1
|
Song Z, Tao Y, You J. The potential applications of peptide-loading complex in cancer treatment. Front Immunol 2025; 16:1526137. [PMID: 40098955 PMCID: PMC11911339 DOI: 10.3389/fimmu.2025.1526137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Immunotherapy for cancer has made significant strides in the last several years. The prognosis for cancer patients has significantly improved as a result, particularly in hematological diseases. However, it was discovered that translating these achievements to solid tumors proved challenging. The peptide-loading complex (PLC), a temporary multisubunit membrane assembly in the endoplasmic reticulum (ER), is crucial for initiating a hierarchical immune response. Chaperones calreticulin and tapasin make up the PLC, unique to class I glycoproteins, thiooxido-reductase ERp57, and a transporter associated with antigen processing. The loading and editing of major histocompatibility complex class I (MHC-I) molecules with peptide translocation into the ER are synchronized by the PLC. One of the immune escape strategies revealed for tumors so far is changes in the expression of MHC molecules. This is because MHC antigens are crucial in presenting antigens to T-lymphocytes and controlling NK cell activity. Furthermore, decreased MHC-I expression has been linked to malignancies resistant to T-cell-based cancer immunotherapies (adoptive transfer of antitumor CD8 T-cells or checkpoint inhibition). The PLC is essential for T-cell priming, differentiation, and tumor growth control because it can bind to a wide range of MHC-I allomorphs. In this review, we have looked into PLC's function and effects in all forms of cancer to improve cancer therapy techniques.
Collapse
Affiliation(s)
- Zhidu Song
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Ying Tao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaxin You
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Lee J, Oldham ML, Manon V, Chen J. Principles of peptide selection by the transporter associated with antigen processing. Proc Natl Acad Sci U S A 2024; 121:e2320879121. [PMID: 38805290 PMCID: PMC11161800 DOI: 10.1073/pnas.2320879121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/05/2024] [Indexed: 05/30/2024] Open
Abstract
Our ability to fight pathogens relies on major histocompatibility complex class I (MHC-I) molecules presenting diverse antigens on the surface of diseased cells. The transporter associated with antigen processing (TAP) transports nearly the entire repertoire of antigenic peptides into the endoplasmic reticulum for MHC-I loading. How TAP transports peptides specific for MHC-I is unclear. In this study, we used cryo-EM to determine a series of structures of human TAP, both in the absence and presence of peptides with various sequences and lengths. The structures revealed that peptides of eight or nine residues in length bind in a similarly extended conformation, despite having little sequence overlap. We also identified two peptide-anchoring pockets on either side of the transmembrane cavity, each engaging one end of a peptide with primarily main chain atoms. Occupation of both pockets results in a global conformational change in TAP, bringing the two halves of the transporter closer together to prime it for isomerization and ATP hydrolysis. Shorter peptides are able to bind to each pocket separately but are not long enough to bridge the cavity to bind to both simultaneously. Mutations that disrupt hydrogen bonds with the N and C termini of peptides almost abolish MHC-I surface expression. Our findings reveal that TAP functions as a molecular caliper that selects peptides according to length rather than sequence, providing antigen diversity for MHC-I presentation.
Collapse
Affiliation(s)
- James Lee
- Laboratory of Membrane Biophysics and Biology, The Rockefeller University, New York, NY10065
- HHMI, Chevy Chase, MD20815
| | - Michael L. Oldham
- Laboratory of Membrane Biophysics and Biology, The Rockefeller University, New York, NY10065
- HHMI, Chevy Chase, MD20815
| | - Victor Manon
- Laboratory of Membrane Biophysics and Biology, The Rockefeller University, New York, NY10065
| | - Jue Chen
- Laboratory of Membrane Biophysics and Biology, The Rockefeller University, New York, NY10065
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
3
|
Fan W, Shao K, Luo M. Structural View of Cryo-Electron Microscopy-Determined ATP-Binding Cassette Transporters in Human Multidrug Resistance. Biomolecules 2024; 14:231. [PMID: 38397468 PMCID: PMC10886794 DOI: 10.3390/biom14020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
ATP-binding cassette (ABC) transporters, acting as cellular "pumps," facilitate solute translocation through membranes via ATP hydrolysis. Their overexpression is closely tied to multidrug resistance (MDR), a major obstacle in chemotherapy and neurological disorder treatment, hampering drug accumulation and delivery. Extensive research has delved into the intricate interplay between ABC transporter structure, function, and potential inhibition for MDR reversal. Cryo-electron microscopy has been instrumental in unveiling structural details of various MDR-causing ABC transporters, encompassing ABCB1, ABCC1, and ABCG2, as well as the recently revealed ABCC3 and ABCC4 structures. The newly obtained structural insight has deepened our understanding of substrate and drug binding, translocation mechanisms, and inhibitor interactions. Given the growing body of structural information available for human MDR transporters and their associated mechanisms, we believe it is timely to compile a comprehensive review of these transporters and compare their functional mechanisms in the context of multidrug resistance. Therefore, this review primarily focuses on the structural aspects of clinically significant human ABC transporters linked to MDR, with the aim of providing valuable insights to enhance the effectiveness of MDR reversal strategies in clinical therapies.
Collapse
Affiliation(s)
| | | | - Min Luo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; (W.F.); (K.S.)
| |
Collapse
|
4
|
Mao YX, Chen ZP, Wang L, Wang J, Zhou CZ, Hou WT, Chen Y. Transport mechanism of human bilirubin transporter ABCC2 tuned by the inter-module regulatory domain. Nat Commun 2024; 15:1061. [PMID: 38316776 PMCID: PMC10844203 DOI: 10.1038/s41467-024-45337-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Bilirubin is mainly generated from the breakdown of heme when red blood cells reach the end of their lifespan. Accumulation of bilirubin in human body usually leads to various disorders, including jaundice and liver disease. Bilirubin is conjugated in hepatocytes and excreted to bile duct via the ATP-binding cassette transporter ABCC2, dysfunction of which would lead to Dubin-Johnson syndrome. Here we determine the structures of ABCC2 in the apo, substrate-bound and ATP/ADP-bound forms using the cryo-electron microscopy, exhibiting a full transporter with a regulatory (R) domain inserted between the two half modules. Combined with substrate-stimulated ATPase and transport activity assays, structural analysis enables us to figure out transport cycle of ABCC2 with the R domain adopting various conformations. At the rest state, the R domain binding to the translocation cavity functions as an affinity filter that allows the substrates of high affinity to be transported in priority. Upon substrate binding, the R domain is expelled from the cavity and docks to the lateral of transmembrane domain following ATP hydrolysis. Our findings provide structural insights into a transport mechanism of ABC transporters finely tuned by the R domain.
Collapse
Affiliation(s)
- Yao-Xu Mao
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Zhi-Peng Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Liang Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jie Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Cong-Zhao Zhou
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Wen-Tao Hou
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Yuxing Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
5
|
Wang J, Li X, Wang F, Cheng M, Mao Y, Fang S, Wang L, Zhou C, Hou W, Chen Y. Placing steroid hormones within the human ABCC3 transporter reveals a compatible amphiphilic substrate-binding pocket. EMBO J 2023; 42:e113415. [PMID: 37485728 PMCID: PMC10476276 DOI: 10.15252/embj.2022113415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
The human ABC transporter ABCC3 (also known as MRP3) transports a wide spectrum of substrates, including endogenous metabolites and exogenous drugs. Accordingly, it participates in multiple physiological processes and is involved in diverse human diseases such as intrahepatic cholestasis of pregnancy, which is caused by the intracellular accumulation of bile acids and estrogens. Here, we report three cryogenic electron microscopy structures of ABCC3: in the apo-form and in complexed forms bound to either the conjugated sex hormones β-estradiol 17-(β-D-glucuronide) and dehydroepiandrosterone sulfate. For both hormones, the steroid nuclei that superimpose against each other occupy the hydrophobic center of the transport cavity, whereas the two conjugation groups are separated and fixed by the hydrophilic patches in two transmembrane domains. Structural analysis combined with site-directed mutagenesis and ATPase activity assays revealed that ABCC3 possesses an amphiphilic substrate-binding pocket able to hold either conjugated hormone in an asymmetric pattern. These data build on consensus features of the substrate-binding pocket of MRPs and provide a structural platform for the rational design of inhibitors.
Collapse
Affiliation(s)
- Jie Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Xu Li
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Fang‐Fang Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Meng‐Ting Cheng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Yao‐Xu Mao
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Shu‐Cheng Fang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Liang Wang
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Cong‐Zhao Zhou
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Wen‐Tao Hou
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Yuxing Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
6
|
Rottet S, Iqbal S, Xifaras R, Singer MT, Scott C, Deplazes E, Callaghan R. Biochemical interactions between the Atm1-like transporter from Novosphingobium aromaticivorans and heavy metals. Arch Biochem Biophys 2023:109696. [PMID: 37481198 DOI: 10.1016/j.abb.2023.109696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Novosphingobium aromaticivorans has the ability to survive in harsh environments by virtue of its suite of iron-containing oxygenases that biodegrade an astonishing array of aromatic compounds. It is also resistant to heavy metals through Atm1, an ATP-binding cassette protein that mediates active efflux of heavy metals conjugated to glutathione. However, Atm1 orthologues in higher organisms have been implicated in the intracellular transport of organic iron complexes. Our hypothesis suggests that the ability of Atm1 to remove heavy metals is related to the need for regulated iron handling in N. aromaticivorans to support high oxygenase activity. Here we provide the first data demonstrating a direct interaction between an iron-porphyrin compound (hemin) and NaAtm1. Hemin displayed considerably higher binding affinity and lower EC50 to stimulate ATP hydrolysis by Atm1 than Ag-GSH, GSSG or GSH, established substrates of the transporter. Co-incubation of NaAtm1, hemin with Ag-GSH in ATPase assays revealed a non-competitive interaction, indicating distinct binding sites on NaAtm1 and this property was reinforced using molecular docking analysis. Our data suggests that NaAtm1 has considerable versatility in transporting organic conjugates of metals and that this versatility enables it to play roles in detoxification processes for toxic metals and in homeostasis of iron. The ability to play these distinct roles is enabled by the plasticity of the substrate binding site within the central cavity of NaAtm1.
