1
|
Sharma N, Whinn KS, Ghodke H, van Oijen AM, Lewis JS, Spenkelink LM. nCas9-based method for rolling-circle DNA substrate generation. Anal Biochem 2025; 703:115883. [PMID: 40288511 DOI: 10.1016/j.ab.2025.115883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Rolling-circle DNA replication is a DNA-duplication mechanism whereby circular DNA templates are continuously copied to produce long DNA products. It is widely used in molecular diagnostics, DNA sequencing, nanotechnology, and in vitro DNA replication studies. The efficiency of rolling-circle replication reaction heavily relies on the quality of the rolling-circle DNA template. Existing methods to create rolling-circle DNA substrates often rely on unique restriction sites and have limited control over replication fork topology and position. To address these limitations, we present a straightforward, customizable, and efficient strategy for producing rolling-circle DNA substrates with control over gap size and fork position. Our method relies on the use of nickase Cas9 (nCas9), which can be programmed to target specific DNA sequences using guide RNAs. In a one-pot reaction, we target nCas9 to four sites on an 18-kb plasmid to create 8-11-bp fragments. These fragments are removed and a flap oligo is ligated, to construct a fork with precisely controlled flap length and gap size. We demonstrate the application of this DNA substrate in an in vitro single-molecule rolling-circle DNA-replication assay. With our method, any plasmid DNA can be converted into a rolling-circle template, permitting generation of more physiologically-relevant DNA templates.
Collapse
Affiliation(s)
- Nischal Sharma
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Kelsey S Whinn
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
2
|
He X, Yun MK, Li Z, Waddell M, Nourse A, Churion K, Kreuzer K, Byrd A, White S. Structural and functional insights into the interaction between the bacteriophage T4 DNA processing proteins gp32 and Dda. Nucleic Acids Res 2024; 52:12748-12762. [PMID: 39417586 PMCID: PMC11551737 DOI: 10.1093/nar/gkae910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Bacteriophage T4 is a classic model system for studying the mechanisms of DNA processing. A key protein in T4 DNA processing is the gp32 single-stranded DNA-binding protein. gp32 has two key functions: it binds cooperatively to single-stranded DNA (ssDNA) to protect it from nucleases and remove regions of secondary structure, and it recruits proteins to initiate DNA processes including replication and repair. Dda is a T4 helicase recruited by gp32, and we purified and crystallized a gp32-Dda-ssDNA complex. The low-resolution structure revealed how the C-terminus of gp32 engages Dda. Analytical ultracentrifugation analyses were consistent with the crystal structure. An optimal Dda binding peptide from the gp32 C-terminus was identified using surface plasmon resonance. The crystal structure of the Dda-peptide complex was consistent with the corresponding interaction in the gp32-Dda-ssDNA structure. A Dda-dependent DNA unwinding assay supported the structural conclusions and confirmed that the bound gp32 sequesters the ssDNA generated by Dda. The structure of the gp32-Dda-ssDNA complex, together with the known structure of the gp32 body, reveals the entire ssDNA binding surface of gp32. gp32-Dda-ssDNA complexes in the crystal are connected by the N-terminal region of one gp32 binding to an adjacent gp32, and this provides key insights into this interaction.
