) binds not only topoisomerase I, but also p53 and the AAV-2 Rep78/68 proteins. topors maps to human chromosome 9p21, which contains candidate tumor suppressor genes implicated in small cell lung cancers. In this study, we isolated the murine counterpart of topors and investigated its impact on p53 function. The deduced amino-acid sequence of mouse topors exhibits extensive similarity to human topors. Overexpressed myc-tagged topors associates with and stabilizes p53, and enhances the p53-dependent transcriptional activities of p21(Waf1), MDM2 and Bax promoters and elevates endogenous p21(Waf1) mRNA levels. Overexpression of topors consequently results in the suppression of cell growth by cell cycle arrest and/or by the induction of apoptosis. Taken together, these studies identify topors as a positive regulator of p53. The expression of topors is induced by exposure to the genotoxic reagents cisplatin and camptothecin, a DNA topoisomerase I inhibitor. We therefore postulate that topors mediates p53-dependent cellular responses induced by DNA damage, suggesting its physiological role as a tumor suppressor.
Collapse
Affiliation(s)
- Ling Lin
- Department of Molecular Embryology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rajendra R, Malegaonkar D, Pungaliya P, Marshall H, Rasheed Z, Brownell J, Liu LF, Lutzker S, Saleem A, Rubin EH. Topors functions as an E3 ubiquitin ligase with specific E2 enzymes and ubiquitinates p53. J Biol Chem 2004; 279:36440-4. [PMID: 15247280 DOI: 10.1074/jbc.c400300200] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human topoisomerase I- and p53-binding protein topors contains a highly conserved, N-terminal C3HC4-type RING domain that is homologous to the RING domains of known E3 ubiquitin ligases. We demonstrate that topors functions in vitro as a RING-dependent E3 ubiquitin ligase with the E2 enzymes UbcH5a, UbcH5c, and UbcH6 but not with UbcH7, CDC34, or UbcH2b. Additional studies indicate that a conserved tryptophan within the topors RING domain is required for ubiquitination activity. Furthermore, both in vitro and cellular studies implicate p53 as a ubiquitination substrate for topors. Similar to MDM2, overexpression of topors results in a proteasome-dependent decrease in p53 protein expression in a human osteosarcoma cell line. These results are similar to the recent finding that a Drosophila topors orthologue ubiquitinates the Hairy transcriptional repressor and suggest that topors functions as a ubiquitin ligase for multiple transcription factors.
Collapse
Affiliation(s)
- Rajeev Rajendra
- Department of Pharmacology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08901, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|