1
|
Chhetri KB. DNA compaction and chromatin dynamics: The role of cationic polyamines and proteins. Biochem Biophys Res Commun 2025; 756:151538. [PMID: 40058308 DOI: 10.1016/j.bbrc.2025.151538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/09/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
DNA compaction by polyaminic cations and proteins involves reversible condensation mechanisms. Polyamines, metal cations, and histone proteins are utilized to compact lengthy DNA chains. Chromatin organization begins with nucleosomal arrays, further compacted by linker histones. Various factors such as DNA methylation, histone modifications, and non-histone proteins influence chromatin structure. Posttranslational modifications like acetylation and methylation alter nucleosome shape. Polyamines induce significant phase transitions, while cationic surfactants drive conformational changes in DNA. In sperm cells, protamines replace histones, leading to dense DNA packing. Despite advances, unresolved aspects persist in understanding the dynamic regulation of chromatin structure, highlighting avenues for future research. An overview of current knowledge and cutting-edge discoveries in the field of reversible DNA compaction induced by charged polyamines and histone proteins is presented in this work, highlighting emerging mechanisms of chromatin compaction and their relevance to cellular function, disease, and potential therapeutic strategies.
Collapse
Affiliation(s)
- Khadka B Chhetri
- Department of Physics, Prithvinarayan Campus, Tribhuvan University, Pokhara, Nepal.
| |
Collapse
|
2
|
Bugge K, Sottini A, Ivanović MT, Buus FS, Saar D, Fernandes CB, Kocher F, Martinsen JH, Schuler B, Best RB, Kragelund BB. Role of charges in a dynamic disordered complex between an IDP and a folded domain. Nat Commun 2025; 16:3242. [PMID: 40185744 PMCID: PMC11971343 DOI: 10.1038/s41467-025-58374-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
Protein complexes involving intrinsically disordered proteins (IDPs) cover a continuum from IDPs that fully fold upon binding to IDPs that remain fully disordered in the complex. Here we demonstrate a case of charge-driven interactions of a folded domain with an oppositely charged IDP that remains completely disordered in the complex. Using the negatively charged and fully disordered prothymosin α and the positively charged and folded globular domain of histone H1.0, we show that they form a low-micromolar-affinity complex without fixed relative orientations or persistent contacts between specific residues. Using 25 charge variants of the globular domain, we find that the binding affinity can be modulated both by net charge and charge clustering on the folded domain, indicating some selectivity in highly charged complexes. Our results highlight that a folded protein can provide a charged surface onto which an oppositely charged IDP can bind while retaining disorder. We expect that more such complexes exist.
Collapse
Affiliation(s)
- Katrine Bugge
- REPIN and the Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Andrea Sottini
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Miloš T Ivanović
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Freia S Buus
- REPIN and the Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Saar
- REPIN and the Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Catarina B Fernandes
- REPIN and the Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Fabienne Kocher
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Jacob H Martinsen
- REPIN and the Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
- Department of Physics, University of Zurich, Zurich, Switzerland.
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Birthe B Kragelund
- REPIN and the Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Li W, Hu J, Song F, Yu J, Peng X, Zhang S, Wang L, Hu M, Liu JC, Wei Y, Xiao X, Li Y, Li D, Wang H, Zhou BR, Dai L, Mou Z, Zhou M, Zhang H, Zhou Z, Zhang H, Bai Y, Zhou JQ, Li W, Li G, Zhu P. Structural basis for linker histone H5-nucleosome binding and chromatin fiber compaction. Cell Res 2024; 34:707-724. [PMID: 39103524 PMCID: PMC11442585 DOI: 10.1038/s41422-024-01009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/20/2024] [Indexed: 08/07/2024] Open
Abstract
The hierarchical packaging of chromatin fibers plays a critical role in gene regulation. The 30-nm chromatin fibers, a central-level structure bridging nucleosomal arrays to higher-order organizations, function as the first level of transcriptional dormant chromatin. The dynamics of 30-nm chromatin fiber play a crucial role in biological processes related to DNA. Here, we report a 3.6-angstrom resolution cryogenic electron microscopy structure of H5-bound dodecanucleosome, i.e., the chromatin fiber reconstituted in the presence of linker histone H5, which shows a two-start left-handed double helical structure twisted by tetranucleosomal units. An atomic structural model of the H5-bound chromatin fiber, including an intact chromatosome, is built, which provides structural details of the full-length linker histone H5, including its N-terminal domain and an HMG-motif-like C-terminal domain. The chromatosome structure shows that H5 binds the nucleosome off-dyad through a three-contact mode in the chromatin fiber. More importantly, the H5-chromatin structure provides a fine molecular basis for the intra-tetranucleosomal and inter-tetranucleosomal interactions. In addition, we systematically validated the physiological functions and structural characteristics of the tetranucleosomal unit through a series of genetic and genomic studies in Saccharomyces cerevisiae and in vitro biophysical experiments. Furthermore, our structure reveals that multiple structural asymmetries of histone tails confer a polarity to the chromatin fiber. These findings provide structural and mechanistic insights into how a nucleosomal array folds into a higher-order chromatin fiber with a polarity in vitro and in vivo.
Collapse
Affiliation(s)
- Wenyan Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Hu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Song
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shangdong, China
| | - Juan Yu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xin Peng
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuming Zhang
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Lin Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingli Hu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Wei
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Xiao
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongyu Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Linchang Dai
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zongjun Mou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Zhou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haonan Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Zhou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Guohong Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Ping Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Watson M, Sabirova D, Hardy MC, Pan Y, Carpentier DCJ, Yates H, Wright CJ, Chan WH, Destan E, Stott K. A DNA condensation code for linker histones. Proc Natl Acad Sci U S A 2024; 121:e2409167121. [PMID: 39116133 PMCID: PMC11331069 DOI: 10.1073/pnas.2409167121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Linker histones play an essential role in chromatin packaging by facilitating compaction of the 11-nm fiber of nucleosomal "beads on a string." The result is a heterogeneous condensed state with local properties that range from dynamic, irregular, and liquid-like to stable and regular structures (the 30-nm fiber), which in turn impact chromatin-dependent activities at a fundamental level. The properties of the condensed state depend on the type of linker histone, particularly on the highly disordered C-terminal tail, which is the most variable region of the protein, both between species, and within the various subtypes and cell-type specific variants of a given organism. We have developed an in vitro model system comprising linker histone tail and linker DNA, which although very minimal, displays surprisingly complex behavior, and is sufficient to model the known states of linker histone-condensed chromatin: disordered "fuzzy" complexes ("open" chromatin), dense liquid-like assemblies (dynamic condensates), and higher-order structures (organized 30-nm fibers). A crucial advantage of such a simple model is that it allows the study of the various condensed states by NMR, circular dichroism, and scattering methods. Moreover, it allows capture of the thermodynamics underpinning the transitions between states through calorimetry. We have leveraged this to rationalize the distinct condensing properties of linker histone subtypes and variants across species that are encoded by the amino acid content of their C-terminal tails. Three properties emerge as key to defining the condensed state: charge density, lysine/arginine ratio, and proline-free regions, and we evaluate each separately using a strategic mutagenesis approach.
Collapse
Affiliation(s)
- Matthew Watson
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - Dilyara Sabirova
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - Megan C. Hardy
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - Yuming Pan
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | | | - Henry Yates
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - Charlotte J. Wright
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - W. H. Chan
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - Ebru Destan
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| |
Collapse
|
5
|
García‐Gomis D, López J, Calderón A, Andrés M, Ponte I, Roque A. Proteasome-dependent degradation of histone H1 subtypes is mediated by its C-terminal domain. Protein Sci 2024; 33:e4970. [PMID: 38591484 PMCID: PMC11002908 DOI: 10.1002/pro.4970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Histone H1 is involved in chromatin compaction and dynamics. In human cells, the H1 complement is formed by different amounts of somatic H1 subtypes, H1.0-H1.5 and H1X. The amount of each variant depends on the cell type, the cell cycle phase, and the time of development and can be altered in disease. However, the mechanisms regulating H1 protein levels have not been described. We have analyzed the contribution of the proteasome to the degradation of H1 subtypes in human cells using two different inhibitors: MG132 and bortezomib. H1 subtypes accumulate upon treatment with both drugs, indicating that the proteasome is involved in the regulation of H1 protein levels. Proteasome inhibition caused a global increase in cytoplasmatic H1, with slight changes in the composition of H1 bound to chromatin and chromatin accessibility and no alterations in the nucleosome repeat length. The analysis of the proteasome degradation pathway showed that H1 degradation is ubiquitin-independent. The whole protein and its C-terminal domain can be degraded directly by the 20S proteasome in vitro. Partial depletion of PA28γ revealed that this regulatory subunit contributes to H1 degradation within the cell. Our study shows that histone H1 protein levels are under tight regulation to prevent its accumulation in the nucleus. We revealed a new regulatory mechanism for histone H1 degradation, where the C-terminal disordered domain is responsible for its targeting and degradation by the 20S proteasome, a process enhanced by the regulatory subunit PA28γ.
Collapse
Affiliation(s)
- D. García‐Gomis
- Biochemistry and Molecular Biology Department, Biosciences FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - J. López
- Biochemistry and Molecular Biology Department, Biosciences FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - A. Calderón
- Biochemistry and Molecular Biology Department, Biosciences FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - M. Andrés
- Biochemistry and Molecular Biology Department, Biosciences FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - I. Ponte
- Biochemistry and Molecular Biology Department, Biosciences FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - A. Roque
- Biochemistry and Molecular Biology Department, Biosciences FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| |
Collapse
|
6
|
Takeuchi Y, Sato S, Nagasato C, Motomura T, Okuda S, Kasahara M, Takahashi F, Yoshikawa S. Sperm-specific histone H1 in highly condensed sperm nucleus of Sargassum horneri. Sci Rep 2024; 14:3387. [PMID: 38336896 PMCID: PMC10858212 DOI: 10.1038/s41598-024-53729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Spermatogenesis is one of the most dramatic changes in cell differentiation. Remarkable chromatin condensation of the nucleus is observed in animal, plant, and algal sperm. Sperm nuclear basic proteins (SNBPs), such as protamine and sperm-specific histone, are involved in chromatin condensation of the sperm nucleus. Among brown algae, sperm of the oogamous Fucales algae have a condensed nucleus. However, the existence of sperm-specific SNBPs in Fucales algae was unclear. Here, we identified linker histone (histone H1) proteins in the sperm and analyzed changes in their gene expression pattern during spermatogenesis in Sargassum horneri. A search of transcriptomic data for histone H1 genes in showed six histone H1 genes, which we named ShH1.1a, ShH1b, ShH1.2, ShH1.3, ShH1.4, and ShH1.5. Analysis of SNBPs using SDS-PAGE and LC-MS/MS showed that sperm nuclei contain histone ShH1.2, ShH1.3, and ShH1.4 in addition to core histones. Both ShH1.2 and ShH1.3 genes were expressed in the vegetative thallus and the male and female receptacles (the organs producing antheridium or oogonium). Meanwhile, the ShH1.4 gene was expressed in the male receptacle but not in the vegetative thallus and female receptacles. From these results, ShH1.4 may be a sperm-specific histone H1 of S. horneri.