Collapse
Affiliation(s)
- Xiaoping He
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place MS311, Memphis, TN 38105, USA
| | - Mi-Kyung Yun
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, 262 Danny Thomas Place MS221, Memphis, TN 38105, USA
| | - Zhenmei Li
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place MS311, Memphis, TN 38105, USA
| | - M Brett Waddell
- Hartwell Center for Biotechnology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place MS1300, Memphis, TN 38105, USA
| | - Amanda Nourse
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place MS311, Memphis, TN 38105, USA
| | - Kelly A Churion
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place MS311, Memphis, TN 38105, USA
| | - Kenneth N Kreuzer
- Department of Biochemistry, Duke University Medical Center, Nanaline H. Duke Box 3711, Durham, NC 27710, USA
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W. Markham Street Slot 516, Little Rock, AR 72205, USA
| | - Stephen W White
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place MS311, Memphis, TN 38105, USA
| |
Collapse
|
3
|
Spinks RR, Spenkelink LM, Dixon NE, van Oijen AM. Single-Molecule Insights Into the Dynamics of Replicative Helicases. Front Mol Biosci 2021; 8:741718. [PMID: 34513934 PMCID: PMC8426354 DOI: 10.3389/fmolb.2021.741718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Helicases are molecular motors that translocate along single-stranded DNA and unwind duplex DNA. They rely on the consumption of chemical energy from nucleotide hydrolysis to drive their translocation. Specialized helicases play a critically important role in DNA replication by unwinding DNA at the front of the replication fork. The replicative helicases of the model systems bacteriophages T4 and T7, Escherichia coli and Saccharomyces cerevisiae have been extensively studied and characterized using biochemical methods. While powerful, their averaging over ensembles of molecules and reactions makes it challenging to uncover information related to intermediate states in the unwinding process and the dynamic helicase interactions within the replisome. Here, we describe single-molecule methods that have been developed in the last few decades and discuss the new details that these methods have revealed about replicative helicases. Applying methods such as FRET and optical and magnetic tweezers to individual helicases have made it possible to access the mechanistic aspects of unwinding. It is from these methods that we understand that the replicative helicases studied so far actively translocate and then passively unwind DNA, and that these hexameric enzymes must efficiently coordinate the stepping action of their subunits to achieve unwinding, where the size of each step is prone to variation. Single-molecule fluorescence microscopy methods have made it possible to visualize replicative helicases acting at replication forks and quantify their dynamics using multi-color colocalization, FRAP and FLIP. These fluorescence methods have made it possible to visualize helicases in replication initiation and dissect this intricate protein-assembly process. In a similar manner, single-molecule visualization of fluorescent replicative helicases acting in replication identified that, in contrast to the replicative polymerases, the helicase does not exchange. Instead, the replicative helicase acts as the stable component that serves to anchor the other replication factors to the replisome.
Collapse
Affiliation(s)
- Richard R Spinks
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
4
|
Monachino E, Ghodke H, Spinks RR, Hoatson BS, Jergic S, Xu ZQ, Dixon NE, van Oijen AM. Design of DNA rolling-circle templates with controlled fork topology to study mechanisms of DNA replication. Anal Biochem 2018; 557:42-45. [PMID: 30016625 DOI: 10.1016/j.ab.2018.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/19/2022]
Abstract
Rolling-circle DNA amplification is a powerful tool employed in biotechnology to produce large from small amounts of DNA. This mode of DNA replication proceeds via a DNA topology that resembles a replication fork, thus also providing experimental access to the molecular mechanisms of DNA replication. However, conventional templates do not allow controlled access to multiple fork topologies, which is an important factor in mechanistic studies. Here we present the design and production of a rolling-circle substrate with a tunable length of both the gap and the overhang, and we show its application to the bacterial DNA-replication reaction.
Collapse
Affiliation(s)
- Enrico Monachino
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia; Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Richard R Spinks
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Ben S Hoatson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
5
|
Branagan AM, Klein JA, Jordan CS, Morrical SW. Control of helicase loading in the coupled DNA replication and recombination systems of bacteriophage T4. J Biol Chem 2013; 289:3040-54. [PMID: 24338568 DOI: 10.1074/jbc.m113.505842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gp59 protein of bacteriophage T4 promotes DNA replication by loading the replicative helicase, Gp41, onto replication forks and recombination intermediates. Gp59 also blocks DNA synthesis by Gp43 polymerase until Gp41 is loaded, ensuring that synthesis is tightly coupled to unwinding. The distinct polymerase blocking and helicase loading activities of Gp59 likely involve different binding interactions with DNA and protein partners. Here, we investigate how interactions of Gp59 with DNA and Gp32, the T4 single-stranded DNA (ssDNA)-binding protein, are related to these activities. A previously characterized mutant, Gp59-I87A, exhibits markedly reduced affinity for ssDNA and pseudo-fork DNA substrates. We demonstrate that on Gp32-covered ssDNA, the DNA binding defect of Gp59-I87A is not detrimental to helicase loading and translocation. In contrast, on pseudo-fork DNA the I87A mutation is detrimental to helicase loading and unwinding in the presence or absence of Gp32. Other results indicate that Gp32 binding to lagging strand ssDNA relieves the blockage of Gp43 polymerase activity by Gp59, whereas the inhibition of Gp43 exonuclease activity is maintained. Our findings suggest that Gp59-Gp32 and Gp59-DNA interactions perform separate but complementary roles in T4 DNA metabolism; Gp59-Gp32 interactions are needed to load Gp41 onto D-loops, and other nucleoprotein structures containing clusters of Gp32. Gp59-DNA interactions are needed to load Gp41 onto nascent or collapsed replication forks lacking clusters of Gp32 and to coordinate bidirectional replication from T4 origins. The dual functionalities of Gp59 allow it to promote the initiation or re-start of DNA replication from a wide variety of recombination and replication intermediates.
