1
|
Zelman AK, Dawe A, Gehring C, Berkowitz GA. Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels. FRONTIERS IN PLANT SCIENCE 2012; 3:95. [PMID: 22661976 PMCID: PMC3362136 DOI: 10.3389/fpls.2012.00095] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 04/24/2012] [Indexed: 05/19/2023]
Abstract
Ligand-gated cation channels are a frequent component of signaling cascades in eukaryotes. Eukaryotes contain numerous diverse gene families encoding ion channels, some of which are shared and some of which are unique to particular kingdoms. Among the many different types are cyclic nucleotide-gated channels (CNGCs). CNGCs are cation channels with varying degrees of ion conduction selectivity. They are implicated in numerous signaling pathways and permit diffusion of divalent and monovalent cations, including Ca(2+) and K(+). CNGCs are present in both plant and animal cells, typically in the plasma membrane; recent studies have also documented their presence in prokaryotes. All eukaryote CNGC polypeptides have a cyclic nucleotide-binding domain and a calmodulin binding domain as well as a six transmembrane/one pore tertiary structure. This review summarizes existing knowledge about the functional domains present in these cation-conducting channels, and considers the evidence indicating that plant and animal CNGCs evolved separately. Additionally, an amino acid motif that is only found in the phosphate binding cassette and hinge regions of plant CNGCs, and is present in all experimentally confirmed CNGCs but no other channels was identified. This CNGC-specific amino acid motif provides an additional diagnostic tool to identify plant CNGCs, and can increase confidence in the annotation of open reading frames in newly sequenced genomes as putative CNGCs. Conversely, the absence of the motif in some plant sequences currently identified as probable CNGCs may suggest that they are misannotated or protein fragments.
Collapse
Affiliation(s)
- Alice K. Zelman
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of ConnecticutStorrs, CT, USA
| | - Adam Dawe
- Computational Bioscience Research Center, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Christoph Gehring
- Division of Chemistry, Life Science and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Gerald A. Berkowitz
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of ConnecticutStorrs, CT, USA
- *Correspondence: Gerald A. Berkowitz, Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, 1390 Storrs Road, Storrs, CT 06269-4163, USA. e-mail:
| |
Collapse
|
2
|
Conserved RB functions in development and tumor suppression. Protein Cell 2011; 2:864-78. [PMID: 22180086 DOI: 10.1007/s13238-011-1117-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/18/2011] [Indexed: 12/21/2022] Open
Abstract
The variety of human cancers in which the retinoblastoma protein pRb is inactivated reflects both its broad importance for tumor suppression and its multitude of cellular functions. Accumulating evidence indicates that pRb contributes to a diversity of cellular functions, including cell proliferation, differentiation, cell death, and genome stability. pRb performs these diverse functions through the formation of large complexes that include E2F transcription factors and chromatin regulators. In this review we will discuss some of the recent advances made in understanding the structure and function of pRb as they relate to tumor suppression, and highlight research using Drosophila melanogaster that reveals important, evolutionarily conserved functions of the RB family.
Collapse
|
3
|
Ahlander J, Bosco G. Sqd interacts with the Drosophila retinoblastoma tumor suppressor Rbf. Biochem Biophys Res Commun 2009; 383:363-7. [PMID: 19364495 DOI: 10.1016/j.bbrc.2009.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 04/03/2009] [Indexed: 01/22/2023]
Abstract
The retinoblastoma tumor suppressor (RB) serves as a scaffold to coordinate binding of numerous proteins, including E2F and histone deacetylases, through its C-terminal domain. The amino-terminal half of RB has few known binding partners and its function is not well understood. We used the amino-terminal domain of the Drosophila retinoblastoma tumor suppressor Rbf (RbfN) to identify novel binding partners by immunoprecipitation coupled with mass spectrometry. Our experiment revealed that the RNA-binding protein Squid (Sqd) is a putative interacting partner of RbfN. Western blot confirmed that Sqd interacts with the amino-terminal domain of Rbf. We observed that Sqd colocalizes with RbfN in Drosophila salivary gland cells. We also show that double RNAi knockdown of Rbf and Sqd in the eye results in an extensive loss of eye bristles, suggesting that Rbf and Sqd function in a common pathway. We conclude from our studies that Rbf physically and genetically interacts with Sqd. We propose that the retinoblastoma tumor suppressor may play a novel role in RNA processing through interaction with RNA-binding proteins.
