1
|
Karunatilleke NC, Brickenden A, Choy WY. Molecular basis of the interactions between the disordered Neh4 and Neh5 domains of Nrf2 and CBP/p300 in oxidative stress response. Protein Sci 2024; 33:e5137. [PMID: 39150085 PMCID: PMC11328122 DOI: 10.1002/pro.5137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/21/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a major transcription factor that functions in maintaining redox homeostasis in cells. It mediates the transcription of cytoprotective genes in response to environmental and endogenous stresses to prevent oxidative damage. Thus, Nrf2 plays a significant role in chemoprevention. However, aberrant activation of Nrf2 has been shown to protect cancer cells from apoptosis and contribute to their chemoresistance. The interaction between Nrf2 and CBP is critical for the gene transcription activation. CBP and its homologue p300 interact with two transactivation domains in Nrf2, Neh4, and Neh5 domains through their TAZ1 and TAZ2 domains. To date, the molecular basis of this crucial interaction is not known, hindering a more detailed understanding of the regulation of Nrf2. To close this knowledge gap, we have used a set of biophysical experiments to dissect the Nrf2-CBP/p300 interactions. Structural properties of Neh4 and Neh5 and their binding with the TAZ1 and TAZ2 domains of CBP/p300 were characterized. Our results show that the Neh4 and Neh5 domains of Nrf2 are intrinsically disordered, and they both can bind the TAZ1 and TAZ2 domains of CBP/p300 with micromolar affinities. The findings provide molecular insight into the regulation of Nrf2 by CBP/p300 through multi-domain interactions.
Collapse
Affiliation(s)
- Nadun C Karunatilleke
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Anne Brickenden
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Wing-Yiu Choy
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Kuna M, Soares MJ. Cited2 is a key regulator of placental development and plasticity. Bioessays 2024; 46:e2300118. [PMID: 38922923 PMCID: PMC11331489 DOI: 10.1002/bies.202300118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The biology of trophoblast cell lineage development and placentation is characterized by the involvement of several known transcription factors. Central to the action of a subset of these transcriptional regulators is CBP-p300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2). CITED2 acts as a coregulator modulating transcription factor activities and affecting placental development and adaptations to physiological stressors. These actions of CITED2 on the trophoblast cell lineage and placentation are conserved across the mouse, rat, and human. Thus, aspects of CITED2 biology in hemochorial placentation can be effectively modeled in the mouse and rat. In this review, we present information on the conserved role of CITED2 in the biology of placentation and discuss the use of CITED2 as a tool to discover new insights into regulatory mechanisms controlling placental development.
Collapse
Affiliation(s)
- Marija Kuna
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, MO
| |
Collapse
|
3
|
Petrovicz VL, Pasztuhov I, Martinek TA, Hegedüs Z. Site-directed allostery perturbation to probe the negative regulation of hypoxia inducible factor-1α. RSC Chem Biol 2024; 5:711-720. [PMID: 39092442 PMCID: PMC11289882 DOI: 10.1039/d4cb00066h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/27/2024] [Indexed: 08/04/2024] Open
Abstract
The interaction between the intrinsically disordered transcription factor HIF-1α and the coactivator proteins p300/CBP is essential in the fast response to low oxygenation. The negative feedback regulator, CITED2, switches off the hypoxic response through a very efficient irreversible mechanism. The negative cooperativity with HIF-1α relies on the formation of a ternary intermediate that leads to allosteric structural changes in p300/CBP, in which the cooperative folding/binding of the CITED2 sequence motifs plays a key role. Understanding the contribution of a binding motif to the structural changes in relation to competition efficiency provides invaluable insights into the molecular mechanism. Our strategy is to site-directedly perturb the p300-CITED2 complex's structure without significantly affecting binding thermodynamics. In this way, the contribution of a sequence motif to the negative cooperativity with HIF-1α would mainly depend on the induced structural changes, and to a lesser extent on binding affinity. Using biophysical assays and NMR measurements, we show here that the interplay between the N-terminal tail and the rest of the binding motifs of CITED2 is crucial for the unidirectional displacement of HIF-1α. We introduce an advantageous approach for evaluating the roles of the different sequence parts with the help of motif-by-motif backbone perturbations.
Collapse
Affiliation(s)
- Vencel L Petrovicz
- University of Szeged, Department of Medical Chemistry 8 Dóm tér Szeged 6720 Hungary
| | - István Pasztuhov
- University of Szeged, Department of Medical Chemistry 8 Dóm tér Szeged 6720 Hungary
| | - Tamás A Martinek
- University of Szeged, Department of Medical Chemistry 8 Dóm tér Szeged 6720 Hungary
- HUN-REN SZTE Biomimetic Systems Research Group 8 Dóm tér Szeged 6720 Hungary
| | - Zsófia Hegedüs
- University of Szeged, Department of Medical Chemistry 8 Dóm tér Szeged 6720 Hungary
| |
Collapse
|
4
|
Yang Y, Ahmad E, Premkumar V, Liu A, Ashikur Rahman SM, Nikolovska‐Coleska Z. Structural studies of intrinsically disordered MLL-fusion protein AF9 in complex with peptidomimetic inhibitors. Protein Sci 2024; 33:e5019. [PMID: 38747396 PMCID: PMC11094776 DOI: 10.1002/pro.5019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/19/2024]
Abstract
AF9 (MLLT3) and its paralog ENL(MLLT1) are members of the YEATS family of proteins with important role in transcriptional and epigenetic regulatory complexes. These proteins are two common MLL fusion partners in MLL-rearranged leukemias. The oncofusion proteins MLL-AF9/ENL recruit multiple binding partners, including the histone methyltransferase DOT1L, leading to aberrant transcriptional activation and enhancing the expression of a characteristic set of genes that drive leukemogenesis. The interaction between AF9 and DOT1L is mediated by an intrinsically disordered C-terminal ANC1 homology domain (AHD) in AF9, which undergoes folding upon binding of DOT1L and other partner proteins. We have recently reported peptidomimetics that disrupt the recruitment of DOT1L by AF9 and ENL, providing a proof-of-concept for targeting AHD and assessing its druggability. Intrinsically disordered proteins, such as AF9 AHD, are difficult to study and characterize experimentally on a structural level. In this study, we present a successful protein engineering strategy to facilitate structural investigation of the intrinsically disordered AF9 AHD domain in complex with peptidomimetic inhibitors by using maltose binding protein (MBP) as a crystallization chaperone connected with linkers of varying flexibility and length. The strategic incorporation of disulfide bonds provided diffraction-quality crystals of the two disulfide-bridged MBP-AF9 AHD fusion proteins in complex with the peptidomimetics. These successfully determined first series of 2.1-2.6 Å crystal complex structures provide high-resolution insights into the interactions between AHD and its inhibitors, shedding light on the role of AHD in recruiting various binding partner proteins. We show that the overall complex structures closely resemble the reported NMR structure of AF9 AHD/DOT1L with notable difference in the conformation of the β-hairpin region, stabilized through conserved hydrogen bonds network. These first series of AF9 AHD/peptidomimetics complex structures are providing insights of the protein-inhibitor interactions and will facilitate further development of novel inhibitors targeting the AF9/ENL AHD domain.
Collapse
Affiliation(s)
- Yuting Yang
- Department of PathologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Ejaz Ahmad
- Department of PathologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Vidhya Premkumar
- Department of PathologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Alicen Liu
- Department of PathologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - S. M. Ashikur Rahman
- Department of PathologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Zaneta Nikolovska‐Coleska
- Department of PathologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
5
|
Wiggins DA, Maxwell JN, Nelson DE. Exploring the role of CITED transcriptional regulators in the control of macrophage polarization. Front Immunol 2024; 15:1365718. [PMID: 38646545 PMCID: PMC11032013 DOI: 10.3389/fimmu.2024.1365718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Macrophages are tissue resident innate phagocytic cells that take on contrasting phenotypes, or polarization states, in response to the changing combination of microbial and cytokine signals at sites of infection. During the opening stages of an infection, macrophages adopt the proinflammatory, highly antimicrobial M1 state, later shifting to an anti-inflammatory, pro-tissue repair M2 state as the infection resolves. The changes in gene expression underlying these transitions are primarily governed by nuclear factor kappaB (NF-κB), Janus kinase (JAK)/signal transducer and activation of transcription (STAT), and hypoxia-inducible factor 1 (HIF1) transcription factors, the activity of which must be carefully controlled to ensure an effective yet spatially and temporally restricted inflammatory response. While much of this control is provided by pathway-specific feedback loops, recent work has shown that the transcriptional co-regulators of the CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxy-terminal domain (CITED) family serve as common controllers for these pathways. In this review, we describe how CITED proteins regulate polarization-associated gene expression changes by controlling the ability of transcription factors to form chromatin complexes with the histone acetyltransferase, CBP/p300. We will also cover how differences in the interactions between CITED1 and 2 with CBP/p300 drive their contrasting effects on pro-inflammatory gene expression.
