1
|
Lee SC, Collins R, Lin YP, Jamshad M, Broughton C, Harris SA, Hanson BS, Tognoloni C, Parslow RA, Terry AE, Rodger A, Smith CJ, Edler KJ, Ford R, Roper DI, Dafforn TR. Nano-encapsulated Escherichia coli Divisome Anchor ZipA, and in Complex with FtsZ. Sci Rep 2019; 9:18712. [PMID: 31822696 PMCID: PMC6904479 DOI: 10.1038/s41598-019-54999-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 11/10/2019] [Indexed: 12/21/2022] Open
Abstract
The E. coli membrane protein ZipA, binds to the tubulin homologue FtsZ, in the early stage of cell division. We isolated ZipA in a Styrene Maleic Acid lipid particle (SMALP) preserving its position and integrity with native E. coli membrane lipids. Direct binding of ZipA to FtsZ is demonstrated, including FtsZ fibre bundles decorated with ZipA. Using Cryo-Electron Microscopy, small-angle X-ray and neutron scattering, we determine the encapsulated-ZipA structure in isolation, and in complex with FtsZ to a resolution of 1.6 nm. Three regions can be identified from the structure which correspond to, SMALP encapsulated membrane and ZipA transmembrane helix, a separate short compact tether, and ZipA globular head which binds FtsZ. The complex extends 12 nm from the membrane in a compact structure, supported by mesoscale modelling techniques, measuring the movement and stiffness of the regions within ZipA provides molecular scale analysis and visualisation of the early divisome.
Collapse
Affiliation(s)
- Sarah C Lee
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Richard Collins
- Faculty of Life Sciences, A4032 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Yu-Pin Lin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mohammed Jamshad
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Claire Broughton
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Sarah A Harris
- School of Physics and Astronomy and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Benjamin S Hanson
- School of Physics and Astronomy and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Cecilia Tognoloni
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Rosemary A Parslow
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ann E Terry
- MAX IV Laboratory Lund University, P.O. Box 118, SE-221 00, Lund, Sweden
| | - Alison Rodger
- Department of Molecular Sciences, Macquarie University, Macquarie, NSW, 2109, Australia
| | - Corinne J Smith
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Karen J Edler
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Robert Ford
- Faculty of Life Sciences, A4032 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - David I Roper
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Timothy R Dafforn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
2
|
Dhaked HPS, Ray S, Battaje RR, Banerjee A, Panda D. Regulation ofStreptococcus pneumoniaeFtsZ assembly by divalent cations: paradoxical effects of Ca2+on the nucleation and bundling of FtsZ polymers. FEBS J 2019; 286:3629-3646. [DOI: 10.1111/febs.14928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023]
Affiliation(s)
| | - Shashikant Ray
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay India
- Department of Biotechnology Mahatma Gandhi Central University Motihari Bihar India
| | - Rachana Rao Battaje
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay India
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay India
| | - Dulal Panda
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay India
| |
Collapse
|
3
|
Mateos-Gil P, Tarazona P, Vélez M. Bacterial cell division: modeling FtsZ assembly and force generation from single filament experimental data. FEMS Microbiol Rev 2019; 43:73-87. [PMID: 30376053 DOI: 10.1093/femsre/fuy039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/26/2018] [Indexed: 12/24/2022] Open
Abstract
The bacterial cytoskeletal protein FtsZ binds and hydrolyzes GTP, self-aggregates into dynamic filaments and guides the assembly of the septal ring on the inner side of the membrane at midcell. This ring constricts the cell during division and is present in most bacteria. Despite exhaustive studies undertaken in the last 25 years after its discovery, we do not yet know the mechanism by which this GTP-dependent self-aggregating protein exerts force on the underlying membrane. This paper reviews recent experiments and theoretical models proposed to explain FtsZ filament dynamic assembly and force generation. It highlights how recent observations of single filaments on reconstituted model systems and computational modeling are contributing to develop new multiscale models that stress the importance of previously overlooked elements as monomer internal flexibility, filament twist and flexible anchoring to the cell membrane. These elements contribute to understand the rich behavior of these GTP consuming dynamic filaments on surfaces. The aim of this review is 2-fold: (1) to summarize recent multiscale models and their implications to understand the molecular mechanism of FtsZ assembly and force generation and (2) to update theoreticians with recent experimental results.
Collapse
Affiliation(s)
- Pablo Mateos-Gil
- Institute of Molecular Biology and Biotechnology, FO.R.T.H, Vassilika Vouton, 70013 Heraklion, Greece
| | - Pedro Tarazona
- Condensed Matter Physics Center (IFIMAC) and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Marisela Vélez
- Instituto de Catálisis y Petroleoquímica CSIC, c/ Marie Curie 2, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
4
|
Rodger A, Dorrington G, Ang DL. Linear dichroism as a probe of molecular structure and interactions. Analyst 2018; 141:6490-6498. [PMID: 27840872 DOI: 10.1039/c6an01771a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linear dichroism (LD) spectroscopy involves measuring the wavelength (or energy) dependence of the difference in absorption of light parallel and perpendicular to an orientation direction. It requires samples to have a net orientation. The aim of this review is to summarise some UV-visible linear dichroism (LD) methods that can be usefully applied to increase our understanding of biomacromolecules and their complexes that have a high aspect ratio. LD shares the advantages of most spectroscopic techniques including the fact that data collection is fairly straightforward and many sample types can be investigated. Conversely, LD shares the disadvantage that the measured signal is an average over all species in the sample on which the light beam is incident. LD mitigates this disadvantage somewhat in that only species which are oriented give a net signal. How the data can be analysed to give structural information about small molecules in stretched films and membrane systems or bound to biomacromolecules and directly about biomacromolecules such as DNA and protein fibres forms part of this review. In the UV-visible region LD often suffers noticeably from light scattering since the samples tend to be large relative to the wavelength of the incident light, so consideration is also given to data analysis challenges including removal of scattering contributions to an observed signal. Brief mention is made of fluorescence detected LD.
