1
|
Shao L, Tan Y, Song S, Wang Y, Liu Y, Huang Y, Ren X, Liu Z. Achog1 is required for the asexual sporulation, stress responses and pigmentation of Aspergillus cristatus. Front Microbiol 2022; 13:1003244. [PMID: 36504805 PMCID: PMC9733950 DOI: 10.3389/fmicb.2022.1003244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022] Open
Abstract
Aspergillus cristatus is the dominant fungus during the fermentation of Fuzhuan brick tea; hypotonic conditions only induce its sexual development to produce ascospores, while hypertonic conditions only induce its asexual development to produce conidia, indicating that osmotic stress can regulate spore production in A. cristatus. However, the underlying regulatory mechanism is unclear. In this study, the role of Achog1, which is homologous to hog1 from Saccharomyces cerevisiae, in sporulation, different kinds of stress responses and pigment production was investigated. Deletion mutants of Achog1 were obtained by homologous recombination. Phenotypic observations showed that the time required to produce conidia was delayed, and the number of conidia produced was significantly reduced in the deletion mutants of Achog1 in hypertonic media, indicating that Achog1 plays a positive role in asexual development. Stress sensitivity tests showed that ΔAchog1 strains were sensitive to hyperosmolarity, and the order of the sensitivity of ΔAchog1 to different osmotic regulators was 3 M sucrose >3 M NaCl >3 M sorbitol. Moreover, the deletion mutants were sensitive to high oxidative stress. pH sensitivity tests indicated that Achog1 inhibited the growth of A. cristatus under alkaline stress. Additionally, pigmentation was decreased in the Achog1 deletion mutants compared with the WT. All the above developmental defects were reversed by the reintroduction of the Achog1 gene in ΔAchog1. Pull-down and LC-MS/MS analysis showed that the expression levels of proteins interacting with Achog1 were significantly different under low and high osmotic stress, and proteins related to conidial development were present only in the cultures treated with hyperosmotic stress. Transcription profiling data showed that Achog1 suppressed the expression of several genes related to asexual development, osmotic and oxidative stress resistance. On the basis of gene knockout, pull-down mass spectrometry and RNA-seq analyses, a regulatory pathway for Achog1 was roughly identified in A. cristatus.
Collapse
Affiliation(s)
- Lei Shao
- College of Agriculture, Guizhou University, Guiyang, China
| | - Yumei Tan
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China,*Correspondence: Yumei Tan,
| | - Shiying Song
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yuchen Wang
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yongxiang Liu
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yonghui Huang
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Xiyi Ren
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zuoyi Liu
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China,Zuoyi Liu,
| |
Collapse
|
2
|
Zhu Y, Li J, Peng L, Meng L, Diao M, Jiang S, Li J, Xie N. High-yield production of protopanaxadiol from sugarcane molasses by metabolically engineered Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:230. [PMID: 36335407 PMCID: PMC9636795 DOI: 10.1186/s12934-022-01949-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background Ginsenosides are Panax plant-derived triterpenoid with wide applications in cardiovascular protection and immunity-boosting. However, the saponins content of Panax plants is fairly low, making it time-consuming and unsustainable by direct extraction. Protopanaxadiol (PPD) is a common precursor of dammarane-type saponins, and its sufficient supply is necessary for the efficient synthesis of ginsenoside. Results In this study, a combinational strategy was used for the construction of an efficient yeast cell factory for PPD production. Firstly, a PPD-producing strain was successfully constructed by modular engineering in Saccharomyces cerevisiae BY4742 at the multi-copy sites. Then, the INO2 gene, encoding a transcriptional activator of the phospholipid biosynthesis, was fine-tuned to promote the endoplasmic reticulum (ER) proliferation and improve the catalytic efficiency of ER-localized enzymes. To increase the metabolic flux of PPD, dynamic control, based on a carbon-source regulated promoter PHXT1, was introduced to repress the competition of sterols. Furthermore, the global transcription factor UPC2-1 was introduced to sterol homeostasis and up-regulate the MVA pathway, and the resulting strain BY-V achieved a PPD production of 78.13 ± 0.38 mg/g DCW (563.60 ± 1.65 mg/L). Finally, sugarcane molasses was used as an inexpensive substrate for the first time in PPD synthesis. The PPD titers reached 1.55 ± 0.02 and 15.88 ± 0.65 g/L in shake flasks and a 5-L bioreactor, respectively. To the best of our knowledge, these results were new records on PPD production. Conclusion The high-level of PPD production in this study and the successful comprehensive utilization of low-cost carbon source -sugarcane molassesindicate that the constructed yeast cell factory is an excellent candidate strain for the production of high-value-added PPD and its derivativeswith great industrial potential. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01949-4.
Collapse
Affiliation(s)
- Yuan Zhu
- grid.256609.e0000 0001 2254 5798College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004 China ,grid.418329.50000 0004 1774 8517State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007 China
| | - Jianxiu Li
- grid.418329.50000 0004 1774 8517State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007 China
| | - Longyun Peng
- grid.418329.50000 0004 1774 8517State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007 China
| | - Lijun Meng
- grid.418329.50000 0004 1774 8517State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007 China
| | - Mengxue Diao
- grid.418329.50000 0004 1774 8517State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007 China
| | - Shuiyuan Jiang
- grid.469559.20000 0000 9677 2830Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region and the Chinese Academy of Sciences, Guilin, 541006 China
| | - Jianbin Li
- grid.256609.e0000 0001 2254 5798College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004 China
| | - Nengzhong Xie
- grid.418329.50000 0004 1774 8517State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007 China
| |
Collapse
|
3
|
de Nadal E, Posas F. OUP accepted manuscript. FEMS Yeast Res 2022; 22:6543702. [PMID: 35254447 PMCID: PMC8953452 DOI: 10.1093/femsyr/foac013] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Eulàlia de Nadal
- Corresponding author: Institute for Research in Biomedicine (IRB Barcelona) Parc Científic de Barcelona c/ Baldiri Reixac, 10. 08028 Barcelona - Spain. E-mail:
| | - Francesc Posas
- Corresponding author: Institute for Research in Biomedicine (IRB Barcelona) Parc Científic de Barcelona c/ Baldiri Reixac, 10. 08028 Barcelona - Spain. E-mail:
| |
Collapse
|
4
|
Brink DP, Borgström C, Persson VC, Ofuji Osiro K, Gorwa-Grauslund MF. D-Xylose Sensing in Saccharomyces cerevisiae: Insights from D-Glucose Signaling and Native D-Xylose Utilizers. Int J Mol Sci 2021; 22:12410. [PMID: 34830296 PMCID: PMC8625115 DOI: 10.3390/ijms222212410] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Extension of the substrate range is among one of the metabolic engineering goals for microorganisms used in biotechnological processes because it enables the use of a wide range of raw materials as substrates. One of the most prominent examples is the engineering of baker's yeast Saccharomyces cerevisiae for the utilization of d-xylose, a five-carbon sugar found in high abundance in lignocellulosic biomass and a key substrate to achieve good process economy in chemical production from renewable and non-edible plant feedstocks. Despite many excellent engineering strategies that have allowed recombinant S. cerevisiae to ferment d-xylose to ethanol at high yields, the consumption rate of d-xylose is still significantly lower than that of its preferred sugar d-glucose. In mixed d-glucose/d-xylose cultivations, d-xylose is only utilized after d-glucose depletion, which leads to prolonged process times and added costs. Due to this limitation, the response on d-xylose in the native sugar signaling pathways has emerged as a promising next-level engineering target. Here we review the current status of the knowledge of the response of S. cerevisiae signaling pathways to d-xylose. To do this, we first summarize the response of the native sensing and signaling pathways in S. cerevisiae to d-glucose (the preferred sugar of the yeast). Using the d-glucose case as a point of reference, we then proceed to discuss the known signaling response to d-xylose in S. cerevisiae and current attempts of improving the response by signaling engineering using native targets and synthetic (non-native) regulatory circuits.