Collapse
Affiliation(s)
- Yu Takeuchi
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| | - Shinya Sato
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| | - Chikako Nagasato
- Field Science Center for Northern Biosphere, Muroran Marine Station, Hokkaido University, Muroran, 051-0013, Japan
| | - Taizo Motomura
- Field Science Center for Northern Biosphere, Muroran Marine Station, Hokkaido University, Muroran, 051-0013, Japan
| | - Shujiro Okuda
- Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi, Chuoku, Niigata, Niigata, 951-8501, Japan
| | - Masahiro Kasahara
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Fumio Takahashi
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, 274-8510, Japan
| | - Shinya Yoshikawa
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan.
| |
Collapse
|
7
|
Abu Alhaija AA, Lone IN, Sekeroglu EO, Batur T, Angelov D, Dimitrov S, Hamiche A, Firat Karalar EN, Ercan ME, Yagci T, Alotaibi H, Diril MK. Development of a mouse embryonic stem cell model for investigating the functions of the linker histone H1-4. FEBS Open Bio 2024; 14:309-321. [PMID: 38098212 PMCID: PMC10839353 DOI: 10.1002/2211-5463.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/11/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024] Open
Abstract
The linker histone H1 C-terminal domain (CTD) plays a pivotal role in chromatin condensation. De novo frameshift mutations within the CTD coding region of H1.4 have recently been reported to be associated with Rahman syndrome, a neurological disease that causes intellectual disability and overgrowth. To investigate the mechanisms and pathogenesis of Rahman syndrome, we developed a cellular model using murine embryonic stem cells (mESCs) and CRISPR/Cas9 genome engineering. Our engineered mES cells facilitate detailed investigations, such as H1-4 dynamics, immunoprecipitation, and nuclear localization; in addition, we tagged the mutant H1-4 with a photoactivatable GFP (PA-GFP) and an HA tag to facilitate pulldown assays. We anticipate that these engineered cells could also be used for the development of a mouse model to study the in vivo role of the H1-4 protein.
Collapse
Affiliation(s)
- Abed Alkarem Abu Alhaija
- Department of Molecular Biology and Genetics, Faculty of Basic SciencesGebze Technical UniversityTurkey
- Izmir Biomedicine and Genome CenterTurkey
| | | | - Esin Ozkuru Sekeroglu
- Izmir Biomedicine and Genome CenterTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTurkey
| | | | - Dimitar Angelov
- Izmir Biomedicine and Genome CenterTurkey
- Laboratoire de Biologie et de Modélisation de la Cellule LBMC, CNRS UMR 5239Université de Lyon, Ecole Normale Supérieure de LyonFrance
| | - Stefan Dimitrov
- Izmir Biomedicine and Genome CenterTurkey
- Roumen Tsanev Institute of Molecular BiologyBulgarian Academy of SciencesSofiaBulgaria
- Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309Université Grenoble AlpesFrance
| | - Ali Hamiche
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)UdS, CNRS, INSERMStrasbourgFrance
| | | | | | - Tamer Yagci
- Department of Molecular Biology and Genetics, Faculty of Basic SciencesGebze Technical UniversityTurkey
| | - Hani Alotaibi
- Izmir Biomedicine and Genome CenterTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTurkey
| | - Muhammed Kasim Diril
- Izmir Biomedicine and Genome CenterTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTurkey
- Department of Medical Biology, Faculty of MedicineDokuz Eylül UniversityIzmirTurkey
| |
Collapse
|
8
|
Zhao W, Zhang Y, Lv T, He J, Zhu B. A case report of a novel HIST1H1E mutation and a review of the bibliography to evaluate the genotype-phenotype correlations. Mol Genet Genomic Med 2023; 11:e2273. [PMID: 37605493 PMCID: PMC10724515 DOI: 10.1002/mgg3.2273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/14/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND HIST1H1E is a member of the H1 gene family. Excess de novo likely gene-disruptive variants involving the C-terminal tail of HIST1H1E have been reported in neurodevelopmental disorders. Although clinical phenotypes in some patients have been described in single studies, few studies have reviewed the genotype and phenotype relationships using a relatively large cohort of patients with HIST1H1E variants. METHODS Whole-exome sequencing (WES) was performed on the proband. The variant was validated using Sanger sequencing in both proband and parents. Published HIST1H1E variants in neuropsychiatric disorders were reviewed. RESULTS Herein, we reported a new de novo frameshift mutation in HIST1H1E (NM_005321.2, c.416_419dupAGAA, p.Ala141GlufsTer56) in an individual with Rahman syndrome. To explore the genotype-phenotype correlations for HIST1H1E variants in neurodevelopmental disorders, we comprehensively curated and summarized 23 variants and the clinical features from 52 patients. Our findings revealed that likely gene-disrupting variants in HIST1H1E contribute to a wide range of neurodevelopmental phenotypes. We observed the common phenotypes including craniofacial features, ID, hypotonia, and autism/behavior problem in patients with HIST1H1E variants. While the different genotypes corresponding to different phenotypes or the same phenotype were also observed. CONCLUSION These data provide scientific evidence for the genetic diagnosis and precision clinical management.
Collapse
Affiliation(s)
- Wenjing Zhao
- Department of Medical Genetics, First People's Hospital of Yunnan ProvinceKunmingChina
- Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
- National Health CommissionKey Laboratory of Preconception Health Birth in Western ChinaKunmingChina
| | - Yinhong Zhang
- Department of Medical Genetics, First People's Hospital of Yunnan ProvinceKunmingChina
- Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
- National Health CommissionKey Laboratory of Preconception Health Birth in Western ChinaKunmingChina
| | - Tao Lv
- Department of Medical Genetics, First People's Hospital of Yunnan ProvinceKunmingChina
- Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
- National Health CommissionKey Laboratory of Preconception Health Birth in Western ChinaKunmingChina
| | - Jing He
- Department of Medical Genetics, First People's Hospital of Yunnan ProvinceKunmingChina
- Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
- National Health CommissionKey Laboratory of Preconception Health Birth in Western ChinaKunmingChina
| | - Baosheng Zhu
- Department of Medical Genetics, First People's Hospital of Yunnan ProvinceKunmingChina
- Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
- National Health CommissionKey Laboratory of Preconception Health Birth in Western ChinaKunmingChina
| |
Collapse
|
9
|
Wang M, Li J, Wang Y, Fu H, Qiu H, Li Y, Li M, Lu Y, Fu YV. Single-molecule study reveals Hmo1, not Hho1, promotes chromatin assembly in budding yeast. mBio 2023; 14:e0099323. [PMID: 37432033 PMCID: PMC10470511 DOI: 10.1128/mbio.00993-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/25/2023] [Indexed: 07/12/2023] Open
Abstract
Linker histone H1 plays a crucial role in various biological processes, including nucleosome stabilization, high-order chromatin structure organization, gene expression, and epigenetic regulation in eukaryotic cells. Unlike higher eukaryotes, little about the linker histone in Saccharomyces cerevisiae is known. Hho1 and Hmo1 are two long-standing controversial histone H1 candidates in budding yeast. In this study, we directly observed at the single-molecule level that Hmo1, but not Hho1, is involved in chromatin assembly in the yeast nucleoplasmic extracts (YNPE), which can replicate the physiological condition of the yeast nucleus. The presence of Hmo1 facilitates the assembly of nucleosomes on DNA in YNPE, as revealed by single-molecule force spectroscopy. Further single-molecule analysis showed that the lysine-rich C-terminal domain (CTD) of Hmo1 is essential for the function of chromatin compaction, while the second globular domain at the C-terminus of Hho1 impairs its ability. In addition, Hmo1, but not Hho1, forms condensates with double-stranded DNA via reversible phase separation. The phosphorylation fluctuation of Hmo1 coincides with metazoan H1 during the cell cycle. Our data suggest that Hmo1, but not Hho1, possesses some functionality similar to that of linker histone in Saccharomyces cerevisiae, even though some properties of Hmo1 differ from those of a canonical linker histone H1. Our study provides clues for the linker histone H1 in budding yeast and provides insights into the evolution and diversity of histone H1 across eukaryotes. IMPORTANCE There has been a long-standing debate regarding the identity of linker histone H1 in budding yeast. To address this issue, we utilized YNPE, which accurately replicate the physiological conditions in yeast nuclei, in combination with total internal reflection fluorescence microscopy and magnetic tweezers. Our findings demonstrated that Hmo1, rather than Hho1, is responsible for chromatin assembly in budding yeast. Additionally, we found that Hmo1 shares certain characteristics with histone H1, including phase separation and phosphorylation fluctuations throughout the cell cycle. Furthermore, we discovered that the lysine-rich domain of Hho1 is buried by its second globular domain at the C-terminus, resulting in the loss of function that is similar to histone H1. Our study provides compelling evidence to suggest that Hmo1 shares linker histone H1 function in budding yeast and contributes to our understanding of the evolution of linker histone H1 across eukaryotes.
Collapse
Affiliation(s)
- Mengxue Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinghua Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yong Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Fu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- School of Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Haoning Qiu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanying Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| | - Ying Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| | - Yu Vincent Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Ghosh G, Mukherjee D, Ghosh R, Singh P, Pal U, Chattopadhyay A, Santra M, Ahn KH, Mosae Selvakumar P, Das R, Pal SK. A novel molecular reporter for probing protein DNA recognition: An optical spectroscopic and molecular modeling study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122313. [PMID: 36628863 DOI: 10.1016/j.saa.2022.122313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/11/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
A novel benzo[a]phenoxazine-based fluorescent dye LV2 has been employed as a molecular reporter to probe recognition of a linker histone protein H1 by calf-thymus DNA (DNA). Fluorescence lifetime of LV2 buried in the globular domain of H1 (∼2.1 ns) or in the minor groove of DNA (∼0.93 ns) increases significantly to 2.65 ns upon interaction of the cationic protein with DNA indicating formation of the H1-DNA complex. The rotational relaxation time of the fluorophore buried in the globular domain of H1 increases significantly from 2.2 ns to 8.54 ns in the presence of DNA manifesting the recognition of H1 by DNA leading to formation of the H1-DNA complex. Molecular docking and molecular dynamics (MD) simulations have shown that binding of LV2 is energetically most favourable in the interface of the H1-DNA complex than in the globular domain of H1 or in the minor groove of DNA. As a consequence, orientational relaxation of the LV2 is significantly hindered in the protein-DNA interface compared to H1 or DNA giving rise to a much longer rotational relaxation time (8.54 ns) in the H1-DNA complex relative to that in pure H1 (2.2 ns) or DNA (5.7 ns). Thus, via a significant change of fluorescence lifetime and rotational relaxation time, the benzo[a]phenoxazine-based fluorescent dye buried within the globular domain of the cationic protein, or within the minor groove of DNA, reports on recognition of H1 by DNA.
Collapse
Affiliation(s)
- Gourab Ghosh
- Dept. of Chemistry, West Bengal State University, Barasat, Kolkata 700126, India
| | - Dipanjan Mukherjee
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, India
| | - Ria Ghosh
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Priya Singh
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, India
| | - Uttam Pal
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Arpita Chattopadhyay
- Department of Basic Science and Humanities, Techno International New Town, Rajarhat, Kolkata 700156, India
| | - Mithun Santra
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - P Mosae Selvakumar
- Science and Math Program, Asian University for Women, Chittagong, Bangladesh
| | - Ranjan Das
- Dept. of Chemistry, West Bengal State University, Barasat, Kolkata 700126, India.
| | - Samir Kumar Pal
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, India.
| |
Collapse
|
11
|
Louro JA, Boopathi R, Beinsteiner B, Mohideen Patel AK, Cheng TC, Angelov D, Hamiche A, Bendar J, Kale S, Klaholz BP, Dimitrov S. Nucleosome dyad determines the H1 C-terminus collapse on distinct DNA arms. Structure 2023; 31:201-212.e5. [PMID: 36610392 DOI: 10.1016/j.str.2022.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023]
Abstract
Nucleosomes are symmetric structures. However, binding of linker histones generates an inherently asymmetric H1-nucleosome complex, and whether this asymmetry is transmitted to the overall nucleosome structure, and therefore also to chromatin, is unclear. Efforts to investigate potential asymmetry due to H1s have been hampered by the DNA sequence, which naturally differs in each gyre. To overcome this issue, we designed and analyzed by cryo-EM a nucleosome reconstituted with a palindromic (601L) 197-bp DNA. As in the non-palindromic 601 sequence, H1 restricts linker DNA flexibility but reveals partial asymmetrical unwrapping. However, in contrast to the non-palindromic nucleosome, in the palindromic nucleosome H1 CTD collapses to the proximal linker. Molecular dynamics simulations show that this could be dictated by a slightly tilted orientation of the globular domain (GD) of H1, which could be linked to the DNA sequence of the nucleosome dyad.