Collapse
Affiliation(s)
- Alison Rodger
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Glen Dorrington
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Dale L Ang
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
5
|
Khan A, Newby J, Gladfelter AS. Control of septin filament flexibility and bundling by subunit composition and nucleotide interactions. Mol Biol Cell 2018; 29:702-712. [PMID: 29321251 PMCID: PMC6003234 DOI: 10.1091/mbc.e17-10-0608] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 01/18/2023] Open
Abstract
Septins self-assemble into heteromeric rods and filaments to act as scaffolds and modulate membrane properties. How cells tune the biophysical properties of septin filaments to control filament flexibility and length, and in turn the size, shape, and position of higher-order septin structures, is not well understood. We examined how rod composition and nucleotide availability influence physical properties of septins such as annealing, fragmentation, bundling, and bending. We found that septin complexes have symmetric termini, even when both Shs1 and Cdc11 are coexpressed. The relative proportion of Cdc11/Shs1 septin complexes controls the biophysical properties of filaments and influences the rate of annealing, fragmentation, and filament flexibility. Additionally, the presence and apparent exchange of guanine nucleotide also alters filament length and bundling. An Shs1 mutant that is predicted to alter nucleotide hydrolysis has altered filament length and dynamics in cells and impacts cell morphogenesis. These data show that modulating filament properties through rod composition and nucleotide binding can control formation of septin assemblies that have distinct physical properties and functions.
Collapse
Affiliation(s)
- Anum Khan
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Biology, Dartmouth College, Hanover, NH 03755
| | - Jay Newby
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
6
|
Wemyss AM, Chmel NP, Lobo DP, Sutherland JA, Dafforn TR, Rodger A. Fluorescence detected linear dichroism spectroscopy: A selective and sensitive probe for fluorophores in flow-oriented systems. Chirality 2018; 30:227-237. [PMID: 29314266 DOI: 10.1002/chir.22795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/22/2017] [Accepted: 10/27/2017] [Indexed: 11/06/2022]
Abstract
Fluorescence detection typically enhances sensitivity and selectivity for fluorescent analytes. The potential for combining fluorescence detection with flow orientation of the sample in the normal configuration of linear dichroism experiments is explored in this work by measuring the fluorescence emitted from flow-orientated DNA-bound ligands and M13 bacteriophage. Data for ethidium bromide, Hoechst 33258, and 4,6-diamidino-2-phenyindole are presented. The theoretical basis of the technique is also presented for instruments running in both the fixed direct-current mode, which is the normal operation mode of circular dichroism spectropolarimeters, and also in fixed high-tension voltage mode. The role of the stray light reaching the detector that results in a spectral shape in fixed direct current mode that resembles the shape of a linear dichroism spectrum, rather than the expected reduced linear dichroism, is also explored.
Collapse
Affiliation(s)
- Alan M Wemyss
- Department of Chemistry and MOAC Doctoral Training Centre, University of Warwick, Coventry, UK
| | - Nikola P Chmel
- Department of Chemistry and MOAC Doctoral Training Centre, University of Warwick, Coventry, UK
| | - Daniela P Lobo
- Department of Chemistry and MOAC Doctoral Training Centre, University of Warwick, Coventry, UK
| | - John A Sutherland
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia, USA
| | | | - Alison Rodger
- Department of Chemistry and MOAC Doctoral Training Centre, University of Warwick, Coventry, UK.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
7
|
Dow CE, van den Berg HA, Roper DI, Rodger A. Biological Insights from a Simulation Model of the Critical FtsZ Accumulation Required for Prokaryotic Cell Division. Biochemistry 2015; 54:3803-13. [PMID: 26031209 DOI: 10.1021/acs.biochem.5b00261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A simulation model of prokaryotic Z-ring assembly, based on the observed behavior of FtsZ in vitro as well as on in vivo parameters, is used to integrate critical processes in cell division. According to the model, the cell's ability to divide depends on a "contraction parameter" (χ) that links the force of contraction to the dynamics of FtsZ. This parameter accurately predicts the outcome of division. Evaluating the GTP binding strength, the FtsZ polymerization rate, and the intrinsic GTP hydrolysis/dissociation activity, we find that inhibition of GTP-FtsZ binding is an inefficient antibacterial target. Furthermore, simulations indicate that the temperature sensitivity of the ftsZ84 mutation arises from the conversion of FtsZ to a dual-specificity NTPase. Finally, the sensitivity to temperature of the rate of ATP hydrolysis, over the critical temperature range, leads us to conclude that the ftsZ84 mutation affects the turnover rate of the Z-ring much less strongly than previously reported.
Collapse
Affiliation(s)
- Claire E Dow
- †Molecular Organisation and Assembly in Cells Doctoral Training Centre, Senate House, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Hugo A van den Berg
- ‡Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David I Roper
- §School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alison Rodger
- ∥Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.,⊥Warwick Analytical Science Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
8
|
Holloway CR, Dyson RJ, Smith DJ. Linear Taylor–Couette stability of a transversely isotropic fluid. Proc Math Phys Eng Sci 2015. [DOI: 10.1098/rspa.2015.0141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fibre-laden fluids are found in a variety of situations, while Couette devices are used for flow spectroscopy of long biological molecules, such as DNA and proteins in suspension. The presence of these fibres can significantly alter the rheology of the fluid, and hence must be incorporated in any modelling undertaken. A transversely isotropic fluid treats these suspensions as a continuum with an evolving preferred direction, through a modified stress tensor incorporating four viscosity-like parameters. We consider the axisymmetric linear stability of a transversely isotropic viscous fluid, contained between two rotating co-axial cylinders, and determine the critical wave and Taylor numbers for varying gap width and inner cylinder velocity (assuming the outer cylinder is fixed). Through the inclusion of transversely isotropic effects, the onset of instability is delayed, increasing the range of stable operating regimes. This effect is felt most strongly through incorporation of the anisotropic shear viscosity, although the anisotropic extensional viscosity also contributes. The changes to the rheology induced by the presence of the fibres therefore significantly alter the dynamics of the system, and hence should not be neglected.