Collapse
Affiliation(s)
- Amy M Branagan
- From the Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405
| | | | | | | |
Collapse
|
6
|
Hinerman JM, Dignam JD, Mueser TC. Models for the binary complex of bacteriophage T4 gp59 helicase loading protein: gp32 single-stranded DNA-BINDING protein and ternary complex with pseudo-Y junction DNA. J Biol Chem 2012; 287:18608-17. [PMID: 22493434 DOI: 10.1074/jbc.m111.333476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage T4 gp59 helicase assembly protein (gp59) is required for loading of gp41 replicative helicase onto DNA protected by gp32 single-stranded DNA-binding protein. The gp59 protein recognizes branched DNA structures found at replication and recombination sites. Binding of gp32 protein (full-length and deletion constructs) to gp59 protein measured by isothermal titration calorimetry demonstrates that the gp32 protein C-terminal A-domain is essential for protein-protein interaction in the absence of DNA. Sedimentation velocity experiments with gp59 protein and gp32ΔB protein (an N-terminal B-domain deletion) show that these proteins are monomers but form a 1:1 complex with a dissociation constant comparable with that determined by isothermal titration calorimetry. Small angle x-ray scattering (SAXS) studies indicate that the gp59 protein is a prolate monomer, consistent with the crystal structure and hydrodynamic properties determined from sedimentation velocity experiments. SAXS experiments also demonstrate that gp32ΔB protein is a prolate monomer with an elongated A-domain protruding from the core. Fitting structures of gp59 protein and the gp32 core into the SAXS-derived molecular envelope supports a model for the gp59 protein-gp32ΔB protein complex. Our earlier work demonstrated that gp59 protein attracts full-length gp32 protein to pseudo-Y junctions. A model of the gp59 protein-DNA complex, modified to accommodate new SAXS data for the binary complex together with mutational analysis of gp59 protein, is presented in the accompanying article (Dolezal, D., Jones, C. E., Lai, X., Brister, J. R., Mueser, T. C., Nossal, N. G., and Hinton, D. M. (2012) J. Biol. Chem. 287, 18596-18607).
Collapse
Affiliation(s)
- Jennifer M Hinerman
- Department of Chemistry, University of Toledo, College of Natural Sciences and Mathematics, Toledo, Ohio 43606, USA
| | | | | |
Collapse
|
7
|
Dolezal D, Jones CE, Lai X, Brister JR, Mueser TC, Nossal NG, Hinton DM. Mutational analysis of the T4 gp59 helicase loader reveals its sites for interaction with helicase, single-stranded binding protein, and DNA. J Biol Chem 2012; 287:18596-607. [PMID: 22427673 DOI: 10.1074/jbc.m111.332080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient DNA replication involves coordinated interactions among DNA polymerase, multiple factors, and the DNA. From bacteriophage T4 to eukaryotes, these factors include a helicase to unwind the DNA ahead of the replication fork, a single-stranded binding protein (SSB) to bind to the ssDNA on the lagging strand, and a helicase loader that associates with the fork, helicase, and SSB. The previously reported structure of the helicase loader in the T4 system, gene product (gp)59, has revealed an N-terminal domain, which shares structural homology with the high mobility group (HMG) proteins from eukaryotic organisms. Modeling of this structure with fork DNA has suggested that the HMG-like domain could bind to the duplex DNA ahead of the fork, whereas the C-terminal portion of gp59 would provide the docking sites for helicase (T4 gp41), SSB (T4 gp32), and the ssDNA fork arms. To test this model, we have used random and targeted mutagenesis to generate mutations throughout gp59. We have assayed the ability of the mutant proteins to bind to fork, primed fork, and ssDNAs, to interact with SSB, to stimulate helicase activity, and to function in leading and lagging strand DNA synthesis. Our results provide strong biochemical support for the role of the N-terminal gp59 HMG motif in fork binding and the interaction of the C-terminal portion of gp59 with helicase and SSB. Our results also suggest that processive replication may involve the switching of gp59 between its interactions with helicase and SSB.