Collapse
Affiliation(s)
- Jaime Alegrio Louro
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Ramachandran Boopathi
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, 38700 La Tronche, France; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule (LBMC), 46 Allée d'Italie, 69007 Lyon, France
| | - Brice Beinsteiner
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Abdul Kareem Mohideen Patel
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Tat Cheung Cheng
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Dimitar Angelov
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule (LBMC), 46 Allée d'Italie, 69007 Lyon, France
| | - Ali Hamiche
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France; Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch, France
| | - Jan Bendar
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, 38700 La Tronche, France.
| | - Seyit Kale
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balçova, 35330 Izmir, Turkey.
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France.
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, 38700 La Tronche, France; Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balçova, 35330 Izmir, Turkey.
| |
Collapse
|
12
|
The Role of PARP1 and PAR in ATP-Independent Nucleosome Reorganisation during the DNA Damage Response. Genes (Basel) 2022; 14:genes14010112. [PMID: 36672853 PMCID: PMC9859207 DOI: 10.3390/genes14010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The functioning of the eukaryotic cell genome is mediated by sophisticated protein-nucleic-acid complexes, whose minimal structural unit is the nucleosome. After the damage to genomic DNA, repair proteins need to gain access directly to the lesion; therefore, the initiation of the DNA damage response inevitably leads to local chromatin reorganisation. This review focuses on the possible involvement of PARP1, as well as proteins acting nucleosome compaction, linker histone H1 and non-histone chromatin protein HMGB1. The polymer of ADP-ribose is considered the main regulator during the development of the DNA damage response and in the course of assembly of the correct repair complex.
Collapse
|
13
|
Hao F, Mishra LN, Jaya P, Jones R, Hayes JJ. Identification and Analysis of Six Phosphorylation Sites Within the Xenopus laevis Linker Histone H1.0 C-Terminal Domain Indicate Distinct Effects on Nucleosome Structure. Mol Cell Proteomics 2022; 21:100250. [PMID: 35618225 PMCID: PMC9243160 DOI: 10.1016/j.mcpro.2022.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 05/01/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022] Open
Abstract
As a key structural component of the chromatin of higher eukaryotes, linker histones (H1s) are involved in stabilizing the folding of extended nucleosome arrays into higher-order chromatin structures and function as a gene-specific regulator of transcription in vivo. The H1 C-terminal domain (CTD) is essential for high-affinity binding of linker histones to chromatin and stabilization of higher-order chromatin structure. Importantly, the H1 CTD is an intrinsically disordered domain that undergoes a drastic condensation upon binding to nucleosomes. Moreover, although phosphorylation is a prevalent post-translational modification within the H1 CTD, exactly where this modification is installed and how phosphorylation influences the structure of the H1 CTD remains unclear for many H1s. Using novel mass spectrometry techniques, we identified six phosphorylation sites within the CTD of the archetypal linker histone Xenopus H1.0. We then analyzed nucleosome-dependent CTD condensation and H1-dependent linker DNA organization for H1.0 in which the phosphorylated serine residues were replaced by glutamic acid residues (phosphomimics) in six independent mutants. We find that phosphomimetics at residues S117E, S155E, S181E, S188E, and S192E resulted in a significant reduction in nucleosome-bound H1.0 CTD condensation compared with unphosphorylated H1.0, whereas S130E did not alter CTD structure. Furthermore, we found distinct effects among the phosphomimetics on H1-dependent linker DNA trajectory, indicating unique mechanisms by which this modification can influence H1 CTD condensation. These results bring to light a novel role for linker histone phosphorylation in directly altering the structure of nucleosome-bound H1 and a potential novel mechanism for its effects on chromatin structure and function.
Collapse
Affiliation(s)
- Fanfan Hao
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Laxmi N Mishra
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Prasoon Jaya
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Jeffrey J Hayes
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA.
| |
Collapse
|
14
|
Leicher R, Osunsade A, Chua GNL, Faulkner SC, Latham AP, Watters JW, Nguyen T, Beckwitt EC, Christodoulou-Rubalcava S, Young PG, Zhang B, David Y, Liu S. Single-stranded nucleic acid binding and coacervation by linker histone H1. Nat Struct Mol Biol 2022; 29:463-471. [PMID: 35484234 PMCID: PMC9117509 DOI: 10.1038/s41594-022-00760-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 03/14/2022] [Indexed: 02/04/2023]
Abstract
The H1 linker histone family is the most abundant group of eukaryotic chromatin-binding proteins. However, their contribution to chromosome structure and function remains incompletely understood. Here we use single-molecule fluorescence and force microscopy to directly visualize the behavior of H1 on various nucleic acid and nucleosome substrates. We observe that H1 coalesces around single-stranded DNA generated from tension-induced DNA duplex melting. Using a droplet fusion assay controlled by optical tweezers, we find that single-stranded nucleic acids mediate the formation of gel-like H1 droplets, whereas H1-double-stranded DNA and H1-nucleosome droplets are more liquid-like. Molecular dynamics simulations reveal that multivalent and transient engagement of H1 with unpaired DNA strands drives their enhanced phase separation. Using eGFP-tagged H1, we demonstrate that inducing single-stranded DNA accumulation in cells causes an increase in H1 puncta that are able to fuse. We further show that H1 and Replication Protein A occupy separate nuclear regions, but that H1 colocalizes with the replication factor Proliferating Cell Nuclear Antigen, particularly after DNA damage. Overall, our results provide a refined perspective on the diverse roles of H1 in genome organization and maintenance, and indicate its involvement at stalled replication forks.
Collapse
Affiliation(s)
- Rachel Leicher
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Adewola Osunsade
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Gabriella N L Chua
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Sarah C Faulkner
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John W Watters
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Tuan Nguyen
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
- Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Emily C Beckwitt
- Laboratory of DNA Replication, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | | | - Paul G Young
- Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yael David
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA.
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA.
- Tri-Institutional MD-PhD Program, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA.
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY, USA.
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA.
- Tri-Institutional MD-PhD Program, New York, NY, USA.
| |
Collapse
|
15
|
Burge N, Thuma JL, Hong ZZ, Jamison KB, Ottesen JJ, Poirier MG. H1.0 C Terminal Domain Is Integral for Altering Transcription Factor Binding within Nucleosomes. Biochemistry 2022; 61:625-638. [PMID: 35377618 PMCID: PMC9022651 DOI: 10.1021/acs.biochem.2c00001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/24/2022] [Indexed: 12/25/2022]
Abstract
The linker histone H1 is a highly prevalent protein that compacts chromatin and regulates DNA accessibility and transcription. However, the mechanisms behind H1 regulation of transcription factor (TF) binding within nucleosomes are not well understood. Using in vitro fluorescence assays, we positioned fluorophores throughout human H1 and the nucleosome, then monitored the distance changes between H1 and the histone octamer, H1 and nucleosomal DNA, or nucleosomal DNA and the histone octamer to monitor the H1 movement during TF binding. We found that H1 remains bound to the nucleosome dyad, while the C terminal domain (CTD) releases the linker DNA during nucleosome partial unwrapping and TF binding. In addition, mutational studies revealed that a small 16 amino acid region at the beginning of the H1 CTD is largely responsible for altering nucleosome wrapping and regulating TF binding within nucleosomes. We then investigated physiologically relevant post-translational modifications (PTMs) in human H1 by preparing fully synthetic H1 using convergent hybrid phase native chemical ligation. Both individual PTMs and combinations of phosphorylation and citrullination of H1 had no detectable influence on nucleosome binding and nucleosome wrapping, and had only a minor impact on H1 regulation of TF occupancy within nucleosomes. This suggests that these H1 PTMs function by other mechanisms. Our results highlight the importance of the H1 CTD, in particular, the first 16 amino acids, in regulating nucleosome linker DNA dynamics and TF binding within the nucleosome.
Collapse
Affiliation(s)
- Nathaniel
L. Burge
- Ohio
State Biochemistry Program, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Jenna L. Thuma
- Department
of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ziyong Z. Hong
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Kevin B. Jamison
- Department
of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jennifer J. Ottesen
- Ohio
State Biochemistry Program, The Ohio State
University, Columbus, Ohio 43210, United States
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Michael G. Poirier
- Ohio
State Biochemistry Program, The Ohio State
University, Columbus, Ohio 43210, United States
- Department
of Physics, The Ohio State University, Columbus, Ohio 43210, United States
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| |
Collapse
|
16
|
Zhao J, Lyu G, Ding C, Wang X, Li J, Zhang W, Yang X, Zhang VW. Expanding the mutational spectrum of Rahman syndrome: A rare disorder with severe intellectual disability and particular facial features in two Chinese patients. Mol Genet Genomic Med 2022; 10:e1825. [PMID: 35156329 PMCID: PMC8922969 DOI: 10.1002/mgg3.1825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022] Open
Abstract
Background The study aimed to investigate the clinical and genetic features of Rahman syndrome caused by HIST1H1E gene mutations. Methods We retrospectively analyzed the clinical information and genetic testing results of a Rahman syndrome family in an outpatient clinic in August 2020 and summarized the clinical characteristics of the HIST1H1E gene mutations in conjunction with peer‐reviewed reports. Results A 4‐year‐old boy was diagnosed with severe developmental delay and with specific features (large head, full cheeks, high hairline, low‐set ear, sparse eyebrows, and short neck) similar to his mother (mild intellectual disability, high hairline, reduced hair, ptosis, sagging skin, and hyperkeratosis) and premature aging. Trio whole exome sequencing (WES) revealed a novel maternal c.368dup (p.G124Rfs*72) heterozygous mutation in the HIST1H1E gene. There have been only a few reported cases with mainly de novo mutations. Only six peer‐reviewed articles in English and one in Chinese have been published regarding this syndrome. From 48 children with Rahman syndrome, 21 were males and 27 were females encompassing 25 mutations in the HIST1H1E gene. All mutations located in C‐terminal tail were frameshift mutations leading to premature protein termination. Conclusion Rahman syndrome, caused by the HIST1H1E gene mutation, is a rare autosomal dominant disorder in which the patient has an unusual facial appearance with high hairline and full cheeks, and clinical manifestations of mild to severe intellectual disability, motor delay and speech delay. Genetic testing may assist in the diagnosis of these patients. This diagnosis will permit early speech rehabilitation to improve their quality of life.