Collapse
Affiliation(s)
- C. R. Holloway
- School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK
| | - R. J. Dyson
- School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK
| | - D. J. Smith
- School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK
- School of Engineering and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
9
|
Abstract
Prokaryotic cell division is a highly orchestrated process requiring the formation of a wide range of biomolecular complexes, perhaps the most important of these involving the prokaryotic tubulin homologue FtsZ, a fibre-forming GTPase. FtsZ assembles into a ring (the Z-ring) on the inner surface of the inner membrane at the site of cell division. The Z-ring then acts as a recruitment site for at least ten other proteins which form the division apparatus. One of these proteins, ZapA, acts to enhance lateral associations between FtsZ fibres to form bundles. Previously we have expressed, purified and crystallized ZapA and demonstrated that it exists as a tetramer. We also showed that ZapA binds to FtsZ polymers, strongly promoting their bundling, while inhibiting FtsZ GTPase activity by inducing conformational changes in the bound nucleotide. In the present study we investigate the importance of the tetramerization of ZapA on its function. We generated a number of mutant forms of ZapA with the aim of disrupting the dimer-dimer interface. We show that one of these mutants, I83E, is fully folded and binds to FtsZ, but is a constitutive dimer. Using this mutant we show that tetramerization is a requirement for both FtsZ bundling and GTPase modulation activities.
Collapse
|
10
|
Daviter T, Chmel N, Rodger A. Circular and linear dichroism spectroscopy for the study of protein-ligand interactions. Methods Mol Biol 2013; 1008:211-241. [PMID: 23729254 DOI: 10.1007/978-1-62703-398-5_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Circular dichroism (CD) is the difference in absorption of left and right circularly polarized light, usually by a solution containing the molecules of interest. A non-zero signal for solutions is only measured for chiral molecules such as proteins whose mirror image is not superposable on the original molecule. A CD spectrum provides information about the bonds and structures responsible for the chirality. When a small molecule (or ligand) binds to a protein, it acquires an induced CD (ICD) spectrum through chiral perturbation to its structure or electron rearrangements (transitions). The wavelengths of this ICD are determined by the ligand's own absorption spectrum, and the intensity of the ICD spectrum is determined by the strength and geometry of its interaction with the protein. Thus, ICD can be used to probe the binding of ligands to proteins. This chapter contains an outline of how to perform protein CD and ICD experiments, together with some of the issues relating to experimental design and implementation. Addition of a quarter wave plate to a CD spectropolarimeter converts it to a linear dichroism (LD) spectrometer. When protein samples are aligned either in flow (as for fibers or membrane proteins in liposomes) or on surfaces the orientations of ligands with respect to the protein backbone or other subunits can be determined.
Collapse
Affiliation(s)
- Tina Daviter
- ISMB Biophysics Centre, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | | | | |
Collapse
|
11
|
Anderson DE, Kim MB, Moore JT, O’Brien TE, Sorto NA, Grove CI, Lackner LL, Ames JB, Shaw JT. Comparison of small molecule inhibitors of the bacterial cell division protein FtsZ and identification of a reliable cross-species inhibitor. ACS Chem Biol 2012; 7:1918-28. [PMID: 22958099 DOI: 10.1021/cb300340j] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
FtsZ is a guanosine triphosphatase (GTPase) that mediates cytokinesis in bacteria. FtsZ is homologous in structure to eukaryotic tubulin and polymerizes in a similar head-to-tail fashion. The study of tubulin's function in eukaryotic cells has benefited greatly from specific and potent small molecule inhibitors, including colchicine and taxol. Although many small molecule inhibitors of FtsZ have been reported, none has emerged as a generally useful probe for modulating bacterial cell division. With the goal of establishing a useful and reliable small molecule inhibitor of FtsZ, a broad biochemical cross-comparison of reported FtsZ inhibitors was undertaken. Several of these molecules, including phenolic natural products, are unselective inhibitors that seem to derive their activity from the formation of microscopic colloids or aggregates. Other compounds, including the natural product viriditoxin and the drug development candidate PC190723, exhibit no inhibition of GTPase activity using protocols in this work or under published conditions. Of the compounds studied, only zantrin Z3 exhibits good levels of inhibition, maintains activity under conditions that disrupt small molecule aggregates, and provides a platform for exploration of structure-activity relationships (SAR). Preliminary SAR studies have identified slight modifications to the two side chains of this structure that modulate the inhibitory activity of zantrin Z3. Collectively, these studies will help focus future investigations toward the establishment of probes for FtsZ that fill the roles of colchicine and taxol in studies of tubulin.