Collapse
Affiliation(s)
- Daniel P. Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| | - Celina Borgström
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
- BioZone Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada
| | - Viktor C. Persson
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| | - Karen Ofuji Osiro
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasília 70770-901, DF, Brazil
| | - Marie F. Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| |
Collapse
|
5
|
Transporter engineering promotes the co-utilization of glucose and xylose by Candida glycerinogenes for d-xylonate production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Qiao Y, Zhou J, Lu X, Zong H, Zhuge B. Improving the productivity of Candida glycerinogenes in the fermentation of ethanol from non-detoxified sugarcane bagasse hydrolysate by a hexose transporter mutant. J Appl Microbiol 2021; 131:1787-1799. [PMID: 33694233 DOI: 10.1111/jam.15059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 11/27/2022]
Abstract
AIMS In this study, we attempted to increase the productivity of Candida glycerinogenes yeast for ethanol production from non-detoxified sugarcane bagasse hydrolysates (NDSBH) by identifying the hexose transporter in this yeast that makes a high contribution to glucose consumption, and by adding additional copies of this transporter and enhancing its membrane localisation stability (MLS). METHODS AND RESULTS Based on the knockout and overexpression of key hexose transporter genes and the characterisation of their promoter properties, we found that Cghxt4 and Cghxt6 play major roles in the early and late stages of fermentation, respectively, with Cghxt4 contributing most to glucose consumption. Next, subcellular localisation analysis revealed that a common mutation of two ubiquitination sites (K9 and K538) in Cghxt4 improved its MLS. Finally, we overexpressed this Cghxt4 mutant (Cghxt4.2A) using a strong promoter, PCgGAP , which resulted in a significant increase in the ethanol productivity of C. glycerinogenes in the NDSBH medium. Specifically, the recombinant strain showed 18 and 25% higher ethanol productivity than the control in two kinds of YP-NDSBH medium (YP-NDSBH1G160 and YP-NDSBH2G160 ), respectively. CONCLUSIONS The hexose transporter mutant Cghxt4.2A (Cghxt4K9A,K538A ) with multiple copies and high MLS was able to significantly increase the ethanol productivity of C. glycerinogenes in NDSBH. SIGNIFICANCE AND IMPACT OF THE STUDY Our results provide a promising strategy for constructing efficient strains for ethanol production.
Collapse
Affiliation(s)
- Y Qiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - J Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - X Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - H Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - B Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Nijland JG, Li X, Shin HY, de Waal PP, Driessen AJM. Efficient, D-glucose insensitive, growth on D-xylose by an evolutionary engineered Saccharomyces cerevisiae strain. FEMS Yeast Res 2020; 19:5647354. [PMID: 31782779 DOI: 10.1093/femsyr/foz083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022] Open
Abstract
Optimizing D-xylose consumption in Saccharomyces cerevisiae is essential for cost-efficient cellulosic bioethanol production. An evolutionary engineering approach was used to elevate D-xylose consumption in a xylose-fermenting S. cerevisiae strain carrying the D-xylose-specific N367I mutation in the endogenous chimeric Hxt36 hexose transporter. This strain carries a quadruple hexokinase deletion that prevents glucose utilization, and allows for selection of improved growth rates on D-xylose in the presence of high D-glucose concentrations. Evolutionary engineering resulted in D-glucose-insensitive growth and consumption of D-xylose, which could be attributed to glucose insensitive D-xylose uptake via a novel chimeric Hxt37 N367I transporter that emerged from a fusion of the HXT36 and HXT7 genes, and a down regulation of a set of Hxt transporters that mediate glucose sensitive xylose transport. RNA sequencing revealed the downregulation of HXT1 and HXT2 which, together with the deletion of HXT7, resulted in a 21% reduction of the expression of all plasma membrane transporters genes. Morphological analysis showed an increased cell size and corresponding increased cell surface area of the evolved strain, which could be attributed to genome duplication. Mixed strain fermentation of the D-xylose-consuming strain DS71054-evo6 with the D-glucose consuming CEN.PK113-7D strain resulted in decreased residual sugar concentrations and improved ethanol production yields compared to a strain which sequentially consumes D-glucose and D-xylose.
Collapse
Affiliation(s)
- Jeroen G Nijland
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology (GBB), University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Xiang Li
- Department of Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology (GBB), University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Hyun Yong Shin
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology (GBB), University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Paul P de Waal
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology (GBB), University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| |
Collapse
|
8
|
Zhang P, Chen Q, Fu G, Xia L, Hu X. Regulation and metabolic engineering strategies for permeases of Saccharomyces cerevisiae. World J Microbiol Biotechnol 2019; 35:112. [PMID: 31286266 DOI: 10.1007/s11274-019-2684-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/26/2019] [Indexed: 12/19/2022]
Abstract
Microorganisms have evolved permeases to incorporate various essential nutrients and exclude harmful products, which assists in adaptation to different environmental conditions for survival. As permeases are directly involved in the utilization of and regulatory response to nutrient sources, metabolic engineering of microbial permeases can predictably influence nutrient metabolism and regulation. In this mini-review, we have summarized the mechanisms underlying the general regulation of permeases, and the current advancements and future prospects of metabolic engineering strategies targeting the permeases in Saccharomyces cerevisiae. The different types of permeases and their regulatory mechanisms have been discussed. Furthermore, methods for metabolic engineering of permeases have been highlighted. Understanding the mechanisms via which permeases are meticulously regulated and engineered will not only facilitate research on regulation of global nutrition and yeast metabolic engineering, but can also provide important insights for future studies on the synthesis of valuable products and elimination of harmful substances in S. cerevisiae.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.,School of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, Jiangxi, China
| | - Qian Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.,School of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, Jiangxi, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.,School of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, Jiangxi, China
| | - Linglin Xia
- Department of Software, Nanchang University, Nanchang, 330047, China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China. .,School of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, Jiangxi, China.
| |
Collapse
|
9
|
Osiro KO, Borgström C, Brink DP, Fjölnisdóttir BL, Gorwa-Grauslund MF. Exploring the xylose paradox in Saccharomyces cerevisiae through in vivo sugar signalomics of targeted deletants. Microb Cell Fact 2019; 18:88. [PMID: 31122246 PMCID: PMC6532234 DOI: 10.1186/s12934-019-1141-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 05/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There have been many successful strategies to implement xylose metabolism in Saccharomyces cerevisiae, but no effort has so far enabled xylose utilization at rates comparable to that of glucose (the preferred sugar of this yeast). Many studies have pointed towards the engineered yeast not sensing that xylose is a fermentable carbon source despite growing and fermenting on it, which is paradoxical. We have previously used fluorescent biosensor strains to in vivo monitor the sugar signalome in yeast engineered with xylose reductase and xylitol dehydrogenase (XR/XDH) and have established that S. cerevisiae senses high concentrations of xylose with the same signal as low concentration of glucose, which may explain the poor utilization. RESULTS In the present study, we evaluated the effects of three deletions (ira2∆, isu1∆ and hog1∆) that have recently been shown to display epistatic effects on a xylose isomerase (XI) strain. Through aerobic and anaerobic characterization, we showed that the proposed effects in XI strains were for the most part also applicable in the XR/XDH background. The ira2∆isu1∆ double deletion led to strains with the highest specific xylose consumption- and ethanol production rates but also the lowest biomass titre. The signalling response revealed that ira2∆isu1∆ changed the low glucose-signal in the background strain to a simultaneous signalling of high and low glucose, suggesting that engineering of the signalome can improve xylose utilization. CONCLUSIONS The study was able to correlate the previously proposed beneficial effects of ira2∆, isu1∆ and hog1∆ on S. cerevisiae xylose uptake, with a change in the sugar signalome. This is in line with our previous hypothesis that the key to resolve the xylose paradox lies in the sugar sensing and signalling networks. These results indicate that the future engineering targets for improved xylose utilization should probably be sought not in the metabolic networks, but in the signalling ones.