Collapse
Affiliation(s)
- Sarah Rottet
- CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Acton, Canberra, ACT, 2601, Australia
| | - Shagufta Iqbal
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Rachel Xifaras
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Michael T Singer
- CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Acton, Canberra, ACT, 2601, Australia
| | - Colin Scott
- CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Acton, Canberra, ACT, 2601, Australia
| | - Evelyne Deplazes
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Richard Callaghan
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
7
|
Graul M, Karska N, Wąchalska M, Krupa P, Ślusarz MJ, Lubocki M, Bieńkowska-Szewczyk K, Rodziewicz-Motowidło S, Sieradzan AK, Lipińska AD. The N-terminal Proline Hinge Motif Controls the Structure of Bovine Herpesvirus 1-encoded Inhibitor of the Transporter Associated with Antigen Processing Required for its Immunomodulatory Function. J Mol Biol 2023; 435:167964. [PMID: 36646375 DOI: 10.1016/j.jmb.2023.167964] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Due to unique features, proline residues may control protein structure and function. Here, we investigated the role of 52PPQ54 residues, indicated by the recently established experimental 3D structure of bovine herpesvirus 1-encoded UL49.5 protein as forming a characteristic proline hinge motif in its N-terminal domain. UL49.5 acts as a potent inhibitor of the transporter associated with antigen processing (TAP), which alters the antiviral immune response. Mechanisms employed by UL49.5 to affect TAP remain undetermined on a molecular level. We found that mutations in the 52PPQ54 region had a vast impact on its immunomodulatory function, increasing cell surface MHC class I expression, TAP levels, and peptide transport efficiency. This inhibitory effect was specific for UL49.5 activity towards TAP but not towards the viral glycoprotein M. To get an insight into the impact of proline hinge modifications on structure and dynamics, we performed all-atom and coarse-grained molecular dynamics studies on the native protein and PPQ mutants. The results demonstrated that the proline hinge sequence with its highly rigid conformation served as an anchor into the membrane. This anchor was responsible for the structural and dynamical behavior of the whole protein, constraining the mobility of the C-terminus, increasing the mobility of the transmembrane region, and controlling the accessibility of the C-terminal residues to the cytoplasmic environment. Those features appear crucial for TAP binding and inhibition. Our findings significantly advance the structural understanding of the UL49.5 protein and its functional regions and support the importance of proline motifs for the protein structure.
Collapse
Affiliation(s)
- Małgorzata Graul
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - Natalia Karska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland; Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Magda Wąchalska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - Paweł Krupa
- Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - Magdalena J Ślusarz
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Marcin Lubocki
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | | | - Adam K Sieradzan
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland.
| | - Andrea D Lipińska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland.
| |
Collapse
|
8
|
Kim S, Lee SS, Park JG, Kim JW, Ju S, Choi SH, Kim S, Kim NJ, Hong S, Kang JY, Jin MS. Structural Insights into Porphyrin Recognition by the Human ATP-Binding Cassette Transporter ABCB6. Mol Cells 2022; 45:575-587. [PMID: 35950458 PMCID: PMC9385563 DOI: 10.14348/molcells.2022.0040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/27/2022] Open
Abstract
Human ABCB6 is an ATP-binding cassette transporter that regulates heme biosynthesis by translocating various porphyrins from the cytoplasm into the mitochondria. Here we report the cryo-electron microscopy (cryo-EM) structures of human ABCB6 with its substrates, coproporphyrin III (CPIII) and hemin, at 3.5 and 3.7 Å resolution, respectively. Metalfree porphyrin CPIII binds to ABCB6 within the central cavity, where its propionic acids form hydrogen bonds with the highly conserved Y550. The resulting structure has an overall fold similar to the inward-facing apo structure, but the two nucleotide-binding domains (NBDs) are slightly closer to each other. In contrast, when ABCB6 binds a metal-centered porphyrin hemin in complex with two glutathione molecules (1 hemin: 2 glutathione), the two NBDs end up much closer together, aligning them to bind and hydrolyze ATP more efficiently. In our structures, a glycine-rich and highly flexible "bulge" loop on TM helix 7 undergoes significant conformational changes associated with substrate binding. Our findings suggest that ABCB6 utilizes at least two distinct mechanisms to fine-tune substrate specificity and transport efficiency.
Collapse
Affiliation(s)
- Songwon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Sang Soo Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Jun Gyou Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Ji Won Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seulgi Ju
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Seung Hun Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Subin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Na Jin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Semi Hong
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Jin Young Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Mi Sun Jin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
9
|
Poku VO, Iram SH. A critical review on modulators of Multidrug Resistance Protein 1 in cancer cells. PeerJ 2022; 10:e12594. [PMID: 35036084 PMCID: PMC8742536 DOI: 10.7717/peerj.12594] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/14/2021] [Indexed: 01/11/2023] Open
Abstract
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent efflux transporter, and responsible for the transport of a broad spectrum of xenobiotics, toxins, and physiological substrates across the plasma membrane. As an efflux pump, it plays a significant role in the absorption and disposition of drugs including anticancer drugs, antivirals, antimalarials, and antibiotics and their metabolites across physiological barriers in cells. MRP1 is also known to aid in the regulation of several physiological processes such as redox homeostasis, steroid metabolism, and tissue defense. However, its overexpression has been reported to be a key clinical marker associated with multidrug resistance (MDR) of several types of cancers including lung cancer, childhood neuroblastoma, breast and prostate carcinomas, often resulting in a higher risk of treatment failure and shortened survival rates in cancer patients. Aside MDR, overexpression of MRP1 is also implicated in the development of neurodegenerative and cardiovascular diseases. Due to the cellular importance of MRP1, the identification and biochemical/molecular characterization of modulators of MRP1 activity and expression levels are of key interest to cancer research and beyond. This review primarily aims at highlighting the physiological and pharmacological importance of MRP1, known MRP1 modulators, current challenges encountered, and the potential benefits of conducting further research on the MRP1 transporter.
Collapse
Affiliation(s)
- Vivian Osei Poku
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States of America
| | - Surtaj Hussain Iram
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States of America,American University of Iraq, Sulaimaniya, Sulaimani, KRG, Iraq
| |
Collapse
|
10
|
The association of TAP polymorphisms with non-small-cell lung cancer in the Han Chinese population. Hum Immunol 2021; 82:917-922. [PMID: 34373132 DOI: 10.1016/j.humimm.2021.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022]
Abstract
The host immune system plays a crucial role in multiple types of cancer, including non-small-cell lung cancer (NSCLC). Transporter associated with antigen processing (TAP) protein heterodimer complexes might promote intracellular antigen peptide binding with class I major histocompatibility complex (MHC-I) molecules, and in recent years, TAP1 and TAP2 have been reported to be associated with multiple cancer risks. In the current study, we investigated the association of single-nucleotide polymorphisms (SNPs) in TAP1 and TAP2 with NSCLC in a Han Chinese population. Six and seven TAP1 and TAP2 SNPs, respectively, were genotyped and analysed in healthy controls and NSCLC patients. Based on our data, none of the six SNPs in TAP1 is associated with NSCLC risk (P > 0.0038). However, rs2228396 alleles in TAP2 were significantly different between NSCLC patients and healthy controls, and the A allele might be associated with an increased risk of this cancer (P = 0.001, OR = 1.65, 95%CI: 1.23 ∼ 2.21). Moreover, the genotype frequencies of rs2228396 were significantly different between patients and healthy controls (P = 7 × 10-4). Additionally, TAP2 rs241441 alleles exhibited a trend of difference between NSCLC patients and healthy controls, with the C allele possibly being associated with increased risk of NSCLC (P = 0.013; OR = 1.30, 95%CI: 1.06 ∼ 1.60). Moreover, the genotypes of rs241441 in TAP2 showed a significant difference between NSCLC patients and healthy controls (P = 1 × 10-4). In haplotype analysis, the TAP2 SNP haplotype (CAC, TAP2*0102) was significantly associated with increased NSCLC risk in the Han Chinese population (P = 0.003; OR = 1.57, 95%CI: 1.17 ∼ 2.10). Our results indicate that TAP2 SNPs (rs2228396 and rs241441) have a potential role in NSCLC pathogenesis.
Collapse
|
11
|
Yang J, Liu W, Yan Z, Li C, Liu S, Yang X, Li Y, Shi L, Yao Y. Polymorphisms in transporter associated with antigen presenting are associated with cervical intraepithelial neoplasia and cervical cancer in a Chinese Han population. HLA 2021; 98:23-36. [PMID: 34050605 DOI: 10.1111/tan.14333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
The host immune system plays an important role in infectious diseases and cancers. The heterodimer formed by transporter associated with antigen presenting (TAP)1 and TAP2 is responsible for intracellular peptide loading onto MHC-I molecules. Studies have shown that single-nucleotide polymorphisms (SNPs) in TAP genes might affect the expression and function of TAP and be associated with cancer risk. We aimed to investigate the association of SNPs in the TAP1 and TAP2 genes with cervical intraepithelial neoplasia (CIN) and cervical cancer (CC) in a Chinese Han population. Six SNPs in the TAP1 gene and seven in the TAP2 gene were selected. The 13 SNPs were genotyped in 1255 healthy individuals, 575 patients with CIN and 1034 patients with CC using the SNaPshot assay. The association between these SNPs and CIN and CC risk was analysed. The allelic and genotypic distributions of rs41549617 and rs1135216 showed significant differences between the control and CC groups (P < 0.0038). The T allele of rs41549617 was associated with a decreased risk of CC (OR = 0.476, 95%CI: 0.286-0.791). Moreover, the G allele of rs1135216 appears to be associated with a decreased risk of CC (OR = 0.746; 95%CI: 0.632-0.881). The allele and genotype distribution of rs241441 showed a significant difference between the control and CC groups (P < 0.0038), and the rs241441 G allele was associated with an increased risk of CC (OR = 1.232, 95%CI: 1.092-1.398). In addition, the results of the association between TAP alleles and CC showed that TAP1*020101 and TAP1*0301 have an association with CC (P = 0.001 and P = 0.002, respectively). Our results demonstrate that the TAP1 and TAP2 genes are associated with CC in the Chinese Han population.