Collapse
Affiliation(s)
- David E. Anderson
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Michelle B. Kim
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Jared T. Moore
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Terrence E. O’Brien
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Nohemy A. Sorto
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Charles I. Grove
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Laura L. Lackner
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - James B. Ames
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Jared T. Shaw
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| |
Collapse
|
12
|
Matsui T, Yamane J, Mogi N, Yamaguchi H, Takemoto H, Yao M, Tanaka I. Structural reorganization of the bacterial cell-division protein FtsZ from Staphylococcus aureus. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1175-88. [PMID: 22948918 DOI: 10.1107/s0907444912022640] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/18/2012] [Indexed: 11/10/2022]
Abstract
FtsZ is a key molecule in bacterial cell division. In the presence of GTP, it polymerizes into tubulin-like protofilaments by head-to-tail association. Protofilaments of FtsZ seem to adopt a straight or a curved conformation in relation to the bound nucleotide. However, although several bacterial and archaeal FtsZ structures have been determined, all of the structures reported previously are considered to have a curved conformation. In this study, structures of FtsZ from Staphylococcus aureus (SaFtsZ) were determined in apo, GDP-bound and inhibitor-complex forms and it was found that SaFtsZ undergoes marked conformational changes. The accumulated evidence suggests that the GDP-bound structure has the features of the straight form. The structural change between the curved and straight forms shows intriguing similarity to the eukaryotic cytoskeletal protein tubulin. Furthermore, the structure of the apo form showed an unexpectedly large conformational change in the core region. FtsZ has also been recognized as a novel target for antibacterial drugs. The structure of the complex with the inhibitor PC190723, which has potent and selective antistaphylococcal activity, indicated that the inhibitor binds at the cleft between the two subdomains.
Collapse
Affiliation(s)
- Takashi Matsui
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Hicks MR, Rodger A, Lin YP, Jones NC, Hoffmann SV, Dafforn TR. Rapid Injection Linear Dichroism for Studying the Kinetics of Biological Processes. Anal Chem 2012; 84:6561-6. [DOI: 10.1021/ac300842h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Matthew R. Hicks
- Department of Chemistry and
Warwick Centre for Analytical Science, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Alison Rodger
- Department of Chemistry and
Warwick Centre for Analytical Science, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Yu-pin Lin
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United
Kingdom
| | - Nykola C. Jones
- Institute for Storage
Ring Facilities
(ISA), Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Søren Vrønning Hoffmann
- Institute for Storage
Ring Facilities
(ISA), Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Timothy R. Dafforn
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United
Kingdom
| |
Collapse
|
14
|
The mechanics of FtsZ fibers. Biophys J 2012; 102:731-8. [PMID: 22385843 DOI: 10.1016/j.bpj.2012.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 12/02/2011] [Accepted: 01/11/2012] [Indexed: 10/28/2022] Open
Abstract
Inhibition of the Fts family of proteins causes the growth of long filamentous cells, indicating that they play some role in cell division. FtsZ polymerizes into protofilaments and assembles into the Z-ring at the future site of the septum of cell division. We analyze the rigidity of GTP-bound FtsZ protofilaments by using cryoelectron microscopy to sample their bending fluctuations. We find that the FtsZ-GTP filament rigidity is κ=4.7±1.0×10(-27) Nm(2), with a corresponding thermal persistence length of l(p)=1.15±0.25μm, much higher than previous estimates. In conjunction with other model studies, our new higher estimate for FtsZ rigidity suggests that contraction of the Z-ring may generate sufficient force to facilitate cell division. The good agreement between the measured mode amplitudes and that predicted by equipartition of energy supports our use of a simple mechanical model for FtsZ fibers. The study also provides evidence that the fibers have no intrinsic global or local curvatures, such as might be caused by partial hydrolysis of the GTP.
Collapse
|
15
|
Pacheco-Gómez R, Kraemer J, Stokoe S, England HJ, Penn CW, Stanley E, Rodger A, Ward J, Hicks MR, Dafforn TR. Detection of Pathogenic Bacteria Using a Homogeneous Immunoassay Based on Shear Alignment of Virus Particles and Linear Dichroism. Anal Chem 2011; 84:91-7. [PMID: 22017566 DOI: 10.1021/ac201544h] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Raúl Pacheco-Gómez
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, U.K
| | - Julia Kraemer
- TU Dresden, Institut für Lebensmittel- und Bioverfahrenstechnik (Institute of Food Technology and Bioprocess Engineering) 01062 Dresden
| | - Susan Stokoe
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, U.K
| | - Hannah J. England
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, U.K
| | - Charles W. Penn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, U.K
| | - Emma Stanley
- Department of Biochemical Engineering, University College London, London, WC1E 6BT, U.K
| | - Alison Rodger
- Department of Chemistry, University of Warwick, Coventry, Warwickshire, CV4 7AL, U.K
| | - John Ward
- Department of Biochemical Engineering, University College London, London, WC1E 6BT, U.K
| | - Matthew R. Hicks
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, U.K
- Department of Chemistry, University of Warwick, Coventry, Warwickshire, CV4 7AL, U.K
| | - Timothy R. Dafforn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, U.K
| |
Collapse
|
16
|
Pacheco-Gómez R, Roper DI, Dafforn TR, Rodger A. The pH dependence of polymerization and bundling by the essential bacterial cytoskeletal protein FtsZ. PLoS One 2011; 6:e19369. [PMID: 21738567 PMCID: PMC3125165 DOI: 10.1371/journal.pone.0019369] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 04/02/2011] [Indexed: 11/19/2022] Open
Abstract
There is a growing body of evidence that bacterial cell division is an intricate coordinated process of comparable complexity to that seen in eukaryotic cells. The dynamic assembly of Escherichia coli FtsZ in the presence of GTP is fundamental to its activity. FtsZ polymerization is a very attractive target for novel antibiotics given its fundamental and universal function. In this study our aim was to understand further the GTP-dependent FtsZ polymerization mechanism and our main focus is on the pH dependence of its behaviour. A key feature of this work is the use of linear dichroism (LD) to follow the polymerization of FtsZ monomers into polymeric structures. LD is the differential absorption of light polarized parallel and perpendicular to an orientation direction (in this case that provided by shear flow). It thus readily distinguishes between FtsZ polymers and monomers. It also distinguishes FtsZ polymers and less well-defined aggregates, which light scattering methodologies do not. The polymerization of FtsZ over a range of pHs was studied by right-angled light scattering to probe mass of FtsZ structures, LD to probe real-time formation of linear polymeric fibres, a specially developed phosphate release assay to relate guanosine triphosphate (GTP) hydrolysis to polymer formation, and electron microscopy (EM) imaging of reaction products as a function of time and pH. We have found that lowering the pH from neutral to 6.5 does not change the nature of the FtsZ polymers in solution—it simply facilitates the polymerization so the fibres present are longer and more abundant. Conversely, lowering the pH to 6.0 has much the same effect as introducing divalent cations or the FtsZ-associated protein YgfE (a putative ZapA orthologue in E. coli)—it stablizes associations of protofilaments.