Collapse
Affiliation(s)
- Karen O Osiro
- Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Celina Borgström
- Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Daniel P Brink
- Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | | | | |
Collapse
|
10
|
Wagner ER, Myers KS, Riley NM, Coon JJ, Gasch AP. PKA and HOG signaling contribute separable roles to anaerobic xylose fermentation in yeast engineered for biofuel production. PLoS One 2019; 14:e0212389. [PMID: 31112537 PMCID: PMC6528989 DOI: 10.1371/journal.pone.0212389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
Lignocellulosic biomass offers a sustainable source for biofuel production that does not compete with food-based cropping systems. Importantly, two critical bottlenecks prevent economic adoption: many industrially relevant microorganisms cannot ferment pentose sugars prevalent in lignocellulosic medium, leaving a significant amount of carbon unutilized. Furthermore, chemical biomass pretreatment required to release fermentable sugars generates a variety of toxins, which inhibit microbial growth and metabolism, specifically limiting pentose utilization in engineered strains. Here we dissected genetic determinants of anaerobic xylose fermentation and stress tolerance in chemically pretreated corn stover biomass, called hydrolysate. We previously revealed that loss-of-function mutations in the stress-responsive MAP kinase HOG1 and negative regulator of the RAS/Protein Kinase A (PKA) pathway, IRA2, enhances anaerobic xylose fermentation. However, these mutations likely reduce cells' ability to tolerate the toxins present in lignocellulosic hydrolysate, making the strain especially vulnerable to it. We tested the contributions of Hog1 and PKA signaling via IRA2 or PKA negative regulatory subunit BCY1 to metabolism, growth, and stress tolerance in corn stover hydrolysate and laboratory medium with mixed sugars. We found mutations causing upregulated PKA activity increase growth rate and glucose consumption in various media but do not have a specific impact on xylose fermentation. In contrast, mutation of HOG1 specifically increased xylose usage. We hypothesized improving stress tolerance would enhance the rate of xylose consumption in hydrolysate. Surprisingly, increasing stress tolerance did not augment xylose fermentation in lignocellulosic medium in this strain background, suggesting other mechanisms besides cellular stress limit this strain's ability for anaerobic xylose fermentation in hydrolysate.
Collapse
Affiliation(s)
- Ellen R. Wagner
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI United States of America
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI United States of America
| | - Nicholas M. Riley
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI United States of America
- Genome Center of Wisconsin, University of Wisconsin–Madison, Madison, WI United States of America
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison WI United States of America
- Morgridge Institute for Research, Madison, WI United States of America
| | - Audrey P. Gasch
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI United States of America
- Genome Center of Wisconsin, University of Wisconsin–Madison, Madison, WI United States of America
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI United States of America
| |
Collapse
|
11
|
Liang Z, Liu D, Lu X, Zong H, Song J, Zhuge B. Identification and characterization from Candida glycerinogenes of hexose transporters having high efficiency at high glucose concentrations. Appl Microbiol Biotechnol 2018; 102:5557-5567. [DOI: 10.1007/s00253-018-9027-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/06/2018] [Accepted: 04/14/2018] [Indexed: 01/16/2023]
|
12
|
Osiro KO, Brink DP, Borgström C, Wasserstrom L, Carlquist M, Gorwa-Grauslund MF. Assessing the effect of d-xylose on the sugar signaling pathways of Saccharomyces cerevisiae in strains engineered for xylose transport and assimilation. FEMS Yeast Res 2018; 18:4791530. [DOI: 10.1093/femsyr/fox096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/27/2017] [Indexed: 01/18/2023] Open
Affiliation(s)
- Karen O Osiro
- Applied Microbiology, Department of Chemistry, Lund University, Kemicentrum, Naturvetarvägen 14, Lund 223 62, Sweden
| | - Daniel P Brink
- Applied Microbiology, Department of Chemistry, Lund University, Kemicentrum, Naturvetarvägen 14, Lund 223 62, Sweden
| | - Celina Borgström
- Applied Microbiology, Department of Chemistry, Lund University, Kemicentrum, Naturvetarvägen 14, Lund 223 62, Sweden
| | - Lisa Wasserstrom
- Applied Microbiology, Department of Chemistry, Lund University, Kemicentrum, Naturvetarvägen 14, Lund 223 62, Sweden
| | - Magnus Carlquist
- Applied Microbiology, Department of Chemistry, Lund University, Kemicentrum, Naturvetarvägen 14, Lund 223 62, Sweden
| | | |
Collapse
|
13
|
Comparative Transcriptome Analysis of Penicillium citrinum Cultured with Different Carbon Sources Identifies Genes Involved in Citrinin Biosynthesis. Toxins (Basel) 2017; 9:toxins9020069. [PMID: 28230802 PMCID: PMC5331448 DOI: 10.3390/toxins9020069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/13/2017] [Indexed: 11/17/2022] Open
Abstract
Citrinin is a toxic secondary metabolite of Penicillium citrinum and its contamination in many food items has been widely reported. However, research on the citrinin biosynthesis pathway and its regulation mechanism in P. citrinum is rarely reported. In this study, we investigated the effect of different carbon sources on citrinin production by P. citrinum and used transcriptome analysis to study the underlying molecular mechanism. Our results indicated that glucose, used as the sole carbon source, could significantly promote citrinin production by P. citrinum in Czapek’s broth medium compared with sucrose. A total of 19,967 unigenes were annotated by BLAST in Nr, Nt, Swiss-Prot and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Transcriptome comparison between P. citrinum cultured with sucrose and glucose revealed 1085 differentially expressed unigenes. Among them, 610 were upregulated while 475 were downregulated under glucose as compared to sucrose. KEGG pathway and Gene ontology (GO) analysis indicated that many metabolic processes (e.g., carbohydrate, secondary metabolism, fatty acid and amino acid metabolism) were affected, and potentially interesting genes that encoded putative components of signal transduction, stress response and transcription factor were identified. These genes obviously had important impacts on their regulation in citrinin biosynthesis, which provides a better understanding of the molecular mechanism of citrinin biosynthesis by P. citrinum.
Collapse
|
14
|
Sugar and Glycerol Transport in Saccharomyces cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:125-168. [PMID: 26721273 DOI: 10.1007/978-3-319-25304-6_6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In Saccharomyces cerevisiae the process of transport of sugar substrates into the cell comprises a complex network of transporters and interacting regulatory mechanisms. Members of the large family of hexose (HXT) transporters display uptake efficiencies consistent with their environmental expression and play physiological roles in addition to feeding the glycolytic pathway. Multiple glucose-inducing and glucose-independent mechanisms serve to regulate expression of the sugar transporters in yeast assuring that expression levels and transporter activity are coordinated with cellular metabolism and energy needs. The expression of sugar transport activity is modulated by other nutritional and environmental factors that may override glucose-generated signals. Transporter expression and activity is regulated transcriptionally, post-transcriptionally and post-translationally. Recent studies have expanded upon this suite of regulatory mechanisms to include transcriptional expression fine tuning mediated by antisense RNA and prion-based regulation of transcription. Much remains to be learned about cell biology from the continued analysis of this dynamic process of substrate acquisition.