Collapse
Affiliation(s)
| | | | - David E. Nelson
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| |
Collapse
|
6
|
Fu Z, Shi Y, Yu S, Zhao Q, Mo H, Yang P. Variation of gene expression of fatty acid acyl CoA reductase associated with wax secretion of a scale insect, Ericerus pela, and identification of its regulation factors through the accessible chromatin analyses and yeast one-hybrid. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22101. [PMID: 38500444 DOI: 10.1002/arch.22101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/11/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
The Chinese white wax scale insect (CWWSI), Ericerus pela, can secret an amount of wax equivalent to their body weight. Previous studies demonstrated the fatty acyl-CoA reductase (far3) plays a pivotal role in wax secretion of CWWSI. The high expression of far3 is crucial for the massive wax secretion. However, the transcription regulation of far3 was not clear. To identify regulatory factors that control the expression of far3, the assay for transposase-accessible chromatin (ATAC) and yeast one-hybrid (Y1H) were carried out in this study. The ATAC sequencing of the CWWSI at the early wax-secretion stage ATAC-seq resulted in 22.75 GB raw data, generated 75,827,225 clean reads and revealed 142,771 peaks. There was one significant peak in the 3 kb upstream regulation regions. The peak sequence is located between -1000 and -670 bp upstream of the far3 transcription start site, spanning a length of 331 bp. This peak sequence served as bait for creating the pAbAi-peak recombinant vector, used in Y1H screenings to identify proteins interacting with far3 gene. The results indicate a successful CWWSI cDNA library construction with a capacity of 1.2 × 107 colony forming unit, a 95.8% recombination rate, and insert sizes between 1,000 and 2,000 bp. Self-activation tests established that 100 ng/mL of AbA effectively inhibited bait vector self-activation. Finally, a total of 88 positive clones were selected. After sequencing and removal of duplication, 63 unique clones were obtained from these screened colonies. By aligning the clone sequences with full-length transcriptome and genome of CWWSI, the full-length coding sequences of these clones were obtained. BlastX analysis identified a transcription factor, nuclear transcription factor Y beta, and two co-activators, cAMP-response-element-binding-protein-binding protein and WW domain binding protein 2. Reverse transcription quantitative polymerase chain reaction analysis confirmed that their expression patterns were consistent with the developmental stages preceding wax secretion and matched the wax secretion characteristics during ovulation periods. These results are beneficial for further research into the regulatory mechanisms of wax secretion of CWWSI.
Collapse
Affiliation(s)
- Zuoyi Fu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Nanjing Forestry University, Nanjing, China
| | - Yuanchong Shi
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
| | - Shuhui Yu
- College of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Qiuyu Zhao
- College of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Haifeng Mo
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
| | - Pu Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming, China
| |
Collapse
|
7
|
Sipko EL, Chappell GF, Berlow RB. Multivalency emerges as a common feature of intrinsically disordered protein interactions. Curr Opin Struct Biol 2024; 84:102742. [PMID: 38096754 DOI: 10.1016/j.sbi.2023.102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 02/09/2024]
Abstract
Intrinsically disordered proteins (IDPs) use their unique molecular properties and conformational plasticity to interact with cellular partners in a wide variety of biological contexts. Multivalency is an important feature of IDPs that allows for utilization of an expanded toolkit for interactions with other macromolecules and confers additional complexity to molecular recognition processes. Recent studies have offered insights into how multivalent interactions of IDPs enable responsive and sensitive regulation in the context of transcription and cellular signaling. Multivalency is also widely recognized as an important feature of IDP interactions that mediate formation of biomolecular condensates. We highlight recent examples of multivalent interactions of IDPs across diverse contexts to illustrate the breadth of biological processes that utilize multivalency in molecular interactions.
Collapse
Affiliation(s)
- Emily L Sipko
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Garrett F Chappell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca B Berlow
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
8
|
Zafar A, Ng HP, Chan ER, Dunwoodie SL, Mahabeleshwar GH. Myeloid-CITED2 Deficiency Exacerbates Diet-Induced Obesity and Pro-Inflammatory Macrophage Response. Cells 2023; 12:2136. [PMID: 37681868 PMCID: PMC10486650 DOI: 10.3390/cells12172136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 09/09/2023] Open
Abstract
Macrophages are the principal component of the innate immune system that are found in all tissues and play an essential role in development, homeostasis, tissue repair, and immunity. Clinical and experimental studies have shown that transcriptionally dynamic pro-inflammatory macrophages are involved in the pathogenesis of diet-induced obesity and insulin resistance. However, cell-intrinsic mechanisms must exist that bridle uncontrolled pro-inflammatory macrophage activation in metabolic organs and disease pathogenesis. In this study, we show that CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2) is an essential negative regulator of pro-inflammatory macrophage activation and inflammatory disease pathogenesis. Our in vivo studies show that myeloid-CITED2 deficiency significantly elevates high-fat diet (HFD)-induced expansion of adipose tissue volume, obesity, glucose intolerance, and insulin resistance. Moreover, myeloid-CITED2 deficiency also substantially augments HFD-induced adipose tissue inflammation and adverse remodeling of adipocytes. Our integrated transcriptomics and gene set enrichment analyses show that CITED2 deficiency curtails BCL6 signaling and broadly elevates BCL6-repressive gene target expression in macrophages. Using complementary gain- and loss-of-function studies, we found that CITED2 deficiency attenuates, and CITED2 overexpression elevates, inducible BCL6 expression in macrophages. At the molecular level, our analyses show that CITED2 promotes BCL6 expression by restraining STAT5 activation in macrophages. Interestingly, siRNA-mediated knockdown of STAT5 fully reversed elevated pro-inflammatory gene target expression in CITED2-deficient macrophages. Overall, our findings highlight that CITED2 restrains inflammation by promoting BCL6 expression in macrophages, and limits diet-induced obesity and insulin resistance.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hang Pong Ng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - E. Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Sally L. Dunwoodie
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW, Sydney, NSW 2052, Australia
| | - Ganapati H. Mahabeleshwar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
9
|
Kikuchi M, Morita S, Wakamori M, Sato S, Uchikubo-Kamo T, Suzuki T, Dohmae N, Shirouzu M, Umehara T. Epigenetic mechanisms to propagate histone acetylation by p300/CBP. Nat Commun 2023; 14:4103. [PMID: 37460559 DOI: 10.1038/s41467-023-39735-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Histone acetylation is important for the activation of gene transcription but little is known about its direct read/write mechanisms. Here, we report cryogenic electron microscopy structures in which a p300/CREB-binding protein (CBP) multidomain monomer recognizes histone H4 N-terminal tail (NT) acetylation (ac) in a nucleosome and acetylates non-H4 histone NTs within the same nucleosome. p300/CBP not only recognized H4NTac via the bromodomain pocket responsible for reading, but also interacted with the DNA minor grooves via the outside of that pocket. This directed the catalytic center of p300/CBP to one of the non-H4 histone NTs. The primary target that p300 writes by reading H4NTac was H2BNT, and H2BNTac promoted H2A-H2B dissociation from the nucleosome. We propose a model in which p300/CBP replicates histone N-terminal tail acetylation within the H3-H4 tetramer to inherit epigenetic storage, and transcribes it from the H3-H4 tetramer to the H2B-H2A dimers to activate context-dependent gene transcription through local nucleosome destabilization.
Collapse
Affiliation(s)
- Masaki Kikuchi
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Satoshi Morita
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Masatoshi Wakamori
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Shin Sato
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Tomomi Uchikubo-Kamo
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
10
|
Chowdhary K, Benoist C. A variegated model of transcription factor function in the immune system. Trends Immunol 2023; 44:530-541. [PMID: 37258360 PMCID: PMC10332489 DOI: 10.1016/j.it.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 06/02/2023]
Abstract
Specific combinations of transcription factors (TFs) control the gene expression programs that underlie specialized immune responses. Previous models of TF function in immunocytes had restricted each TF to a single functional categorization [e.g., lineage-defining (LDTFs) vs. signal-dependent TFs (SDTFs)] within one cell type. Synthesizing recent results, we instead propose a variegated model of immunological TF function, whereby many TFs have flexible and different roles across distinct cell states, contributing to cell phenotypic diversity. We discuss evidence in support of this variegated model, describe contextual inputs that enable TF diversification, and look to the future to imagine warranted experimental and computational tools to build quantitative and predictive models of immunocyte gene regulatory networks.
Collapse
|
11
|
Brown AD, Cranstone C, Dupré DJ, Langelaan DN. β-Catenin interacts with the TAZ1 and TAZ2 domains of CBP/p300 to activate gene transcription. Int J Biol Macromol 2023; 238:124155. [PMID: 36963539 DOI: 10.1016/j.ijbiomac.2023.124155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
The transcriptional co-regulator β-catenin is a critical member of the canonical Wnt signaling pathway, which plays an important role in regulating cell fate. Deregulation of the Wnt/β-catenin pathway is characteristic in the development of major types of cancer, where accumulation of β-catenin promotes cancer cell proliferation and renewal. β-catenin gene expression is facilitated through recruitment of co-activators such as histone acetyltransferases CBP/p300; however, the mechanism of their interaction is not fully understood. Here we investigate the interaction between the C-terminal transactivation domain of β-catenin and CBP/p300. Using a combination of pulldown assays, isothermal titration calorimetry, and nuclear resonance spectroscopy we determine the disordered C-terminal region of β-catenin binds promiscuously to the TAZ1 and TAZ2 domains of CBP/p300. We then map the interaction site of the C-terminal β-catenin transactivation domain onto TAZ1 and TAZ2 using chemical-shift perturbation studies. Luciferase-based gene reporter assays indicate Asp750-Leu781 is critical to β-catenin gene activation, and mutagenesis revealed that acidic and hydrophobic residues within this region are necessary to maintain TAZ1 binding. These results outline a mechanism of Wnt/β-catenin gene regulation that underlies cell development and provides a framework to develop methods to block β-catenin dependent signaling.
Collapse
Affiliation(s)
- Alexandra D Brown
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Connor Cranstone
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Denis J Dupré
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - David N Langelaan
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
12
|
“Structure”-function relationships in eukaryotic transcription factors: The role of intrinsically disordered regions in gene regulation. Mol Cell 2022; 82:3970-3984. [DOI: 10.1016/j.molcel.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/19/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
|
13
|
Wen B, Zhang W, Zhang Y, Lei H, Cao Y, Li W, Wang W. Self-Effected Allosteric Coupling and Cooperativity in Hypoxic Response Regulation with Disordered Proteins. J Phys Chem Lett 2022; 13:9201-9209. [PMID: 36170455 DOI: 10.1021/acs.jpclett.2c02065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hypersensitive regulation of cellular hypoxic response relies on cooperative displacement of one disordered protein (HIF-1α) by another disordered protein (CITED2) from the target in a negative feedback loop. Considering the weak intramolecule coupling in disordered proteins, the molecular mechanism of high cooperativity in the molecular displacement event remains elusive. Herein, we show that disordered proteins utilize a "self-effected allostery" mechanism to achieve high binding cooperativity. Different from the conventional allostery mechanisms shown by many structured or disordered proteins, this mechanism utilizes one part of the disordered protein as the effector to trigger the allosteric coupling and enhance the binding of the remaining part of the same disordered protein, contributing to high cooperativity of the displacement event. The conserved charge motif of CITED2 is the key determinant of the molecular displacement event by serving as the effector of allosteric coupling. Such self-effected allostery provides an efficient strategy to achieve high cooperativity in the molecular events involving disordered proteins.