Collapse
Affiliation(s)
- Jia Yang
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Weipeng Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Zhiling Yan
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chuanyin Li
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Shuyuan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Xi Yang
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yu Li
- Department of Obstetrics, The First People's Hospital of Kunming, Kunming, China
| | - Li Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yufeng Yao
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| |
Collapse
|
12
|
Abstract
ATP-binding cassette (ABC) transporters constitute one of the largest and most ancient protein superfamilies found in all living organisms. They function as molecular machines by coupling ATP binding, hydrolysis, and phosphate release to translocation of diverse substrates across membranes. The substrates range from vitamins, steroids, lipids, and ions to peptides, proteins, polysaccharides, and xenobiotics. ABC transporters undergo substantial conformational changes during substrate translocation. A comprehensive understanding of their inner workings thus requires linking these structural rearrangements to the different functional state transitions. Recent advances in single-particle cryogenic electron microscopy have not only delivered crucial information on the architecture of several medically relevant ABC transporters and their supramolecular assemblies, including the ATP-sensitive potassium channel and the peptide-loading complex, but also made it possible to explore the entire conformational space of these nanomachines under turnover conditions and thereby gain detailed mechanistic insights into their mode of action.
Collapse
Affiliation(s)
- Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| |
Collapse
|
13
|
Light control of the peptide-loading complex synchronizes antigen translocation and MHC I trafficking. Commun Biol 2021; 4:430. [PMID: 33785857 PMCID: PMC8010092 DOI: 10.1038/s42003-021-01890-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Antigen presentation via major histocompatibility complex class I (MHC I) molecules is essential to mount an adaptive immune response against pathogens and cancerous cells. To this end, the transporter associated with antigen processing (TAP) delivers snippets of the cellular proteome, resulting from proteasomal degradation, into the ER lumen. After peptide loading and editing by the peptide-loading complex (PLC), stable peptide-MHC I complexes are released for cell surface presentation. Since the process of MHC I trafficking is poorly defined, we established an approach to control antigen presentation by introduction of a photo-caged amino acid in the catalytic ATP-binding site of TAP. By optical control, we initiate TAP-dependent antigen translocation, thus providing new insights into TAP function within the PLC and MHC I trafficking in living cells. Moreover, this versatile approach has the potential to be applied in the study of other cellular pathways controlled by P-loop ATP/GTPases. Brunnberg et al. establish a protocol that enables them to optically control translocation of the transporter associated with antigen processing (TAP), which plays a role in delivering proteasomal degradation products into the ER lumen. Their versatile approach provides insights into TAP function in the context of peptide-loading complex and stable peptide-MHC I complex trafficking in living cells, but has the potential to be applied to the investigation of other pathways.
Collapse
|
14
|
Karska N, Graul M, Sikorska E, Ślusarz MJ, Zhukov I, Kasprzykowski F, Kubiś A, Lipińska AD, Rodziewicz-Motowidło S. Investigation of the Effects of Primary Structure Modifications within the RRE Motif on the Conformation of Synthetic Bovine Herpesvirus 1-Encoded UL49.5 Protein Fragments. Chem Biodivers 2021; 18:e2000883. [PMID: 33427369 DOI: 10.1002/cbdv.202000883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/21/2020] [Indexed: 11/11/2022]
Abstract
Herpesviruses are the most prevalent viruses that infect the human and animal body. They can escape a host immune response in numerous ways. One way is to block the TAP complex so that viral peptides, originating from proteasomal degradation, cannot be transported to the endoplasmic reticulum. As a result, a reduced number of MHC class I molecules appear on the surface of infected cells and, thus, the immune system is not efficiently activated. BoHV-1-encoded UL49.5 protein is one such TAP transporter inhibitor. This protein binds to TAP in such a way that its N-terminal fragment interacts with the loops of the TAP complex, and the C-terminus stimulates proteasomal degradation of TAP. Previous studies have indicated certain amino acid residues, especially the RRE(9-11) motif, within the helical structure of the UL49.5 N-terminal fragment, as being crucial to the protein's activity. In this work, we investigated the effects of modifications within the RRE region on the spatial structure of the UL49.5 N-terminal fragment. The introduced RRE(9-11) variations were designed to abolish or stabilize the structure of the α-helix and, consequently, to increase or decrease protein activity compared to the wild type. The terminal structure of the peptides was established using circular dichroism (CD), 2D nuclear magnetic resonance (NMR), and molecular dynamics (MD) in membrane-mimetic or membrane-model environments. Our structural results show that in the RRE(9-11)AAA and E11G peptides the helical structure has been stabilized, whereas for the RRE(9-11)GGG peptide, as expected, the helix structure has partially unfolded compared to the native structure. These RRE modifications, in the context of the entire UL49.5 proteins, slightly altered their biological activity in human cells.
Collapse
Affiliation(s)
- Natalia Karska
- Faculty of Chemistry, University of Gdańsk, 80-308, Gdańsk, Poland.,Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307, Gdańsk, Poland
| | - Małgorzata Graul
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307, Gdańsk, Poland
| | - Emilia Sikorska
- Faculty of Chemistry, University of Gdańsk, 80-308, Gdańsk, Poland
| | | | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.,NanoBioMedical Center, Adam Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland
| | | | - Agnieszka Kubiś
- Faculty of Chemistry, University of Gdańsk, 80-308, Gdańsk, Poland
| | - Andrea D Lipińska
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307, Gdańsk, Poland
| | | |
Collapse
|
15
|
Thomas C, Aller SG, Beis K, Carpenter EP, Chang G, Chen L, Dassa E, Dean M, Duong Van Hoa F, Ekiert D, Ford R, Gaudet R, Gong X, Holland IB, Huang Y, Kahne DK, Kato H, Koronakis V, Koth CM, Lee Y, Lewinson O, Lill R, Martinoia E, Murakami S, Pinkett HW, Poolman B, Rosenbaum D, Sarkadi B, Schmitt L, Schneider E, Shi Y, Shyng SL, Slotboom DJ, Tajkhorshid E, Tieleman DP, Ueda K, Váradi A, Wen PC, Yan N, Zhang P, Zheng H, Zimmer J, Tampé R. Structural and functional diversity calls for a new classification of ABC transporters. FEBS Lett 2020; 594:3767-3775. [PMID: 32978974 PMCID: PMC8386196 DOI: 10.1002/1873-3468.13935] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/19/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
Members of the ATP-binding cassette (ABC) transporter superfamily translocate a broad spectrum of chemically diverse substrates. While their eponymous ATP-binding cassette in the nucleotide-binding domains (NBDs) is highly conserved, their transmembrane domains (TMDs) forming the translocation pathway exhibit distinct folds and topologies, suggesting that during evolution the ancient motor domains were combined with different transmembrane mechanical systems to orchestrate a variety of cellular processes. In recent years, it has become increasingly evident that the distinct TMD folds are best suited to categorize the multitude of ABC transporters. We therefore propose a new ABC transporter classification that is based on structural homology in the TMDs.
Collapse
Affiliation(s)
- Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Germany
| | - Stephen G Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, AL, USA
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, London South Kensington, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, UK
| | | | - Geoffrey Chang
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lei Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Elie Dassa
- Institut Pasteur, Paris Cedex 15, France
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Gaithersburg, MD, USA
| | - Franck Duong Van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Damian Ekiert
- Department of Cell Biology and Department of Microbiology, New York University School of Medicine, NY, USA
| | - Robert Ford
- Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Xin Gong
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - I Barry Holland
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Sud, Orsay, France
| | - Yihua Huang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Daniel K Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Hiroaki Kato
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Japan
| | | | | | - Youngsook Lee
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, Korea
| | - Oded Lewinson
- Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University Zurich, Switzerland
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Satoshi Murakami
- Department of Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Daniel Rosenbaum
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Balazs Sarkadi
- Institute of Enzymology, Research Center for Natural Sciences (RCNS), Budapest, Hungary
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Erwin Schneider
- Department of Biology/Microbial Physiology, Humboldt-University of Berlin, Germany
| | - Yigong Shi
- Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, China
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Dirk J Slotboom
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Emad Tajkhorshid
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL, USA
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, AB, Canada
| | - Kazumitsu Ueda
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), KUIAS, Kyoto University, Japan
| | - András Váradi
- Institute of Enzymology, Research Center for Natural Sciences (RCNS), Budapest, Hungary
| | - Po-Chao Wen
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL, USA
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, NJ, USA
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongjin Zheng
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jochen Zimmer
- Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Germany
| |
Collapse
|
16
|
Szakacs G, Abele R. An inventory of lysosomal ABC transporters. FEBS Lett 2020; 594:3965-3985. [DOI: 10.1002/1873-3468.13967] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Gergely Szakacs
- Institute of Enzymology Research Centre of Natural Sciences Eötvös Loránd Research Network Budapest Hungary
- Institute of Cancer Research Medical University of Vienna Vienna Austria
| | - Rupert Abele
- Institute of Biochemistry Goethe‐University Frankfurt am Main Frankfurt am Main Germany
| |
Collapse
|
17
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
18
|
Wang C, Cao C, Wang N, Wang X, Wang X, Zhang XC. Cryo-electron microscopy structure of human ABCB6 transporter. Protein Sci 2020; 29:2363-2374. [PMID: 33007128 DOI: 10.1002/pro.3960] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/12/2023]
Abstract
Human ATP-binding cassette transporter 6 of subfamily B (ABCB6) is an ABC transporter involved in the translocation toxic metals and anti-cancer drugs. Using cryo-electron microscopy, we determined the molecular structure of full-length ABCB6 in an apo state. The structure of ABCB6 unravels the architecture of a full-length ABCB transporter that harbors two N-terminal transmembrane domains which is indispensable for its ATPase activity in our in vitro assay. A slit-like substrate binding pocket of ABCB6 may accommodate the planar shape of porphyrins, and the existence of a secondary cavity near the mitochondrial intermembrane space side would further facilitate substrate release. Furthermore, the ATPase activity of ABCB6 stimulated with a variety of porphyrin substrates showed different profiles in the presence of glutathione (GSH), suggesting the action of a distinct substrate translocation mechanism depending on the use of GSH as a cofactor.
Collapse
Affiliation(s)
- Chunyu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Can Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangxi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xianping Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Strategies for Genetically Engineering Hypoimmunogenic Universal Pluripotent Stem Cells. iScience 2020; 23:101162. [PMID: 32502965 PMCID: PMC7270609 DOI: 10.1016/j.isci.2020.101162] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/07/2020] [Accepted: 05/11/2020] [Indexed: 01/18/2023] Open
Abstract
Despite progress in developing cell therapies, such as T cell or stem cell therapies to treat diseases, immunoincompatibility remains a major barrier to clinical application. Given the fact that a host's immune system may reject allogeneic transplanted cells, methods have been developed to genetically modify patients' primary cells. To advance beyond this time-consuming and costly approach, recent research efforts focus on generating universal pluripotent stem cells to benefit a broader spectrum of patients. In this review, we first summarize current achievements to harness immunosuppressive mechanisms in cells to reduce immunogenicity. Then, we discuss several recent studies demonstrating the feasibility of genetically modifying pluripotent stem cells to escape immune attack and summarize the methods to evaluate hypoimmunogenicity. Although challenges remain, progress to develop genetically engineered universal pluripotent stem cells holds the promise of expediting their use in future gene and cell therapeutics and regenerative medicine.