Collapse
|
15
|
Gomar-Alba M, Alepuz P, del Olmo M. Dissection of the elements of osmotic stress response transcription factor Hot1 involved in the interaction with MAPK Hog1 and in the activation of transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1111-25. [DOI: 10.1016/j.bbagrm.2013.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 01/15/2023]
|
16
|
Kim JH, Roy A, Jouandot D, Cho KH. The glucose signaling network in yeast. Biochim Biophys Acta Gen Subj 2013; 1830:5204-10. [PMID: 23911748 DOI: 10.1016/j.bbagen.2013.07.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 01/26/2023]
Abstract
BACKGROUND Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes. SCOPE OF REVIEW This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression. MAJOR CONCLUSIONS The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways-Rgt2/Snf3, AMPK, and cAMP-PKA-to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose. GENERAL SIGNIFICANCE Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors.
Collapse
Affiliation(s)
- Jeong-Ho Kim
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037, USA.
| | | | | | | |
Collapse
|
17
|
Roy A, Shin YJ, Cho KH, Kim JH. Mth1 regulates the interaction between the Rgt1 repressor and the Ssn6-Tup1 corepressor complex by modulating PKA-dependent phosphorylation of Rgt1. Mol Biol Cell 2013; 24:1493-503. [PMID: 23468525 PMCID: PMC3639059 DOI: 10.1091/mbc.e13-01-0047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The yeast glucose transporter gene (HXT) repressor Rgt1 recruits the general corepressor complex Ssn6-Tup1 to bring about repression. The glucose-responsive transcription factor Mth1 is a transcriptional corepressor that mediates the interaction of Rgt1 with Ssn6-Tup1 by blocking the PKA-dependent phosphorylation of Rgt1. Glucose uptake, the first, rate-limiting step of its utilization, is facilitated by glucose transporters. Expression of several glucose transporter (HXT) genes in yeast is repressed by the Rgt1 repressor, which recruits the glucose-responsive transcription factor Mth1 and the general corepressor complex Ssn6-Tup1 in the absence of glucose; however, it is derepressed when Mth1 is inactivated by glucose. Here we show that Ssn6-Tup1 interferes with the DNA-binding ability of Rgt1 in the absence of Mth1 and that the Rgt1 function abrogated by Ssn6 overexpression is restored by co-overexpression of Mth1. Thus Mth1 likely regulates Rgt1 function not by modulating its DNA-binding activity directly but by functionally antagonizing Ssn6-Tup1. Mth1 does so by acting as a scaffold-like protein to recruit Ssn6-Tup1 to Rgt1. Supporting evidence shows that Mth1 blocks the protein kinase A–dependent phosphorylation of Rgt1 that impairs the ability of Rgt1 to interact with Ssn6-Tup1. Of note, Rgt1 can bind DNA in the absence of Ssn6-Tup1 but does not inhibit transcription, suggesting that dissociation of Rgt1 from Ssn6-Tup1, but not from DNA, is necessary and sufficient for the expression of its target genes. Taken together, these findings show that Mth1 is a transcriptional corepressor that facilitates the recruitment of Ssn6-Tup1 by Rgt1.
Collapse
Affiliation(s)
- Adhiraj Roy
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
18
|
Regulations of sugar transporters: insights from yeast. Curr Genet 2013; 59:1-31. [PMID: 23455612 DOI: 10.1007/s00294-013-0388-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/28/2013] [Accepted: 02/02/2013] [Indexed: 12/24/2022]
Abstract
Transport across the plasma membrane is the first step at which nutrient supply is tightly regulated in response to intracellular needs and often also rapidly changing external environment. In this review, I describe primarily our current understanding of multiple interconnected glucose-sensing systems and signal-transduction pathways that ensure fast and optimum expression of genes encoding hexose transporters in three yeast species, Saccharomyces cerevisiae, Kluyveromyces lactis and Candida albicans. In addition, an overview of GAL- and MAL-specific regulatory networks, controlling galactose and maltose utilization, is provided. Finally, pathways generating signals inducing posttranslational degradation of sugar transporters will be highlighted.
Collapse
|
19
|
Dietzel KL, Ramakrishnan V, Murphy EE, Bisson LF. MTH1 and RGT1 demonstrate combined haploinsufficiency in regulation of the hexose transporter genes in Saccharomyces cerevisiae. BMC Genet 2012; 13:107. [PMID: 23234240 PMCID: PMC3564936 DOI: 10.1186/1471-2156-13-107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 12/04/2012] [Indexed: 02/04/2023] Open
Abstract
Background The SNF3 gene in the yeast Saccharomyces cerevisiae encodes a low glucose sensor that regulates expression of an important subset of the hexose transporter (HXT) superfamily. Null mutations of snf3 result in a defect in growth on low glucose concentrations due to the inability to relieve repression of a subset of the HXT genes. The snf3 null mutation phenotype is suppressed by the loss of either one of the downstream co-repressor proteins Rgt1p or Mth1p. The relief of repression allows expression of HXT transporter proteins, the resumption of glucose uptake and therefore of growth in the absence of a functional Snf3 sensor. Results Strains heterozygous for both the RGT1 and MTH1 genes (RGT1/rgt1Δ MTH1/mth1Δ snf3Δ/snf3Δ) but homozygous for the snf3∆ were found to grow on low glucose. Since null alleles in the heterozygous state lead to suppression, MTH1 and RGT1 display the phenomenon of combined haploinsufficiency. This observed haploinsufficiency is consistent with the finding of repressor titration as a mechanism of suppression of snf3. Mutants of the STD1 homolog of MTH1 did not display haploinsufficiency singly or in combination with mutations in RGT1. HXT gene reporter fusion assays indicated that the presence of heterozygosity at the MTH1 and RGT1 alleles leads to increased expression of the HXT2 gene. Deletion of the HXT2 gene in a heterozygous diploid, RGT1/rgt1Δ MTH1/mth1Δ snf3Δ/snf3Δ hxt2Δ/hxt2Δ, prevented the suppression of snf3Δ. Conclusions These findings support the model of relief of repression as the mechanism of restoration of growth on low glucose concentrations in the absence of functional Snf3p. Further, the observation that HXT2 is the gene responsible for restoration of growth under these conditions suggests that the numbers of repressor binding domains found in the regulatory regions of members of the HXT family may have biological relevance and enable differential regulation.
Collapse
Affiliation(s)
- Kevin L Dietzel
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, 95616, USA
| | | | | | | |
Collapse
|
20
|
Abstract
An appropriate response and adaptation to hyperosmolarity, i.e., an external osmolarity that is higher than the physiological range, can be a matter of life or death for all cells. It is especially important for free-living organisms such as the yeast Saccharomyces cerevisiae. When exposed to hyperosmotic stress, the yeast initiates a complex adaptive program that includes temporary arrest of cell-cycle progression, adjustment of transcription and translation patterns, and the synthesis and retention of the compatible osmolyte glycerol. These adaptive responses are mostly governed by the high osmolarity glycerol (HOG) pathway, which is composed of membrane-associated osmosensors, an intracellular signaling pathway whose core is the Hog1 MAP kinase (MAPK) cascade, and cytoplasmic and nuclear effector functions. The entire pathway is conserved in diverse fungal species, while the Hog1 MAPK cascade is conserved even in higher eukaryotes including humans. This conservation is illustrated by the fact that the mammalian stress-responsive p38 MAPK can rescue the osmosensitivity of hog1Δ mutations in response to hyperosmotic challenge. As the HOG pathway is one of the best-understood eukaryotic signal transduction pathways, it is useful not only as a model for analysis of osmostress responses, but also as a model for mathematical analysis of signal transduction pathways. In this review, we have summarized the current understanding of both the upstream signaling mechanism and the downstream adaptive responses to hyperosmotic stress in yeast.
