1
|
Carvalho Silva R, Martini P, Hohoff C, Mattevi S, Bortolomasi M, Abate M, Menesello V, Gennarelli M, Baune BT, Minelli A. Unraveling epigenomic signatures and effectiveness of electroconvulsive therapy in treatment-resistant depression patients: a prospective longitudinal study. Clin Epigenetics 2024; 16:93. [PMID: 39020437 PMCID: PMC11256624 DOI: 10.1186/s13148-024-01704-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) benefits patients with treatment-resistant depression (TRD), but the underlying biological processes are unclear. We conducted an epigenome-wide association study in 32 TRD patients undergoing ECT to depict ECT-associated methylation changes. Illness severity and ECT outcomes were assessed with the Montgomery-Åsberg Depression Rating Scale at baseline (T0) and 1 month after its end (T1). Methylation was profiled at T0 and T1 with the Illumina Infinium Methylation EPIC BeadChip array. RESULTS Longitudinal T0-T1 analyses showed 3 differentially methylated probes (DMPs) with nominal p values ≤ 10-5, with 2 annotated in the genes CYB5B and PVRL4. Including covariates, we found 4 DMPs for symptoms variation, annotated in FAM20C, EPB41, OTUB1 and ADARB1, and 3 DMPs for response status, with 2 annotated in IQCE and FAM20C. Regional analysis revealed 54 differentially methylated regions (DMRs) with nominal p value area ≤ 0.05, with 9 presenting adjusted p-value area ≤ 0.10, annotated in MCF2L, SLC25A24, RUNX3, MIR637, FOXK2, FAM180B, POU6F1, ALS2CL and CCRL2. Considering covariates, we found 21 DMRs for symptoms variation and 26 DMRs for response (nominal p value area ≤ 0.05), with 4 presenting adjusted p-value area ≤ 0.10 for response, annotated in SNORD34, NLRP6, GALNT2 and SFT2D3. None remained significant after false discovery rate correction. Notably, ADARB1 variants are associated with suicide attempt in patients with psychiatric disorders, and SLC25A24 relates to conduct disorder. Several DMPs and DMRs are annotated in genes associated with inflammatory/immune processes. Longitudinal analyses on females (n = 22) revealed statistically significant DMRs (adjusted p value area ≤ 0.05) and trend-significant DMRs (adjusted p value area ≤ 0.07) for symptoms variation and response status, annotated in genes related to psychiatric disorders (ZFP57, POLD4, TRIM10, GAS7, ADORA2A, TOLLIP), trauma exposure (RIPOR2) and inflammatory/immune responses (LAT, DLX4, POLD4, FAM30A, H19). Pathway analysis on females revealed enrichment for transcriptional activity, growth factors, DNA maintenance, and immune pathways including IRF7 and IRF2. CONCLUSION Although no significant results were found for the whole cohort, the study provides insights into ECT-associated methylation changes, highlighting DMPs and DMRs related to ECT outcomes. Analyses on females revealed significant DMRs and pathways related to psychiatric disorders and inflammatory/immune processes.
Collapse
Affiliation(s)
- Rosana Carvalho Silva
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Paolo Martini
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Christa Hohoff
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Stefania Mattevi
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | | | - Maria Abate
- Psychiatric Hospital "Villa Santa Chiara", Verona, Italy
| | - Valentina Menesello
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bernhard T Baune
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy.
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
2
|
Altuna M, Urdánoz-Casado A, Sánchez-Ruiz de Gordoa J, Zelaya MV, Labarga A, Lepesant JMJ, Roldán M, Blanco-Luquin I, Perdones Á, Larumbe R, Jericó I, Echavarri C, Méndez-López I, Di Stefano L, Mendioroz M. DNA methylation signature of human hippocampus in Alzheimer's disease is linked to neurogenesis. Clin Epigenetics 2019; 11:91. [PMID: 31217032 PMCID: PMC6585076 DOI: 10.1186/s13148-019-0672-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background Drawing the epigenome landscape of Alzheimer’s disease (AD) still remains a challenge. To characterize the epigenetic molecular basis of the human hippocampus in AD, we profiled genome-wide DNA methylation levels in hippocampal samples from a cohort of pure AD patients and controls by using the Illumina 450K methylation arrays. Results Up to 118 AD-related differentially methylated positions (DMPs) were identified in the AD hippocampus, and extended mapping of specific regions was obtained by bisulfite cloning sequencing. AD-related DMPs were significantly correlated with phosphorylated tau burden. Functional analysis highlighted that AD-related DMPs were enriched in poised promoters that were not generally maintained in committed neural progenitor cells, as shown by ChiP-qPCR experiments. Interestingly, AD-related DMPs preferentially involved neurodevelopmental and neurogenesis-related genes. Finally, InterPro ontology analysis revealed enrichment in homeobox-containing transcription factors in the set of AD-related DMPs. Conclusions These results suggest that altered DNA methylation in the AD hippocampus occurs at specific regulatory regions crucial for neural differentiation supporting the notion that adult hippocampal neurogenesis may play a role in AD through epigenetic mechanisms. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s13148-019-0672-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miren Altuna
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain.,Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Amaya Urdánoz-Casado
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain
| | - Javier Sánchez-Ruiz de Gordoa
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain.,Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - María V Zelaya
- Department of Pathology, Complejo Hospitalario de Navarra- IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Alberto Labarga
- Bioinformatics Unit, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Julie M J Lepesant
- Laboratoire de biologie cellulaire et moléculaire du contrôle de la prolifération (LBCMCP), Université Paul Sabatier, CNRS, Toulouse, France
| | - Miren Roldán
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain
| | - Idoia Blanco-Luquin
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain
| | - Álvaro Perdones
- Bioinformatics Unit, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Rosa Larumbe
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain.,Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Ivonne Jericó
- Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Carmen Echavarri
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain.,Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Iván Méndez-López
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain.,Department of Internal Medicine, Hospital García-Orcoyen, Estella, Spain
| | - Luisa Di Stefano
- Laboratoire de biologie cellulaire et moléculaire du contrôle de la prolifération (LBCMCP), Université Paul Sabatier, CNRS, Toulouse, France
| | - Maite Mendioroz
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain. .,Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.