Collapse
Affiliation(s)
- Bin Wen
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Weiwei Zhang
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Yangyang Zhang
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hai Lei
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wenfei Li
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
14
|
Multivalency enables unidirectional switch-like competition between intrinsically disordered proteins. Proc Natl Acad Sci U S A 2022; 119:2117338119. [PMID: 35012986 PMCID: PMC8784115 DOI: 10.1073/pnas.2117338119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
Intrinsically disordered proteins must compete for binding to common regulatory targets to carry out their biological functions. Previously, we showed that the activation domains of two disordered proteins, the transcription factor HIF-1α and its negative regulator CITED2, function as a unidirectional, allosteric molecular switch to control transcription of critical adaptive genes under conditions of oxygen deprivation. These proteins achieve transcriptional control by competing for binding to the TAZ1 domain of the transcriptional coactivators CREB-binding protein (CBP) and p300 (CREB: cyclic-AMP response element binding protein). To characterize the mechanistic details behind this molecular switch, we used solution NMR spectroscopy and complementary biophysical methods to determine the contributions of individual binding motifs in CITED2 to the overall competition process. An N-terminal region of the CITED2 activation domain, which forms a helix when bound to TAZ1, plays a critical role in initiating competition with HIF-1α by enabling formation of a ternary complex in a process that is highly dependent on the dynamics and disorder of the competing partners. Two other conserved binding motifs in CITED2, the LPEL motif and an aromatic/hydrophobic motif that we term ϕC, function synergistically to enhance binding of CITED2 and inhibit rebinding of HIF-1α. The apparent unidirectionality of competition between HIF-1α and CITED2 is lost when one or more of these binding regions is altered by truncation or mutation of the CITED2 peptide. Our findings illustrate the complexity of molecular interactions involving disordered proteins containing multivalent interaction motifs and provide insight into the unique mechanisms by which disordered proteins compete for occupancy of common molecular targets within the cell.
Collapse
|
15
|
Kabra A, Bushweller J. The Intrinsically Disordered Proteins MLLT3 (AF9) and MLLT1 (ENL) - Multimodal Transcriptional Switches With Roles in Normal Hematopoiesis, MLL Fusion Leukemia, and Kidney Cancer. J Mol Biol 2022; 434:167117. [PMID: 34174329 PMCID: PMC8695629 DOI: 10.1016/j.jmb.2021.167117] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 01/17/2023]
Abstract
AF9 (MLLT3) and ENL (MLLT1) are members of the YEATS family (named after the five proteins first shown to contain this domain: Yaf9, ENL, AF9, Taf14, Sas5) defined by the presence of a YEATS domain. The YEATS domain is an epigenetic reader that binds to acetylated and crotonylated lysines, unlike the bromodomain which can only bind to acetylated lysines. All members of this family have been shown to be components of various complexes with roles in chromatin remodeling, histone modification, histone variant deposition, and transcriptional regulation. MLLT3 is a critical regulator of hematopoiesis with a role in maintaining the hematopoietic stem or progenitor cell (HSPC) population. Approximately 10% of acute myeloid leukemia (AML) and acute lymphocytic leukemia (ALL) patients harbor a translocation involving MLL (mixed lineage leukemia). In the context of MLL fusion patients with AML and ALL, MLL-AF9 and MLL-ENL fusions are observed in 34 and 31% of the patients, respectively. The intrinsically disordered C-terminal domain of MLLT3 (AHD, ANC1 homology domain) undergoes coupled binding and folding upon interaction with partner proteins AF4, DOT1L, BCOR, and CBX8. Backbone dynamics studies of the complexes suggest a role for dynamics in function. Inhibitors of the interaction of the intrinsically disordered AHD with partner proteins have been described, highlighting the feasibility of targeting intrinsically disordered regions. MLLT1 undergoes phase separation to enhance recruitment of the super elongation complex (SEC) and drive transcription. Mutations in MLLT1 observed in Wilms tumor patients enhance phase separation and transcription to drive an aberrant gene expression program.
Collapse
Affiliation(s)
- Ashish Kabra
- Dept. of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, United States
| | - John Bushweller
- Dept. of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, United States; Dept. of Chemistry, University of Virginia, Charlottesville, VA 22904, United States.
| |
Collapse
|
16
|
Hóbor F, Hegedüs Z, Ibarra AA, Petrovicz VL, Bartlett GJ, Sessions RB, Wilson AJ, Edwards TA. Understanding p300-transcription factor interactions using sequence variation and hybridization. RSC Chem Biol 2022; 3:592-603. [PMID: 35656479 PMCID: PMC9092470 DOI: 10.1039/d2cb00026a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022] Open
Abstract
The hypoxic response is central to cell function and plays a significant role in the growth and survival of solid tumours. HIF-1 regulates the hypoxic response by activating over 100...
Collapse
Affiliation(s)
- Fruzsina Hóbor
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Zsófia Hegedüs
- Department of Medical Chemistry, University of Szeged Dóm tér 8 H-6720 Szeged Hungary
| | - Amaurys Avila Ibarra
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol, Life Sciences Building Tyndall Avenue Bristol BS8 1TQ UK
| | - Vencel L Petrovicz
- Department of Medical Chemistry, University of Szeged Dóm tér 8 H-6720 Szeged Hungary
| | - Gail J Bartlett
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol, Life Sciences Building Tyndall Avenue Bristol BS8 1TQ UK
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Richard B Sessions
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol, Life Sciences Building Tyndall Avenue Bristol BS8 1TQ UK
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|
17
|
Appling FD, Berlow RB, Stanfield RL, Dyson HJ, Wright PE. The molecular basis of allostery in a facilitated dissociation process. Structure 2021; 29:1327-1338.e5. [PMID: 34520739 PMCID: PMC8642270 DOI: 10.1016/j.str.2021.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/22/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022]
Abstract
Facilitated dissociation provides a mechanism by which high-affinity complexes can be rapidly disassembled. The negative feedback regulator CITED2 efficiently downregulates the hypoxic response by displacing the hypoxia-inducible transcription factor HIF-1α from the TAZ1 domain of the transcriptional coactivators CREB-binding protein (CBP) and p300. Displacement occurs by a facilitated dissociation mechanism involving a transient ternary intermediate formed by binding of the intrinsically disordered CITED2 activation domain to the TAZ1:HIF-1α complex. The short lifetime of the intermediate precludes straightforward structural investigations. To obtain insights into the molecular determinants of facilitated dissociation, we model the ternary intermediate by generating a fusion peptide composed of the primary CITED2 and HIF-1α binding motifs. X-ray crystallographic and NMR studies of the fusion peptide complex reveal TAZ1-mediated negative cooperativity that results in nearly mutually exclusive binding of specific CITED2 and HIF-1α interaction motifs, providing molecular-level insights into the allosteric switch that terminates the hypoxic response.
Collapse
Affiliation(s)
- Francis D Appling
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rebecca B Berlow
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
18
|
Zafar A, Pong Ng H, Diamond-Zaluski R, Kim GD, Ricky Chan E, Dunwoodie SL, Smith JD, Mahabeleshwar GH. CITED2 inhibits STAT1-IRF1 signaling and atherogenesis. FASEB J 2021; 35:e21833. [PMID: 34365659 DOI: 10.1096/fj.202100792r] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/11/2022]
Abstract
Macrophages are the principal component of the innate immune system. They play very crucial and multifaceted roles in the pathogenesis of inflammatory vascular diseases. There is an increasing recognition that transcriptionally dynamic macrophages are the key players in the pathogenesis of inflammatory vascular diseases. In this context, the accumulation and aberrant activation of macrophages in the subendothelial layers govern atherosclerotic plaque development. Macrophage-mediated inflammation is an explicitly robust biological response that involves broad alterations in inflammatory gene expression. Thus, cell-intrinsic negative regulatory mechanisms must exist which can restrain inflammatory response in a spatiotemporal manner. In this study, we identified CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2) as one such cell-intrinsic negative regulator of inflammation. Our in vivo studies show that myeloid-CITED2-deficient mice on the Apoe-/- background have larger atherosclerotic lesions on both control and high-fat/high-cholesterol diets. Our integrated transcriptomics and gene set enrichment analyses studies show that CITED2 deficiency elevates STAT1 and interferon regulatory factor 1 (IRF1) regulated pro-inflammatory gene expression in macrophages. At the molecular level, our studies identify that CITED2 deficiency elevates IFNγ-induced STAT1 transcriptional activity and STAT1 enrichment on IRF1 promoter in macrophages. More importantly, siRNA-mediated knockdown of IRF1 completely reversed elevated pro-inflammatory target gene expression in CITED2-deficient macrophages. Collectively, our study findings demonstrate that CITED2 restrains the STAT1-IRF1 signaling axis in macrophages and limits the development of atherosclerotic plaques.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Hang Pong Ng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rachel Diamond-Zaluski
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gun-Dong Kim
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ernest Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,Faculties of Medicine and Science, UNSW Sydney, Sydney, NSW, Australia
| | - Jonathan D Smith
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
19
|
Shalmani A, Ullah U, Muhammad I, Zhang D, Sharif R, Jia P, Saleem N, Gul N, Rakhmanova A, Tahir MM, Chen KM, An N. The TAZ domain-containing proteins play important role in the heavy metals stress biology in plants. ENVIRONMENTAL RESEARCH 2021; 197:111030. [PMID: 33774015 DOI: 10.1016/j.envres.2021.111030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
TAZ (transcriptional coactivator with PDZ-binding) zinc finger domains, also known as transcription adaptor putative zinc finger domains, that control diverse function in plant growth and development. Here, in the present study, we evaluated the role of the TAZ domain-containing gene in response to various heavy metals. Initially, we found a total of 3, 7, 8, 9, 9, 9, 7, 14, 6, 10, and 6 proteins containing TAZ domain in stiff brome, millet, sorghum, potato, pepper, maize, rice, apple, peach, pear, and tomato genome that could trigger the plant resistance against various heavy metals, respectively. Various in-silico approaches were applied such as duplication, phylogenetic analysis, and gene structure, to understand the basic features of the TAZ domain-containing genes in plants. Gene expression analyses were also performed under heavy metals (Cr, Zn, Ni, Cd, Co, Fe, Mn, and Pb). The results of quantitative real-time PCR analysis indicated that the TAZ gene family members were differentially expressed under different heavy metals. We further characterized the functions of the TAZ domain-containing gene under the heavy metal stresses by overexpressing the OsTAZ4 gene in Arabidopsis. The TAZ genes could promote plant resistance against various heavy metals by interacting with OsMYB34 and OsFHA9 transcription factors. The results will contribute to elucidate the relationship of TAZ proteins with heavy metals stresses and also ascertain the biological function in plant growth and development.