Collapse
|
20
|
Wąchalska M, Graul M, Praest P, Luteijn RD, Babnis AW, Wiertz EJHJ, Bieńkowska-Szewczyk K, Lipińska AD. Fluorescent TAP as a Platform for Virus-Induced Degradation of the Antigenic Peptide Transporter. Cells 2019; 8:cells8121590. [PMID: 31817841 PMCID: PMC6952996 DOI: 10.3390/cells8121590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 01/20/2023] Open
Abstract
Transporter associated with antigen processing (TAP), a key player in the major histocompatibility complex class I-restricted antigen presentation, makes an attractive target for viruses that aim to escape the immune system. Mechanisms of TAP inhibition vary among virus species. Bovine herpesvirus 1 (BoHV-1) is unique in its ability to target TAP for proteasomal degradation following conformational arrest by the UL49.5 gene product. The exact mechanism of TAP removal still requires elucidation. For this purpose, a TAP-GFP (green fluorescent protein) fusion protein is instrumental, yet GFP-tagging may affect UL49.5-induced degradation. Therefore, we constructed a series of TAP-GFP variants using various linkers to obtain an optimal cellular fluorescent TAP platform. Mel JuSo (MJS) cells with CRISPR/Cas9 TAP1 or TAP2 knockouts were reconstituted with TAP-GFP constructs. Our results point towards a critical role of GFP localization on fluorescent properties of the fusion proteins and, in concert with the type of a linker, on the susceptibility to virally-induced inhibition and degradation. The fluorescent TAP platform was also used to re-evaluate TAP stability in the presence of other known viral TAP inhibitors, among which only UL49.5 was able to reduce TAP levels. Finally, we provide evidence that BoHV-1 UL49.5-induced TAP removal is p97-dependent, which indicates its degradation via endoplasmic reticulum-associated degradation (ERAD).
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 2/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 3/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 3/metabolism
- Acetanilides/pharmacology
- Animals
- Antigen Presentation/drug effects
- Antigen Presentation/genetics
- Benzothiazoles/pharmacology
- Cattle
- Cell Line
- Cell Line, Tumor
- Flow Cytometry
- Fluorescent Antibody Technique
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- HEK293 Cells
- Herpesvirus 1, Bovine/pathogenicity
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunoblotting
- Immunoprecipitation
- Plasmids/genetics
Collapse
Affiliation(s)
- Magda Wąchalska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, Abrahama 58, 80–307 Gdańsk, Poland; (M.W.); (M.G.); (A.W.B.); (K.B.-S.)
| | - Małgorzata Graul
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, Abrahama 58, 80–307 Gdańsk, Poland; (M.W.); (M.G.); (A.W.B.); (K.B.-S.)
| | - Patrique Praest
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands; (P.P.); (R.D.L.); (E.J.H.J.W.)
| | - Rutger D. Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands; (P.P.); (R.D.L.); (E.J.H.J.W.)
| | - Aleksandra W. Babnis
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, Abrahama 58, 80–307 Gdańsk, Poland; (M.W.); (M.G.); (A.W.B.); (K.B.-S.)
| | - Emmanuel J. H. J. Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands; (P.P.); (R.D.L.); (E.J.H.J.W.)
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, Abrahama 58, 80–307 Gdańsk, Poland; (M.W.); (M.G.); (A.W.B.); (K.B.-S.)
| | - Andrea D. Lipińska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, Abrahama 58, 80–307 Gdańsk, Poland; (M.W.); (M.G.); (A.W.B.); (K.B.-S.)
- Correspondence: ; Tel.: +48-585236383
| |
Collapse
|
21
|
Analysis of transporter associated with antigen presentation (TAP) genes polymorphisms with HIV-1 infection. Mol Cell Biochem 2019; 464:65-71. [PMID: 31732831 PMCID: PMC6949311 DOI: 10.1007/s11010-019-03649-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/03/2019] [Indexed: 01/02/2023]
Abstract
Human leukocyte antigen (HLA) class I molecules of the human major histocompatibility complex (MHC) play an important role in modulating immune response. HLA class I molecules present antigenic peptides to CD8+ T cells and thereby play a role in the immune surveillance of cells infected with viruses. TAP1 and TAP2 are MHC-II-encoded genes necessary for the generation of a cellular immune response and polymorphism of these genes can influence the specificity of peptides preferentially presented by the MHC class I molecules and the outcome of the immune response. Several studies implicated genetic variation in TAP genes to various immune-mediated and infectious diseases. To determine the correlation between HIV-1 infection and the TAP1 and TAP2 genes polymorphisms, we performed PCR–RFLP assay of these genes in 500 HIV-1 seropositives and the matched seronegative individuals. Statistical analysis of the data disclosed no correlation between TAP1 (C/T intron 7) gene polymorphism and HIV-1/AIDS disease. However, the current results demonstrated that the heterozygous A/G [OR (95% CI) 1.39 (1.06–1.83), P = 0.0171] and homozygous G/G [OR (95% CI) 3.38(1.56–7.46), P = 0.0010] variants of TAP2 (A/G exon 11) (T665A) gene are positively associated with an increased risk of HIV-1/AIDS infection. This case–control analysis might suggest a possible role of TAP2 (A/G exon 11) (T665A) gene in the susceptibility to HIV-1 infection and disease outcome among North Indian patients.
Collapse
|
22
|
Liu R, Ma Y, Chen X. Quantitative assessment of the association between TAP2 rs241447 polymorphism and cancer risk. J Cell Biochem 2019; 120:15867-15873. [PMID: 31074096 DOI: 10.1002/jcb.28857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022]
Abstract
The findings regarding the relation of transporter associated with antigen processing (TAP) to cancer risk have been inconsistent. The aim of this study was to comprehensively evaluate the association between TAP2 rs241447 polymorphism and cancer susceptibility. A meta-analysis of nine investigations with 2800 cases and 1620 controls was conducted to gain a better understanding of the effect of TAP2 rs241447 polymorphism on cancer risk. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate the strength of the correlation between TAP2 gene polymorphism and cancer susceptibility. The pooled results from TAP2 rs241447 polymorphism showed a decreased risk of cancer in two dominant genetic models (GG + AG vs AA: OR = 0.86, 95% CI, 0.75-0.99; AG vs AA: OR = 0.85, 95% CI, 0.73-0.99). From the subgroup analysis, decreased cancer susceptibility was found in Caucasians (GG + AG vs AA: OR = 0.82, 95% CI, 0.68-0.99), especially among the subgroup of cervical carcinoma (GG + AG vs AA: OR = 0.82, 95% CI, 0.69-0.96; AG vs AA: OR = 0.83, 95% CI, 0.70-0.99). Overall, the results suggest that TAP2 rs241447 polymorphism contributes to decreased cancer susceptibility.
Collapse
Affiliation(s)
- Rongzeng Liu
- Department of Immunology, Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yan Ma
- Network Information Center, Children's Hospital of Kaifeng City, Kaifeng, China
| | - Xiafei Chen
- Network Information Center, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
23
|
Perkowska A, Flisikowska T, Perleberg C, Flisikowski K, Stachowiak M, Nowacka-Woszuk J, Saur D, Kind A, Schnieke A, Switonski M. The expression of TAP1 candidate gene, but not its polymorphism and methylation, is associated with colonic polyp formation in a porcine model of human familial adenomatous polyposis. Anim Biotechnol 2019; 31:306-313. [PMID: 30950765 DOI: 10.1080/10495398.2019.1590377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In humans, the dysfunction of the adenomatous polyposis coli (APC) gene causes hereditary familial adenomatous polyposis (FAP) and increased risk of colorectal cancer (CRC). The severity of polyposis varies between individuals, but genetic basis for this is in large part unknown. This variability also occurs in our porcine model of FAP, based on an APC1311 mutation (orthologous to human APC1309). Since loss of TAP1 function can lead to CRC in humans, we searched for germline polymorphisms in APC1311/+ pigs with low (LP) and high (HP) levels of polyposis, as well as in wild-type pigs representing six breeds and a commercial line. The distribution of 40 identified polymorphic variants was similar in the LP and HP pigs. In contrast, the TAP1 transcript level was significantly higher in normal colon mucosa of HP pigs than in LP pigs. Moreover, six SNPs showed significant effects on TAP1 promoter activity, but no correlation with severity of polyposis was observed. Analysis of DNA methylation in the promoter region showed that one CpG site differed significantly between LP and HP pigs. We conclude that TAP1 genotype may not itself be associated with polyposis, but our findings concerning its expression suggest a role in the development of polyps.