Collapse
Affiliation(s)
- Haruo Saito
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8638, Japan, and
| | - Francesc Posas
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| |
Collapse
|
21
|
Piao H, MacLean Freed J, Mayinger P. Metabolic activation of the HOG MAP kinase pathway by Snf1/AMPK regulates lipid signaling at the Golgi. Traffic 2012; 13:1522-31. [PMID: 22882253 DOI: 10.1111/j.1600-0854.2012.01406.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 12/24/2022]
Abstract
Phosphatidylinositol-4-phosphate (PI(4)P) is an important regulator of Golgi function. Metabolic regulation of Golgi PI(4)P requires the lipid phosphatase Sac1 that translocates between endoplasmic reticulum (ER) and Golgi membranes. Localization of Sac1 responds to changes in glucose levels, yet the upstream signaling pathways that regulate Sac1 traffic are unknown. Here, we report that mitogen-activated protein kinase (MAPK) Hog1 transmits glucose signals to the Golgi and regulates localization of Sac1. We find that Hog1 is rapidly activated by both glucose starvation and glucose stimulation, which is independent of the well-characterized response to osmotic stress but requires the upstream element Ssk1 and is controlled by Snf1, the yeast homolog of AMP-activated kinase (AMPK). Elimination of either Hog1 or Snf1 slows glucose-induced translocation of Sac1 lipid phosphatase from the Golgi to the ER and thus delays PI(4)P accumulation at the Golgi. We conclude that a novel cross-talk between the HOG pathway and Snf1/AMPK is required for the metabolic control of lipid signaling at the Golgi.
Collapse
Affiliation(s)
- Hailan Piao
- Division of Nephrology & Hypertension, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
22
|
Palma M, Madeira SC, Mendes-Ferreira A, Sá-Correia I. Impact of assimilable nitrogen availability in glucose uptake kinetics in Saccharomyces cerevisiae during alcoholic fermentation. Microb Cell Fact 2012; 11:99. [PMID: 22846176 PMCID: PMC3503800 DOI: 10.1186/1475-2859-11-99] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/18/2012] [Indexed: 11/24/2022] Open
Abstract
Background The expression and activity of the different Saccharomyces cerevisiae hexose uptake systems (Hxt) and the kinetics of glucose uptake are considered essential to industrial alcoholic fermentation performance. However, the dynamics of glucose uptake kinetics during the different stages of fermentation, depending on glucose and nitrogen availability, is very poorly characterized. The objective of the present work was to examine thoroughly the alterations occurring in glucose uptake kinetics during alcoholic fermentation, by the wine strain S. cerevisiae PYCC 4072, of a synthetic grape juice basal medium with either a limiting or non-limiting initial nitrogen concentration and following nitrogen supplementation of the nitrogen-depleted sluggish fermentation. Results Independently of the initial concentration of the nitrogen source, glucose transport capacity is maximal during the early stages of fermentation and presumably sustained by the low-affinity and high-capacity glucose transporter Hxt1p. During nitrogen-limited sluggish fermentation, glucose uptake capacity was reduced to approximately 20% of its initial values (Vmax = 4.9 ± 0.8 compared to 21.9 ± 1.2 μmol h-1 10-8 cells), being presumably sustained by the low-affinity glucose transporter Hxt3p (considering the calculated Km = 39.2 ± 8.6 mM). The supplementation of the sluggish fermentation broth with ammonium led to the increase of glucose transport capacity associated to the expression of different glucose uptake systems with low and high affinities for glucose (Km = 58.2 ± 9.1 and 2.7 ± 0.4 mM). A biclustering analysis carried out using microarray data, previously obtained for this yeast strain transcriptional response to equivalent fermentation conditions, indicates that the activation of the expression of genes encoding the glucose transporters Hxt2p (during the transition period to active fermentation) and Hxt3p, Hxt4p, Hxt6p and Hxt7p (during the period of active fermentation) may have a major role in the recovery of glucose uptake rate following ammonium supplementation. These results suggest a general derepression of the glucose-repressible HXT genes and are consistent with the downregulation of Mig1p and Rgt1p. Conclusions Although reduced, glucose uptake rate during nitrogen-limited fermentation is not abrogated. Following ammonium supplementation, sluggish fermentation recovery is associated to the increase of glucose uptake capacity, related to the de novo synthesis of glucose transporters with different affinity for glucose and capacity, presumably of Hxt2p, Hxt3p, Hxt4p, Hxt6p and Hxt7p. This study is a contribution to the understanding of yeast response to different stages of alcoholic fermentation at the level of glucose uptake kinetics, in particular under nitrogen limitation or replenish, which is useful knowledge to guide fermentation practices.
Collapse
Affiliation(s)
- Margarida Palma
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, 1049-001 Lisbon, Portugal
| | | | | | | |
Collapse
|
23
|
Escoté X, Miranda M, Rodríguez-Porrata B, Mas A, Cordero R, Posas F, Vendrell J. The stress-activated protein kinase Hog1 develops a critical role after resting state. Mol Microbiol 2011; 80:423-35. [DOI: 10.1111/j.1365-2958.2011.07585.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Jiménez-Martí E, Zuzuarregui A, Gomar-Alba M, Gutiérrez D, Gil C, del Olmo M. Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions. Int J Food Microbiol 2011; 145:211-20. [PMID: 21247650 DOI: 10.1016/j.ijfoodmicro.2010.12.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 11/30/2022]
Abstract
One of the stress conditions that can affect Saccharomyces cerevisiae cells during their growth is osmotic stress. Under particular environments (for instance, during the production of alcoholic beverages) yeasts have to cope with osmotic stress caused by high sugar concentrations. Although the molecular changes and pathways involved in the response to saline or sorbitol stress are widely understood, less is known about how cells respond to high sugar concentrations. In this work we present a comprehensive study of the response to this form of stress which indicates important transcriptomic changes, especially in terms of the genes involved in both stress response and respiration, and the implication of the HOG pathway. We also describe several genes of an unknown function which are more highly expressed under 20% (w/v) glucose than under 2% (w/v) glucose. In this work we focus on the YHR087w (RTC3) gene and its encoded protein. Proteomic analysis of the mutant deletion strain reveals lower levels of several yeast Hsp proteins, which establishes a link between this protein and the response to several forms of stress. The relevance of YHR087W for the response to high sugar and other stress conditions and the relationship of the encoded protein with several Hsp proteins suggest applications of this gene in biotechnological processes in which response to stress is important.
Collapse
Affiliation(s)
- E Jiménez-Martí
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, Burjassot Valencia, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Busti S, Coccetti P, Alberghina L, Vanoni M. Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. SENSORS 2010; 10:6195-240. [PMID: 22219709 PMCID: PMC3247754 DOI: 10.3390/s100606195] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 01/05/2023]
Abstract
Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module), the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase) is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes.