Collapse
Affiliation(s)
- Jianbo Zhao
- Department of Neurology Beijing Children’s Hospital National Center for Children’s Health Capital Medical University Beijing China
| | | | - Changhong Ding
- Department of Neurology Beijing Children’s Hospital National Center for Children’s Health Capital Medical University Beijing China
| | - Xiaohui Wang
- Department of Neurology Beijing Children’s Hospital National Center for Children’s Health Capital Medical University Beijing China
| | - Jiuwei Li
- Department of Neurology Beijing Children’s Hospital National Center for Children’s Health Capital Medical University Beijing China
| | - Weihua Zhang
- Department of Neurology Beijing Children’s Hospital National Center for Children’s Health Capital Medical University Beijing China
| | - Xinying Yang
- Department of Neurology Beijing Children’s Hospital National Center for Children’s Health Capital Medical University Beijing China
| | | |
Collapse
|
17
|
Shukla S, Agarwal P, Kumar A. Disordered regions tune order in chromatin organization and function. Biophys Chem 2022; 281:106716. [PMID: 34844028 DOI: 10.1016/j.bpc.2021.106716] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins or hybrid proteins with ordered domains and disordered regions (both collectively designated as IDP(R)s) defy the well-established structure-function paradigm due to their ability to perform multiple biological functions even in the absence of a well-defined 3D structure. IDP(R)s have a unique ability to exist as a functional heterogeneous ensemble, where they adopt multiple thermodynamically stable conformations with low energy barriers between states. The resultant structural plasticity or conformational adaptability provides them with a high functional diversity and ease of regulation. Hence, IDP(R)s are highly efficient biological machinery to mediate intricate cellular functions such as signaling, gene expression, and assembly of complex structures. One such structure is the nucleoprotein complex known as Chromatin. Interestingly, the proteins involved in shaping up the structure and function of chromatin are abundant in disordered regions, which serve more than just as mere flexible linkers. The disordered regions are involved in crucial processes such as gene expression regulation, chromatin architecture maintenance, and liquid-liquid phase separation initiation. This review is an attempt to explore the advantages and the functional and regulatory roles of intrinsic disorder in several Chromatin Associated Proteins from a mechanistic standpoint.
Collapse
Affiliation(s)
- Shivangi Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Prakhar Agarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
18
|
Lai S, Jia J, Cao X, Zhou PK, Gao S. Molecular and Cellular Functions of the Linker Histone H1.2. Front Cell Dev Biol 2022; 9:773195. [PMID: 35087830 PMCID: PMC8786799 DOI: 10.3389/fcell.2021.773195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023] Open
Abstract
Linker histone H1.2, which belongs to the linker histone family H1, plays a crucial role in the maintenance of the stable higher-order structures of chromatin and nucleosomes. As a critical part of chromatin structure, H1.2 has an important function in regulating chromatin dynamics and participates in multiple other cellular processes as well. Recent work has also shown that linker histone H1.2 regulates the transcription levels of certain target genes and affects different processes as well, such as cancer cell growth and migration, DNA duplication and DNA repair. The present work briefly summarizes the current knowledge of linker histone H1.2 modifications. Further, we also discuss the roles of linker histone H1.2 in the maintenance of genome stability, apoptosis, cell cycle regulation, and its association with disease.
Collapse
Affiliation(s)
- Shuting Lai
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, China.,Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jin Jia
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China.,School of Medicine, University of South China, Hengyang, China
| | - Xiaoyu Cao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China.,School of Life Sciences, Hebei University, Baoding, China
| | - Ping-Kun Zhou
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, China.,Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shanshan Gao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
19
|
Morris OM, Torpey JH, Isaacson RL. Intrinsically disordered proteins: modes of binding with emphasis on disordered domains. Open Biol 2021; 11:210222. [PMID: 34610267 PMCID: PMC8492171 DOI: 10.1098/rsob.210222] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Our notions of protein function have long been determined by the protein structure-function paradigm. However, the idea that protein function is dictated by a prerequisite complementarity of shapes at the binding interface is becoming increasingly challenged. Interactions involving intrinsically disordered proteins (IDPs) have indicated a significant degree of disorder present in the bound state, ranging from static disorder to complete disorder, termed 'random fuzziness'. This review assesses the anatomy of an IDP and relates how its intrinsic properties permit promiscuity and allow for the various modes of interaction. Furthermore, a mechanistic overview of the types of disordered domains is detailed, while also relating to a recent example and the kinetic and thermodynamic principles governing its formation.
Collapse
Affiliation(s)
- Owen Michael Morris
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - James Hilary Torpey
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Rivka Leah Isaacson
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| |
Collapse
|
20
|
Saha A, Dalal Y. A glitch in the snitch: the role of linker histone H1 in shaping the epigenome in normal and diseased cells. Open Biol 2021; 11:210124. [PMID: 34343462 PMCID: PMC8331230 DOI: 10.1098/rsob.210124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Histone H1s or the linker histones are a family of dynamic chromatin compacting proteins that are essential for higher-order chromatin organization. These highly positively charged proteins were previously thought to function solely as repressors of transcription. However, over the last decade, there is a growing interest in understanding this multi-protein family, finding that not all variants act as repressors. Indeed, the H1 family members appear to have distinct affinities for chromatin and may potentially affect distinct functions. This would suggest a more nuanced contribution of H1 to chromatin organization. The advent of new technologies to probe H1 dynamics in vivo, combined with powerful computational biology, and in vitro imaging tools have greatly enhanced our knowledge of the mechanisms by which H1 interacts with chromatin. This family of proteins can be metaphorically compared to the Golden Snitch from the Harry Potter series, buzzing on and off several regions of the chromatin, in combat with competing transcription factors and chromatin remodellers, thereby critical to the epigenetic endgame on short and long temporal scales in the life of the nucleus. Here, we summarize recent efforts spanning structural, computational, genomic and genetic experiments which examine the linker histone as an unseen architect of chromatin fibre in normal and diseased cells and explore unanswered fundamental questions in the field.
Collapse
Affiliation(s)
- Ankita Saha
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yamini Dalal
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Unraveling linker histone interactions in nucleosomes. Curr Opin Struct Biol 2021; 71:87-93. [PMID: 34246862 DOI: 10.1016/j.sbi.2021.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022]
Abstract
Considerable progress has been made recently in defining the interactions of linker histones (H1s) within nucleosomes. Major advancements include atomic resolution structures of the globular domain of full-length H1s in the context of nucleosomes containing full-length linker DNA. Although these studies have led to a detailed understanding of the interactions and dynamics of H1 globular domains in the canonical on-dyad nucleosome binding pocket, more information regarding the intrinsically disordered N-terminal and C-terminal domains is needed. In this review, we highlight studies supporting our current understanding of the structures and interactions of the N-terminal, globular, and C-terminal domains of linker histones within the nucleosome.
Collapse
|
22
|
Rudnizky S, Khamis H, Ginosar Y, Goren E, Melamed P, Kaplan A. Extended and dynamic linker histone-DNA Interactions control chromatosome compaction. Mol Cell 2021; 81:3410-3421.e4. [PMID: 34192510 DOI: 10.1016/j.molcel.2021.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Chromatosomes play a fundamental role in chromatin regulation, but a detailed understanding of their structure is lacking, partially due to their complex dynamics. Using single-molecule DNA unzipping with optical tweezers, we reveal that linker histone interactions with DNA are remarkably extended, with the C-terminal domain binding both DNA linkers as far as approximately ±140 bp from the dyad. In addition to a symmetrical compaction of the nucleosome core governed by globular domain contacts at the dyad, the C-terminal domain compacts the nucleosome's entry and exit. These interactions are dynamic, exhibit rapid binding and dissociation, are sensitive to phosphorylation of a specific residue, and are crucial to determining the symmetry of the chromatosome's core. Extensive unzipping of the linker DNA, which mimics its invasion by motor proteins, shifts H1 into an asymmetric, off-dyad configuration and triggers nucleosome decompaction, highlighting the plasticity of the chromatosome structure and its potential regulatory role.
Collapse
Affiliation(s)
- Sergei Rudnizky
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hadeel Khamis
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel; Faculty of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yuval Ginosar
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Efrat Goren
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel; Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel; Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
23
|
Abstract
In eukaryotes, genomic DNA is packaged into chromatin in the nucleus. The accessibility of DNA is dependent on the chromatin structure and dynamics, which essentially control DNA-related processes, including transcription, DNA replication, and repair. All of the factors that affect the structure and dynamics of nucleosomes, the nucleosome-nucleosome interaction interfaces, and the binding of linker histones or other chromatin-binding proteins need to be considered to understand the organization and function of chromatin fibers. In this review, we provide a summary of recent progress on the structure of chromatin fibers in vitro and in the nucleus, highlight studies on the dynamic regulation of chromatin fibers, and discuss their related biological functions and abnormal organization in diseases.
Collapse
Affiliation(s)
- Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Wei Li
- National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; .,Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Deckard CE, Sczepanski JT. Reversible chromatin condensation by the DNA repair and demethylation factor thymine DNA glycosylase. Nucleic Acids Res 2021; 49:2450-2459. [PMID: 33733652 PMCID: PMC7969020 DOI: 10.1093/nar/gkab040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/23/2022] Open
Abstract
Chromatin structures (and modulators thereof) play a central role in genome organization and function. Herein, we report that thymine DNA glycosylase (TDG), an essential enzyme involved in DNA repair and demethylation, has the capacity to alter chromatin structure directly through its physical interactions with DNA. Using chemically defined nucleosome arrays, we demonstrate that TDG induces decompaction of individual chromatin fibers upon binding and promotes self-association of nucleosome arrays into higher-order oligomeric structures (i.e. condensation). Chromatin condensation is mediated by TDG’s disordered polycationic N-terminal domain, whereas its C-terminal domain antagonizes this process. Furthermore, we demonstrate that TDG-mediated chromatin condensation is reversible by growth arrest and DNA damage 45 alpha (GADD45a), implying that TDG cooperates with its binding partners to dynamically control chromatin architecture. Finally, we show that chromatin condensation by TDG is sensitive to the methylation status of the underlying DNA. This new paradigm for TDG has specific implications for associated processes, such as DNA repair, DNA demethylation, and transcription, and general implications for the role of DNA modification ‘readers’ in controlling chromatin organization.
Collapse
Affiliation(s)
- Charles E Deckard
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
25
|
Wu H, Dalal Y, Papoian GA. Binding Dynamics of Disordered Linker Histone H1 with a Nucleosomal Particle. J Mol Biol 2021; 433:166881. [PMID: 33617899 DOI: 10.1016/j.jmb.2021.166881] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/30/2023]
Abstract
Linker histone H1 is an essential regulatory protein for many critical biological processes, such as eukaryotic chromatin packaging and gene expression. Mis-regulation of H1s is commonly observed in tumor cells, where the balance between different H1 subtypes has been shown to alter the cancer phenotype. Consisting of a rigid globular domain and two highly charged terminal domains, H1 can bind to multiple sites on a nucleosomal particle to alter chromatin hierarchical condensation levels. In particular, the disordered H1 amino- and carboxyl-terminal domains (NTD/CTD) are believed to enhance this binding affinity, but their detailed dynamics and functions remain unclear. In this work, we used a coarse-grained computational model, AWSEM-DNA, to simulate the H1.0b-nucleosome complex, namely chromatosome. Our results demonstrate that H1 disordered domains restrict the dynamics and conformation of both globular H1 and linker DNA arms, resulting in a more compact and rigid chromatosome particle. Furthermore, we identified regions of H1 disordered domains that are tightly tethered to DNA near the entry-exit site. Overall, our study elucidates at near-atomic resolution the way the disordered linker histone H1 modulates nucleosome's structural preferences and conformational dynamics.
Collapse
Affiliation(s)
- Hao Wu
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Garegin A Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States; Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
26
|
Linker histone defines structure and self-association behaviour of the 177 bp human chromatosome. Sci Rep 2021; 11:380. [PMID: 33432055 PMCID: PMC7801413 DOI: 10.1038/s41598-020-79654-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 12/08/2020] [Indexed: 01/02/2023] Open
Abstract
Linker histones play essential roles in the regulation and maintenance of the dynamic chromatin structure of higher eukaryotes. The influence of human histone H1.0 on the nucleosome structure and biophysical properties of the resulting chromatosome were investigated and compared with the 177-bp nucleosome using Cryo-EM and SAXS. The 4.5 Å Cryo-EM chromatosome structure showed that the linker histone binds at the nucleosome dyad interacting with both linker DNA arms but in a tilted manner leaning towards one of the linker sides. The chromatosome is laterally compacted and rigid in the dyad and linker DNA area, in comparison with the nucleosome where linker DNA region is more flexible and displays structural variability. In solution, the chromatosomes appear slightly larger than the nucleosomes, with the volume increase compared to the bound linker histone, according to solution SAXS measurements. SAXS X-ray diffraction characterisation of Mg-precipitated samples showed that the different shapes of the 177 chromatosome enabled the formation of a highly ordered lamello-columnar phase when precipitated by Mg2+, indicating the influence of linker histone on the nucleosome stacking. The biological significance of linker histone, therefore, may be affected by the change in the polyelectrolyte and DNA conformation properties of the chromatosomes, in comparison to nucleosomes.