Collapse
Affiliation(s)
- Darin Dolezal
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Yuan Q, McHenry CS. Strand displacement by DNA polymerase III occurs through a tau-psi-chi link to single-stranded DNA-binding protein coating the lagging strand template. J Biol Chem 2009; 284:31672-9. [PMID: 19749191 DOI: 10.1074/jbc.m109.050740] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to the well characterized processive replication reaction catalyzed by the DNA polymerase III holoenzyme on single-stranded DNA templates, the enzyme possesses an intrinsic strand displacement activity on flapped templates. The strand displacement activity is distinguished from the single-stranded DNA-templated reaction by a high dependence upon single-stranded DNA binding protein and an inability of gamma-complex to support the reaction in the absence of tau. However, if gamma-complex is present to load beta(2), a truncated tau protein containing only domains III-V will suffice. This truncated protein is sufficient to bind both the alpha subunit of DNA polymerase (Pol) III and chipsi. This is reminiscent of the minimal requirements for Pol III to replicate short single-stranded DNA-binding protein (SSB)-coated templates where tau is only required to serve as a scaffold to hold Pol III and chi in the same complex (Glover, B., and McHenry, C. (1998) J. Biol. Chem. 273, 23476-23484). We propose a model in which strand displacement by DNA polymerase III holoenzyme depends upon a Pol III-tau-psi-chi-SSB binding network, where SSB is bound to the displaced strand, stabilizing the Pol III-template interaction. The same interaction network is probably important for stabilizing the leading strand polymerase interactions with authentic replication forks. The specificity constant (k(cat)/K(m)) for the strand displacement reaction is approximately 300-fold less favorable than reactions on single-stranded templates and proceeds with a slower rate (150 nucleotides/s) and only moderate processivity (approximately 300 nucleotides). PriA, the initiator of replication restart on collapsed or misassembled replication forks, blocks the strand displacement reaction, even if added to an ongoing reaction.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | |
Collapse
|
9
|
Genetic recombination induced by DNA double-strand break in bacteriophage T4: nature of the left/right bias. DNA Repair (Amst) 2008; 7:890-901. [PMID: 18400566 DOI: 10.1016/j.dnarep.2008.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/24/2008] [Accepted: 02/28/2008] [Indexed: 11/21/2022]
Abstract
The experimental system combining double-strand breaks (DSBs), produced site-specifically by SegC endonuclease, with the famous advantages of the bacteriophage T4 rII mutant recombination analysis was used here to elucidate the origin of the recombination bias on two sides of the DSB, especially pronounced in gene 39 (topoisomerase II) and gene 59 (41-helicase loader) mutants. Three sources were found to contribute to the bias: (1) the SegC endonuclease may remain bound to the end of the broken DNA and thus protect it from exonuclease degradation; (2) in heteroduplex heterozygotes (HHs), arising as the recombinant products in the left-hand crosses, the transcribed strands are of rII mutant phenotype, so they, in contrast to the right-hand HHs, do not produce plaques on the lawn of the lambda-lysogenic host; and (3) the intrinsic polarity of T4 chromosome, reflected in transcription, may be a cause for discrimination of promoter-proximal and promoter-distal DNA sequences. It is shown that the apparent recombination bias does not imply one-sidedness of the DSB repair but just reflects a different depth of the end processing. It is inferred that the cause, underlying the "intrinsic" bias, might be interference between strand exchange and transcription. Topoisomerase and helicase functions are necessary to turn the process in favor of strand exchange. The idea is substantiated that the double-stranded to single-stranded DNA transition edge (not ss-DNA tip) serves as an actual recombinogenic element.