Collapse
Affiliation(s)
- Raúl Pacheco-Gómez
- Molecular Organization and Assembly in Cells Doctoral Training Centre, University of Warwick, Coventry, United Kingdom
| | - David I. Roper
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Timothy R. Dafforn
- Department of Biosciences, University of Birmingham, Edgebaston, Birmingham, United Kingdom
| | - Alison Rodger
- Molecular Organization and Assembly in Cells Doctoral Training Centre, University of Warwick, Coventry, United Kingdom
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Olson BJSC, Wang Q, Osteryoung KW. GTP-dependent heteropolymer formation and bundling of chloroplast FtsZ1 and FtsZ2. J Biol Chem 2010; 285:20634-43. [PMID: 20421292 DOI: 10.1074/jbc.m110.122614] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteria and chloroplasts require the ring-forming cytoskeletal protein FtsZ for division. Although bacteria accomplish division with a single FtsZ, plant chloroplasts require two FtsZ types for division, FtsZ1 and FtsZ2. These proteins colocalize to a mid-plastid Z ring, but their biochemical relationship is poorly understood. We investigated the in vitro behavior of recombinant FtsZ1 and FtsZ2 separately and together. Both proteins bind and hydrolyze GTP, although GTPase activities are low compared with the activity of Escherichia coli FtsZ. Each protein undergoes GTP-dependent assembly into thin protofilaments in the presence of calcium as a stabilizing agent, similar to bacterial FtsZ. In contrast, when mixed without calcium, FtsZ1 and FtsZ2 exhibit slightly elevated GTPase activity and coassembly into extensively bundled protofilaments. Coassembly is enhanced by FtsZ1, suggesting that it promotes lateral interactions between protofilaments. Experiments with GTPase-deficient mutants reveal that FtsZ1 and FtsZ2 form heteropolymers. Maximum coassembly occurs in reactions containing equimolar FtsZ1 and FtsZ2, but significant coassembly occurs at other stoichiometries. The FtsZ1:FtsZ2 ratio in coassembled structures mirrors their input ratio, suggesting plasticity in protofilament and/or bundle composition. This behavior contrasts with that of alpha- and beta-tubulin and the bacterial tubulin-like proteins BtubA and BtubB, which coassemble in a strict 1:1 stoichiometry. Our findings raise the possibility that plasticity in FtsZ filament composition and heteropolymerization-induced bundling could have been a driving force for the coevolution of FtsZ1 and FtsZ2 in the green lineage, perhaps arising from an enhanced capacity for the regulation of Z ring composition and activity in vivo.
Collapse
Affiliation(s)
- Bradley J S C Olson
- Biochemistry and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
18
|
Self-assembly of the bacterial cytoskeleton-associated RNA helicase B protein into polymeric filamentous structures. J Bacteriol 2010; 192:3222-6. [PMID: 20382767 DOI: 10.1128/jb.00105-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli RNA degradosome proteins are organized into a helical cytoskeletal-like structure within the cell. Here we describe the ATP-dependent assembly of the RhlB component of the degradosome into polymeric filamentous structures in vitro, which suggests that extended polymers of RhlB are likely to comprise a basic core element of the degradosome cytoskeletal structures.
Collapse
|
19
|
Andreu JM, Schaffner-Barbero C, Huecas S, Alonso D, Lopez-Rodriguez ML, Ruiz-Avila LB, Núñez-Ramírez R, Llorca O, Martín-Galiano AJ. The antibacterial cell division inhibitor PC190723 is an FtsZ polymer-stabilizing agent that induces filament assembly and condensation. J Biol Chem 2010; 285:14239-46. [PMID: 20212044 DOI: 10.1074/jbc.m109.094722] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell division protein FtsZ can form single-stranded filaments with a cooperative behavior by self-switching assembly. Subsequent condensation and bending of FtsZ filaments are important for the formation and constriction of the cytokinetic ring. PC190723 is an effective bactericidal cell division inhibitor that targets FtsZ in the pathogen Staphylococcus aureus and Bacillus subtilis and does not affect Escherichia coli cells, which apparently binds to a zone equivalent to the binding site of the antitumor drug taxol in tubulin (Haydon, D. J., Stokes, N. R., Ure, R., Galbraith, G., Bennett, J. M., Brown, D. R., Baker, P. J., Barynin, V. V., Rice, D. W., Sedelnikova, S. E., Heal, J. R., Sheridan, J. M., Aiwale, S. T., Chauhan, P. K., Srivastava, A., Taneja, A., Collins, I., Errington, J., and Czaplewski, L. G. (2008) Science 312, 1673-1675). We have found that the benzamide derivative PC190723 is an FtsZ polymer-stabilizing agent. PC190723 induced nucleated assembly of Bs-FtsZ into single-stranded coiled protofilaments and polymorphic condensates, including bundles, coils, and toroids, whose formation could be modulated with different solution conditions. Under conditions for reversible assembly of Bs-FtsZ, PC190723 binding reduced the GTPase activity and induced the formation of straight bundles and ribbons, which was also observed with Sa-FtsZ but not with nonsusceptible Ec-FtsZ. The fragment 2,6-difluoro-3-methoxybenzamide also induced Bs-FtsZ bundling. We propose that polymer stabilization by PC190723 suppresses in vivo FtsZ polymer dynamics and bacterial division. The biochemical action of PC190723 on FtsZ parallels that of the microtubule-stabilizing agent taxol on the eukaryotic structural homologue tubulin. Both taxol and PC190723 stabilize polymers against disassembly by preferential binding to each assembled protein. It is yet to be investigated whether both ligands target structurally related assembly switches.