Collapse
Affiliation(s)
- Anna Perkowska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | - Tatiana Flisikowska
- Chair of Livestock Biotechnology, Technical University of Munich, Freising, Germany
| | - Carolin Perleberg
- Chair of Livestock Biotechnology, Technical University of Munich, Freising, Germany
| | | | - Monika Stachowiak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | - Joanna Nowacka-Woszuk
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | - Dieter Saur
- Klinikum Rechts der Isar II, Technical University of Munich, Munich, Germany
| | - Alexander Kind
- Chair of Livestock Biotechnology, Technical University of Munich, Freising, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, Technical University of Munich, Freising, Germany
| | - Marek Switonski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
24
|
Karska N, Graul M, Sikorska E, Zhukov I, Ślusarz MJ, Kasprzykowski F, Lipińska AD, Rodziewicz-Motowidło S. Structure determination of UL49.5 transmembrane protein from bovine herpesvirus 1 by NMR spectroscopy and molecular dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:926-938. [PMID: 30772281 PMCID: PMC7089609 DOI: 10.1016/j.bbamem.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022]
Abstract
The transporter associated with antigen processing (TAP) directly participates in the immune response as a key component of the cytosolic peptide to major histocompatibility complex (MHC) class I protein loading machinery. This makes TAP an important target for viruses avoiding recognition by CD8+ T lymphocytes. Its activity can be suppressed by the UL49.5 protein produced by bovine herpesvirus 1, although the mechanism of this inhibition has not been understood so far. Therefore, the main goal of our study was to investigate the 3D structure of bovine herpesvirus 1 - encoded UL49.5 protein. The final structure of the inhibitor was established using circular dichroism (CD), 2D nuclear magnetic resonance (NMR), and molecular dynamics (MD) in membrane mimetic environments. In NMR studies, UL49.5 was represented by two fragments: the extracellular region (residues 1–35) and the transmembrane-intracellular fragment (residues 36–75), displaying various functions during viral invasion. After the empirical structure determination, a molecular docking procedure was used to predict the complex of UL49.5 with the TAP heterodimer. Our results revealed that UL49.5 adopted a highly flexible membrane-proximal helical structure in the extracellular part. In the transmembrane region, we observed two short α-helices. Furthermore, the cytoplasmic part had an unordered structure. Finally, we propose three different orientations of UL49.5 in the complex with TAP. Our studies provide, for the first time, the experimental structural information on UL49.5 and structure-based insight in its mechanism of action which might be helpful in designing new drugs against viral infections. The UL49.5 viral protein forms a helical structure in the biological membrane Our NMR-based 3D structure of UL49.5 differs from the theoretical predictions Apart from the protruding N-terminal helix the structure is buried in the membrane Attention should be paid to the turns in the external and transmembrane domains Molecular docking proposes three possible structures of the UL49.5/TAP complexes
Collapse
Affiliation(s)
- Natalia Karska
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Małgorzata Graul
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Emilia Sikorska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; NanoBioMedical Center, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Magdalena J Ślusarz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | | | - Andrea D Lipińska
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | | |
Collapse
|
25
|
Trowitzsch S, Tampé R. ABC Transporters in Dynamic Macromolecular Assemblies. J Mol Biol 2018; 430:4481-4495. [DOI: 10.1016/j.jmb.2018.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 12/28/2022]
|
26
|
The influence of TAP1 and TAP2 gene polymorphisms on TAP function and its inhibition by viral immune evasion proteins. Mol Immunol 2018; 101:55-64. [DOI: 10.1016/j.molimm.2018.05.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 01/03/2023]
|
27
|
Meng J, Li W, Zhang M, Hao Z, Fan S, Zhang L, Liang C. An update meta-analysis and systematic review of TAP polymorphisms as potential biomarkers for judging cancer risk. Pathol Res Pract 2018; 214:1556-1563. [PMID: 30082158 DOI: 10.1016/j.prp.2018.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/26/2018] [Accepted: 07/22/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Transporter associated with antigen processing protein (TAP) is a heterodimer protein consist of TAP1 and TAP2, act a pivotal part in the immune surveillance. In recent days, controversial relationships were reported between TAP polymorphisms and cancer risk, thus, a systematic meta-analysis was performed to resolve this discrepancy. METHODS We searched the PubMed, EMbase, Web of Science, CNKI and Wanfang databases, the cited references were also manually searched again, covering all the papers published until March 25, 2018. Quality assessment was conducted using the Newcastle-Ottawa Scale. All the meta-analysis was conducted with Stata version 12.0 software to assess the strength of the association. RESULTS 4719 cases and 4215 controls from 24 case-control studies related to TAP polymorphisms were enrolled. There was no significant association between TAP1-rs1135216, TAP1-rs4148873, TAP2-rs2228396, TAP2-rs241447 and TAP2-rs4148873 and cancer sensibility. Interestingly, a significant positive association was observed between TAP2 rs4148876 C/T polymorphism and increase cancer risk in homozygote and recessive models. Further in-silico results indicated the expression of TAP2 in cancer tissue is higher than that in normal tissue (cervical cancer, TPM = 70.2 vs. 24.0 respectively, P < 0.01; acute myeloid leukemia, TPM = 52.5 vs. 8.8 respectively, P < 0.01), and influence the survival time of acute myeloid leukemia patients (Log-rank P < 0.05). CONCLUSIONS Our finding suggested that TAP1-rs1135216, TAP1-rs4148873, TAP2-rs2228396, TAP2-rs241447 and TAP2-rs4148873 might not be involved in cancer risk, but the T allele of TAP2-rs4148876 might be a potential biomarker for judging cancer risk, and larger-scale studies are required to confirm our findings.
Collapse
Affiliation(s)
- Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China; Graduate School of Anhui Medical University, Hefei, Anhui, China
| | - Wanzhen Li
- Graduate School of Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China; Graduate School of Anhui Medical University, Hefei, Anhui, China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
28
|
Abele R, Tampé R. Moving the Cellular Peptidome by Transporters. Front Cell Dev Biol 2018; 6:43. [PMID: 29761100 PMCID: PMC5937356 DOI: 10.3389/fcell.2018.00043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022] Open
Abstract
Living matter is defined by metastability, implying a tightly balanced synthesis and turnover of cellular components. The first step of eukaryotic protein degradation via the ubiquitin-proteasome system (UPS) leads to peptides, which are subsequently degraded to single amino acids by an armada of proteases. A small fraction of peptides, however, escapes further cytosolic destruction and is transported by ATP-binding cassette (ABC) transporters into the endoplasmic reticulum (ER) and lysosomes. The ER-resident heterodimeric transporter associated with antigen processing (TAP) is a crucial component in adaptive immunity for the transport and loading of peptides onto major histocompatibility complex class I (MHC I) molecules. Although the function of the lysosomal resident homodimeric TAPL-like (TAPL) remains, until today, only loosely defined, an involvement in immune defense is anticipated since it is highly expressed in dendritic cells and macrophages. Here, we compare the gene organization and the function of single domains of both peptide transporters. We highlight the structural organization, the modes of substrate binding and translocation as well as physiological functions of both organellar transporters.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.,Cluster of Excellence - Macromolecular Complexes, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
29
|
Thomas C, Tampé R. Multifaceted structures and mechanisms of ABC transport systems in health and disease. Curr Opin Struct Biol 2018; 51:116-128. [PMID: 29635113 DOI: 10.1016/j.sbi.2018.03.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/17/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
ATP-binding cassette (ABC) transporters are found in all domains of life and constitute one of the largest protein superfamilies. ABC transporters harness the energy of ATP binding and hydrolysis to shuttle a diverse range of substrates across cell membranes. While higher-resolution structures of ABC transporters have so far exclusively been obtained by X-ray crystallography, recent advances in single-particle cryogenic electron microscopy (cryo-EM) have provided a deluge of exciting new structures of medically relevant bacterial and human ABC proteins, including those of the cystic fibrosis transmembrane conductance regulator (CFTR), and of supramolecular assemblies involving ABC transporters, like the ATP-sensitive potassium (KATP) channel and the peptide-loading complex (PLC), which is crucially involved in the presentation of antigens in adaptive immunity.
Collapse
Affiliation(s)
- Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany.
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany.
| |
Collapse
|
30
|
A highly conserved sequence of the viral TAP inhibitor ICP47 is required for freezing of the peptide transport cycle. Sci Rep 2017; 7:2933. [PMID: 28592828 PMCID: PMC5462769 DOI: 10.1038/s41598-017-02994-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
The transporter associated with antigen processing (TAP) translocates antigenic peptides into the endoplasmic reticulum (ER) lumen for loading onto MHC class I molecules. This is a key step in the control of viral infections through CD8+ T-cells. The herpes simplex virus type-1 encodes an 88 amino acid long species-specific TAP inhibitor, ICP47, that functions as a high affinity competitor for the peptide binding site on TAP. It has previously been suggested that the inhibitory function of ICP47 resides within the N-terminal region (residues 1–35). Here we show that mutation of the highly conserved 50PLL52 motif within the central region of ICP47 attenuates its inhibitory capacity. Taking advantage of the human cytomegalovirus-encoded TAP inhibitor US6 as a luminal sensor for conformational changes of TAP, we demonstrated that the 50PLL52 motif is essential for freezing of the TAP conformation. Moreover, hierarchical functional interaction sites on TAP dependent on 50PLL52 could be defined using a comprehensive set of human-rat TAP chimeras. This data broadens our understanding of the molecular mechanism underpinning TAP inhibition by ICP47, to include the 50PLL52 sequence as a stabilizer that tethers the TAP-ICP47 complex in an inward-facing conformation.
Collapse
|
31
|
Qian Y, Wang G, Xue F, Chen L, Wang Y, Tang L, Yang H. Genetic association between TAP1 and TAP2 polymorphisms and ankylosing spondylitis: a systematic review and meta-analysis. Inflamm Res 2017; 66:653-661. [PMID: 28405734 DOI: 10.1007/s00011-017-1047-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Ankylosing spondylitis (AS) is a chronic inflammatory joint disease. The transporter associated with antigen processing (TAP) has been identified to play an important role in immune response as well as the HLA-associated diseases. The aim of our meta-analysis was to investigate the contribution of TAP (TAP1 and TAP2) polymorphisms to the risk of AS. METHODS Meta-analyses were performed between 2 polymorphisms in TAP1 (TAP1-333, -637) and 3 polymorphisms in TAP2 (TAP2-379, -565, and -665) and AS. RESULTS The meta-analyses were involved with 6 studies with 415 cases and 659 controls. Significant association was found between TAP1-333Val, TAP1-637Gly, and TAP2-565Thr and AS compared with combined control group (TAP1-333Val: p = 0.009, OR = 1.40, 95% CI 1.09-1.80; TAP1-637Gly: p = 0.002, OR = 1.48, 95% CI 1.15-1.91; p = 0.03, OR = 1.38, 95% CI 1.04-1.84). Subgroup analysis shown that significant association was only found in AS when compared with HLA-B27-negative controls (TAP1-333Val: p = 0.004, OR = 1.53, 95% CI 1.14-2.06; TAP1-637Gly: p = 0.004, OR = 1.52, 95% CI 1.15-2.02; p = 0.02, OR = 1.56, 95% CI 1.09-2.24), but not in AS when compared with HLA-B27-positive controls (p > 0.05). Moreover, no significant associations were found between haplotypes in TAP1 and TAP2 in both the combined and the subgroup analyses (p > 0.05). CONCLUSIONS TAP1-333Val, TAP1-637Gly, and TAP2-565Thr were likely to be associated with AS.