Collapse
Affiliation(s)
- Abdullah Shalmani
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi Province, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Uzair Ullah
- Department of Genetics, Hazara University, Manshera, KPK, Pakistan.
| | - Izhar Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi Province, 712100, China; College of Agronomy, Northwest A and F University, Yangling, Shaanxi Province, 712100, China.
| | - Dong Zhang
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi Province, 712100, China.
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China.
| | - Peng Jia
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi Province, 712100, China.
| | - Noor Saleem
- College of Agronomy, Northwest A and F University, Yangling, Shaanxi Province, 712100, China.
| | - Nazish Gul
- Department of Genetics, Hazara University, Manshera, KPK, Pakistan.
| | - Aizhan Rakhmanova
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi Province, 712100, China.
| | - Muhammad Mobeen Tahir
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi Province, 712100, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Na An
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi Province, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
20
|
Chang M, Wilson CJ, Karunatilleke NC, Moselhy MH, Karttunen M, Choy WY. Exploring the Conformational Landscape of the Neh4 and Neh5 Domains of Nrf2 Using Two Different Force Fields and Circular Dichroism. J Chem Theory Comput 2021; 17:3145-3156. [PMID: 33861593 DOI: 10.1021/acs.jctc.0c01243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2)-ARE transcriptional response pathway plays a critical role in protecting the cell from oxidative stresses via the upregulation of cytoprotective genes. Aberrant activation of Nrf2 in cancer cells can confer this cytoprotectivity, thereby reducing the efficacy of both chemotherapeutics and radiotherapies. Key to this antioxidant pathway is the interaction between Nrf2 and CREB binding protein (CBP), mediated by the Neh4 and Neh5 domains of Nrf2. Disruption of this interaction via small-molecule therapeutics could negate the effects of aberrant Nrf2 upregulation. Due to the disordered nature of these domains, there remains no three-dimensional structure of Neh4 or Neh5, making structure-based drug design a challenge. Here, we performed 48 μs of unbiased molecular dynamics (MD) simulations with the Amber99SB*-ILDNP and CHARMM36m force fields and circular dichroism (CD) spectropolarimetry experiments to elucidate the free-state structures of these domains; no previous data regarding their conformational landscapes exists. There are two main findings: First, we find Neh5 to be markedly more disordered than Neh4, which has nine residues in the middle of the domain showing α-helical propensity, thus pointing to Neh4 and Neh5 having different binding mechanisms. Second, the two force fields show strong differences for the glutamic acid-rich Neh5 peptide but are in reasonable agreement for Neh4, which has no glutamic acid. The CHARMM36m force field agrees more closely with the CD results.
Collapse
Affiliation(s)
- Megan Chang
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada
| | - Carter J Wilson
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada.,Department of Applied Mathematics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Nadun Chanaka Karunatilleke
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada
| | - Mohamed Hesham Moselhy
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada.,Department of Computer Science, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Mikko Karttunen
- Department of Applied Mathematics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada.,Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Wing-Yiu Choy
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada
| |
Collapse
|
21
|
Abstract
Cbp/P300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a transcription co-factor that interacts with several other transcription factors and co-factors, and serves critical roles in fundamental cell processes, including proliferation, apoptosis, differentiation, migration and autophagy. The interacting transcription factors or co-factors of CITED2 include LIM homeobox 2, transcription factor AP-2, SMAD2/3, peroxisome proliferator-activated receptor γ, oestrogen receptor, MYC, Nucleolin and p300/CBP, which regulate downstream gene expression, and serve important roles in the aforementioned fundamental cell processes. Emerging evidence has demonstrated that CITED2 serves an essential role in embryonic and adult tissue stem cells, including hematopoietic stem cells and tendon-derived stem/progenitor cells. Additionally, CITED2 has been reported to function in different types of cancer. Although the functions of CITED2 in different tissues vary depending on the interaction partner, altered CITED2 expression or altered interactions with transcription factors or co-factors result in alterations of fundamental cell processes, and may affect stem cell maintenance or cancer cell survival. The aim of this review is to summarize the molecular mechanisms of CITED2 function and how it serves a role in stem cells and different types of cancer based on the currently available literature.
Collapse
|
22
|
Pong Ng H, Kim GD, Ricky Chan E, Dunwoodie SL, Mahabeleshwar GH. CITED2 limits pathogenic inflammatory gene programs in myeloid cells. FASEB J 2020; 34:12100-12113. [PMID: 32697413 PMCID: PMC7496281 DOI: 10.1096/fj.202000864r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022]
Abstract
Monocyte‐derived macrophages are the major innate immune cells that provide the first line of cellular defense against infections or injuries. These recruited macrophages at the site of inflammation are exposed to a broad range of cytokines that categorically incite a robust pro‐inflammatory response. However, macrophage pro‐inflammatory activation must be under exquisite control to avert unbridled inflammation. Thus, endogenous mechanisms must exist that rigorously preserve macrophage quiescence and yet, allow nimble pro‐inflammatory macrophage response with precise spatiotemporal control. Herein, we identify the CBP/p300‐interacting transactivator with glutamic acid/aspartic acid‐rich carboxyl‐terminal domain 2 (CITED2) as a critical intrinsic negative regulator of inflammation, which broadly attenuates pro‐inflammatory gene programs in macrophages. Our in vivo studies revealed that myeloid‐CITED2 deficiency significantly heightened macrophages and neutrophils recruitment to the site of inflammation. Our integrated transcriptomics and gene set enrichment analysis (GSEA) studies uncovered that CITED2 deficiency broadly enhances NFκB targets, IFNγ/IFNα responses, and inflammatory response gene expression in macrophages. Using complementary gain‐ and loss‐of‐function studies, we observed that CITED2 overexpression attenuate and CITED2 deficiency elevate LPS‐induced NFκB transcriptional activity and NFκB‐p65 recruitment to target gene promoter in macrophages. More importantly, blockade of NFκB signaling completely reversed elevated pro‐inflammatory gene expression in macrophages. Collectively, our findings show that CITED2 restrains NFκB activation and curtails broad pro‐inflammatory gene programs in myeloid cells.
Collapse
Affiliation(s)
- Hang Pong Ng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gun-Dong Kim
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - E Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Sydney, Australia.,UNSW Sydney, Sydney, Australia
| | - Ganapati H Mahabeleshwar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
23
|
Bugge K, Brakti I, Fernandes CB, Dreier JE, Lundsgaard JE, Olsen JG, Skriver K, Kragelund BB. Interactions by Disorder - A Matter of Context. Front Mol Biosci 2020; 7:110. [PMID: 32613009 PMCID: PMC7308724 DOI: 10.3389/fmolb.2020.00110] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Living organisms depend on timely and organized interactions between proteins linked in interactomes of high complexity. The recent increased precision by which protein interactions can be studied, and the enclosure of intrinsic structural disorder, suggest that it is time to zoom out and embrace protein interactions beyond the most central points of physical encounter. The present paper discusses protein-protein interactions in the view of structural disorder with an emphasis on flanking regions and contexts of disorder-based interactions. Context constitutes an overarching concept being of physicochemical, biomolecular, and physiological nature, but it also includes the immediate molecular context of the interaction. For intrinsically disordered proteins, which often function by exploiting short linear motifs, context contributes in highly regulatory and decisive manners and constitute a yet largely unrecognized source of interaction potential in a multitude of biological processes. Through selected examples, this review emphasizes how multivalency, charges and charge clusters, hydrophobic patches, dynamics, energetic frustration, and ensemble redistribution of flanking regions or disordered contexts are emerging as important contributors to allosteric regulation, positive and negative cooperativity, feedback regulation and negative selection in binding. The review emphasizes that understanding context, and in particular the role the molecular disordered context and flanking regions take on in protein interactions, constitute an untapped well of energetic modulation potential, also of relevance to drug discovery and development.
Collapse
Affiliation(s)
- Katrine Bugge
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Inna Brakti
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Catarina B. Fernandes
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jesper E. Dreier
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe E. Lundsgaard
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Johan G. Olsen
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Karen Skriver
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B. Kragelund
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Fernandes MT, Calado SM, Mendes-Silva L, Bragança J. CITED2 and the modulation of the hypoxic response in cancer. World J Clin Oncol 2020; 11:260-274. [PMID: 32728529 PMCID: PMC7360518 DOI: 10.5306/wjco.v11.i5.260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/13/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
CITED2 (CBP/p300-interacting transactivator with Glu/Asp-rich C-terminal domain, 2) is a ubiquitously expressed protein exhibiting a high affinity for the CH1 domain of the transcriptional co-activators CBP/p300, for which it competes with hypoxia-inducible factors (HIFs). CITED2 is particularly efficient in the inhibition of HIF-1α-dependent transcription in different contexts, ranging from organ development and metabolic homeostasis to tissue regeneration and immunity, being also potentially involved in various other physiological processes. In addition, CITED2 plays an important role in inhibiting HIF in some diseases, including kidney and heart diseases and type 2-diabetes. In the particular case of cancer, CITED2 either functions by promoting or suppressing cancer development depending on the context and type of tumors. For instance, CITED2 overexpression promotes breast and prostate cancers, as well as acute myeloid leukemia, while its expression is downregulated to sustain colorectal cancer and hepatocellular carcinoma. In addition, the role of CITED2 in the maintenance of cancer stem cells reveals its potential as a target in non-small cell lung carcinoma and acute myeloid leukemia, for example. But besides the wide body of evidence linking both CITED2 and HIF signaling to carcinogenesis, little data is available regarding CITED2 role as a negative regulator of HIF-1α specifically in cancer. Therefore, comprehensive studies exploring further the interactions of these two important mediators in cancer-specific models are sorely needed and this can potentially lead to the development of novel targeted therapies.