Collapse
Affiliation(s)
- Joseph Ahlander
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, 85721, USA
| | | |
Collapse
|
4
|
Tanaka-Matakatsu M, Xu J, Cheng L, Du W. Regulation of apoptosis of rbf mutant cells during Drosophila development. Dev Biol 2009; 326:347-56. [PMID: 19100727 PMCID: PMC2634822 DOI: 10.1016/j.ydbio.2008.11.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 11/19/2008] [Indexed: 12/19/2022]
Abstract
Inactivation of the retinoblastoma gene Rb leads to defects in cell proliferation, differentiation, or apoptosis, depending on specific cell or tissue types. To gain insights into the genes that can modulate the consequences of Rb inactivation, we carried out a genetic screen in Drosophila to identify mutations that affected apoptosis induced by inactivation of the Retinoblastoma-family protein (rbf) and identified a mutation that blocked apoptosis induced by rbf. We found this mutation to be a new allele of head involution defective (hid) and showed that hid expression is deregulated in rbf mutant cells in larval imaginal discs. We identified an enhancer that regulates hid expression in response to developmental cues as well as to radiation and demonstrated that this hid enhancer is directly repressed by RBF through an E2F binding site. These observations indicate that apoptosis of rbf mutant cells is mediated by an upregulation of hid. Finally, we showed that bantam, a miRNA that regulates hid translation, is expressed in the interommatidial cells in the larval eye discs and modulates the survival of rbf mutant cells.
Collapse
Affiliation(s)
- Miho Tanaka-Matakatsu
- Ben May Department for Cancer Research, the University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | - Jinhua Xu
- Ben May Department for Cancer Research, the University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | - Leping Cheng
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, CHINA
| | - Wei Du
- Ben May Department for Cancer Research, the University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Polager S, Ginsberg D. E2F - at the crossroads of life and death. Trends Cell Biol 2008; 18:528-35. [PMID: 18805009 DOI: 10.1016/j.tcb.2008.08.003] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 08/05/2008] [Accepted: 08/05/2008] [Indexed: 12/16/2022]
Abstract
The retinoblastoma tumor suppressor, pRb, restricts cell-cycle progression mainly by regulating members of the E2F-transcription-factor family. The Rb pathway is often inactivated in human tumors, resulting in deregulated-E2F activity that promotes proliferation or cell death, depending on the cellular context. Specifically, the outcome of deregulated-E2F activity is determined by integration of signals coming from the cellular DNA and the external environment. Alterations in cell proliferation and cell-death pathways are key features of transformed cells and, therefore, an understanding of the variables that determine the outcome of E2F activation is pivotal for cancer research and treatment. In this review, we discuss recent studies that have elucidated some of the signals affecting E2F activity and that have revealed additional E2F targets and functions, thereby enriching the understanding of this versatile transcription-factor family.
Collapse
Affiliation(s)
- Shirley Polager
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| | | |
Collapse
|
6
|
Suppression of PTEN Expression Is Essential for Antiapoptosis and Cellular Transformation by Oncogenic Ras. Cancer Res 2007; 67:10343-50. [DOI: 10.1158/0008-5472.can-07-1827] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Ginsberg D. EGFR Signaling Inhibits E2F1-Induced Apoptosis in Vivo: Implications for Cancer Therapy. ACTA ACUST UNITED AC 2007; 2007:pe4. [PMID: 17264315 DOI: 10.1126/stke.3712007pe4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The retinoblastoma tumor suppressor (RB) restricts cell proliferation by regulating members of the E2F family of transcription factors. In human tumors RB is often inactivated, resulting in aberrant E2F-dependent transcription and uncontrolled proliferation. One of the E2F proteins, E2F1, can also induce apoptosis. The extent of E2F1-induced apoptosis is known to be tissue- and cell-specific, but until now, it has been unclear what variables determine cellular sensitivity to E2F1-induced apoptosis in vivo. A recent study reveals epidermal growth factor receptor (EGFR) signaling to be one such variable, as EGFR signaling cooperates with RB in inhibiting E2F1-induced apoptosis. This finding raises the possibility that therapeutic manipulation of EGFR signaling may specifically trigger the death of cancer cells with inactive RB, thereby enabling "targeted" cancer treatments.
Collapse
Affiliation(s)
- Doron Ginsberg
- Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|
8
|
Moon NS, Di Stefano L, Dyson N. A gradient of epidermal growth factor receptor signaling determines the sensitivity of rbf1 mutant cells to E2F-dependent apoptosis. Mol Cell Biol 2006; 26:7601-15. [PMID: 16954388 PMCID: PMC1636876 DOI: 10.1128/mcb.00836-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inactivation of retinoblastoma (Rb) family members sensitizes cells to apoptosis. This cell death affects the development of mutant animals and also provides a critical constraint to the malignant potential of Rb mutant tumor cells. The extent of apoptosis caused by the inactivation of Rb is highly cell type and tissue specific, but the underlying reasons for this variation are poorly understood. Here, we characterize a specific time and place during Drosophila melanogaster development where rbf1 mutant cells are exquisitely sensitive to apoptosis. During the third larval instar, many rbf1 mutant cells undergo E2F-dependent cell death in the morphogenetic furrow. Surprisingly, this pattern of apoptosis is not caused by inappropriate cell cycle progression but instead involves the action of Argos, a secreted protein that negatively regulates Drosophila epidermal growth factor receptor (EGFR [DER]) activity. Apoptosis of rbf1 mutant cells is suppressed by the activation of DER, ras, or raf or by the inactivation of argos, sprouty, or gap1, and inhibition of DER strongly enhances apoptosis in rbf1 mutant discs. We show that RBF1 and a DER/ras/raf signaling pathway cooperate in vivo to suppress E2F-dependent apoptosis and that the loss of RBF1 alters a normal program of cell death that is controlled by Argos and DER. These results demonstrate that a gradient of DER/ras/raf signaling that occurs naturally during development provides the contextual signals that determine when and where the inactivation of rbf1 results in dE2F1-dependent apoptosis.