Collapse
Affiliation(s)
- Yufeng Qian
- Department of Orthopedics, The First Affiliated Hospital of Suzhou University, Suzhou, 215000, People's Republic of China.,Department of Orthopedics, Changshu First People's Hospital, Changshu, People's Republic of China
| | - Genlin Wang
- Department of Orthopedics, The First Affiliated Hospital of Suzhou University, Suzhou, 215000, People's Republic of China
| | - Feng Xue
- Department of Orthopedics, Changshu First People's Hospital, Changshu, People's Republic of China
| | - Lianghui Chen
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, People's Republic of China
| | - Yan Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, People's Republic of China
| | - Liang Tang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, People's Republic of China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Suzhou University, Suzhou, 215000, People's Republic of China.
| |
Collapse
|
32
|
Johnson ZL, Chen J. Structural Basis of Substrate Recognition by the Multidrug Resistance Protein MRP1. Cell 2017; 168:1075-1085.e9. [PMID: 28238471 DOI: 10.1016/j.cell.2017.01.041] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/30/2022]
Abstract
The multidrug resistance protein MRP1 is an ATP-binding cassette (ABC) transporter that confers resistance to many anticancer drugs and plays a role in the disposition and efficacy of several opiates, antidepressants, statins, and antibiotics. In addition, MRP1 regulates redox homeostasis, inflammation, and hormone secretion. Using electron cryomicroscopy, we determined the molecular structures of bovine MRP1 in two conformations: an apo form at 3.5 Å without any added substrate and a complex form at 3.3 Å with one of its physiological substrates, leukotriene C4. These structures show that by forming a single bipartite binding site, MRP1 can recognize a spectrum of substrates with different chemical structures. We also observed large conformational changes induced by leukotriene C4, explaining how substrate binding primes the transporter for ATP hydrolysis. Structural comparison of MRP1 and P-glycoprotein advances our understanding of the common and unique properties of these two important molecules in multidrug resistance to chemotherapy.
Collapse
Affiliation(s)
- Zachary Lee Johnson
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University and the Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University and the Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
33
|
Transcriptome Profiling of IL-17A Preactivated Mesenchymal Stem Cells: A Comparative Study to Unmodified and IFN- γ Modified Mesenchymal Stem Cells. Stem Cells Int 2017; 2017:1025820. [PMID: 28293262 PMCID: PMC5331321 DOI: 10.1155/2017/1025820] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
Human mesenchymal stem cells pretreatment with IL-17A (MSC-17) potently enhances T cell immunosuppression but not their immunogenicity, in addition to avidly promoting the induction of suppressive regulatory T cells. The aim of this study was to identify potential mechanisms by which human MSC-17 mediate their superior immunomodulatory function. Untreated-MSC (UT-MSC), IFN-γ treated MSC (MSC-γ), and MSC-17 were assessed for their gene expression profile by microarray. Significantly regulated genes were identified for their biological functions (Database for Annotation, Visualisation and Integrated Discovery, DAVID). Microarray analyses identified 1278 differentially regulated genes between MSC-γ and UT-MSC and 67 genes between MSC-17 and UT-MSC. MSC-γ were enriched for genes involved in immune response, antigen processing and presentation, humoral response, and complement activation, consistent with increased MSC-γ immunogenicity. MSC-17 genes were associated with chemotaxis response, which may be involved in T cell recruitment for MSC-17 immunosuppression. MMP1, MMP13, and CXCL6 were highly and specifically expressed in MSC-17, which was further validated by real-time PCR. Thus, MMPs and chemokines may play a key role in mediating MSC-17 superior immunomodulatory function. MSC-17 represent a potential cellular therapy to suppress immunological T cell responses mediated by expression of an array of immunoregulatory molecules.
Collapse
|
34
|
Single nucleotide polymorphisms in the FcγR3A and TAP1 genes impact ADCC in cynomolgus monkey PBMCs. Immunogenetics 2017; 69:241-253. [PMID: 28154890 DOI: 10.1007/s00251-017-0970-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/13/2017] [Indexed: 02/06/2023]
Abstract
Phenotypic variability is often observed in cynomolgus monkeys on preclinical studies and may, in part, be driven by genetic variability. However, the role of monkey genetic variation remains largely unexplored in the context of drug response. This study evaluated genetic variation in cynomolgus monkey FcγR3A and TAP1 genes and the potential impact of identified polymorphisms on antibody-dependent cell-mediated cytotoxicity (ADCC) in vitro. Studies in humans have demonstrated that a single nucleotide polymorphism (SNP), F158V, in FcγR3A can influence response to rituximab through altered ADCC and that SNPs in TAP1/2 decrease natural killer (NK) cell activity against major histocompatibility complex (MHC) class I deficient cells, potentially through altered ADCC. Monkeys were genotyped for FcγR3A and TAP1 SNPs, and ADCC was assessed in vitro using peripheral blood mononuclear cells (PBMCs) treated with trastuzumab in the presence of NCI-N87 cells. FcγR3A g.1134A>C (exonic S42R), FcγR3A g.5027A>G (intronic), and TAP1 g.1A>G (start codon loss) SNPs were all significantly associated with decreased ADCC for at least one trastuzumab concentration ≥0.0001 μM when compared with wild type (WT). Regression analysis demonstrated significant association of the SNP-SNP pairs FcγR3A g.1134A>C/TAP1 g.1A>G and FcγR3A g.5027A>G/TAP1 g.1A>G with a combinatorial decrease on ADCC. Mechanisms underlying the decreased ADCC were investigated by measuring FcγR3A/IgG binding affinity and expression of FcγR3A and TAP1 in PBMCs; however, no functional associations were observed. These data demonstrate that genetic variation in cynomolgus monkeys is reflective of known human genetic variation and may potentially contribute to variable drug response in preclinical studies.
Collapse
|
35
|
Lehnert E, Tampé R. Structure and Dynamics of Antigenic Peptides in Complex with TAP. Front Immunol 2017; 8:10. [PMID: 28194151 PMCID: PMC5277011 DOI: 10.3389/fimmu.2017.00010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/04/2017] [Indexed: 11/30/2022] Open
Abstract
The transporter associated with antigen processing (TAP) selectively translocates antigenic peptides into the endoplasmic reticulum. Loading onto major histocompatibility complex class I molecules and proofreading of these bound epitopes are orchestrated within the macromolecular peptide-loading complex, which assembles on TAP. This heterodimeric ABC-binding cassette (ABC) transport complex is therefore a major component in the adaptive immune response against virally or malignantly transformed cells. Its pivotal role predestines TAP as a target for infectious diseases and malignant disorders. The development of therapies or drugs therefore requires a detailed comprehension of structure and function of this ABC transporter, but our knowledge about various aspects is still insufficient. This review highlights recent achievements on the structure and dynamics of antigenic peptides in complex with TAP. Understanding the binding mode of antigenic peptides in the TAP complex will crucially impact rational design of inhibitors, drug development, or vaccination strategies.
Collapse
Affiliation(s)
- Elisa Lehnert
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt , Frankfurt , Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt , Frankfurt , Germany
| |
Collapse
|
36
|
Crystal structure and mechanistic basis of a functional homolog of the antigen transporter TAP. Proc Natl Acad Sci U S A 2017; 114:E438-E447. [PMID: 28069938 DOI: 10.1073/pnas.1620009114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABC transporters form one of the largest protein superfamilies in all domains of life, catalyzing the movement of diverse substrates across membranes. In this key position, ABC transporters can mediate multidrug resistance in cancer therapy and their dysfunction is linked to various diseases. Here, we describe the 2.7-Å X-ray structure of heterodimeric Thermus thermophilus multidrug resistance proteins A and B (TmrAB), which not only shares structural homology with the antigen translocation complex TAP, but is also able to restore antigen processing in human TAP-deficient cells. TmrAB exhibits a broad peptide specificity and can concentrate substrates several thousandfold, using only one single active ATP-binding site. In our structure, TmrAB adopts an asymmetric inward-facing state, and we show that the C-terminal helices, arranged in a zipper-like fashion, play a crucial role in guiding the conformational changes associated with substrate transport. In conclusion, TmrAB can be regarded as a model system for asymmetric ABC exporters in general, and for TAP in particular.
Collapse
|
37
|
pqiABC and yebST, Putative mce Operons of Escherichia coli, Encode Transport Pathways and Contribute to Membrane Integrity. J Bacteriol 2016; 199:JB.00606-16. [PMID: 27795327 DOI: 10.1128/jb.00606-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023] Open
Abstract
The membranes of single-cell organisms are crucial as the first line of defense. The outer membrane of Gram-negative bacteria is an asymmetric bilayer in which lipopolysaccharides (LPSs) and phospholipids are localized in the outer and inner leaflet, respectively. This asymmetry is important for membrane integrity. In Escherichia coli, the Mla transport pathway maintains this asymmetry by removing phospholipids from the outer leaflet. The MlaD component of this system is a mammalian cell entry (MCE) domain protein, and E. coli has two other MCE domain proteins of unknown function (PqiB and YebT). Here, we show that these two proteins are components of novel transport pathways that contribute to membrane integrity. The pqiAB operon is regulated by SoxS and RpoS. The yebST operon contains pqiAB homologues. Here, we found a third member of the pqi operon, ymbA (pqiC). A PqiB-PqiC complex bridges the inner and the outer membrane, and in other bacteria, pqiBC genes are located in operons together with transporter proteins. We show here that simultaneous deletion of pqiABC and yebST operons in an Δmla background rendered cells more sensitive to SDS-EDTA, and the SDS-EDTA sensitivity of mla mutants was rescued by additional copies of pqiABC We also found that the yebST operon was induced by a defect in LPS molecules. In conclusion, PqiABC and YebST are novel transport pathways related to the Mla transport pathway and important for membrane integrity. IMPORTANCE Membranes of bacteria are crucial for stress resistance. The composition of the E. coli outer membrane is asymmetric, with asymmetry maintained by the Mla ABC transport pathway. We propose that the stress-inducible pqiABC operon and homologous yebST operon, both of previously unknown function, encode transport pathway proteins related to the Mla transport pathway. Deletion of these operons rendered cells more sensitive to membrane stress, and additional copies of pqiABC suppressed the SDS-EDTA sensitivity of mla mutant strains. We found that yebS'-'lacZ fusion was activated in mutant strains with defective LPS molecules.