Collapse
Affiliation(s)
- José M Andreu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hicks MR, Kowałski J, Rodger A. LD spectroscopy of natural and synthetic biomaterials. Chem Soc Rev 2010; 39:3380-93. [DOI: 10.1039/b912917k] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Clément MJ, Kuoch BT, Ha-Duong T, Joshi V, Hamon L, Toma F, Curmi PA, Savarin P. The Stathmin-Derived I19L Peptide Interacts with FtsZ and Alters Its Bundling. Biochemistry 2009; 48:9734-44. [DOI: 10.1021/bi900556a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marie-Jeanne Clément
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, INSERM/UEVE U829, Evry, 91025 France
| | - Boï-trinh Kuoch
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, INSERM/UEVE U829, Evry, 91025 France
| | - Tap Ha-Duong
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, UMR/UEVE 8587, Evry, 91025 France
| | - Vandana Joshi
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, INSERM/UEVE U829, Evry, 91025 France
| | - Loïc Hamon
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, INSERM/UEVE U829, Evry, 91025 France
| | - Flavio Toma
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, INSERM/UEVE U829, Evry, 91025 France
| | - Patrick A. Curmi
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, INSERM/UEVE U829, Evry, 91025 France
| | - Philippe Savarin
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, INSERM/UEVE U829, Evry, 91025 France
| |
Collapse
|
22
|
Bulheller BM, Rodger A, Hicks MR, Dafforn TR, Serpell LC, Marshall KE, Bromley EHC, King PJS, Channon KJ, Woolfson DN, Hirst JD. Flow linear dichroism of some prototypical proteins. J Am Chem Soc 2009; 131:13305-14. [PMID: 19715308 DOI: 10.1021/ja902662e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flow linear dichroism (LD) spectroscopy provides information on the orientation of molecules in solution and hence on the relative orientation of parts of molecules. Long molecules such as fibrous proteins can be aligned in Couette flow cells and characterized using LD. We have measured using Couette flow and calculated from first principles the LD of proteins representing prototypical secondary structure classes: a self-assembling fiber and tropomyosin (all-alpha-helical), FtsZ (an alphabeta protein), an amyloid fibril (beta-sheet), and collagen [poly(proline)II helices]. The combination of calculation and experiment allows elucidation of the protein orientation in the Couette flow and the orientation of chromophores within the protein fibers.
Collapse
Affiliation(s)
- Benjamin M Bulheller
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Bacterial cell division is orchestrated by a tubulin homologue, FtsZ, which polymerizes to form a ring-like structure that is both a scaffold for the assembly of the bacterial cytokinetic machinery and, at least in part, a source of the energy for constriction. FtsZ assembly is tightly regulated, and a diverse repertoire of accessory proteins contributes to the formation of a functional division machine that is responsive to cell cycle status and environmental stress. In this Review, we describe the interaction of these proteins with FtsZ and discuss recent advances in our understanding of Z ring assembly.
Collapse
|
24
|
Fujihara M, Maeda K, Sasamori E, Matsushita M, Harasawa R. Effects of chelating reagents on colonial appearance of Paenibacillus alvei isolated from canine oral cavity. J Vet Med Sci 2009; 71:147-53. [PMID: 19262024 DOI: 10.1292/jvms.71.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A bacterial strain isolated from the oral cavity of a healthy dog revealed an unusual colony formation in nebular appearance on agar plates. The isolated bacterial strain was Gram-positive, spore-forming rod with peritrichous flagella, and grown under aerobic conditions, but unable to grow at 45 degrees C. The strain was tentatively classified as Paenibacillus alvei according to the biochemical properties and the 16S rRNA gene sequence. The isolate exhibits collective locomotion on solid agar plates. The bacterial motility was inhibited with EDTA and was restored by adding magnesium. We concluded that magnesium ion is essential for collective locomotion of P. alvei. This suggests that EDTA is useful for inhibition of biofilm formation.
Collapse
Affiliation(s)
- Masatoshi Fujihara
- Department of Veterinary Microbiology, Faculty of Agriculture, Iwate University, Ueda, Morioka, Japan
| | | | | | | | | |
Collapse
|
25
|
Drew DA, Koch GA, Vellante H, Talati R, Sanchez O. Analyses of mechanisms for force generation during cell septation in Escherichia coli. Bull Math Biol 2009; 71:980-1005. [PMID: 19229658 DOI: 10.1007/s11538-008-9390-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
Abstract
Escherichia coli is a rod-shaped bacterium that divides at its midplane, partitioning its cellular material into two roughly equal parts. At the appropriate time, a septum forms, creating the two daughter cells. Septum formation starts with the appearance of a ring of FtsZ proteins on the cell membrane at midplane. This Z-ring causes an invagination in the membrane, which is followed by growth of two new endcaps for the daughter cells. Invagination occurs against a cell overpressure of several atmospheres. A model is presented for the shape of the cell as determined by the tension in the Z-ring. This model allows the calculation of the force required for invagination. Then three possible models to generate the force necessary to achieve invagination are presented and analyzed. These models are based on converting GTP-bound FtsZ polymeric structures to GDP-bound FtsZ structures, which then leave the polymer. Each model is able to generate the force by relating the hydrolyzation to an irreversible molecular binding event, resulting in a net motion of putative anchors for the structures. All three models show that cross-linking the FtsZ protofilaments into a polymer structure allows the removal of GDP-FtsZ without interrupting the structure during force generation, as would happen for a simple polymeric chain.