Collapse
|
27
|
Shalini V, Bhaduri U, Ravikkumar AC, Rengarajan A, Satyanarayana RMR. Genome-wide occupancy reveals the localization of H1T2 (H1fnt) to repeat regions and a subset of transcriptionally active chromatin domains in rat spermatids. Epigenetics Chromatin 2021; 14:3. [PMID: 33407810 PMCID: PMC7788777 DOI: 10.1186/s13072-020-00376-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background H1T2/H1FNT is a germ cell-specific linker histone variant expressed during spermiogenesis specifically in round and elongating spermatids. Infertile phenotype of homozygous H1T2 mutant male mice revealed the essential function of H1T2 for the DNA condensation and histone-to-protamine replacement in spermiogenesis. However, the mechanism by which H1T2 imparts the inherent polarity within spermatid nucleus including the additional protein partners and the genomic domains occupied by this linker histone are unknown. Results Sequence analysis revealed the presence of Walker motif, SR domains and putative coiled-coil domains in the C-terminal domain of rat H1T2 protein. Genome-wide occupancy analysis using highly specific antibody against the CTD of H1T2 demonstrated the binding of H1T2 to the LINE L1 repeat elements and to a significant percentage of the genic regions (promoter-TSS, exons and introns) of the rat spermatid genome. Immunoprecipitation followed by mass spectrometry analysis revealed the open chromatin architecture of H1T2 occupied chromatin encompassing the H4 acetylation and other histone PTMs characteristic of transcriptionally active chromatin. In addition, the present study has identified the interacting protein partners of H1T2-associated chromatin mainly as nucleo-skeleton components, RNA-binding proteins and chaperones. Conclusions Linker histone H1T2 possesses unique domain architecture which can account for the specific functions associated with chromatin remodeling events facilitating the initiation of histone to transition proteins/protamine transition in the polar apical spermatid genome. Our results directly establish the unique function of H1T2 in nuclear shaping associated with spermiogenesis by mediating the interaction between chromatin and nucleo-skeleton, positioning the epigenetically specialized chromatin domains involved in transcription coupled histone replacement initiation towards the apical pole of round/elongating spermatids.
Collapse
Affiliation(s)
- Vasantha Shalini
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Utsa Bhaduri
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.,Department of Life Sciences, University of Trieste, Trieste, Italy.,European Union's H2020 TRIM-NET ITN, Marie Sklodowska-Curie Actions (MSCA), Leiden, The Netherlands
| | - Anjhana C Ravikkumar
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Anusha Rengarajan
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Rao M R Satyanarayana
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.
| |
Collapse
|
28
|
Stützer A, Welp LM, Raabe M, Sachsenberg T, Kappert C, Wulf A, Lau AM, David SS, Chernev A, Kramer K, Politis A, Kohlbacher O, Fischle W, Urlaub H. Analysis of protein-DNA interactions in chromatin by UV induced cross-linking and mass spectrometry. Nat Commun 2020; 11:5250. [PMID: 33067435 PMCID: PMC7567871 DOI: 10.1038/s41467-020-19047-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/24/2020] [Indexed: 02/08/2023] Open
Abstract
Protein–DNA interactions are key to the functionality and stability of the genome. Identification and mapping of protein–DNA interaction interfaces and sites is crucial for understanding DNA-dependent processes. Here, we present a workflow that allows mass spectrometric (MS) identification of proteins in direct contact with DNA in reconstituted and native chromatin after cross-linking by ultraviolet (UV) light. Our approach enables the determination of contact interfaces at amino-acid level. With the example of chromatin-associated protein SCML2 we show that our technique allows differentiation of nucleosome-binding interfaces in distinct states. By UV cross-linking of isolated nuclei we determined the cross-linking sites of several factors including chromatin-modifying enzymes, demonstrating that our workflow is not restricted to reconstituted materials. As our approach can distinguish between protein–RNA and DNA interactions in one single experiment, we project that it will be possible to obtain insights into chromatin and its regulation in the future. Cross-linking mass spectrometry (XLMS) allows mapping of protein-protein and protein-RNA interactions, but the analysis of protein-DNA complexes remains challenging. Here, the authors develop a UV light-based XLMS workflow to determine protein-DNA interfaces in reconstituted chromatin and isolated nuclei.
Collapse
Affiliation(s)
- Alexandra Stützer
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Luisa M Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Monika Raabe
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Timo Sachsenberg
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076, Tübingen, Germany.,Applied Bioinformatics, Department for Computer Science, University of Tübingen, 72076, Tübingen, Germany
| | - Christin Kappert
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.,Somatosensory Signaling and Systems Biology Group, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Alexander Wulf
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Andy M Lau
- Department of Chemistry, King's College London, London, SE1 1DB, UK
| | - Stefan-Sebastian David
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.,King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, 23955, Thuwal, Saudi Arabia
| | - Aleksandar Chernev
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | | | - Argyris Politis
- Department of Chemistry, King's College London, London, SE1 1DB, UK
| | - Oliver Kohlbacher
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076, Tübingen, Germany.,Applied Bioinformatics, Department for Computer Science, University of Tübingen, 72076, Tübingen, Germany.,Institute for Translational Bioinformatics, University Hospital Tübingen, 72076, Tübingen, Germany.,Biomolecular Interactions, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.,King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, 23955, Thuwal, Saudi Arabia
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany. .,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
29
|
Climent-Cantó P, Carbonell A, Tatarski M, Reina O, Bujosa P, Font-Mateu J, Bernués J, Beato M, Azorín F. The embryonic linker histone dBigH1 alters the functional state of active chromatin. Nucleic Acids Res 2020; 48:4147-4160. [PMID: 32103264 PMCID: PMC7192587 DOI: 10.1093/nar/gkaa122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 11/13/2022] Open
Abstract
Linker histones H1 are principal chromatin components, whose contribution to the epigenetic regulation of chromatin structure and function is not fully understood. In metazoa, specific linker histones are expressed in the germline, with female-specific H1s being normally retained in the early-embryo. Embryonic H1s are present while the zygotic genome is transcriptionally silent and they are replaced by somatic variants upon activation, suggesting a contribution to transcriptional silencing. Here we directly address this question by ectopically expressing dBigH1 in Drosophila S2 cells, which lack dBigH1. We show that dBigH1 binds across chromatin, replaces somatic dH1 and reduces nucleosome repeat length (NRL). Concomitantly, dBigH1 expression down-regulates gene expression by impairing RNApol II binding and histone acetylation. These effects depend on the acidic N-terminal ED-domain of dBigH1 since a truncated form lacking this domain binds across chromatin and replaces dH1 like full-length dBigH1, but it does not affect NRL either transcription. In vitro reconstitution experiments using Drosophila preblastodermic embryo extracts corroborate these results. Altogether these results suggest that the negatively charged N-terminal tail of dBigH1 alters the functional state of active chromatin compromising transcription.
Collapse
Affiliation(s)
- Paula Climent-Cantó
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Albert Carbonell
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Milos Tatarski
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Paula Bujosa
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jofre Font-Mateu
- Centre de Regulació Genòmica (CRG). The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jordi Bernués
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Miguel Beato
- Centre de Regulació Genòmica (CRG). The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| |
Collapse
|
30
|
Sridhar A, Orozco M, Collepardo-Guevara R. Protein disorder-to-order transition enhances the nucleosome-binding affinity of H1. Nucleic Acids Res 2020; 48:5318-5331. [PMID: 32356891 PMCID: PMC7261198 DOI: 10.1093/nar/gkaa285] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Intrinsically disordered proteins are crucial elements of chromatin heterogenous organization. While disorder in the histone tails enables a large variation of inter-nucleosome arrangements, disorder within the chromatin-binding proteins facilitates promiscuous binding to a wide range of different molecular targets, consistent with structural heterogeneity. Among the partially disordered chromatin-binding proteins, the H1 linker histone influences a myriad of chromatin characteristics including compaction, nucleosome spacing, transcription regulation, and the recruitment of other chromatin regulating proteins. Although it is now established that the long C-terminal domain (CTD) of H1 remains disordered upon nucleosome binding and that such disorder favours chromatin fluidity, the structural behaviour and thereby the role/function of the N-terminal domain (NTD) within chromatin is yet unresolved. On the basis of microsecond-long parallel-tempering metadynamics and temperature-replica exchange atomistic molecular dynamics simulations of different H1 NTD subtypes, we demonstrate that the NTD is completely unstructured in solution but undergoes an important disorder-to-order transition upon nucleosome binding: it forms a helix that enhances its DNA binding ability. Further, we show that the helical propensity of the H1 NTD is subtype-dependent and correlates with the experimentally observed binding affinity of H1 subtypes, suggesting an important functional implication of this disorder-to-order transition.
Collapse
Affiliation(s)
- Akshay Sridhar
- Maxwell Centre, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Modesto Orozco
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri i Reixac, 19, 08028 Barcelona, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, Av. Diagonal 647. 08028 Barcelona, Spain
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
31
|
Saloura V, Vougiouklakis T, Bao R, Kim S, Baek S, Zewde M, Bernard B, Burkitt K, Nigam N, Izumchenko E, Dohmae N, Hamamoto R, Nakamura Y. WHSC1 monomethylates histone H1 and induces stem-cell like features in squamous cell carcinoma of the head and neck. Neoplasia 2020; 22:283-293. [PMID: 32497898 PMCID: PMC7265065 DOI: 10.1016/j.neo.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (SCCHN) is a malignancy with poor outcomes, thus novel therapies are urgently needed. We recently showed that WHSC1 is necessary for the viability of SCCHN cells through H3K36 di-methylation. Here, we report the identification of its novel substrate, histone H1, and that WHSC1-mediated H1.4K85 mono-methylation may enhance stemness features in SCCHN cells. To identify proteins interacting with WHSC1 in SCCHN cells, WHSC1 immunoprecipitation and mass spectrometry identified H1 as a WHSC1-interacting candidate. In vitro methyltransferase assays showed that WHSC1 mono-methylates H1 at K85. We generated an H1K85 mono-methylation-specific antibody and confirmed that this methylation occurs in vivo. Sphere formation assays using SCC-35 cells stably expressing either wild-type (FLAG-H1.4-WT) or mutated (FLAG-H1.4K85A) vector with lysine 85 to alanine substitution which is not methylated, indicated a higher number of spheres in SCC-35 cells expressing the wild type than those with the mutant vector. SCC-35 cells expressing the wild type H1.4 proliferated faster than those expressing the mutated vector. RNA sequencing, RT-PCR and Western blotting of the FLAG-H1.4-WT or FLAG-H1.4K85A SCC-35 cells revealed that OCT4 levels were higher in wild type compared to mutant cells. These results were reproduced in SCC-35 cells genetically modified with CRISPR to express H1.4K85R. Chromatin immunoprecipitation showed that FLAG-H1.4K85A had decreased occupancy in the OCT4 gene compared to FLAG-H1.4-WT. This study supports that WHSC1 mono-methylates H1.4 at K85, it induces transcriptional activation of OCT4 and stemness features in SCCHN cells, providing rationale to target H1.4K85 mono-methylation through WHSC1 in SCCHN.