Collapse
Affiliation(s)
- Mónica T Fernandes
- School of Health, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - Sofia M Calado
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - Leonardo Mendes-Silva
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
| | - José Bragança
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
| |
Collapse
|
25
|
Basu S, Nandy A, Biswas D. Keeping RNA polymerase II on the run: Functions of MLL fusion partners in transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194563. [PMID: 32348849 DOI: 10.1016/j.bbagrm.2020.194563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/13/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Since the identification of key MLL fusion partners as transcription elongation factors regulating expression of HOX cluster genes during hematopoiesis, extensive work from the last decade has resulted in significant progress in our overall mechanistic understanding of role of MLL fusion partner proteins in transcriptional regulation of diverse set of genes beyond just the HOX cluster. In this review, we are going to detail overall understanding of role of MLL fusion partner proteins in transcriptional regulation and thus provide mechanistic insights into possible MLL fusion protein-mediated transcriptional misregulation leading to aberrant hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Subham Basu
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Arijit Nandy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
26
|
Investigations of the underlying mechanisms of HIF-1α and CITED2 binding to TAZ1. Proc Natl Acad Sci U S A 2020; 117:5595-5603. [PMID: 32123067 DOI: 10.1073/pnas.1915333117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TAZ1 domain of CREB binding protein is crucial for transcriptional regulation and recognizes multiple targets. The interactions between TAZ1 and its specific targets are related to the cellular hypoxic negative feedback regulation. Previous experiments reported that one of the TAZ1 targets, CITED2, is an efficient competitor of another target, HIF-1α. Here, by developing the structure-based models of TAZ1 complexes, we have uncovered the underlying mechanisms of the competitions between the two intrinsic disordered proteins (IDPs) HIF-1α and CITED2 binding to TAZ1. Our results support the experimental hypothesis on the competition mechanisms and the apparent affinity. Furthermore, the simulations locate the dominant position of forming TAZ1-CITED2 complex in both thermodynamics and kinetics. For thermodynamics, TAZ1-CITED2 is the lowest basin located on the free energy surface of binding in the ternary system. For kinetics, the results suggest that CITED2 binds to TAZ1 faster than HIF-1α. In addition, the analysis of contact map and Φ values is important for guiding further experimental studies to understand the biomolecular functions of IDPs.
Collapse
|
27
|
Wang Y, Brooks Iii CL. Electrostatic Forces Control the Negative Allosteric Regulation in a Disordered Protein Switch. J Phys Chem Lett 2020; 11:864-868. [PMID: 31940206 DOI: 10.1021/acs.jpclett.9b03618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The transcriptional adaptor zinc-binding 1 (TAZ1) domain of the transcriptional coactivator CBP/P300 and two disordered peptides, HIF-1α and CITED2, form a delicate protein switch that regulates cellular hypoxic response. In hypoxia, HIF-1α binds TAZ1 to control the transcription of adaptive genes critical for the recovery from hypoxic stress. CITED2 acts as the negative feedback regulator to rapidly displace HIF-1α and efficiently attenuate the hypoxic response. Though CITED2 and HIF-1α have the same dissociation constant (Kd = 10 nM) in their binary complexes with TAZ1, CITED2 is much more competitive than HIF-1α upon binding the same target TAZ1 in ternary ( Berlow et al. Nature 2017 , 543 , 447 - 451 ). Here we demonstrate that a simple coarse-grained model can recapitulate this negative allosteric effect and provide detailed physical insights into the displacement mechanism. We find that long-range electrostatic forces are essential for the efficient displacement of HIF-1α by CITED2. The strong electrostatic interactions between CITED2 and TAZ1, along with the unique binding mode, make CITED2 much more competitive than HIF-1α in binding TAZ1.
Collapse
|
28
|
Ruiz-Ortiz I, De Sancho D. Competitive binding of HIF-1α and CITED2 to the TAZ1 domain of CBP from molecular simulations. Phys Chem Chem Phys 2020; 22:8118-8127. [DOI: 10.1039/d0cp00328j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Many intrinsically disordered proteins (IDPs) are involved in complex signalling networks inside the cell.
Collapse
Affiliation(s)
- Irene Ruiz-Ortiz
- Donostia International Physics Center
- Donostia-San Sebastián
- Spain
| | - David De Sancho
- Donostia International Physics Center
- Donostia-San Sebastián
- Spain
- University of the Basque Country
- Faculty of Chemistry
| |
Collapse
|
29
|
Dyson HJ, Wright PE. Perspective: the essential role of NMR in the discovery and characterization of intrinsically disordered proteins. JOURNAL OF BIOMOLECULAR NMR 2019; 73:651-659. [PMID: 31617035 PMCID: PMC7043288 DOI: 10.1007/s10858-019-00280-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/12/2019] [Indexed: 05/13/2023]
Abstract
The 2019 ISMAR Prize recognized NMR studies of disordered proteins. Here we provide a highly personal perspective on the discovery of intrinsically disordered proteins and the development and application of NMR methods to characterize their conformational ensembles, dynamics, and interactions.
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
30
|
Gao M, Yang J, Liu S, Su Z, Huang Y. Intrinsically Disordered Transactivation Domains Bind to TAZ1 Domain of CBP via Diverse Mechanisms. Biophys J 2019; 117:1301-1310. [PMID: 31521329 DOI: 10.1016/j.bpj.2019.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
CREB-binding protein is a multidomain transcriptional coactivator whose transcriptional adaptor zinc-binding 1 (TAZ1) domain mediates interactions with a number of intrinsically disordered transactivation domains (TADs), including the CREB-binding protein/p300-interacting transactivator with ED-rich tail, the hypoxia inducible factor 1α, p53, the signal transducer and activator of transcription 2, and the NF-κB p65 subunit. These five disordered TADs undergo partial disorder-to-order transitions upon binding TAZ1, forming fuzzy complexes with helical segments. Interestingly, they wrap around TAZ1 with different orientations and occupy the binding sites with various orders. To elucidate the microscopic molecular details of the binding processes of TADs with TAZ1, in this work, we carried out extensive molecular dynamics simulations using a coarse-grained topology-based model. After careful calibration of the models to reproduce the residual helical contents and binding affinities, our simulations were able to recapitulate the experimentally observed flexibility profiles. Although great differences exist in the complex structures, we found similarities between hypoxia inducible factor 1α and signal transducer and activator of transcription 2 as well as between CREB-binding protein/p300-interacting transactivator with ED-rich tail and NF-κB p65 subunit in the binding kinetics and binding thermodynamics. Although the origins of similarities and differences in the binding mechanisms remain unclear, our results provide some clues that indicate that binding of TADs to TAZ1 could be templated by the target as well as encoded by the TADs.
Collapse
Affiliation(s)
- Meng Gao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Jing Yang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Sen Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Yongqi Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China.
| |
Collapse
|
31
|
Berlow RB, Martinez-Yamout MA, Dyson HJ, Wright PE. Role of Backbone Dynamics in Modulating the Interactions of Disordered Ligands with the TAZ1 Domain of the CREB-Binding Protein. Biochemistry 2019; 58:1354-1362. [PMID: 30775911 DOI: 10.1021/acs.biochem.8b01290] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The intrinsically disordered transactivation domains of HIF-1α and CITED2 compete for binding of the TAZ1 domain of the CREB-binding protein by a unidirectional allosteric mechanism involving direct competition for shared binding sites, ternary complex formation, and TAZ1 conformational changes. To gain insight into the mechanism by which CITED2 displaces HIF-1α from TAZ1, we used nuclear magnetic resonance spin relaxation methods to obtain an atomic-level description of the picosecond to nanosecond backbone dynamics that contribute to TAZ1 binding and competition. We show that HIF-1α and CITED2 adopt different dynamics in their complexes with TAZ1, with flexibility observed for HIF-1α in regions that would maintain accessibility for CITED2 to bind to TAZ1 and facilitate subsequent HIF-1α dissociation. In contrast, critical regions of CITED2 adopt a rigid structure in its complex with TAZ1, minimizing the ability of HIF-1α to compete for binding. We also find that TAZ1, previously thought to be a rigid scaffold for binding of disordered protein ligands, displays altered backbone dynamics in its various bound states. TAZ1 is more rigid in its CITED2-bound state than in its free state or in complex with HIF-1α, with increased rigidity observed not only in the CITED2 binding site but also in regions of TAZ1 that undergo conformational changes between the HIF-1α- and CITED2-bound structures. Taken together, these data suggest that backbone dynamics in TAZ1, as well as in the HIF-1α and CITED2 ligands, play a role in modulating the occupancy of TAZ1 and highlight the importance of characterizing both binding partners in molecular interactions.