Collapse
Affiliation(s)
- Donald A Drew
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.
| | | | | | | | | |
Collapse
|
26
|
Rittman M, Gilroy E, Koohy H, Rodger A, Richards A. Is DNA a worm-like chain in Couette flow? In search of persistence length, a critical review. Sci Prog 2009; 92:163-204. [PMID: 19697713 PMCID: PMC10361128 DOI: 10.3184/003685009x462205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Persistence length is the foremost measure of DNA flexibility. Its origins lie in polymer theory which was adapted for DNA following the determination of BDNA structure in 1953. There is no single definition of persistence length used, and the links between published definitions are based on assumptions which may, or may not be, clearly stated. DNA flexibility is affected by local ionic strength, solvent environment, bound ligands and intrinsic sequence-dependent flexibility. This article is a review of persistence length providing a mathematical treatment of the relationships between four definitions of persistence length, including: correlation, Kuhn length, bending, and curvature. Persistence length has been measured using various microscopy, force extension and solution methods such as linear dichroism and transient electric birefringence. For each experimental method a model of DNA is required to interpret the data. The importance of understanding the underlying models, along with the assumptions required by each definition to determine a value of persistence length, is highlighted for linear dichroism data, where it transpires that no model is currently available for long DNA or medium to high shear rate experiments.
Collapse
Affiliation(s)
- Martyn Rittman
- Molecular Organisation and Assembly in Cells Doctoral Training Centre
| | - Emma Gilroy
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Hashem Koohy
- Molecular Organisation and Assembly in Cells Doctoral Training Centre
| | - Alison Rodger
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Adair Richards
- Molecular Organisation and Assembly in Cells Doctoral Training Centre
| |
Collapse
|
27
|
Breaking the 200 nm limit for routine flow linear dichroism measurements using UV synchrotron radiation. Biophys J 2008; 95:5974-7. [PMID: 18805928 DOI: 10.1529/biophysj.108.139964] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The first synchrotron radiation flow linear dichroism spectra are reported. High-quality spectral data can be collected from 450 nm down to 180 nm in contrast to the practical cutoff of approximately 200 nm on benchtop instruments. State-of-the-art microvolume capillary Couette flow linear dichroism was successfully ported to a synchrotron radiation source. The sample volume required is < 50 microL. A characterization of the synchrotron radiation linear dichroism with known DNA and DNA-ligand systems is presented and the viability of the setup confirmed. Typically, wavelengths down to 180 nm are now routinely accessible with a high signal/noise ratio with little limitation from the sample concentration. The 180 nm cutoff is due to the quartz of the Couette cell rather than the beamline itself. We show the application of the simultaneous determination of the sample absorption spectrum to calculate the reduced linear dichroism signal. Spectra for calf thymus DNA, DNA/ethidium bromide, and DNA/4',6-diamidino-2-phenylindole systems illustrate the quality of data that can be obtained.
Collapse
|
28
|
Dajkovic A, Lan G, Sun SX, Wirtz D, Lutkenhaus J. MinC Spatially Controls Bacterial Cytokinesis by Antagonizing the Scaffolding Function of FtsZ. Curr Biol 2008; 18:235-44. [DOI: 10.1016/j.cub.2008.01.042] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/21/2007] [Accepted: 01/04/2008] [Indexed: 10/22/2022]
|
29
|
Abstract
The technique of linear dichroism (LD) is a simple absorbance technique that uses two polarised light beams. Since only oriented molecules show different absorbances for different polarisations, LD detects only oriented molecules. In aqueous solutions, flow orientation is an attractive orientation methodology as it selects long molecules or molecular assemblies. LD thus is selective for molecules that are particularly challenging to study by more standard biophysical techniques. In this article, a brief review of the application of LD to DNA, DNA-drug systems, DNA-protein enzymatic complexes, fibrous proteins and membrane peptides and proteins is given.
Collapse
|
30
|
Díaz-Espinoza R, Garcés AP, Arbildua JJ, Montecinos F, Brunet JE, Lagos R, Monasterio O. Domain folding and flexibility of Escherichia coli FtsZ determined by tryptophan site-directed mutagenesis. Protein Sci 2007; 16:1543-56. [PMID: 17656575 PMCID: PMC2203363 DOI: 10.1110/ps.072807607] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
FtsZ has two domains, the amino GTPase domain with a Rossmann fold, and the carboxyl domain that resembles the chorismate mutase fold. Bioinformatics analyses suggest that the interdomain interaction is stronger than the interaction of the protofilament longitudinal interfaces. Crystal B factor analysis of FtsZ and detected conformational changes suggest a connection between these domains. The unfolding/folding characteristics of each domain of FtsZ were tested by introducing tryptophans into the flexible region of the amino (F135W) and the carboxyl (F275W and I294W) domains. As a control, the mutation F40W was introduced in a more rigid part of the amino domain. These mutants showed a native-like structure with denaturation and renaturation curves similar to wild type. However, the I294W mutant showed a strong loss of functionality, both in vivo and in vitro when compared to the other mutants. The functionality was recovered with the double mutant I294W/F275A, which showed full in vivo complementation with a slight increment of in vitro GTPase activity with respect to the single mutant. The formation of a stabilizing aromatic interaction involving a stacking between the tryptophan introduced at position 294 and phenylalanine 275 could account for these results. Folding/unfolding of these mutants induced by guanidinium chloride was compatible with a mechanism in which both domains within the protein show the same stability during FtsZ denaturation and renaturation, probably because of strong interface interactions.