Collapse
Affiliation(s)
- Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA.
| | | | - Riyue Bao
- Center for Research Bioinformatics, University of Chicago, Chicago, USA; Department of Pediatrics, University of Chicago, Chicago, USA
| | - Sohyoung Kim
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, USA
| | - Makda Zewde
- Department of Medicine, University of Chicago, Chicago, USA
| | - Benjamin Bernard
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Kyunghee Burkitt
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Nupur Nigam
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | | | | | | | - Yusuke Nakamura
- Department of Medicine, University of Chicago, Chicago, USA; Department of Surgery, University of Chicago, Chicago, USA
| |
Collapse
|
32
|
Sollberger G, Streeck R, Apel F, Caffrey BE, Skoultchi AI, Zychlinsky A. Linker histone H1.2 and H1.4 affect the neutrophil lineage determination. eLife 2020; 9:52563. [PMID: 32391789 PMCID: PMC7250579 DOI: 10.7554/elife.52563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/08/2020] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are important innate immune cells that tackle invading pathogens with different effector mechanisms. They acquire this antimicrobial potential during their maturation in the bone marrow, where they differentiate from hematopoietic stem cells in a process called granulopoiesis. Mature neutrophils are terminally differentiated and short-lived with a high turnover rate. Here, we show a critical role for linker histone H1 on the differentiation and function of neutrophils using a genome-wide CRISPR/Cas9 screen in the human cell line PLB-985. We systematically disrupted expression of somatic H1 subtypes to show that individual H1 subtypes affect PLB-985 maturation in opposite ways. Loss of H1.2 and H1.4 induced an eosinophil-like transcriptional program, thereby negatively regulating the differentiation into the neutrophil lineage. Importantly, H1 subtypes also affect neutrophil differentiation and the eosinophil-directed bias of murine bone marrow stem cells, demonstrating an unexpected subtype-specific role for H1 in granulopoiesis.
Collapse
Affiliation(s)
- Gabriel Sollberger
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Berlin, Germany.,University of Dundee, School of Life Sciences, Division of Cell Signalling and Immunology, Dundee, United Kingdom
| | - Robert Streeck
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Berlin, Germany.,Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Falko Apel
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Berlin, Germany.,Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany
| | | | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, United States
| | - Arturo Zychlinsky
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Berlin, Germany
| |
Collapse
|
33
|
Mahadevan IA, Kumar S, Rao MRS. Linker histone variant H1t is closely associated with repressed repeat-element chromatin domains in pachytene spermatocytes. Epigenetics Chromatin 2020; 13:9. [PMID: 32131873 PMCID: PMC7057672 DOI: 10.1186/s13072-020-00335-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/20/2020] [Indexed: 12/22/2022] Open
Abstract
Background H1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50–60% of total H1. This linker histone variant was previously reported to localize in the nucleolar rDNA element in mouse spermatocytes. Our main aim was to determine the extra-nucleolar localization of this linker histone variant in pachytene spermatocytes. Results We generated H1t-specific antibodies in rabbits and validated its specificity by multiple assays like ELISA, western blot, etc. Genome-wide occupancy studies, as determined by ChIP-sequencing in P20 mouse testicular cells revealed that H1t did not closely associate with active gene promoters and open chromatin regions. Annotation of H1t-bound genomic regions revealed that H1t is depleted from DSB hotspots and TSS, but are predominantly associated with retrotransposable repeat elements like LINE and LTR in pachytene spermatocytes. These chromatin domains are repressed based on co-association of H1t observed with methylated CpGs and repressive histone marks like H3K9me3 and H4K20me3 in vivo. Mass spectrometric analysis of proteins associated with H1t-containing oligonucleosomes identified piRNA–PIWI pathway proteins, repeat repression-associated proteins and heterochromatin proteins confirming the association with repressed repeat-element genomic regions. We validated the interaction of key proteins with H1t-containing oligonucleosomes by use of ChIP-western blot assays. On the other hand, we observe majority of H1t peaks to be associated with the intergenic spacer of the rDNA element, also in association with SINE elements of the rDNA element. Thus, we have identified the genomic and chromatin features of both nucleolar and extranucleolar localization patterns of linker histone H1t in the context of pachytene spermatocytes. Conclusions H1t-containing repeat-element LINE and LTR chromatin domains are associated with repressive marks like methylated CpGs, histone modifications H3K9me3 and H4K20me3, and heterochromatin proteins like HP1β, Trim28, PIWIL1, etc. Apart from localization of H1t at the rDNA element, we demonstrate the extranucleolar association of this linker histone variant at repeat-associated chromatin domains in pachytene spermatocytes. We hypothesize that H1t might induce local chromatin relaxation to recruit heterochromatin and repeat repression-associated protein factors necessary for TE (transposable element) repression, the final biological effect being formation of closed chromatin repressed structures.
Collapse
Affiliation(s)
- Iyer Aditya Mahadevan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Sanjeev Kumar
- BioCOS Life Sciences Private Limited, SAAMI Building, 851/A, AECS Layout, B-Block, Singasandra Hosur Road, Bangalore, India
| | | |
Collapse
|
34
|
Chikhirzhina EV, Starkova TY, Polyanichko AM. The Role of Linker Histones in Chromatin Structural Organization. 2. Interaction with DNA and Nuclear Proteins. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920020049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Abstract
The tumor suppressor phosphatase and tension homolog (PTEN) is frequently mutated in human cancers, and it functions in multiple ways to safeguard cells from tumorigenesis. In the cytoplasm, PTEN antagonizes the PI3K/AKT pathway and suppresses cellular proliferation and survival. In the nucleus, PTEN is indispensable for the maintenance of genomic stability. In addition, PTEN loss leads to extensive changes in gene expression at the transcriptional level. The linker histone H1, generally considered as a transcriptional repressor, binds to the nucleosome to form a structure named the chromatosome. The dynamics between H1 and chromatin play an important role in determining gene expression. Here, we summarize the current understanding of roles of PTEN in controlling chromatin dynamics and global gene expression, which is crucial function of nuclear PTEN. We will also introduce the recent discovery of the PTEN family members and their functions.
Collapse
Affiliation(s)
- Jingyi Yang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
36
|
Chaves-Arquero B, Pantoja-Uceda D, Roque A, Ponte I, Suau P, Jiménez MA. A CON-based NMR assignment strategy for pro-rich intrinsically disordered proteins with low signal dispersion: the C-terminal domain of histone H1.0 as a case study. JOURNAL OF BIOMOLECULAR NMR 2018; 72:139-148. [PMID: 30414042 DOI: 10.1007/s10858-018-0213-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/24/2018] [Indexed: 05/23/2023]
Abstract
The C-terminal domain of histone H1.0 (C-H1.0) is involved in DNA binding and is a main determinant of the chromatin condensing properties of histone H1.0. Phosphorylation at the (S/T)-P-X-(K/R) motifs affects DNA binding and is crucial for regulation of C-H1.0 function. Since C-H1.0 is an intrinsically disordered domain, solution NMR is an excellent approach to characterize the effect of phosphorylation on the structural and dynamic properties of C-H1.0. However, its very repetitive, low-amino acid-diverse and Pro-rich sequence, together with the low signal dispersion observed at the 1H-15N HSQC spectra of both non- and tri-phosphorylated C-H1.0 preclude the use of standard 1H-detected assignment strategies. We have achieved an essentially complete assignment of the heavy backbone atoms (15N, 13C' and 13Cα), as well as 1HN and 13Cβ nuclei, of non- and tri-phosphorylated C-H1.0 by applying a novel 13C-detected CON-based strategy. No C-H1.0 region with a clear secondary structure tendency was detected by chemical shift analyses, confirming at residue level that C-H1.0 is disordered in aqueous solution. Phosphorylation only affected the chemical shifts of phosphorylated Thr's, and their adjacent residues. Heteronuclear {1H}-15N NOEs were also essentially equal in the non- and tri-phosphorylated states. Hence, structural tendencies and dynamic properties of C-H1.0 free in aqueous solution are unmodified by phosphorylation. We propose that the assignment strategy used for C-H1.0, which is based on the acquisition of only a few 3D spectra, is an excellent choice for short-lived intrinsically disordered proteins with repetitive sequences.
Collapse
Affiliation(s)
- Belén Chaves-Arquero
- Departamento de Química-Física Biológica, Instituto de Química Física Rocasolano (IQFR-CSIC), Serrano 119, 28006, Madrid, Spain
| | - David Pantoja-Uceda
- Departamento de Química-Física Biológica, Instituto de Química Física Rocasolano (IQFR-CSIC), Serrano 119, 28006, Madrid, Spain
| | - Alicia Roque
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Inmaculada Ponte
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Pedro Suau
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - M Angeles Jiménez
- Departamento de Química-Física Biológica, Instituto de Química Física Rocasolano (IQFR-CSIC), Serrano 119, 28006, Madrid, Spain.
| |
Collapse
|
37
|
Han H, Yang J, Chen W, Li Q, Yang Y, Li Q. A comprehensive review on histone-mediated transfection for gene therapy. Biotechnol Adv 2018; 37:132-144. [PMID: 30472306 DOI: 10.1016/j.biotechadv.2018.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/02/2018] [Accepted: 11/20/2018] [Indexed: 01/18/2023]
Abstract
Histone has been considered to be an effective carrier in non-viral gene delivery due to its unique properties such as efficient DNA binding ability, direct translocation to cytoplasm and favorable nuclear localization ability. Meanwhile, the rapid development of genetic engineering techniques could facilitate the construction of multifunctional fusion proteins based on histone molecules to further improve the transfection efficiency. Remarkably, histone has been demonstrated to achieve gene transfection in a synergistic manner with cationic polymers, affording to a significant improvement of transfection efficiency. In the review, we highlighted the recent developments and future trends in gene delivery mediated by histones or histone-based fusion proteins/peptides. This review also discussed the mechanism of histone-mediated gene transfection and provided an outlook for future therapeutic opportunities in the viewpoint of transfection efficacy and biosafety.
Collapse
Affiliation(s)
- Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenqi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Qing Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yan Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
38
|
Fonin AV, Darling AL, Kuznetsova IM, Turoverov KK, Uversky VN. Intrinsically disordered proteins in crowded milieu: when chaos prevails within the cellular gumbo. Cell Mol Life Sci 2018; 75:3907-3929. [PMID: 30066087 PMCID: PMC11105604 DOI: 10.1007/s00018-018-2894-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/18/2022]
Abstract
Effects of macromolecular crowding on structural and functional properties of ordered proteins, their folding, interactability, and aggregation are well documented. Much less is known about how macromolecular crowding might affect structural and functional behaviour of intrinsically disordered proteins (IDPs) or intrinsically disordered protein regions (IDPRs). To fill this gap, this review represents a systematic analysis of the available literature data on the behaviour of IDPs/IDPRs in crowded environment. Although it was hypothesized that, due to the excluded-volume effects present in crowded environments, IDPs/IDPRs would invariantly fold in the presence of high concentrations of crowding agents or in the crowded cellular environment, accumulated data indicate that, based on their response to the presence of crowders, IDPs/IDPRs can be grouped into three major categories, foldable, non-foldable, and unfoldable. This is because natural cellular environment is not simply characterized by the presence of high concentration of "inert" macromolecules, but represents an active milieu, components of which are engaged in direct physical interactions and soft interactions with target proteins. Some of these interactions with cellular components can cause (local) unfolding of query proteins. In other words, since crowding can cause both folding and unfolding of an IDP or its regions, the outputs of the placing of a query protein to the crowded environment would depend on the balance between these two processes. As a result, and because of the spatio-temporal heterogeneity in structural organization of IDPs, macromolecular crowding can differently affect structures of different IDPs. Recent studies indicate that some IDPs are able to undergo liquid-liquid-phase transitions leading to the formation of various proteinaceous membrane-less organelles (PMLOs). Although interiors of such PMLOs are self-crowded, being characterized by locally increased concentrations of phase-separating IDPs, these IDPs are minimally foldable or even non-foldable at all (at least within the physiologically safe time-frame of normal PMLO existence).