Collapse
Affiliation(s)
- Stefano Busti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano Bicocca, Piazza della Scienza, 2-20126 Milano, Italy.
| | | | | | | |
Collapse
|
26
|
Brown V, Sabina J, Johnston M. Specialized sugar sensing in diverse fungi. Curr Biol 2009; 19:436-41. [PMID: 19249212 PMCID: PMC2762733 DOI: 10.1016/j.cub.2009.01.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 01/12/2009] [Accepted: 01/15/2009] [Indexed: 12/30/2022]
Abstract
S. cerevisiae senses glucose and galactose differently. Glucose is detected through sensors that reside in the cellular plasma membrane. When activated, the sensors initiate a signal-transduction cascade that ultimately inactivates the Rgt1 transcriptional repressor by causing degradation of its corepressors Mth1 and Std1. This results in the expression of many HXT genes encoding glucose transporters. The ensuing flood of glucose into the cell activates Mig1, a transcriptional repressor that mediates "glucose repression" of many genes, including the GAL genes; hence, glucose sensing hinders galactose utilization. Galactose is sensed in the cytoplasm via Gal3. Upon binding galactose (and ATP), Gal3 sequesters the Gal80 protein, thereby emancipating the Gal4 transcriptional activator of the GAL genes. Gal4 also activates expression of MTH1, encoding a corepressor critical for Rgt1 function. Thus, galactose inhibits glucose assimilation by encouraging repression of HXT genes. C. albicans senses glucose similarly to S. cerevisiae but does not sense galactose through Gal3-Gal80-Gal4. Its genome harbors no GAL80 ortholog, and the severely truncated CaGal4 does not regulate CaGAL genes. We present evidence that C. albicans senses galactose with its Hgt4 glucose sensor, a capability that is enabled by transcriptional "rewiring" of its sugar-sensing signal-transduction pathways. We suggest that galactose sensing through Hgt4 is ancestral in fungi.
Collapse
Affiliation(s)
- Victoria Brown
- Department of Genetics, Center for Genome Sciences, Washington University School of Medicine, St. Louis, MO 63108, USA.
| | | | | |
Collapse
|
27
|
Abstract
In the presence of glucose, yeast undergoes an important remodelling of its metabolism. There are changes in the concentration of intracellular metabolites and in the stability of proteins and mRNAs; modifications occur in the activity of enzymes as well as in the rate of transcription of a large number of genes, some of the genes being induced while others are repressed. Diverse combinations of input signals are required for glucose regulation of gene expression and of other cellular processes. This review focuses on the early elements in glucose signalling and discusses their relevance for the regulation of specific processes. Glucose sensing involves the plasma membrane proteins Snf3, Rgt2 and Gpr1 and the glucose-phosphorylating enzyme Hxk2, as well as other regulatory elements whose functions are still incompletely understood. The similarities and differences in the way in which yeasts and mammalian cells respond to glucose are also examined. It is shown that in Saccharomyces cerevisiae, sensing systems for other nutrients share some of the characteristics of the glucose-sensing pathways.
Collapse
Affiliation(s)
- Juana M Gancedo
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
28
|
Wykoff DD, Rizvi AH, Raser JM, Margolin B, O’Shea EK. Positive feedback regulates switching of phosphate transporters in S. cerevisiae. Mol Cell 2007; 27:1005-13. [PMID: 17889672 PMCID: PMC2034509 DOI: 10.1016/j.molcel.2007.07.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/10/2007] [Accepted: 07/18/2007] [Indexed: 11/30/2022]
Abstract
The regulation of transporters by nutrient-responsive signaling pathways allows cells to tailor nutrient uptake to environmental conditions. We investigated the role of feedback generated by transporter regulation in the budding yeast phosphate-responsive signal transduction (PHO) pathway. Cells starved for phosphate activate feedback loops that regulate high- and low-affinity phosphate transport. We determined that positive feedback is generated by PHO pathway-dependent upregulation of Spl2, a negative regulator of low-affinity phosphate uptake. The interplay of positive and negative feedback loops leads to bistability in phosphate transporter usage--individual cells express predominantly either low- or high-affinity transporters, both of which can yield similar phosphate uptake capacity. Cells lacking the high-affinity transporter, and associated negative feedback, exhibit phenotypes that arise from hysteresis due to unopposed positive feedback. In wild-type cells, population heterogeneity generated by feedback loops may provide a strategy for anticipating changes in environmental phosphate levels.
Collapse
Affiliation(s)
| | - Abbas H. Rizvi
- Howard Hughes Medical Institute, Department of Molecular & Cellular Biology, FAS Center for Systems Biology, Harvard University, 7 Divinity Avenue, Bauer, 307 Cambridge, MA 02138
| | - Jonathan M. Raser
- Howard Hughes Medical Institute, Department of Molecular & Cellular Biology, FAS Center for Systems Biology, Harvard University, 7 Divinity Avenue, Bauer, 307 Cambridge, MA 02138
| | - Brian Margolin
- Howard Hughes Medical Institute, Department of Molecular & Cellular Biology, FAS Center for Systems Biology, Harvard University, 7 Divinity Avenue, Bauer, 307 Cambridge, MA 02138
| | - Erin K. O’Shea
- Howard Hughes Medical Institute, Department of Molecular & Cellular Biology, FAS Center for Systems Biology, Harvard University, 7 Divinity Avenue, Bauer, 307 Cambridge, MA 02138
| |
Collapse
|
29
|
Arga KY, Onsan ZI, Kirdar B, Ulgen KO, Nielsen J. Understanding signaling in yeast: Insights from network analysis. Biotechnol Bioeng 2007; 97:1246-58. [PMID: 17252576 DOI: 10.1002/bit.21317] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Reconstruction of protein interaction networks that represent groups of proteins contributing to the same cellular function is a key step towards quantitative studies of signal transduction pathways. Here we present a novel approach to reconstruct a highly correlated protein interaction network and to identify previously unknown components of a signaling pathway through integration of protein-protein interaction data, gene expression data, and Gene Ontology annotations. A novel algorithm is designed to reconstruct a highly correlated protein interaction network which is composed of the candidate proteins for signal transduction mechanisms in yeast Saccharomyces cerevisiae. The high efficiency of the reconstruction process is proved by a Receiver Operating Characteristic curve analysis. Identification and scoring of the possible linear pathways enables reconstruction of specific sub-networks for glucose-induction signaling and high osmolarity MAPK signaling in S. cerevisiae. All of the known components of these pathways are identified together with several new "candidate" proteins, indicating the successful reconstructions of two model pathways involved in S. cerevisiae. The integrated approach is hence shown useful for (i) prediction of new signaling pathways, (ii) identification of unknown members of documented pathways, and (iii) identification of network modules consisting of a group of related components that often incorporate the same functional mechanism.
Collapse
Affiliation(s)
- K Yalçin Arga
- Department of Chemical Engineering, Boğaziçi University, 34342 Istanbul, Turkey
| | | | | | | | | |
Collapse
|
30
|
Belinchón MM, Gancedo JM. Different signalling pathways mediate glucose induction of SUC2, HXT1 and pyruvate decarboxylase in yeast. FEMS Yeast Res 2007; 7:40-7. [PMID: 17311583 DOI: 10.1111/j.1567-1364.2006.00136.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The glucose sensors Gpr1, Snf3 and Rgt2 generate the earliest signals produced by glucose in yeast. We showed that a lack of Gpr1 or Snf3/Rgt2 decreased by twofold the glucose induction of SUC2, but had no effect on the induction of pyruvate decarboxylase (Pdc). The induction of HXT1 was not affected by the absence of Gpr1. In an hxk1 hxk2 glk1 strain, high glucose fully induced SUC2, caused partial induction of HXT1 and had no effect on Pdc. In this strain, SUC2 induction was dependent on Gpr1, but HXT1 induction was not. Hxk2, required for the high expression of HXT1, was dispensable for the full induction of SUC2 or Pdc. These results indicate that glucose does not induce transcription through a single signalling pathway, but that several pathways may, in different combinations, regulate the transcription of different genes.