Collapse
|
10
|
Brister JR, Nossal NG. Multiple origins of replication contribute to a discontinuous pattern of DNA synthesis across the T4 genome during infection. J Mol Biol 2007; 368:336-48. [PMID: 17346743 PMCID: PMC1934900 DOI: 10.1016/j.jmb.2007.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/29/2007] [Accepted: 02/02/2007] [Indexed: 11/25/2022]
Abstract
Chromosomes provide a template for a number of DNA transactions, including replication and transcription, but the dynamic interplay between these activities is poorly understood at the genomic level. The bacteriophage T4 has long served as a model for the study of DNA replication, transcription, and recombination, and should be an excellent model organism in which to integrate in vitro biochemistry into a chromosomal context. As a first step in characterizing the dynamics of chromosomal transactions during T4 infection, we have employed a unique set of macro array strategies to identify the origins of viral DNA synthesis and monitor the actual accumulation of nascent DNA across the genome in real time. We show that T4 DNA synthesis originates from at least five discrete loci within a single population of infected cells, near oriA, oriC, oriE, oriF, and oriG, the first direct evidence of multiple, active origins within a single population of infected cells. Although early T4 DNA replication is initiated at defined origins, continued synthesis requires viral recombination. The relationship between these two modes of replication during infection has not been well understood, but we observe that the switch between origin and recombination-mediated replication is dependent on the number of infecting viruses. Finally, we demonstrate that the nascent DNAs produced from origin loci are regulated spatially and temporally, leading to the accumulation of multiple, short DNAs near the origins, which are presumably used to prime subsequent recombination-mediated replication. These results provide the foundation for the future characterization of the molecular dynamics that contribute to T4 genome function and evolution and may provide insights into the replication of other multi origin chromosomes.
Collapse
Affiliation(s)
- J Rodney Brister
- Laboratory of Molecular and Cellular Biological, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-1770, USA.
| | | |
Collapse
|
11
|
Nossal NG, Makhov AM, Chastain PD, Jones CE, Griffith JD. Architecture of the Bacteriophage T4 Replication Complex Revealed with Nanoscale Biopointers. J Biol Chem 2007; 282:1098-108. [PMID: 17105722 DOI: 10.1074/jbc.m606772200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous electron microscopy of DNA replicated by the bacteriophage T4 proteins showed a single complex at the fork, thought to contain the leading and lagging strand proteins, as well as the protein-covered single-stranded DNA on the lagging strand folded into a compact structure. "Trombone" loops formed from nascent lagging strand fragments were present on a majority of the replicating molecules (Chastain, P., Makhov, A. M., Nossal, N. G., and Griffith, J. D. (2003) J. Biol. Chem. 278, 21276-21285). Here we probe the composition of this replication complex using nanoscale DNA biopointers to show the location of biotin-tagged replication proteins. We find that a large fraction of the molecules with a trombone loop had two pointers to polymerase, providing strong evidence that the leading and lagging strand polymerases are together in the replication complex. 6% of the molecules had two loops, and 31% of these had three pointers to biotin-tagged polymerase, suggesting that the two loops result from two fragments that are being extended simultaneously. Under fixation conditions that extend the lagging strand, occasional molecules show two nascent lagging strand fragments, each being elongated by a biotin-tagged polymerase. T4 41 helicase is present in the complex on a large fraction of actively replicating molecules but on a smaller fraction of molecules with a stalled polymerase. Unexpectedly, we found that 59 helicase-loading protein remains on the fork after loading the helicase and is present on molecules with extensive replication.
Collapse
Affiliation(s)
- Nancy G Nossal
- Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | | | | | |
Collapse
|
12
|
Nelson SW, Yang J, Benkovic SJ. Site-directed mutations of T4 helicase loading protein (gp59) reveal multiple modes of DNA polymerase inhibition and the mechanism of unlocking by gp41 helicase. J Biol Chem 2006; 281:8697-706. [PMID: 16407253 DOI: 10.1074/jbc.m512185200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The T4 helicase loading protein (gp59) interacts with a multitude of DNA replication proteins. In an effort to determine the functional consequences of these protein-protein interactions, point mutations were introduced into the gp59 protein. Mutations were chosen based on the available crystal structure and focused on hydrophobic residues with a high degree of solvent accessibility. Characterization of the mutant proteins revealed a single mutation, Y122A, which is defective in polymerase binding and has weakened affinity for the helicase. The interaction between single-stranded DNA-binding protein and Y122A is unaffected, as is the affinity of Y122A for DNA substrates. When standard concentrations of helicase are employed, Y122A is unable to productively load the helicase onto forked DNA substrates. As a result of the loss of polymerase binding, Y122A cannot inhibit the polymerase during nucleotide idling or prevent it from removing the primer strand of a D-loop. However, Y122A is capable of inhibiting strand displacement synthesis by polymerase. The retention of strand displacement inhibition by Y122A, even in the absence of a gp59-polymerase interaction, indicates that there are two modes of polymerase inhibition by gp59. Inhibition of the polymerase activity only requires gp59 to bind to the replication fork, whereas inhibition of the exonuclease activity requires an interaction between the polymerase and gp59. The inability of Y122A to interact with both the polymerase and the helicase suggests a mechanism for polymerase unlocking by the helicase based on a direct competition between the helicase and polymerase for an overlapping binding site on gp59.