Collapse
Affiliation(s)
- Alexander V Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - April L Darling
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
- St. Petersburg State Polytechnical University, St. Petersburg, Russian Federation
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
39
|
Highly disordered histone H1-DNA model complexes and their condensates. Proc Natl Acad Sci U S A 2018; 115:11964-11969. [PMID: 30301810 DOI: 10.1073/pnas.1805943115] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Disordered proteins play an essential role in a wide variety of biological processes, and are often posttranslationally modified. One such protein is histone H1; its highly disordered C-terminal tail (CH1) condenses internucleosomal linker DNA in chromatin in a way that is still poorly understood. Moreover, CH1 is phosphorylated in a cell cycle-dependent manner that correlates with changes in the chromatin condensation level. Here we present a model system that recapitulates key aspects of the in vivo process, and also allows a detailed structural and biophysical analysis of the stages before and after condensation. CH1 remains disordered in the DNA-bound state, despite its nanomolar affinity. Phase-separated droplets (coacervates) form, containing higher-order assemblies of CH1/DNA complexes. Phosphorylation at three serine residues, spaced along the length of the tail, has little effect on the local properties of the condensate. However, it dramatically alters higher-order structure in the coacervate and reduces partitioning to the coacervate phase. These observations show that disordered proteins can bind tightly to DNA without a disorder-to-order transition. Importantly, they also provide mechanistic insights into how higher-order structures can be exquisitely sensitive to perturbation by posttranslational modifications, thus broadening the repertoire of mechanisms that might regulate chromatin and other macromolecular assemblies.
Collapse
|
40
|
Mishra LN, Shalini V, Gupta N, Ghosh K, Suthar N, Bhaduri U, Rao MRS. Spermatid-specific linker histone HILS1 is a poor condenser of DNA and chromatin and preferentially associates with LINE-1 elements. Epigenetics Chromatin 2018; 11:43. [PMID: 30068355 PMCID: PMC6069787 DOI: 10.1186/s13072-018-0214-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/25/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Linker histones establish and maintain higher-order chromatin structure. Eleven linker histone subtypes have been reported in mammals. HILS1 is a spermatid-specific linker histone, and its expression overlaps with the histone-protamine exchange process during mammalian spermiogenesis. However, the role of HILS1 in spermatid chromatin remodeling is largely unknown. RESULTS In this study, we demonstrate using circular dichroism spectroscopy that HILS1 is a poor condenser of DNA and chromatin compared to somatic linker histone H1d. Genome-wide occupancy study in elongating/condensing spermatids revealed the preferential binding of HILS1 to the LINE-1 (L1) elements within the intergenic and intronic regions of rat spermatid genome. We observed specific enrichment of the histone PTMs like H3K9me3, H4K20me3 and H4 acetylation marks (H4K5ac and H4K12ac) in the HILS1-bound chromatin complex, whereas H3K4me3 and H3K27me3 marks were absent. CONCLUSIONS HILS1 possesses significantly lower α-helicity compared to other linker histones such as H1t and H1d. Interestingly, in contrast to the somatic histone variant H1d, HILS1 is a poor condenser of chromatin which demonstrate the idea that this particular linker histone variant may have distinct role in histone to protamine replacement. Based on HILS1 ChIP-seq analysis of elongating/condensing spermatids, we speculate that HILS1 may provide a platform for the structural transitions and forms the higher-order chromatin structures encompassing LINE-1 elements during spermiogenesis.
Collapse
Affiliation(s)
- Laxmi Narayan Mishra
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.,Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Vasantha Shalini
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Nikhil Gupta
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.,Epigenetics and Cell Fate, UMR7216, CNRS, University Paris Diderot, Sorbonne Paris Cite, 75013, Paris, France
| | - Krittika Ghosh
- InterpretOmics India Pvt. Ltd., #329, 7th Main, HAL II Stage 80 Feet Road, Indira Nagar, Bangalore, 560008, India
| | - Neeraj Suthar
- InterpretOmics India Pvt. Ltd., #329, 7th Main, HAL II Stage 80 Feet Road, Indira Nagar, Bangalore, 560008, India
| | - Utsa Bhaduri
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - M R Satyanarayana Rao
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.
| |
Collapse
|
41
|
Hu J, Gu L, Ye Y, Zheng M, Xu Z, Lin J, Du Y, Tian M, Luo L, Wang B, Zhang X, Weng Z, Jiang C. Dynamic placement of the linker histone H1 associated with nucleosome arrangement and gene transcription in early Drosophila embryonic development. Cell Death Dis 2018; 9:765. [PMID: 29988149 PMCID: PMC6037678 DOI: 10.1038/s41419-018-0819-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/14/2018] [Accepted: 06/20/2018] [Indexed: 12/21/2022]
Abstract
The linker histone H1 is critical to maintenance of higher-order chromatin structures and to gene expression regulation. However, H1 dynamics and its functions in embryonic development remain unresolved. Here, we profiled gene expression, nucleosome positions, and H1 locations in early Drosophila embryos. The results show that H1 binding is positively correlated with the stability of beads-on-a-string nucleosome organization likely through stabilizing nucleosome positioning and maintaining nucleosome spacing. Strikingly, nucleosomes with H1 placement deviating to the left or the right relative to the dyad shift to the left or the right, respectively, during early Drosophila embryonic development. H1 occupancy on genic nucleosomes is inversely correlated with nucleosome distance to the transcription start sites. This inverse correlation reduces as gene transcription levels decrease. Additionally, H1 occupancy is lower at the 5′ border of genic nucleosomes than that at the 3′ border. This asymmetrical pattern of H1 occupancy on genic nucleosomes diminishes as gene transcription levels decrease. These findings shed new lights into how H1 placement dynamics correlates with nucleosome positioning and gene transcription during early Drosophila embryonic development.
Collapse
Affiliation(s)
- Jian Hu
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Liang Gu
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Youqiong Ye
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Meizhu Zheng
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Zhu Xu
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Jing Lin
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Yanhua Du
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Mengxue Tian
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Lifang Luo
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Beibei Wang
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.,Department of laboratory medicine, the first people's Hospital of Ninghai County, Ningbo city, 315600, China
| | - Xiaobai Zhang
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Cizhong Jiang
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
42
|
Duffney LJ, Valdez P, Tremblay MW, Cao X, Montgomery S, McConkie-Rosell A, Jiang YH. Epigenetics and autism spectrum disorder: A report of an autism case with mutation in H1 linker histone HIST1H1E and literature review. Am J Med Genet B Neuropsychiatr Genet 2018; 177:426-433. [PMID: 29704315 PMCID: PMC5980735 DOI: 10.1002/ajmg.b.32631] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/08/2018] [Accepted: 03/01/2018] [Indexed: 12/26/2022]
Abstract
Genetic mutations in genes encoding proteins involved in epigenetic machinery have been reported in individuals with autism spectrum disorder (ASD), intellectual disability, congenital heart disease, and other disorders. H1 histone linker protein, the basic component in nucleosome packaging and chromatin organization, has not been implicated in human disease until recently. We report a de novo deleterious mutation of histone cluster 1 H1 family member e (HIST1H1E; c.435dupC; p.Thr146Hisfs*50), encoding H1 histone linker protein H1.4, in a 10-year-old boy with autism and intellectual disability diagnosed through clinical whole exome sequencing. The c.435dupC at the 3' end of the mRNA leads to a frameshift and truncation of the positive charge in the carboxy-terminus of the protein. An expression study demonstrates the mutation leads to reduced protein expression, supporting haploinsufficiency of HIST1H1E protein and loss of function as an underlying mechanism of dysfunction in the brain. Taken together with other recent cases with mutations of HIST1H1E in intellectual disability, the evidence supporting the link to causality in disease is strong. Our finding implicates the deficiency of H1 linker histone protein in autism. The systematic review of candidate genes implicated in ASD revealed that 42 of 215 (19.5%) genes are directly involved in epigenetic regulations and the majority of these genes belong to histone writers, readers, and erasers. While the mechanism of how haploinsufficiency of HIST1H1E causes autism is entirely unknown, our report underscores the importance of further study of the function of this protein and other histone linker proteins in brain development.
Collapse
Affiliation(s)
- Lara J Duffney
- Department of Pediatrics, Duke University School of Medicine, Durham NC 27710 US
- Department of Neurobiology, Duke University School of Medicine Durham NC 27710 US
| | - Purnima Valdez
- Department of Pediatrics, Duke University School of Medicine, Durham NC 27710 US
| | - Martine W Tremblay
- Program in Genetics and Genomics, Duke University School of Medicine, Durham NC 27710 US
| | - Xinyu Cao
- Department of Pediatrics, Duke University School of Medicine, Durham NC 27710 US
| | - Sarah Montgomery
- Department of Pediatrics, Duke University School of Medicine, Durham NC 27710 US
| | | | - Yong-hui Jiang
- Department of Pediatrics, Duke University School of Medicine, Durham NC 27710 US
- Department of Neurobiology, Duke University School of Medicine Durham NC 27710 US
- Program in Genetics and Genomics, Duke University School of Medicine, Durham NC 27710 US
| |
Collapse
|
43
|
C-terminal intrinsically disordered region-dependent organization of the mycobacterial genome by a histone-like protein. Sci Rep 2018; 8:8197. [PMID: 29844400 PMCID: PMC5974015 DOI: 10.1038/s41598-018-26463-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/11/2018] [Indexed: 11/23/2022] Open
Abstract
The architecture of the genome influences the functions of DNA from bacteria to eukaryotes. Intrinsically disordered regions (IDR) of eukaryotic histones have pivotal roles in various processes of gene expression. IDR is rare in bacteria, but interestingly, mycobacteria produce a unique histone-like protein, MDP1 that contains a long C-terminal IDR. Here we analyzed the role of IDR in MDP1 function. By employing Mycobacterium smegmatis that inducibly expresses MDP1 or its IDR-deficient mutant, we observed that MDP1 induces IDR-dependent DNA compaction. MDP1-IDR is also responsible for the induction of growth arrest and tolerance to isoniazid, a front line tuberculosis drug that kills growing but not growth-retardated mycobacteria. We demonstrated that MDP1-deficiency and conditional knock out of MDP1 cause spreading of the M. smegmatis genome in the stationary phase. This study thus demonstrates for the first time a C-terminal region-dependent organization of the genome architecture by MDP1, implying the significance of IDR in the function of bacterial histone-like protein.
Collapse
|
44
|
Öztürk MA, Cojocaru V, Wade RC. Dependence of Chromatosome Structure on Linker Histone Sequence and Posttranslational Modification. Biophys J 2018; 114:2363-2375. [PMID: 29759374 PMCID: PMC6129471 DOI: 10.1016/j.bpj.2018.04.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/18/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022] Open
Abstract
Linker histone (LH) proteins play a key role in higher-order structuring of chromatin for the packing of DNA in eukaryotic cells and in the regulation of genomic function. The common fruit fly (Drosophila melanogaster) has a single somatic isoform of the LH (H1). It is thus a useful model organism for investigating the effects of the LH on nucleosome compaction and the structure of the chromatosome, the complex formed by binding of an LH to a nucleosome. The structural and mechanistic details of how LH proteins bind to nucleosomes are debated. Here, we apply Brownian dynamics simulations to compare the nucleosome binding of the globular domain of D. melanogaster H1 (gH1) and the corresponding chicken (Gallus gallus) LH isoform, gH5, to identify residues in the LH that critically affect the structure of the chromatosome. Moreover, we investigate the effects of posttranslational modifications on the gH1 binding mode. We find that certain single-point mutations and posttranslational modifications of the LH proteins can significantly affect chromatosome structure. These findings indicate that even subtle differences in LH sequence can significantly shift the chromatosome structural ensemble and thus have implications for chromatin structure and transcriptional regulation.