Collapse
|
38
|
A dual inhibition mechanism of herpesviral ICP47 arresting a conformationally thermostable TAP complex. Sci Rep 2016; 6:36907. [PMID: 27845362 PMCID: PMC5109273 DOI: 10.1038/srep36907] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/24/2016] [Indexed: 11/09/2022] Open
Abstract
As a centerpiece of antigen processing, the ATP-binding cassette transporter associated with antigen processing (TAP) became a main target for viral immune evasion. The herpesviral ICP47 inhibits TAP function, thereby suppressing an adaptive immune response. Here, we report on a thermostable ICP47-TAP complex, generated by fusion of different ICP47 fragments. These fusion complexes allowed us to determine the direction and positioning in the central cavity of TAP. ICP47-TAP fusion complexes are arrested in a stable conformation, as demonstrated by MHC I surface expression, melting temperature, and the mutual exclusion of herpesviral TAP inhibitors. We unveiled a conserved region next to the active domain of ICP47 as essential for the complete stabilization of the TAP complex. Binding of the active domain of ICP47 arrests TAP in an open inward facing conformation rendering the complex inaccessible for other viral factors. Based on our findings, we propose a dual interaction mechanism for ICP47. A per se destabilizing active domain inhibits the function of TAP, whereas a conserved C-terminal region additionally stabilizes the transporter. These new insights into the ICP47 inhibition mechanism can be applied for future structural analyses of the TAP complex.
Collapse
|
39
|
Lehnert E, Mao J, Mehdipour AR, Hummer G, Abele R, Glaubitz C, Tampé R. Antigenic Peptide Recognition on the Human ABC Transporter TAP Resolved by DNP-Enhanced Solid-State NMR Spectroscopy. J Am Chem Soc 2016; 138:13967-13974. [DOI: 10.1021/jacs.6b07426] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Ahmad Reza Mehdipour
- Department
of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str.
3, 60438 Frankfurt
am Main, Germany
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str.
3, 60438 Frankfurt
am Main, Germany
| | | | | | | |
Collapse
|
40
|
Oldham ML, Hite RK, Steffen AM, Damko E, Li Z, Walz T, Chen J. A mechanism of viral immune evasion revealed by cryo-EM analysis of the TAP transporter. Nature 2016; 529:537-40. [PMID: 26789246 PMCID: PMC4848044 DOI: 10.1038/nature16506] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023]
Abstract
Cellular immunity against viral infection and tumor cells depends on antigen presentation by the major histocompatibility complex class 1 molecules (MHC I). Intracellular antigenic peptides are transported into the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP) and then loaded onto the nascent MHC I, which are exported to the cell surface and present peptides to the immune system1. Cytotoxic T lymphocytes recognize non-self peptides and program the infected or malignant cells for apoptosis. Defects in TAP account for immunodeficiency and tumor development. To escape immune surveillance, some viruses have evolved strategies to either down-regulate TAP expression or directly inhibit TAP activity. To date neither the architecture of TAP nor the mechanism of viral inhibition has been elucidated at the structural level. In this study we describe the cryo-electron microscopy (cryo-EM) structure of human TAP in complex with its inhibitor ICP47, a small protein produced by the herpes simplex virus I. We show that the twelve transmembrane helices and two cytosolic nucleotide-binding domains (NBDs) of the transporter adopt an inward-facing conformation with the two NBDs separated. The viral inhibitor ICP47 forms a long helical hairpin, which plugs the translocation pathway of TAP from the cytoplasmic side. Association of ICP47 precludes substrate binding and also prevents NBD closure necessary for ATP hydrolysis. This work illustrates a striking example of immune evasion by persistent viruses. By blocking viral antigens from entering the ER, herpes simplex virus is hidden from cytotoxic T lymphocytes, which may contribute to establishing a lifelong infection in the host.
Collapse
Affiliation(s)
- Michael L Oldham
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.,Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA
| | - Richard K Hite
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.,Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA
| | - Alanna M Steffen
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA
| | - Ermelinda Damko
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Zongli Li
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA.,Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Thomas Walz
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Jue Chen
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.,Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
41
|
Blees A, Reichel K, Trowitzsch S, Fisette O, Bock C, Abele R, Hummer G, Schäfer LV, Tampé R. Assembly of the MHC I peptide-loading complex determined by a conserved ionic lock-switch. Sci Rep 2015; 5:17341. [PMID: 26611325 PMCID: PMC4661472 DOI: 10.1038/srep17341] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/15/2015] [Indexed: 01/14/2023] Open
Abstract
Salt bridges in lipid bilayers play a decisive role in the dynamic assembly and downstream signaling of the natural killer and T-cell receptors. Here, we describe the identification of an inter-subunit salt bridge in the membrane within yet another key component of the immune system, the peptide-loading complex (PLC). The PLC regulates cell surface presentation of self-antigens and antigenic peptides via molecules of the major histocompatibility complex class I. We demonstrate that a single salt bridge in the membrane between the transporter associated with antigen processing TAP and the MHC I-specific chaperone tapasin is essential for the assembly of the PLC and for efficient MHC I antigen presentation. Molecular modeling and all-atom molecular dynamics simulations suggest an ionic lock-switch mechanism for the binding of TAP to tapasin, in which an unfavorable uncompensated charge in the ER-membrane is prevented through complex formation. Our findings not only deepen the understanding of the interaction network within the PLC, but also provide evidence for a general interaction principle of dynamic multiprotein membrane complexes in immunity.
Collapse
Affiliation(s)
- Andreas Blees
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Katrin Reichel
- Lehrstuhl für Theoretische Chemie, Ruhr-University Bochum, D-44780 Bochum, Germany
- Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Olivier Fisette
- Lehrstuhl für Theoretische Chemie, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Christoph Bock
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany
| | - Lars V. Schäfer
- Lehrstuhl für Theoretische Chemie, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
- Cluster of Excellence–Macromolecular Complexes, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
42
|
Geng J, Pogozheva ID, Mosberg HI, Raghavan M. Use of Functional Polymorphisms To Elucidate the Peptide Binding Site of TAP Complexes. THE JOURNAL OF IMMUNOLOGY 2015; 195:3436-48. [PMID: 26324772 DOI: 10.4049/jimmunol.1500985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/29/2015] [Indexed: 11/19/2022]
Abstract
TAP1/TAP2 complexes translocate peptides from the cytosol to the endoplasmic reticulum lumen to enable immune surveillance by CD8(+) T cells. Peptide transport is preceded by peptide binding to a cytosol-accessible surface of TAP1/TAP2 complexes, but the location of the TAP peptide-binding pocket remains unknown. Guided by the known contributions of polymorphic TAP variants to peptide selection, we combined homology modeling of TAP with experimental measurements to identify several TAP residues that interact with peptides. Models for peptide-TAP complexes were generated, which indicate bent conformation for peptides. The peptide binding site of TAP is located at the hydrophobic boundary of the cytosolic membrane leaflet, with striking parallels to the glutathione binding site of NaAtm1, a transporter that functions in bacterial heavy metal detoxification. These studies illustrate the conservation of the ligand recognition modes of bacterial and mammalians transporters involved in peptide-guided cellular surveillance.
Collapse
Affiliation(s)
- Jie Geng
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Henry I Mosberg
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; and
| |
Collapse
|
43
|
Role of the N-terminal transmembrane domain in the endo-lysosomal targeting and function of the human ABCB6 protein. Biochem J 2015; 467:127-39. [PMID: 25627919 PMCID: PMC4410673 DOI: 10.1042/bj20141085] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ATP-binding cassette, subfamily B (ABCB) 6 is a homodimeric ATP-binding cassette (ABC) transporter present in the plasma membrane and in the intracellular organelles. The intracellular localization of ABCB6 has been a matter of debate, as it has been suggested to reside in the mitochondria and the endo-lysosomal system. Using a variety of imaging modalities, including confocal microscopy and EM, we confirm the endo-lysosomal localization of ABCB6 and show that the protein is internalized from the plasma membrane through endocytosis, to be distributed to multivesicular bodies and lysosomes. In addition to the canonical nucleotide-binding domain (NBD) and transmembrane domain (TMD), ABCB6 contains a unique N-terminal TMD (TMD0), which does not show sequence homology to known proteins. We investigated the functional role of these domains through the molecular dissection of ABCB6. We find that the folding, dimerization, membrane insertion and ATP binding/hydrolysis of the core–ABCB6 complex devoid of TMD0 are preserved. However, in contrast with the full-length transporter, the core–ABCB6 construct is retained at the plasma membrane and does not appear in Rab5-positive endosomes. TMD0 is directly targeted to the lysosomes, without passage to the plasma membrane. Collectively, our results reveal that TMD0 represents an independently folding unit, which is dispensable for catalysis, but has a crucial role in the lysosomal targeting of ABCB6. The intracellular localization of ATP-binding cassette, sub family B (ABCB) 6 is a matter of debate. We show that ABCB6 is internalized from the plasma membrane to multivesicular bodies and lysosomes. Molecular dissection of the ABCB6 protein reveals a role of its N-terminal domain in targeting.
Collapse
|
44
|
Verweij MC, Horst D, Griffin BD, Luteijn RD, Davison AJ, Ressing ME, Wiertz EJHJ. Viral inhibition of the transporter associated with antigen processing (TAP): a striking example of functional convergent evolution. PLoS Pathog 2015; 11:e1004743. [PMID: 25880312 PMCID: PMC4399834 DOI: 10.1371/journal.ppat.1004743] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Herpesviruses are large DNA viruses that are highly abundant within their host populations. Even in the presence of a healthy immune system, these viruses manage to cause lifelong infections. This persistence is partially mediated by the virus entering latency, a phase of infection characterized by limited viral protein expression. Moreover, herpesviruses have devoted a significant part of their coding capacity to immune evasion strategies. It is believed that the close coexistence of herpesviruses and their hosts has resulted in the evolution of viral proteins that specifically attack multiple arms of the host immune system. Cytotoxic T lymphocytes (CTLs) play an important role in antiviral immunity. CTLs recognize their target through viral peptides presented in the context of MHC molecules at the cell surface. Every herpesvirus studied to date encodes multiple immune evasion molecules that effectively interfere with specific steps of the MHC class I antigen presentation pathway. The transporter associated with antigen processing (TAP) plays a key role in the loading of viral peptides onto MHC class I molecules. This is reflected by the numerous ways herpesviruses have developed to block TAP function. In this review, we describe the characteristics and mechanisms of action of all known virus-encoded TAP inhibitors. Orthologs of these proteins encoded by related viruses are identified, and the conservation of TAP inhibition is discussed. A phylogenetic analysis of members of the family Herpesviridae is included to study the origin of these molecules. In addition, we discuss the characteristics of the first TAP inhibitor identified outside the herpesvirus family, namely, in cowpox virus. The strategies of TAP inhibition employed by viruses are very distinct and are likely to have been acquired independently during evolution. These findings and the recent discovery of a non-herpesvirus TAP inhibitor represent a striking example of functional convergent evolution.