Collapse
Affiliation(s)
- Mónica M Belinchón
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | | |
Collapse
|
31
|
Platara M, Ruiz A, Serrano R, Palomino A, Moreno F, Ariño J. The transcriptional response of the yeast Na(+)-ATPase ENA1 gene to alkaline stress involves three main signaling pathways. J Biol Chem 2006; 281:36632-42. [PMID: 17023428 DOI: 10.1074/jbc.m606483200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adaptive response of the yeast Saccharomyces cerevisiae to environmental alkalinization results in remodeling of gene expression. A key target is the gene ENA1, encoding a Na(+)-ATPase, whose induction by alkaline pH has been shown to involve calcineurin and the Rim101/Nrg1 pathway. Previous functional analysis of the ENA1 promoter revealed a calcineurin-independent pH responsive region (ARR2, 83 nucleotides). We restrict here this response to a small (42 nucleotides) ARR2 5.-region, named MCIR (minimum calcineurin independent response), which contains a MIG element, able to bind Mig1,2 repressors. High pH-induced response driven from this region was largely abolished in snf1 cells and moderately reduced in a rim101 strain. Cells lacking Mig1 or Mig2 repressors had a near wild type response, but the double mutant presented a high level of expression upon alkaline stress. Deletion of NRG1 (but not of NRG2) resulted in increased expression. Induction from the MCIR region was marginal in a quadruple mutant lacking Nrg1,2 and Mig1,2 repressors. In vitro band shift experiments demonstrated binding of Nrg1 to the 5. end of the ARR2 region. Furthermore, we show that Nrg1 binds in vivo around the MCIR region under standard growth conditions, and that binding is largely abolished after high pH stress. Therefore, the calcineurin-independent response of the ENA1 gene is under the regulation of Rim101 (through Nrg1) and Snf1 (through Nrg1 and Mig2). Accordingly, induction by alkaline stress of the entire ENA1 promoter in a snf1 rim101 mutant in the presence of the calcineurin inhibitor FK506 is completely abolished. Thus, the transcriptional response to alkaline stress of the ENA1 gene integrates three different signaling pathways.
Collapse
Affiliation(s)
- Maria Platara
- Department of Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra 08193, Barcelona
| | | | | | | | | | | |
Collapse
|
32
|
Pokholok DK, Zeitlinger J, Hannett NM, Reynolds DB, Young RA. Activated signal transduction kinases frequently occupy target genes. Science 2006; 313:533-6. [PMID: 16873666 DOI: 10.1126/science.1127677] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cellular signal transduction pathways modify gene expression programs in response to changes in the environment, but the mechanisms by which these pathways regulate populations of genes under their control are not entirely understood. We present evidence that most mitogen-activated protein kinases and protein kinase A subunits become physically associated with the genes that they regulate in the yeast (Saccharomyces cerevisiae) genome. The ability to detect this interaction of signaling kinases with target genes can be used to more precisely and comprehensively map the regulatory circuitry that eukaryotic cells use to respond to their environment.
Collapse
Affiliation(s)
- Dmitry K Pokholok
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | |
Collapse
|
33
|
Palomino A, Herrero P, Moreno F. Tpk3 and Snf1 protein kinases regulate Rgt1 association with Saccharomyces cerevisiae HXK2 promoter. Nucleic Acids Res 2006; 34:1427-38. [PMID: 16528100 PMCID: PMC1401511 DOI: 10.1093/nar/gkl028] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hexokinase 2 is an essential factor for signalling repression through the Saccharomyces cerevisiae high-glucose sensing pathway. The main regulatory mechanism that controls the HXK2 gene expression in yeast is mediated by the Rgt1 and Med8 transcription factors, which repress HXK2 expression in low-glucose containing media. In this study, we show that the repression activity of Rgt1 is regulated by Snf1 and Tpk3 protein kinases. Binding of Rgt1 to the HXK2 promoter requires Rgt1 phosphorylation by Snf1 or by an Snf1-dependent protein kinase. Conversely, Rgt1 hyperphosphorylation by the Tpk3 or by a Tpk3-dependent protein kinase dissociates Rgt1 from the repressor complex. Two-hybrid and chromatin immunoprecipitation experiments indicate that an Snf1-dependent interaction between Rgt1 and Med8 in the repressor complex is also essential for Rgt1 repression. The repression of HXK2 transcription by Rgt1 likely occurs through the formation of a DNA loop in the HXK2 locus, spanning the promoter and coding regions. These results suggest that a novel silent-chromatin loop is responsible for Rgt1-dependent transcriptional regulation of the HXK2 gene.
Collapse
Affiliation(s)
| | | | - F. Moreno
- To whom correspondence should be addressed. Tel: +34 985 103 567; Fax: +34 985 103 157;
| |
Collapse
|
34
|
Greatrix BW, van Vuuren HJJ. Expression of the HXT13, HXT15 and HXT17 genes in Saccharomyces cerevisiae and stabilization of the HXT1 gene transcript by sugar-induced osmotic stress. Curr Genet 2006; 49:205-17. [PMID: 16397765 DOI: 10.1007/s00294-005-0046-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 11/14/2005] [Accepted: 11/15/2005] [Indexed: 12/01/2022]
Abstract
Saccharomyces cerevisiae contains a family of 17 hexose transporter (HXT) genes; only nine have assigned functions, some of which are still poorly defined. Despite extensive efforts to characterize the hexose transporters, the expression of HXT6 and HXT8-17 remains an enigma. In nature, S. cerevisiae finds itself under extreme nutritional conditions including sugars in excess of 40% (w/v), depletion of nutrients and extremes of both temperature and pH. Using HXT promoter-lacZ fusions, we have identified novel conditions under which the HXT17 gene is expressed; HXT17 promoter activity is up-regulated in media containing raffinose and galactose at pH 7.7 versus pH 4.7. We demonstrated that HXT5, HXT13 and, to a lesser extent, HXT15 were all induced in the presence of non-fermentable carbon sources. HXT1 encodes a low-affinity transporter and in short-term osmotic shock experiments, HXT1 promoter activity was reduced when cells were exposed to media containing 40% glucose. However, we found that the HXT1 mRNA transcript was stabilized under conditions of osmotic stress. Furthermore, the stabilization of HXT1 mRNA does not appear to be gene specific because 30 min after transcriptional arrest there is a fourfold more mRNA in osmotically stressed versus non-stressed yeast cells. A large portion of S. cerevisiae mRNA molecules may, therefore, have a decreased rate of turnover during exposure to osmotic stress indicating that post-transcriptional regulation plays an important role in the adaptation of S. cerevisiae to osmotic stress.
Collapse
Affiliation(s)
- Bradley W Greatrix
- Wine Research Centre, The University of British Columbia, Suite 231#2205 East Mall, V6T 1Z4, Vancouver, Canada
| | | |
Collapse
|
35
|
Calderón-Torres M, Peña A, Thomé PE. DhARO4, an amino acid biosynthetic gene, is stimulated by high salinity inDebaryomyces hansenii. Yeast 2006; 23:725-34. [PMID: 16862599 DOI: 10.1002/yea.1384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The highly halotolerant yeast Debaryomyces hansenii when grown in the presence of 2M NaCl, increased the expression of ARO4 which is involved in the biosynthesis of aromatic amino acids. The function of the isolated gene was verified by complementation of a Saccharomyces cerevisiae null mutant, aro4Delta, restoring the specific activity of the enzyme (a 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase) to wild-type levels. DhARO4 transcript expression under high salinity was stimulated at the beginning of the exponential growth phase. As the DhARO4 promoter region presents putative GCRE and CRE sequences, its expression was evaluated under conditions of NaCl stress and amino acid starvation, showing similar expression levels for either condition. The combined effect of both stressors resulted in a further increase in transcript levels over the singly added stressors, indicating independent stimulatory events. Our results support the hypothesis that high salinity and amino acid availability are physiologically interconnected.