Collapse
Affiliation(s)
- Mehmet Ali Öztürk
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany; The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, Heidelberg University, Heidelberg, Germany
| | - Vlad Cojocaru
- Computational Structural Biology Laboratory, Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany; Center for Multiscale Theory and Computation, Westfälische Wilhelms University, Münster, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany; Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, Germany.
| |
Collapse
|
45
|
Ivic N, Bilokapic S, Halic M. Preparative two-step purification of recombinant H1.0 linker histone and its domains. PLoS One 2017; 12:e0189040. [PMID: 29206861 PMCID: PMC5716531 DOI: 10.1371/journal.pone.0189040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 11/19/2017] [Indexed: 01/07/2023] Open
Abstract
H1 linker histones are small basic proteins that have a key role in the formation and maintenance of higher-order chromatin structures. Additionally, many examples have shown that linker histones play an important role in gene regulation, modulated by their various subtypes and posttranslational modifications. Obtaining high amounts of very pure linker histones, especially for efficient antibody production, remains a demanding and challenging procedure. Here we present an easy and fast method to purify human linker histone H1.0 overexpressed in Escherichia coli, as well as its domains: N-terminal/globular domain and C-terminal intrinsically disordered domain. This purification protocol relies on a simple affinity chromatography step followed by cation exchange due to the highly basic properties of histone proteins. Therefore, this protocol can also be applied to other linker histones. Highly pure proteins in amounts sufficient for most biochemical experiments can be obtained. The functional quality of purified H1.0 histone and its domains has been confirmed by pull-down, gel-mobility shift assays and the nuclear import assay.
Collapse
Affiliation(s)
- Nives Ivic
- Department of Biochemistry, Gene Center, University of Munich LMU, Munich, Germany
| | - Silvija Bilokapic
- Department of Biochemistry, Gene Center, University of Munich LMU, Munich, Germany
- * E-mail:
| | - Mario Halic
- Department of Biochemistry, Gene Center, University of Munich LMU, Munich, Germany
| |
Collapse
|
46
|
Murphy KJ, Cutter AR, Fang H, Postnikov YV, Bustin M, Hayes JJ. HMGN1 and 2 remodel core and linker histone tail domains within chromatin. Nucleic Acids Res 2017; 45:9917-9930. [PMID: 28973435 PMCID: PMC5622319 DOI: 10.1093/nar/gkx579] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/28/2017] [Indexed: 01/23/2023] Open
Abstract
The structure of the nucleosome, the basic building block of the chromatin fiber, plays a key role in epigenetic regulatory processes that affect DNA-dependent processes in the context of chromatin. Members of the HMGN family of proteins bind specifically to nucleosomes and affect chromatin structure and function, including transcription and DNA repair. To better understand the mechanisms by which HMGN 1 and 2 alter chromatin, we analyzed their effect on the organization of histone tails and linker histone H1 in nucleosomes. We find that HMGNs counteract linker histone (H1)-dependent stabilization of higher order ‘tertiary’ chromatin structures but do not alter the intrinsic ability of nucleosome arrays to undergo salt-induced compaction and self-association. Surprisingly, HMGNs do not displace H1s from nucleosomes; rather these proteins bind nucleosomes simultaneously with H1s without disturbing specific contacts between the H1 globular domain and nucleosomal DNA. However, HMGNs do alter the nucleosome-dependent condensation of the linker histone C-terminal domain, which is critical for stabilizing higher-order chromatin structures. Moreover, HMGNs affect the interactions of the core histone tail domains with nucleosomal DNA, redirecting the tails to more interior positions within the nucleosome. Our studies provide new insights into the molecular mechanisms whereby HMGNs affect chromatin structure.
Collapse
Affiliation(s)
- Kevin J Murphy
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Amber R Cutter
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - He Fang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Yuri V Postnikov
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Bustin
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey J Hayes
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| |
Collapse
|
47
|
Bednar J, Garcia-Saez I, Boopathi R, Cutter AR, Papai G, Reymer A, Syed SH, Lone IN, Tonchev O, Crucifix C, Menoni H, Papin C, Skoufias DA, Kurumizaka H, Lavery R, Hamiche A, Hayes JJ, Schultz P, Angelov D, Petosa C, Dimitrov S. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1. Mol Cell 2017; 66:384-397.e8. [PMID: 28475873 DOI: 10.1016/j.molcel.2017.04.012] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/08/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
Linker histones associate with nucleosomes to promote the formation of higher-order chromatin structure, but the underlying molecular details are unclear. We investigated the structure of a 197 bp nucleosome bearing symmetric 25 bp linker DNA arms in complex with vertebrate linker histone H1. We determined electron cryo-microscopy (cryo-EM) and crystal structures of unbound and H1-bound nucleosomes and validated these structures by site-directed protein cross-linking and hydroxyl radical footprinting experiments. Histone H1 shifts the conformational landscape of the nucleosome by drawing the two linkers together and reducing their flexibility. The H1 C-terminal domain (CTD) localizes primarily to a single linker, while the H1 globular domain contacts the nucleosome dyad and both linkers, associating more closely with the CTD-distal linker. These findings reveal that H1 imparts a strong degree of asymmetry to the nucleosome, which is likely to influence the assembly and architecture of higher-order structures.
Collapse
Affiliation(s)
- Jan Bednar
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Isabel Garcia-Saez
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Ramachandran Boopathi
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Amber R Cutter
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA
| | - Gabor Papai
- Department of Integrated Structural Biology, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France
| | - Anna Reymer
- MMSB, University of Lyon I/CNRS UMR 5086, Institut de Biologie et Chimie des Protéines, 69367 Lyon, France
| | - Sajad H Syed
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Imtiaz Nisar Lone
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Ognyan Tonchev
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Corinne Crucifix
- Department of Integrated Structural Biology, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France
| | - Hervé Menoni
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Christophe Papin
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France
| | - Dimitrios A Skoufias
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Richard Lavery
- MMSB, University of Lyon I/CNRS UMR 5086, Institut de Biologie et Chimie des Protéines, 69367 Lyon, France
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France.
| | - Jeffrey J Hayes
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA.
| | - Patrick Schultz
- Department of Integrated Structural Biology, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France.
| | - Dimitar Angelov
- Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
| | - Carlo Petosa
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France.
| | - Stefan Dimitrov
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France.
| |
Collapse
|
48
|
Liao R, Mizzen CA. Site-specific regulation of histone H1 phosphorylation in pluripotent cell differentiation. Epigenetics Chromatin 2017; 10:29. [PMID: 28539972 PMCID: PMC5440973 DOI: 10.1186/s13072-017-0135-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Structural variation among histone H1 variants confers distinct modes of chromatin binding that are important for differential regulation of chromatin condensation, gene expression and other processes. Changes in the expression and genomic distributions of H1 variants during cell differentiation appear to contribute to phenotypic differences between cell types, but few details are known about the roles of individual H1 variants and the significance of their disparate capacities for phosphorylation. In this study, we investigated the dynamics of interphase phosphorylation at specific sites in individual H1 variants during the differentiation of pluripotent NT2 and mouse embryonic stem cells and characterized the kinases involved in regulating specific H1 variant phosphorylations in NT2 and HeLa cells. RESULTS Here, we show that the global levels of phosphorylation at H1.5-Ser18 (pS18-H1.5), H1.2/H1.5-Ser173 (pS173-H1.2/5) and H1.4-Ser187 (pS187-H1.4) are regulated differentially during pluripotent cell differentiation. Enrichment of pS187-H1.4 near the transcription start site of pluripotency factor genes in pluripotent cells is markedly reduced upon differentiation, whereas pS187-H1.4 levels at housekeeping genes are largely unaltered. Selective inhibition of CDK7 or CDK9 rapidly diminishes pS187-H1.4 levels globally and its enrichment at housekeeping genes, and similar responses were observed following depletion of CDK9. These data suggest that H1.4-S187 is a bona fide substrate for CDK9, a notion that is further supported by the significant colocalization of CDK9 and pS187-H1.4 to gene promoters in reciprocal re-ChIP analyses. Moreover, treating cells with actinomycin D to inhibit transcription and trigger the release of active CDK9/P-TEFb from 7SK snRNA complexes induces the accumulation of pS187-H1.4 at promoters and gene bodies. Notably, the levels of pS187-H1.4 enrichment after actinomycin D treatment or cell differentiation reflect the extent of CDK9 recruitment at the same loci. Remarkably, the global levels of H1.5-S18 and H1.2/H1.5-S173 phosphorylation are not affected by these transcription inhibitor treatments, and selective inhibition of CDK2 does not affect the global levels of phosphorylation at H1.4-S187 or H1.5-S18. CONCLUSIONS Our data provide strong evidence that H1 variant interphase phosphorylation is dynamically regulated in a site-specific and gene-specific fashion during pluripotent cell differentiation, and that enrichment of pS187-H1.4 at genes is positively related to their transcription. H1.4-S187 is likely to be a direct target of CDK9 during interphase, suggesting the possibility that this particular phosphorylation may contribute to the release of paused RNA pol II. In contrast, the other H1 variant phosphorylations we investigated appear to be mediated by distinct kinases and further analyses are needed to determine their functional significance.
Collapse
Affiliation(s)
- Ruiqi Liao
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, B107 Chemistry and Life Sciences Building, MC-123 601 S. Goodwin Ave., Urbana, IL 61801 USA
| | - Craig A Mizzen
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, B107 Chemistry and Life Sciences Building, MC-123 601 S. Goodwin Ave., Urbana, IL 61801 USA.,Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801 USA
| |
Collapse
|
49
|
Active and poised promoter states drive folding of the extended HoxB locus in mouse embryonic stem cells. Nat Struct Mol Biol 2017; 24:515-524. [DOI: 10.1038/nsmb.3402] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/27/2017] [Indexed: 12/30/2022]
|
50
|
Abstract
Eukaryotic genomes are packaged in chromatin. The higher-order organization of nucleosome core particles is controlled by the association of the intervening linker DNA with either the linker histone H1 or high mobility group box (HMGB) proteins. While H1 is thought to stabilize the nucleosome by preventing DNA unwrapping, the DNA bending imposed by HMGB may propagate to the nucleosome to destabilize chromatin. For metazoan H1, chromatin compaction requires its lysine-rich C-terminal domain, a domain that is buried between globular domains in the previously characterized yeast Saccharomyces cerevisiae linker histone Hho1p. Here, we discuss the functions of S. cerevisiae HMO1, an HMGB family protein unique in containing a terminal lysine-rich domain and in stabilizing genomic DNA. On ribosomal DNA (rDNA) and genes encoding ribosomal proteins, HMO1 appears to exert its role primarily by stabilizing nucleosome-free regions or "fragile" nucleosomes. During replication, HMO1 likewise appears to ensure low nucleosome density at DNA junctions associated with the DNA damage response or the need for topoisomerases to resolve catenanes. Notably, HMO1 shares with the mammalian linker histone H1 the ability to stabilize chromatin, as evidenced by the absence of HMO1 creating a more dynamic chromatin environment that is more sensitive to nuclease digestion and in which chromatin-remodeling events associated with DNA double-strand break repair occur faster; such chromatin stabilization requires the lysine-rich extension of HMO1. Thus, HMO1 appears to have evolved a unique linker histone-like function involving the ability to stabilize both conventional nucleosome arrays as well as DNA regions characterized by low nucleosome density or the presence of noncanonical nucleosomes.
Collapse
|