| |
Collapse
|
4
|
Sun Y, Lu X, Yin L, Zhao F, Feng Y. Inhibition of DLX4 promotes apoptosis in choriocarcinoma cell lines. Placenta 2005; 27:375-83. [PMID: 15975650 DOI: 10.1016/j.placenta.2005.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2004] [Revised: 03/15/2005] [Accepted: 03/17/2005] [Indexed: 02/06/2023]
Abstract
Homeodomain (HDM) proteins encoded by homeobox (HBX) genes represent a large family of transcriptional factors that control differentiation and development in certain cell types. DLX4 is a member of Distal-less (DLX) family of HBX genes. Recent studies have demonstrated that abnormal expression of DLX4 is present in several types of human tumors, such as breast cancer, leukemia and colon cancer. In the present study, we investigated DLX4 mRNA and protein expression in both normal placental tissues and human choriocarcinoma cell lines. Also, using RNA interference (RNAi) technique, we knocked down the expression of DLX4 and examined apoptosis in JEG-3 cells. Our studies demonstrated that DLX4 RNAi inhibited DLX4 mRNA expression and decreased DLX4 protein mass specifically and effectively, potentially enhancing apoptosis. Moreover, we examined expression of caspase-3 and caspase-8, and found that both caspases were increased after DLX4 knockdown. However, DLX4 RNAi did not influence Bax expression in JEG-3 cells. In conclusion, this study suggests that DLX4 may be involved in the survival of human choriocarcinoma cells, which may be mediated by the inhibition of apoptosis. The detailed mechanism needs further investigation.
Collapse
Affiliation(s)
- Y Sun
- Hospital of Obstetrics & Gynecology, Fudan University, 419 Fangxie Road, Shanghai 200011, China
| | | | | | | | | |
Collapse
|
5
|
Abe Y, Hashimoto Y, Tomita Y, Terashita K, Aiso S, Tajima H, Niikura T, Matsuoka M, Nishimoto I. Cytotoxic mechanisms by M239V presenilin 2, a little-analyzed Alzheimer's disease-causative mutant. J Neurosci Res 2004; 77:583-95. [PMID: 15264228 DOI: 10.1002/jnr.20163] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although neurotoxic functions are well characterized in familial Alzheimer's disease (FAD)-linked N141I mutant of presenilin (PS)2, little has been known about M239V-PS2, another established FAD-causative mutant. We found that expression of M239V-PS2 caused neuronal cytotoxicity. M239V-PS2 exerted three forms of cytotoxicity: one was sensitive to both an antioxidant glutathione-ethyl-ester (GEE) and a caspase inhibitor Ac-DEVD-CHO (DEVD); the second was sensitive to GEE but resistant to DEVD; and the third was resistant to both. The GEE/DEVD-sensitive cytotoxicity by M239V-PS2 was likely through NADPH oxidase and the GEE-sensitive/DEVD-resistant cytotoxicity through xanthine oxidase (XO). Both mechanisms by M239V-PS2 were suppressed by pertussis toxin (PTX) and were mediated by Galpha(o), but not by Galpha(i). Although Abeta1-43 itself induced no cytotoxicity, Abeta1-43 potentiated all three components of M239V-PS2 cytotoxicity. As these cytotoxic mechanisms by M239V-PS2 are fully shared with N141I-PS2, they are most likely implicated in the pathomechanism of FAD by PS2 mutations. Notably, cytotoxicity by M239V-PS2 could be inhibited by the combination of two clinically usable inhibitors of superoxide-generating enzymes, apocynin and oxypurinol.
Collapse
Affiliation(s)
- Yoichiro Abe
- Department of Pharmacology, KEIO University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|