Collapse
Affiliation(s)
- Marissa Calderón-Torres
- Unidad Académica Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Apartado Postal 1152, Cancún, Quintana Roo 77500, México.
| | | | | |
Collapse
|
36
|
Rodríguez-Peña JM, Pérez-Díaz RM, Alvarez S, Bermejo C, García R, Santiago C, Nombela C, Arroyo J. The 'yeast cell wall chip' - a tool to analyse the regulation of cell wall biogenesis in Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2005; 151:2241-2249. [PMID: 16000714 DOI: 10.1099/mic.0.27989-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Within the field of Saccharomyces cerevisiae functional genomics, DNA microarrays have become a very useful tool to study genome-wide gene-expression changes under diverse experimental conditions. Here, the design and production of a gene microarray, called the 'yeast cell wall chip', specifically tailored to investigate cell wall functions, is described. This array has been validated and shown to be useful to address gene involvement in the regulation of the response to cell wall damage in yeast. The advantages of this tailored gene microarray, which contains 390 genes, in terms of reproducibility, accuracy, versatility and ease of use are reported. Importantly, the microarray design permits the performance of a double hybridization process (two experiments) on the same slide. Cell wall stress leads to the transcriptional activation of a set of genes involved in cell wall remodelling. This response has been shown to be strongly controlled by the MAP kinase (MAPK) Slt2p, but other signalling pathways have also been suggested to be involved in this process. Here, using the tailored microarray, the role of the HOG1 pathway in the regulation of the transcriptional compensatory response to cell wall damage was evaluated by comparing the transcriptional profiles of a hog1 mutant and a wild-type strain in the presence of Congo red. Two genes, YFL014W (HSP12) and YLR414C, were found to be dependent on the Hog1p MAPK for their induction, indicating that an additional level of regulation of cell wall functions is mediated by this MAPK.
Collapse
Affiliation(s)
- Jose M Rodríguez-Peña
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rosa M Pérez-Díaz
- Unidad de Genómica, Parque Científico de Madrid/UCM, Campus de Moncloa, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Sara Alvarez
- Unidad de Genómica, Parque Científico de Madrid/UCM, Campus de Moncloa, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Clara Bermejo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Raúl García
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Catalina Santiago
- Unidad de Genómica, Parque Científico de Madrid/UCM, Campus de Moncloa, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - César Nombela
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Javier Arroyo
- Unidad de Genómica, Parque Científico de Madrid/UCM, Campus de Moncloa, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
37
|
Palomino A, Herrero P, Moreno F. Rgt1, a glucose sensing transcription factor, is required for transcriptional repression of the HXK2 gene in Saccharomyces cerevisiae. Biochem J 2005; 388:697-703. [PMID: 15705057 PMCID: PMC1138978 DOI: 10.1042/bj20050160] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Expression of HXK2, a gene encoding a Saccharomyces cerevisiae bifunctional protein with catalytic and regulatory functions, is controlled by glucose availability, being activated in the presence of glucose and inhibited when the levels of the sugar are low. In the present study, we identified Rgt1 as a transcription factor that, together with the Med8 protein, is essential for repression of the HXK2 gene in the absence of glucose. Rgt1 represses HXK2 expression by binding specifically to the motif (CGGAAAA) located at -395 bp relative to the ATG translation start codon in the HXK2 promoter. Disruption of the RGT1 gene causes an 18-fold increase in the level of HXK2 transcript in the absence of glucose. Rgt1 binds to the RGT1 element of HXK2 promoter in a glucose-dependent manner, and the repression of target gene depends on binding of Rgt1 to DNA. The physiological significance of the connection between two glucose-signalling pathways, the Snf3/Rgt2 that causes glucose induction and the Mig1/Hxk2 that causes glucose repression, was also analysed.
Collapse
Affiliation(s)
- Aaron Palomino
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Campus del Cristo, Edificio Santiago Gascón, 33006 Oviedo, Spain
| | - Pilar Herrero
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Campus del Cristo, Edificio Santiago Gascón, 33006 Oviedo, Spain
| | - Fernando Moreno
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Campus del Cristo, Edificio Santiago Gascón, 33006 Oviedo, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
38
|
Perez M, Luyten K, Michel R, Riou C, Blondin B. Analysis of Saccharomyces cerevisiae hexose carrier expression during wine fermentation: both low- and high-affinity Hxt transporters are expressed. FEMS Yeast Res 2005; 5:351-61. [PMID: 15691740 DOI: 10.1016/j.femsyr.2004.09.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 09/07/2004] [Accepted: 09/15/2004] [Indexed: 11/30/2022] Open
Abstract
The transport of glucose and fructose into yeast cells is a critical step in the utilization of sugars during wine fermentation. Hexose uptake can be carried out by various Hxt carriers, each possessing distinct regulatory and transport-kinetic properties capable of influencing yeast fermentation capacity. We investigated the expression pattern of the hexose transporters Hxt1 to 7 at the promoter and protein levels in Saccharomyces cerevisiae during wine fermentation. The Hxt1p carrier was expressed only at the beginning of fermentation, and had no role during stationary phase. The Hxt3p carrier was the only one to be expressed throughout fermentation, displaying maximal expression at growth arrest and slowly decreasing in abundance over the course of the stationary phase. The high-affinity carriers Hxt6p and Hxt7p displayed similar expression profiles, with expression induced at entry into stationary phase and persisting throughout the phase. The expression of these two carriers occurred despite the presence of high amounts of hexoses, and the proteins were stably expressed when the cells were starved for nitrogen. The Hxt2p transporter was only transiently expressed during lag phase, which suggests a role for the protein in growth initiation. Characterization of glucose transport kinetics indicated the presence of a shift in the low-affinity component that is consistent with a predominant expression of Hxt1p during growth phase and of Hxt3p during stationary phase. In addition, a high-affinity uptake component consistent with functional expression of Hxt6p/Hxt7p was identified during stationary phase.
Collapse
Affiliation(s)
- Marc Perez
- Equipe de Microbiologie, UMR Sciences Pour l'Oneologie, INRA-ENSAM-UMI, 2 place Viala, F-34060 Montpellier cedex 1, France
| | | | | | | | | |
Collapse
|
39
|
Johnston M, Kim JH. Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae. Biochem Soc Trans 2005; 33:247-52. [PMID: 15667318 DOI: 10.1042/bst0330247] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Because glucose is the principal carbon and energy source for most cells, most organisms have evolved numerous and sophisticated mechanisms for sensing glucose and responding to it appropriately. This is especially apparent in the yeast Saccharomyces cerevisiae, where these regulatory mechanisms determine the distinctive fermentative metabolism of yeast, a lifestyle it shares with many kinds of tumour cells. Because energy generation by fermentation of glucose is inefficient, yeast cells must vigorously metabolize glucose. They do this, in part, by carefully regulating the first, rate-limiting step of glucose utilization: its transport. Yeast cells have learned how to sense the amount of glucose that is available and respond by expressing the most appropriate of its 17 glucose transporters. They do this through a signal transduction pathway that begins at the cell surface with the Snf3 and Rgt2 glucose sensors and ends in the nucleus with the Rgt1 transcription factor that regulates expression of genes encoding glucose transporters. We explain this glucose signal transduction pathway, and describe how it fits into a highly interconnected regulatory network of glucose sensing pathways that probably evolved to ensure rapid and sensitive response of the cell to changing levels of glucose.
Collapse
Affiliation(s)
- M Johnston
- Department of Genetics, Washington University, St. Louis, MO 63110, USA.
| | | |
Collapse
|