Collapse
Affiliation(s)
- Scott W Nelson
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
13
|
Dudas KC, Kreuzer KN. Bacteriophage T4 helicase loader protein gp59 functions as gatekeeper in origin-dependent replication in vivo. J Biol Chem 2005; 280:21561-9. [PMID: 15781450 PMCID: PMC1361368 DOI: 10.1074/jbc.m502351200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage T4 initiates origin-dependent replication via an R-loop mechanism in vivo. During in vitro reactions, the phage-encoded gp59 stimulates loading of the replicative helicase, gp41, onto branched intermediates, including origin R-loops. However, although gp59 is essential for recombination-dependent replication from D-loops, it does not appear to be required for origin-dependent replication in vivo. In this study, we have analyzed the origin-replicative intermediates formed during infections that are deficient in gp59 and other phage replication proteins. During infections lacking gp59, the initial replication forks from two different T4 origins actively replicated both leading- and lagging-strands. However, the retrograde replication forks from both origins were abnormal in the gp59-deficient infections. The lagging-strand from the initial fork was elongated as a new leading-strand in the retrograde direction without lagging-strand synthesis, whereas in the wild-type, leading- and lagging-strand synthesis appeared to be coupled. These results imply that gp59 inhibits the polymerase holoenzyme in vivo until the helicase-primase (gp41-gp61) complex is loaded, and we thereby refer to gp59 as a gatekeeper. We also found that all origin-replicative intermediates were absent in infections deficient in the helicase gp41 or the single-strand-binding protein gp32, regardless of whether gp59 was present or absent. These results argue that replication from the origin in vivo is dependent on both the helicase and single-strand-binding protein and demonstrate that the strong replication defect of gene 41 and 32 single mutants is not caused by gp59 inhibition of the polymerase.
Collapse
Affiliation(s)
- Kathleen C Dudas
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
14
|
Gangisetty O, Jones CE, Bhagwat M, Nossal NG. Maturation of bacteriophage T4 lagging strand fragments depends on interaction of T4 RNase H with T4 32 protein rather than the T4 gene 45 clamp. J Biol Chem 2005; 280:12876-87. [PMID: 15659404 DOI: 10.1074/jbc.m414025200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the bacteriophage T4 DNA replication system, T4 RNase H removes the RNA primers and some adjacent DNA before the lagging strand fragments are ligated. This 5'-nuclease has strong structural and functional similarity to the FEN1 nuclease family. We have shown previously that T4 32 protein binds DNA behind the nuclease and increases its processivity. Here we show that T4 RNase H with a C-terminal deletion (residues 278-305) retains its exonuclease activity but is no longer affected by 32 protein. T4 gene 45 replication clamp stimulates T4 RNase H on nicked or gapped substrates, where it can be loaded behind the nuclease, but does not increase its processivity. An N-terminal deletion (residues 2-10) of a conserved clamp interaction motif eliminates stimulation by the clamp. In the crystal structure of T4 RNase H, the binding sites for the clamp at the N terminus and for 32 protein at the C terminus are located close together, away from the catalytic site of the enzyme. By using mutant T4 RNase H with deletions in the binding site for either the clamp or 32 protein, we show that it is the interaction of T4 RNase H with 32 protein, rather than the clamp, that most affects the maturation of lagging strand fragments in the T4 replication system in vitro and T4 phage production in vivo.
Collapse
Affiliation(s)
- Omkaram Gangisetty
- Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | | | |
Collapse
|