Collapse
Affiliation(s)
- Rebecca B Berlow
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Maria A Martinez-Yamout
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
32
|
Schneider R, Blackledge M, Jensen MR. Elucidating binding mechanisms and dynamics of intrinsically disordered protein complexes using NMR spectroscopy. Curr Opin Struct Biol 2018; 54:10-18. [PMID: 30316104 DOI: 10.1016/j.sbi.2018.09.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 01/10/2023]
Abstract
Advances in characterizing complexes of intrinsically disordered proteins (IDPs) have led to the discovery of a remarkably diverse interaction landscape that includes folding-upon-binding, highly dynamic complexes, multivalent interactions as well as regulatory switches controlled by post-translational modifications. Nuclear magnetic resonance (NMR) spectroscopy has in recent years made significant contributions to this field by describing the binding mechanisms and mapping conformational dynamics on multiple time scales. Importantly, this progress has been associated with specific methodological developments in NMR, for example in exchange techniques, allowing challenging biological systems to be studied at atomic resolution. In general, the level of dynamics observed in IDP complexes does not correlate with binding affinities, demonstrating the intricate relationship between conformational dynamics and IDP regulatory function.
Collapse
Affiliation(s)
- Robert Schneider
- Univ. Lille, CNRS, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | | | | |
Collapse
|
33
|
Berlow RB, Dyson HJ, Wright PE. Expanding the Paradigm: Intrinsically Disordered Proteins and Allosteric Regulation. J Mol Biol 2018; 430:2309-2320. [PMID: 29634920 DOI: 10.1016/j.jmb.2018.04.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 11/30/2022]
Abstract
Allosteric regulatory processes are implicated at all levels of biological function. Recent advances in our understanding of the diverse and functionally significant class of intrinsically disordered proteins have identified a multitude of ways in which disordered proteins function within the confines of the allosteric paradigm. Allostery within or mediated by intrinsically disordered proteins ensures robust and efficient signal integration through mechanisms that would be extremely unfavorable or even impossible for globular protein interaction partners. Here, we highlight recent examples that indicate the breadth of biological outcomes that can be achieved through allosteric regulation by intrinsically disordered proteins. Ongoing and future work in this rapidly evolving area of research will expand our appreciation of the central role of intrinsically disordered proteins in ensuring the fidelity and efficiency of cellular regulation.
Collapse
Affiliation(s)
- Rebecca B Berlow
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
34
|
Luebke JL, Eaton DS, Sachleben JR, Crosson S. Allosteric control of a bacterial stress response system by an anti-σ factor. Mol Microbiol 2018; 107:164-179. [PMID: 29052909 PMCID: PMC5760481 DOI: 10.1111/mmi.13868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2017] [Indexed: 11/28/2022]
Abstract
Bacterial signal transduction systems commonly use receiver (REC) domains, which regulate adaptive responses to the environment as a function of their phosphorylation state. REC domains control cell physiology through diverse mechanisms, many of which remain understudied. We have defined structural features that underlie activation of the multi-domain REC protein, PhyR, which functions as an anti-anti-σ factor and regulates transcription of genes required for stress adaptation and host-microbe interactions in Alphaproteobacteria. Though REC phosphorylation is necessary for PhyR function in vivo, we did not detect expected changes in inter-domain interactions upon phosphorylation by solution X-ray scattering. We sought to understand this result by defining additional molecular requirements for PhyR activation. We uncovered specific interactions between unphosphorylated PhyR and an intrinsically disordered region (IDR) of the anti-σ factor, NepR, by solution NMR spectroscopy. Our data support a model whereby nascent NepR(IDR)-PhyR interactions and REC phosphorylation coordinately impart the free energy to shift PhyR to an open, active conformation that binds and inhibits NepR. This mechanism ensures PhyR is activated only when NepR and an activating phosphoryl signal are present. Our study provides new structural understanding of the molecular regulatory logic underlying a conserved environmental response system.
Collapse
Affiliation(s)
- Justin L. Luebke
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
| | - Daniel S. Eaton
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
| | - Joseph R. Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, Illinois, USA
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
35
|
Lecoq L, Raiola L, Chabot PR, Cyr N, Arseneault G, Legault P, Omichinski JG. Structural characterization of interactions between transactivation domain 1 of the p65 subunit of NF-κB and transcription regulatory factors. Nucleic Acids Res 2017; 45:5564-5576. [PMID: 28334776 PMCID: PMC5435986 DOI: 10.1093/nar/gkx146] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/25/2017] [Indexed: 01/27/2023] Open
Abstract
p65 is a member of the NF-κB family of transcriptional regulatory proteins that functions as the activating component of the p65-p50 heterodimer. Through its acidic transactivation domain (TAD), p65 has the capacity to form interactions with several different transcriptional regulatory proteins, including TFIIB, TFIIH, CREB-binding protein (CBP)/p300 and TAFII31. Like other acidic TADs, the p65 TAD contains two subdomains (p65TA1 and p65TA2) that interact with different regulatory factors depending on the target gene. Despite its role in controlling numerous NF-κB target genes, there are no high-resolution structures of p65TA1 bound to a target transcriptional regulatory factor. In this work, we characterize the interaction of p65TA1 with two factors, the Tfb1/p62 subunit of TFIIH and the KIX domain of CBP. In these complexes, p65TA1 transitions into a helical conformation that includes its characteristic ΦXXΦΦ motif (Φ = hydrophobic amino acid). Structural and functional studies demonstrate that the two binding interfaces are primarily stabilized by three hydrophobic amino acids within the ΦXXΦΦ motif and these residues are also crucial to its ability to activate transcription. Taken together, the results provide an atomic level description of how p65TA1 is able to bind different transcriptional regulatory factors needed to activate NF-κB target genes.
Collapse
Affiliation(s)
- Lauriane Lecoq
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Luca Raiola
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Philippe R Chabot
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Normand Cyr
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Geneviève Arseneault
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Pascale Legault
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - James G Omichinski
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
36
|
Cieplak AS. Protein folding, misfolding and aggregation: The importance of two-electron stabilizing interactions. PLoS One 2017; 12:e0180905. [PMID: 28922400 PMCID: PMC5603215 DOI: 10.1371/journal.pone.0180905] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022] Open
Abstract
Proteins associated with neurodegenerative diseases are highly pleiomorphic and may adopt an all-α-helical fold in one environment, assemble into all-β-sheet or collapse into a coil in another, and rapidly polymerize in yet another one via divergent aggregation pathways that yield broad diversity of aggregates’ morphology. A thorough understanding of this behaviour may be necessary to develop a treatment for Alzheimer’s and related disorders. Unfortunately, our present comprehension of folding and misfolding is limited for want of a physicochemical theory of protein secondary and tertiary structure. Here we demonstrate that electronic configuration and hyperconjugation of the peptide amide bonds ought to be taken into account to advance such a theory. To capture the effect of polarization of peptide linkages on conformational and H-bonding propensity of the polypeptide backbone, we introduce a function of shielding tensors of the Cα atoms. Carrying no information about side chain-side chain interactions, this function nonetheless identifies basic features of the secondary and tertiary structure, establishes sequence correlates of the metamorphic and pH-driven equilibria, relates binding affinities and folding rate constants to secondary structure preferences, and manifests common patterns of backbone density distribution in amyloidogenic regions of Alzheimer’s amyloid β and tau, Parkinson’s α-synuclein and prions. Based on those findings, a split-intein like mechanism of molecular recognition is proposed to underlie dimerization of Aβ, tau, αS and PrPC, and divergent pathways for subsequent association of dimers are outlined; a related mechanism is proposed to underlie formation of PrPSc fibrils. The model does account for: (i) structural features of paranuclei, off-pathway oligomers, non-fibrillar aggregates and fibrils; (ii) effects of incubation conditions, point mutations, isoform lengths, small-molecule assembly modulators and chirality of solid-liquid interface on the rate and morphology of aggregation; (iii) fibril-surface catalysis of secondary nucleation; and (iv) self-propagation of infectious strains of mammalian prions.
Collapse
Affiliation(s)
- Andrzej Stanisław Cieplak
- Department of Chemistry, Bilkent University, Ankara, Turkey
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
37
|
Characterizing the molecular architectures of chromatin-modifying complexes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1613-1622. [PMID: 28652207 DOI: 10.1016/j.bbapap.2017.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/09/2017] [Accepted: 06/21/2017] [Indexed: 11/23/2022]
Abstract
Eukaryotic cells package their genome in the form of a DNA-protein complex known as chromatin. This organization not only condenses the genome to fit within the confines of the nucleus, but also provides a platform for a cell to regulate accessibility to different gene sequences. The basic packaging element of chromatin is the nucleosome, which consists of 146 base pairs of DNA wrapped around histone proteins. One major means that a cell regulates chromatin structure is by depositing post-translational modifications on nucleosomal histone proteins, and thereby altering internucleosomal interactions and/or binding to different chromatin associated factors. These chromatin modifications are often catalyzed by multi-subunit enzyme complexes, whose large size, sophisticated composition, and inherent conformational flexibility pose significant technical challenges to their biochemical and structural characterization. Multiple structural approaches including nuclear magnetic resonance spectroscopy, X-ray crystallography, single-particle electron microscopy, and crosslinking coupled to mass spectrometry are often used synergistically to probe the overall architecture, subunit organization, and catalytic mechanisms of these macromolecular assemblies. In this review, we highlight several recent chromatin-modifying complexes studies that embodies this multipronged structural approach, and explore common themes amongst them. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
|
38
|
Peterson LX, Roy A, Christoffer C, Terashi G, Kihara D. Modeling disordered protein interactions from biophysical principles. PLoS Comput Biol 2017; 13:e1005485. [PMID: 28394890 PMCID: PMC5402988 DOI: 10.1371/journal.pcbi.1005485] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/24/2017] [Accepted: 03/29/2017] [Indexed: 12/12/2022] Open
Abstract
Disordered protein-protein interactions (PPIs), those involving a folded protein and an intrinsically disordered protein (IDP), are prevalent in the cell, including important signaling and regulatory pathways. IDPs do not adopt a single dominant structure in isolation but often become ordered upon binding. To aid understanding of the molecular mechanisms of disordered PPIs, it is crucial to obtain the tertiary structure of the PPIs. However, experimental methods have difficulty in solving disordered PPIs and existing protein-protein and protein-peptide docking methods are not able to model them. Here we present a novel computational method, IDP-LZerD, which models the conformation of a disordered PPI by considering the biophysical binding mechanism of an IDP to a structured protein, whereby a local segment of the IDP initiates the interaction and subsequently the remaining IDP regions explore and coalesce around the initial binding site. On a dataset of 22 disordered PPIs with IDPs up to 69 amino acids, successful predictions were made for 21 bound and 18 unbound receptors. The successful modeling provides additional support for biophysical principles. Moreover, the new technique significantly expands the capability of protein structure modeling and provides crucial insights into the molecular mechanisms of disordered PPIs.