Collapse
Affiliation(s)
- Nam-Sung Moon
- Massachusetts General Hospital Cancer Research Center, Harvard Medical School, Building 149, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
9
|
Afonso V, Santos G, Collin P, Khatib AM, Mitrovic DR, Lomri N, Leitman DC, Lomri A. Tumor necrosis factor-alpha down-regulates human Cu/Zn superoxide dismutase 1 promoter via JNK/AP-1 signaling pathway. Free Radic Biol Med 2006; 41:709-21. [PMID: 16895791 DOI: 10.1016/j.freeradbiomed.2006.05.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 04/28/2006] [Accepted: 05/12/2006] [Indexed: 12/18/2022]
Abstract
Overexpression of Cu/Zn superoxide dismutase 1 (SOD1) in monocytes blocks reactive oxygen species-induced inhibition of cell growth and apoptosis and renders cells resistant to the toxic effect of tumor necrosis factor (TNF)-alpha, suggesting that TNF-alpha represses the SOD1 gene in these cells. We herein show that TNF-alpha decreases SOD1 mRNA, protein, and promoter activity in U937 cells. Electrophoretic mobility-shift assays (EMSA) show that TNF-alpha decreased binding of three different complexes. Ectopic Sp1 overexpression markedly increased SOD1-basal promoter activity and partially antagonized the TNF-alpha inhibitory effect. In contrast, ectopic c-Jun overexpression mimics TNF-alpha inhibitory effects and antagonizes Sp1 stimulatory effects. In agreement with these findings, EMSA shows a TNF-alpha-induced increase in AP-1 and a decrease in Sp1 DNA binding. Disruption of the C/EBP site decreases, whereas mutation in the Sp1/Egr-1 site completely abolishes DNA-binding and promoter activity. A JNK inhibitor antagonized the negative effects of TNF-alpha on SOD1 promoter activity, suggesting that JNK signaling through c-Jun protein activation is critical for the TNF-alpha-dependent SOD1 repression. A greater understanding of the mechanisms of TNF-alpha-induced SOD1 repression could facilitate the design and development of novel therapeutic drugs for inflammatory conditions.
Collapse
|
10
|
Vleugel MM, Greijer AE, Bos R, van der Wall E, van Diest PJ. c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer. Hum Pathol 2006; 37:668-74. [PMID: 16733206 DOI: 10.1016/j.humpath.2006.01.022] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 11/10/2005] [Accepted: 01/16/2006] [Indexed: 01/09/2023]
Abstract
c-Jun is a component of the transcription factor activator protein 1 (AP-1), which binds and activates transcription at TRE/AP-1 elements. Extra- or intracellular signals, including growth factors, transforming oncoproteins, and UV irradiation, stimulate phosphorylation of c-Jun at serine 63/73 and activate c-Jun-dependent transcription. Therefore, activated c-Jun potentially plays an important role in carcinogenesis and cancer progression. To evaluate expression patterns of activated c-Jun in breast cancer in relation to angiogenesis and proliferation, we performed immunohistochemistry on 103 cases of invasive breast cancer with an antibody recognizing phosphorylated c-Jun at serine 73. Activated c-Jun showed a predominantly nuclear expression at the invasive front in 38% of invasive breast cancer cases. Furthermore, expression of activated c-Jun was seen in mitotic cells of the invasive front in 50% of cases. Occasionally, fibroblasts, endothelial cells, and benign breast cells showed nuclear expression. Activated nuclear c-Jun expression showed positive correlations with expression of hyperphosphorylated pRb, vascular endothelial growth factor, and with microvessel density. Mitotic c-Jun expression was associated with pRb and microvessel density. Stromal c-Jun expression showed positive relations with microvessel density. In survival analysis, no significant relation was found with activated c-Jun expression and survival, although a trend with poor survival was found for mitotic cells overexpressing activated c-Jun (P = .09). Our results show that activated c-Jun is predominantly expressed at the invasive front in breast cancer and is associated with proliferation and angiogenesis. Earlier studies have established a functional, in vitro link between activated c-Jun and tumor angiogenesis. Our present results in breast cancer patients confirm this relation in vivo for the first time. Therefore, c-Jun/AP-1 targeting may provide new ways to block tumor angiogenesis.
Collapse
Affiliation(s)
- Marije M Vleugel
- Department of Pathology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|