Collapse
Affiliation(s)
- Marieke C. Verweij
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniëlle Horst
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bryan D. Griffin
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rutger D. Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Andrew J. Davison
- MRC—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Maaike E. Ressing
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel J. H. J. Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
45
|
van de Weijer ML, Luteijn RD, Wiertz EJHJ. Viral immune evasion: Lessons in MHC class I antigen presentation. Semin Immunol 2015; 27:125-37. [PMID: 25887630 DOI: 10.1016/j.smim.2015.03.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/13/2015] [Indexed: 12/19/2022]
Abstract
The MHC class I antigen presentation pathway enables cells infected with intracellular pathogens to signal the presence of the invader to the immune system. Cytotoxic T lymphocytes are able to eliminate the infected cells through recognition of pathogen-derived peptides presented by MHC class I molecules at the cell surface. In the course of evolution, many viruses have acquired inhibitors that target essential stages of the MHC class I antigen presentation pathway. Studies on these immune evasion proteins reveal fascinating strategies used by viruses to elude the immune system. Viral immunoevasins also constitute great research tools that facilitate functional studies on the MHC class I antigen presentation pathway, allowing the investigation of less well understood routes, such as TAP-independent antigen presentation and cross-presentation of exogenous proteins. Viral immunoevasins have also helped to unravel more general cellular processes. For instance, basic principles of ER-associated protein degradation via the ubiquitin-proteasome pathway have been resolved using virus-induced degradation of MHC class I as a model. This review highlights how viral immunoevasins have increased our understanding of MHC class I-restricted antigen presentation.
Collapse
Affiliation(s)
| | - Rutger D Luteijn
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Emmanuel J H J Wiertz
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| |
Collapse
|
46
|
Antigen Translocation Machineries in Adaptive Immunity and Viral Immune Evasion. J Mol Biol 2015; 427:1102-18. [DOI: 10.1016/j.jmb.2014.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/23/2022]
|
47
|
Lin J, Eggensperger S, Hank S, Wycisk AI, Wieneke R, Mayerhofer PU, Tampé R. A negative feedback modulator of antigen processing evolved from a frameshift in the cowpox virus genome. PLoS Pathog 2014; 10:e1004554. [PMID: 25503639 PMCID: PMC4263761 DOI: 10.1371/journal.ppat.1004554] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 11/04/2014] [Indexed: 12/31/2022] Open
Abstract
Coevolution of viruses and their hosts represents a dynamic molecular battle between the immune system and viral factors that mediate immune evasion. After the abandonment of smallpox vaccination, cowpox virus infections are an emerging zoonotic health threat, especially for immunocompromised patients. Here we delineate the mechanistic basis of how cowpox viral CPXV012 interferes with MHC class I antigen processing. This type II membrane protein inhibits the coreTAP complex at the step after peptide binding and peptide-induced conformational change, in blocking ATP binding and hydrolysis. Distinct from other immune evasion mechanisms, TAP inhibition is mediated by a short ER-lumenal fragment of CPXV012, which results from a frameshift in the cowpox virus genome. Tethered to the ER membrane, this fragment mimics a high ER-lumenal peptide concentration, thus provoking a trans-inhibition of antigen translocation as supply for MHC I loading. These findings illuminate the evolution of viral immune modulators and the basis of a fine-balanced regulation of antigen processing. Virus-infected or malignant transformed cells are eliminated by cytotoxic T lymphocytes, which recognize antigenic peptide epitopes in complex with major histocompatibility complex class I (MHC I) molecules at the cell surface. The majority of such peptides are derived from proteasomal degradation in the cytosol and are then translocated into the ER lumen in an energy-consuming reaction via the transporter associated with antigen processing (TAP), which delivers the peptides onto MHC I molecules as final acceptors. Viruses have evolved sophisticated strategies to escape this immune surveillance. Here we show that the cowpox viral protein CPXV012 inhibits the ER peptide translocation machinery by allosterically blocking ATP binding and hydrolysis by TAP. The short ER resident active domain of the viral protein evolved from a reading frame shift in the cowpox virus genome and exploits the ER-lumenal negative feedback peptide sensor of TAP. This CPXV012-induced conformational arrest of TAP is signaled by a unique communication across the ER membrane to the cytosolic motor domains of the peptide pump. Furthermore, this study provides the rare opportunity to decipher on a molecular level how nature plays hide and seek with a pathogen and its host.
Collapse
Affiliation(s)
- Jiacheng Lin
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt, Germany
| | - Sabine Eggensperger
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt, Germany
| | - Susanne Hank
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt, Germany
| | - Agnes I. Wycisk
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ralph Wieneke
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt, Germany
| | - Peter U. Mayerhofer
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt, Germany
- * E-mail: (PUM); (RT)
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt, Germany
- Cluster of Excellence – Macromolecular Complexes, Goethe-University Frankfurt, Frankfurt, Germany
- * E-mail: (PUM); (RT)
| |
Collapse
|
48
|
Classical and non-classical MHC I molecule manipulation by human cytomegalovirus: so many targets—but how many arrows in the quiver? Cell Mol Immunol 2014; 12:139-53. [PMID: 25418469 PMCID: PMC4654289 DOI: 10.1038/cmi.2014.105] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 02/07/2023] Open
Abstract
Major mechanisms for the recognition of pathogens by immune cells have evolved to employ classical and non-classical major histocompatibility complex class I (MHC I) molecules. Classical MHC I molecules present antigenic peptide ligands on infected cells to CD8+ T cells, whereas a key function for non-classical MHC I molecules is to mediate inhibitory or activating stimuli in natural killer (NK) cells. The structural diversity of MHC I puts immense pressure on persisting viruses, including cytomegaloviruses. The very large coding capacity of the human cytomegalovirus allows it to express a whole arsenal of immunoevasive factors assigned to individual MHC class I targets. This review summarizes achievements from more than two decades of intense research on how human cytomegalovirus manipulates MHC I molecules and escapes elimination by the immune system.
Collapse
|
49
|
Hinz A, Jedamzick J, Herbring V, Fischbach H, Hartmann J, Parcej D, Koch J, Tampé R. Assembly and function of the major histocompatibility complex (MHC) I peptide-loading complex are conserved across higher vertebrates. J Biol Chem 2014; 289:33109-17. [PMID: 25320083 DOI: 10.1074/jbc.m114.609263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antigen presentation to cytotoxic T lymphocytes via major histocompatibility complex class I (MHC I) molecules depends on the heterodimeric transporter associated with antigen processing (TAP). For efficient antigen supply to MHC I molecules in the ER, TAP assembles a macromolecular peptide-loading complex (PLC) by recruiting tapasin. In evolution, TAP appeared together with effector cells of adaptive immunity at the transition from jawless to jawed vertebrates and diversified further within the jawed vertebrates. Here, we compared TAP function and interaction with tapasin of a range of species within two classes of jawed vertebrates. We found that avian and mammalian TAP1 and TAP2 form heterodimeric complexes across taxa. Moreover, the extra N-terminal domain TMD0 of mammalian TAP1 and TAP2 as well as avian TAP2 recruits tapasin. Strikingly, however, only TAP1 and TAP2 from the same taxon can form a functional heterodimeric translocation complex. These data demonstrate that the dimerization interface between TAP1 and TAP2 and the tapasin docking sites for PLC assembly are conserved in evolution, whereas elements of antigen translocation diverged later in evolution and are thus taxon specific.
Collapse
Affiliation(s)
- Andreas Hinz
- From the Institute of Biochemistry, Biocenter and
| | | | | | | | - Jessica Hartmann
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42, 60596 Frankfurt/M., Germany
| | - David Parcej
- From the Institute of Biochemistry, Biocenter and
| | - Joachim Koch
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42, 60596 Frankfurt/M., Germany
| | - Robert Tampé
- From the Institute of Biochemistry, Biocenter and Cluster of Excellence-Macromolecular Complexes, Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany and
| |
Collapse
|
50
|
Eggensperger S, Fisette O, Parcej D, Schäfer LV, Tampé R. An annular lipid belt is essential for allosteric coupling and viral inhibition of the antigen translocation complex TAP (transporter associated with antigen processing). J Biol Chem 2014; 289:33098-108. [PMID: 25305015 DOI: 10.1074/jbc.m114.592832] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The transporter associated with antigen processing (TAP) constitutes a focal element in the adaptive immune response against infected or malignantly transformed cells. TAP shuttles proteasomal degradation products into the lumen of the endoplasmic reticulum for loading of major histocompatibility complex (MHC) class I molecules. Here, the heterodimeric TAP complex was purified and reconstituted in nanodiscs in defined stoichiometry. We demonstrate that a single heterodimeric core-TAP complex is active in peptide binding, which is tightly coupled to ATP hydrolysis. Notably, with increasing peptide length, the ATP turnover was gradually decreased, revealing that ATP hydrolysis is coupled to the movement of peptide through the ATP-binding cassette transporter. In addition, all-atom molecular dynamics simulations show that the observed 22 lipids are sufficient to form an annular belt surrounding the TAP complex. This lipid belt is essential for high affinity inhibition by the herpesvirus immune evasin ICP47. In conclusion, nanodiscs are a powerful approach to study the important role of lipids as well as the function, interaction, and modulation of the antigen translocation machinery.
Collapse
Affiliation(s)
- Sabine Eggensperger
- From the Institute of Biochemistry, Biocenter, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt/M
| | - Olivier Fisette
- the Lehrstuhl für Theoretische Chemie, Ruhr-University Bochum, 44780 Bochum, and
| | - David Parcej
- From the Institute of Biochemistry, Biocenter, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt/M
| | - Lars V Schäfer
- the Lehrstuhl für Theoretische Chemie, Ruhr-University Bochum, 44780 Bochum, and
| | - Robert Tampé
- From the Institute of Biochemistry, Biocenter, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., the Cluster of Excellence-Macromolecular Complexes, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| |
Collapse
|