Collapse
Affiliation(s)
- Lenna X. Peterson
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Amitava Roy
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
- Bioinformatics and Computational Biosciences Branch, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana, United States of America
| | - Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Computer Science, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
39
|
Berlow RB, Dyson HJ, Wright PE. Hypersensitive termination of the hypoxic response by a disordered protein switch. Nature 2017; 543:447-451. [PMID: 28273070 PMCID: PMC5375031 DOI: 10.1038/nature21705] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 02/14/2017] [Indexed: 12/18/2022]
Abstract
The cellular response to hypoxia is critical for cell survival and is fine-tuned to allow cells to recover from hypoxic stress and adapt to heterogeneous or fluctuating oxygen levels1,2. The hypoxic response is mediated by the α subunit of the transcription factor HIF-1 (HIF-1α)3, which interacts via its intrinsically disordered C-terminal transactivation domain with the TAZ1 (CH1) domain of the general transcriptional coactivators CBP and p300 to control transcription of critical adaptive genes4–6. One such gene is CITED2, a negative feedback regulator that attenuates HIF transcriptional activity by competing for TAZ1 binding through its own disordered transactivation domain7–9. Little is known about the molecular mechanism by which CITED2 displaces the tightly bound HIF-1α from their common cellular target. The HIF-1α and CITED2 transactivation domains bind to TAZ1 through helical motifs that flank a conserved LP(Q/E)L sequence that is essential for negative feedback regulation5,6,8,9. We show that CITED2 displaces HIF-1α by forming a transient ternary complex with TAZ1 and HIF-1α and competing for a shared binding site via its LPEL motif, thus promoting a conformational change in TAZ1 that increases the rate of HIF-1α dissociation. Through allosteric enhancement of HIF-1α release, CITED2 activates a highly responsive negative feedback circuit that rapidly and efficiently attenuates the hypoxic response, even at modest CITED2 concentrations. This hypersensitive regulatory switch is entirely dependent on the unique flexibility and binding properties of these intrinsically disordered proteins and exemplifies a likely common strategy used by the cell to respond rapidly to environmental signals.
Collapse
Affiliation(s)
- Rebecca B Berlow
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
40
|
Dyson HJ. Making Sense of Intrinsically Disordered Proteins. Biophys J 2016; 110:1013-6. [PMID: 26958875 DOI: 10.1016/j.bpj.2016.01.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/29/2015] [Indexed: 11/27/2022] Open
Affiliation(s)
- H Jane Dyson
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
41
|
Tong D, Yang S, Lu L. Accurate optimization of amino acid form factors for computing small-angle X-ray scattering intensity of atomistic protein structures. J Appl Crystallogr 2016; 49:1148-1161. [PMID: 28074088 PMCID: PMC5223287 DOI: 10.1107/s1600576716007962] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/15/2016] [Indexed: 02/04/2023] Open
Abstract
Structure modelling via small-angle X-ray scattering (SAXS) data generally requires intensive computations of scattering intensity from any given biomolecular structure, where the accurate evaluation of SAXS profiles using coarse-grained (CG) methods is vital to improve computational efficiency. To date, most CG SAXS computing methods have been based on a single-bead-per-residue approximation but have neglected structural correlations between amino acids. To improve the accuracy of scattering calculations, accurate CG form factors of amino acids are now derived using a rigorous optimization strategy, termed electron-density matching (EDM), to best fit electron-density distributions of protein structures. This EDM method is compared with and tested against other CG SAXS computing methods, and the resulting CG SAXS profiles from EDM agree better with all-atom theoretical SAXS data. By including the protein hydration shell represented by explicit CG water molecules and the correction of protein excluded volume, the developed CG form factors also reproduce the selected experimental SAXS profiles with very small deviations. Taken together, these EDM-derived CG form factors present an accurate and efficient computational approach for SAXS computing, especially when higher molecular details (represented by the q range of the SAXS data) become necessary for effective structure modelling.
Collapse
Affiliation(s)
- Dudu Tong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Sichun Yang
- Center for Proteomics and Department of Nutrition, Case Western Reserve University, 10900 Euclid Avenue, BRB 929, Cleveland, OH 44106-4988, USA
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
42
|
Recognition of the disordered p53 transactivation domain by the transcriptional adapter zinc finger domains of CREB-binding protein. Proc Natl Acad Sci U S A 2016; 113:E1853-62. [PMID: 26976603 DOI: 10.1073/pnas.1602487113] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An important component of the activity of p53 as a tumor suppressor is its interaction with the transcriptional coactivators cyclic-AMP response element-binding protein (CREB)-binding protein (CBP) and p300, which activate transcription of p53-regulated stress response genes and stabilize p53 against ubiquitin-mediated degradation. The highest affinity interactions are between the intrinsically disordered N-terminal transactivation domain (TAD) of p53 and the TAZ1 and TAZ2 domains of CBP/p300. The NMR spectra of simple binary complexes of the TAZ1 and TAZ2 domains with the p53TAD suffer from exchange broadening, but innovations in construct design and isotopic labeling have enabled us to obtain high-resolution structures using fusion proteins, uniformly labeled in the case of the TAZ2-p53TAD fusion and segmentally labeled through transintein splicing for the TAZ1-p53TAD fusion. The p53TAD is bipartite, with two interaction motifs, termed AD1 and AD2, which fold to form short amphipathic helices upon binding to TAZ1 and TAZ2 whereas intervening regions of the p53TAD remain flexible. Both the AD1 and AD2 motifs bind to hydrophobic surfaces of the TAZ domains, with AD2 making more extensive hydrophobic contacts consistent with its greater contribution to the binding affinity. Binding of AD1 and AD2 is synergistic, and structural studies performed with isolated motifs can be misleading. The present structures of the full-length p53TAD complexes demonstrate the versatility of the interactions available to an intrinsically disordered domain containing bipartite interaction motifs and provide valuable insights into the structural basis of the affinity changes that occur upon stress-related posttranslational modification.
Collapse
|
43
|
Dyson HJ, Wright PE. Role of Intrinsic Protein Disorder in the Function and Interactions of the Transcriptional Coactivators CREB-binding Protein (CBP) and p300. J Biol Chem 2016; 291:6714-22. [PMID: 26851278 DOI: 10.1074/jbc.r115.692020] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The transcriptional coactivators CREB-binding protein (CBP) and p300 undergo a particularly rich set of interactions with disordered and partly ordered partners, as a part of their ubiquitous role in facilitating transcription of genes. CBP and p300 contain a number of small structured domains that provide scaffolds for the interaction of disordered transactivation domains from a wide variety of partners, including p53, hypoxia-inducible factor 1α (HIF-1α), NF-κB, and STAT proteins, and are the targets for the interactions of disordered viral proteins that compete with cellular factors to disrupt signaling and subvert the cell cycle. The functional diversity of the CBP/p300 interactome provides an excellent example of the power of intrinsic disorder to facilitate the complexity of living systems.
Collapse
Affiliation(s)
- H Jane Dyson
- From the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037-1000
| | - Peter E Wright
- From the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037-1000
| |
Collapse
|
44
|
Wright RC, Khakhar A, Eshleman JR, Ostermeier M. Advancements in the development of HIF-1α-activated protein switches for use in enzyme prodrug therapy. PLoS One 2014; 9:e114032. [PMID: 25426963 PMCID: PMC4245239 DOI: 10.1371/journal.pone.0114032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/03/2014] [Indexed: 12/25/2022] Open
Abstract
While gene-directed enzyme prodrug therapy has shown potential as a cancer therapeutic in animal and clinical trials, concerns over the efficacy, selectivity, and safety of gene delivery vehicles have restricted its advance. In an attempt to relieve some of the demands on targeted gene delivery vehicles and achieve the full potential of enzyme prodrug therapy, cancer-targeted activity can be engineered into the enzyme itself. We previously engineered a switchable prodrug-activating enzyme that selectively kills human cancer cells accumulating the cancer marker hypoxia-inducible factor-1α (HIF-1α). This HIF-1α-activated protein switch (Haps59) is designed to increase its ability to convert the prodrug 5-fluorocytosine into the chemotherapeutic 5-fluorouracil in a HIF-1α-dependent manner. However, in cancer cell lines expressing Haps59 the 5FC sensitivity difference between the presence and absence of HIF-1α was not as large as desired. In this work, we aimed to improve the cancer specificity of this switch via a directed evolution approach utilizing random mutagenesis, linker mutagenesis, and random insertion and circular permutation. We identified improved HIF-1α-activated protein switches that confer E. coli with modest increases in HIF-1α-dependent 5FC toxicity. Additionally, the current bottleneck in the development of improved HIF-1α-activated protein switches is screening switch candidates in mammalian cells. To accommodate higher throughput and reduce experimental variability, we explored the use of Flp recombinase-mediated isogenic integration in 293 cells. These experiments raised the possibility that Haps59 can be activated by other interactors of the CH1 domain, and experiments in E. coli indicated that CITED2 can also activate Haps59. Although many CH1 binding partners are also oncogenes, CH1's promiscuous binding and subsequent off-target activation of Haps59 needs to be examined under normal physiological conditions to identify off-target activators. With aberrant activating molecules identified, further directed evolution can be performed to improve the cancer specificity of HIF-1α-activated protein switches.
Collapse
Affiliation(s)
- R. Clay Wright
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Arjun Khakhar
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - James R. Eshleman
- Departments of Pathology and Oncology, Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
45
|
Bui J, Gsponer J. Phosphorylation of an Intrinsically Disordered Segment in Ets1 Shifts Conformational Sampling toward Binding-Competent Substates. Structure 2014; 22:1196-1203. [DOI: 10.1016/j.str.2014.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/15/2014] [Accepted: 06/04/2014] [Indexed: 12/24/2022]
|
46
|
Wang F, Marshall CB, Ikura M. Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell Mol Life Sci 2013; 70:3989-4008. [PMID: 23307074 PMCID: PMC11113169 DOI: 10.1007/s00018-012-1254-4] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/08/2012] [Accepted: 12/20/2012] [Indexed: 01/19/2023]
Abstract
In eukaryotic cells, gene transcription is regulated by sequence-specific DNA-binding transcription factors that recognize promoter and enhancer elements near the transcriptional start site. Some coactivators promote transcription by connecting transcription factors to the basal transcriptional machinery. The highly conserved coactivators CREB-binding protein (CBP) and its paralog, E1A-binding protein (p300), each have four separate transactivation domains (TADs) that interact with the TADs of a number of DNA-binding transcription activators as well as general transcription factors (GTFs), thus mediating recruitment of basal transcription machinery to the promoter. Most promoters comprise multiple activator-binding sites, and many activators contain tandem TADs, thus multivalent interactions may stabilize CBP/p300 at the promoter, and intrinsically disordered regions in CBP/p300 and many activators may confer adaptability to these multivalent complexes. CBP/p300 contains a catalytic histone acetyltransferase (HAT) domain, which remodels chromatin to 'relax' its superstructure and enables transcription of proximal genes. The HAT activity of CBP/p300 also acetylates some transcription factors (e.g., p53), hence modulating the function of key transcriptional regulators. Through these numerous interactions, CBP/p300 has been implicated in complex physiological and pathological processes, and, in response to different signals, can drive cells towards proliferation or apoptosis. Dysregulation of the transcriptional and epigenetic functions of CBP/p300 is associated with leukemia and other types of cancer, thus it has been recognized as a potential anti-cancer drug target. In this review, we focus on recent exciting findings in the structural mechanisms of CBP/p300 involving multivalent and dynamic interactions with binding partners, which may pave new avenues for anti-cancer drug development.
Collapse
Affiliation(s)
- Feng Wang
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9 Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
- Present Address: Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Christopher B. Marshall
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9 Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
| | - Mitsuhiko Ikura
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9 Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
| |
Collapse
|
47
|
Mukherjee SP, Behar M, Birnbaum HA, Hoffmann A, Wright PE, Ghosh G. Analysis of the RelA:CBP/p300 interaction reveals its involvement in NF-κB-driven transcription. PLoS Biol 2013; 11:e1001647. [PMID: 24019758 PMCID: PMC3760798 DOI: 10.1371/journal.pbio.1001647] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022] Open
Abstract
NF-κB plays a vital role in cellular immune and inflammatory response, survival, and proliferation by regulating the transcription of various genes involved in these processes. To activate transcription, RelA (a prominent NF-κB family member) interacts with transcriptional co-activators like CREB-binding protein (CBP) and its paralog p300 in addition to its cognate κB sites on the promoter/enhancer regions of DNA. The RelA:CBP/p300 complex is comprised of two components--first, DNA binding domain of RelA interacts with the KIX domain of CBP/p300, and second, the transcriptional activation domain (TAD) of RelA binds to the TAZ1 domain of CBP/p300. A phosphorylation event of a well-conserved RelA(Ser276) is prerequisite for the former interaction to occur and is considered a decisive factor for the overall RelA:CBP/p300 interaction. The role of the latter interaction in the transcription of RelA-activated genes remains unclear. Here we provide the solution structure of the latter component of the RelA:CBP complex by NMR spectroscopy. The structure reveals the folding of RelA-TA2 (a section of TAD) upon binding to TAZ1 through its well-conserved hydrophobic sites in a series of grooves on the TAZ1 surface. The structural analysis coupled with the mechanistic studies by mutational and isothermal calorimetric analyses allowed the design of RelA-mutants that selectively abrogated the two distinct components of the RelA:CBP/p300 interaction. Detailed studies of these RelA mutants using cell-based techniques, mathematical modeling, and genome-wide gene expression analysis showed that a major set of the RelA-activated genes, larger than previously believed, is affected by this interaction. We further show how the RelA:CBP/p300 interaction controls the nuclear response of NF-κB through the negative feedback loop of NF-κB pathway. Additionally, chromatin analyses of RelA target gene promoters showed constitutive recruitment of CBP/p300, thus indicating a possible role of CBP/p300 in recruitment of RelA to its target promoter sites.
Collapse
Affiliation(s)
- Sulakshana P. Mukherjee
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Marcelo Behar
- Signaling Systems Laboratory, University of California, San Diego, La Jolla, California, United States of America
| | - Harry A. Birnbaum
- Signaling Systems Laboratory, University of California, San Diego, La Jolla, California, United States of America
| | - Alexander Hoffmann
- Signaling Systems Laboratory, University of California, San Diego, La Jolla, California, United States of America
| | - Peter E. Wright
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (GG); (PEW)
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (GG); (PEW)
| |
Collapse
|
48
|
Structural basis for the interaction of unstructured neuron specific substrates neuromodulin and neurogranin with Calmodulin. Sci Rep 2013; 3:1392. [PMID: 23462742 PMCID: PMC3589724 DOI: 10.1038/srep01392] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 02/21/2013] [Indexed: 01/07/2023] Open
Abstract
Neuromodulin (Nm) and neurogranin (Ng) are neuron-specific substrates of protein kinase C (PKC). Their interactions with Calmodulin (CaM) are crucial for learning and memory formation in neurons. Here, we report the structure of IQ peptides (24aa) of Nm/Ng complexed with CaM and their functional studies with full-length proteins. Nm/Ng and their respective IQ peptides are intrinsically unstructured; however, upon binding with CaM, IQ motifs adopt a helical conformation. Ser41 (Ser36) of Nm (Ng) is located in a negatively charged pocket in the apo CaM and, when phosphorylated, it will repel Nm/Ng from CaM. These observations explain the mechanism by which PKC-induced Ser phosphorylation blocks the association of Nm/Ng with CaM and interrupts several learning- and memory-associated functions. Moreover, the present study identified Arg as a key CaM interacting residue from Nm/Ng. This residue is crucial for CaM-mediated function, as evidenced by the inability of the Ng mutant (Arg-to-Ala) to potentiate synaptic transmission in CA1 hippocampal neurons.
Collapse
|
49
|
Oka O, Waters LC, Strong SL, Dosanjh NS, Veverka V, Muskett FW, Renshaw PS, Klempnauer KH, Carr MD. Interaction of the transactivation domain of B-Myb with the TAZ2 domain of the coactivator p300: molecular features and properties of the complex. PLoS One 2012; 7:e52906. [PMID: 23300815 PMCID: PMC3534135 DOI: 10.1371/journal.pone.0052906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/23/2012] [Indexed: 01/15/2023] Open
Abstract
The transcription factor B-Myb is a key regulator of the cell cycle in vertebrates, with activation of transcription involving the recognition of specific DNA target sites and the recruitment of functional partner proteins, including the coactivators p300 and CBP. Here we report the results of detailed studies of the interaction between the transactivation domain of B-Myb (B-Myb TAD) and the TAZ2 domain of p300. The B-Myb TAD was characterized using circular dichroism, fluorescence and NMR spectroscopy, which revealed that the isolated domain exists as a random coil polypeptide. Pull-down and spectroscopic experiments clearly showed that the B-Myb TAD binds to p300 TAZ2 to form a moderately tight (K(d) ~1.0-10 µM) complex, which results in at least partial folding of the B-Myb TAD. Significant changes in NMR spectra of p300 TAZ2 suggest that the B-Myb TAD binds to a relatively large patch on the surface of the domain (~1200 Å(2)). The apparent B-Myb TAD binding site on p300 TAZ2 shows striking similarity to the surface of CBP TAZ2 involved in binding to the transactivation domain of the transcription factor signal transducer and activator of transcription 1 (STAT1), which suggests that the structure of the B-Myb TAD-p300 TAZ2 complex may share many features with that reported for STAT1 TAD-p300 TAZ2.
Collapse
Affiliation(s)
- Ojore Oka
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | - Lorna C. Waters
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | - Sarah L. Strong
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | - Nuvjeevan S. Dosanjh
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | - Vaclav Veverka
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | - Frederick W. Muskett
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | - Philip S. Renshaw
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | | | - Mark D. Carr
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| |
Collapse
|
50
|
Leach BI, Kuntimaddi A, Schmidt CR, Cierpicki T, Johnson SA, Bushweller JH. Leukemia fusion target AF9 is an intrinsically disordered transcriptional regulator that recruits multiple partners via coupled folding and binding. Structure 2012; 21:176-183. [PMID: 23260655 DOI: 10.1016/j.str.2012.11.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/19/2012] [Accepted: 11/13/2012] [Indexed: 01/31/2023]
Abstract
Mixed lineage leukemia (MLL) fusion proteins cause oncogenic transformation of hematopoietic cells by constitutive recruitment of elongation factors to HOX promoters, resulting in overexpression of target genes. The structural basis of transactivation by MLL fusion partners remains undetermined. We show that the ANC1 homology domain (AHD) of AF9, one of the most common MLL translocation partners, is intrinsically disordered and recruits multiple transcription factors through coupled folding and binding. We determined the structure of the AF9 AHD in complex with the elongation factor AF4 and show that aliphatic residues, which are conserved in each of the AF9 binding partners, form an integral part of the hydrophobic core of the complex. Nuclear magnetic resonance relaxation measurements show that AF9 retains significant dynamic behavior which may facilitate exchange between disordered partners. We propose that AF9 functions as a signaling hub that regulates transcription through dynamic recruitment of cofactors in normal hematopoiesis and in acute leukemia.
Collapse
Affiliation(s)
- Benjamin I Leach
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Aravinda Kuntimaddi
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Charles R Schmidt
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Tomasz Cierpicki
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Stephanie A Johnson
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA; Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|