Collapse
Affiliation(s)
- Rodrigo Díaz-Espinoza
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
31
|
Marrington R, Seymour M, Rodger A. A new method for fibrous protein analysis illustrated by application to tubulin microtubule polymerisation and depolymerisation. Chirality 2007; 18:680-90. [PMID: 16823813 DOI: 10.1002/chir.20305] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A thermostatted micro volume Couette cell has been designed to enable linear dichroism (LD) data to be collected at a range of temperatures. The cell is a development of the traditional Couette flow LD cell and includes the recent development of micro-volume LD (20-40 microL) coupled with the addition of a heating element, temperature probe and controller. This new micro volume Couette LD cell opens the way not only to the LD analysis of systems where sample volume is critical, but also for the LD analysis of temperature sensitive samples. The polymerization of the microtubule protein tubulin has been followed in a range of different conditions using the thermostatted micro volume Couette LD cell. The focusing lenses on the cell, which are required for the microvolume cell, have the side benefit of significantly reducing the light-scattering artifacts caused by the large size of tubulin microtubules. It is now possible to monitor real-time polymerization and depolymerization kinetics, and any structural rearrangements of chromophores within the polymer. In the case of tubulin, the LD spectra revealed a greater change in the orientation of tryptophan residues at approximately 290 nm during polymerization compared to other contributing chromophores-guanine, phenylalanine, and tyrosine. The improvements in instrumental design have also allowed LD spectra of tubulin to be collected down to approximately 230 nm (previous data have only been available from the near UV region), which means that some indication of protein backbone-orientation changes are now available. It was observed during this work that apparent LD intensity maxima are in fact artifacts when the high-tension voltage is high. The onset of such artifacts has been observed at much lower voltages with light-scattering fibrous proteins (including tubulin) than with nonscattering samples. Therefore, caution must be used when interpreting LD data collected with medium to high photomultiplier tube voltages.
Collapse
|
32
|
Small E, Marrington R, Rodger A, Scott DJ, Sloan K, Roper D, Dafforn TR, Addinall SG. FtsZ polymer-bundling by the Escherichia coli ZapA orthologue, YgfE, involves a conformational change in bound GTP. J Mol Biol 2007; 369:210-21. [PMID: 17428494 DOI: 10.1016/j.jmb.2007.03.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 03/07/2007] [Accepted: 03/09/2007] [Indexed: 10/23/2022]
Abstract
Cell division is a fundamental process for both eukaryotic and prokaryotic cells. In bacteria, cell division is driven by a dynamic, ring-shaped, cytoskeletal element (the Z-ring) made up of polymers of the tubulin-like protein FtsZ. It is thought that lateral associations between FtsZ polymers are important for function of the Z-ring in vivo, and that these interactions are regulated by accessory cell division proteins such as ZipA, EzrA and ZapA. We demonstrate that the putative Escherichia coli ZapA orthologue, YgfE, exists in a dimer/tetramer equilibrium in solution, binds to FtsZ polymers, strongly promotes FtsZ polymer bundling and is a potent inhibitor of the FtsZ GTPase activity. We use linear dichroism, a technique that allows structure analysis of molecules within linear polymers, to reveal a specific conformational change in GTP bound to FtsZ polymers, upon bundling by YgfE. We show that the consequences of FtsZ polymer bundling by YgfE and divalent cations are very similar in terms of GTPase activity, bundle morphology and GTP orientation and therefore propose that this conformational change in bound GTP reveals a general mechanism of FtsZ bundling.
Collapse
Affiliation(s)
- Elaine Small
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Circular dichroism (CD) is an important technique in the structural characterisation of proteins, and especially for secondary structure determination. The CD of proteins can be calculated from first principles using the so-called matrix method, with an accuracy which is almost quantitative for helical proteins. Thus, for proteins of unknown structure, CD calculations and experimental data can be used in conjunction to aid structure analysis. Linear dichroism (LD) can be calculated using analogous methodology and has been used to establish the relative orientations of subunits in proteins and protein orientation in an environment such as a membrane. However, simple analysis of LD data is not possible, due to overlapping transitions. So coupling the calculations and experiment is an important strategy. In this paper, the use of LD for the determination of protein orientation and how these data can be interpreted with the aid of calculations, are discussed. We review methods for the calculation of CD spectra, focusing on semiempirical and ab initio parameter sets used in the matrix method. Lastly, a new web interface for online CD and LD calculation is presented.
Collapse
Affiliation(s)
- Benjamin M Bulheller
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK NG7 2RD
| | | | | |
Collapse
|
34
|
Rajendra J, Damianoglou A, Hicks M, Booth P, Rodger PM, Rodger A. Quantitation of protein orientation in flow-oriented unilamellar liposomes by linear dichroism. Chem Phys 2006. [DOI: 10.1016/j.chemphys.2006.02.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Rodger A, Marrington R, Geeves MA, Hicks M, de Alwis L, Halsall DJ, Dafforn TR. Looking at long molecules in solution: what happens when they are subjected to Couette flow? Phys Chem Chem Phys 2006; 8:3161-71. [PMID: 16902709 DOI: 10.1039/b604810m] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Knowing the structure of a molecule is one of the keys to deducing its function in a biological system. However, many biomacromolecules are not amenable to structural characterisation by the powerful techniques often used namely NMR and X-ray diffraction because they are too large, or too flexible or simply refuse to crystallize. Long molecules such as DNA and fibrous proteins are two such classes of molecule. In this article the extent to which flow linear dichroism (LD) can be used to characterise the structure and function of such molecules is reviewed. Consideration is given to the issues of fluid dynamics and light scattering by such large molecules. A range of applications of LD are reviewed including (i) fibrous proteins with particular attention being given to actin; (ii) a far from comprehensive discussion of the use of LD for DNA and DNA-ligand systems; (iii) LD for the kinetics of restriction digestion of circular supercoiled DNA; and (iv) carbon nanotubes to illustrate that LD can be used on any long molecules with accessible absorption transitions.
Collapse
Affiliation(s)
- Alison Rodger
- Department of Chemistry, University of Warwick, Coventry, UKCV4 7AL
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Bacterial cells contain a variety of structural filamentous proteins necessary for the spatial regulation of cell shape, cell division, and chromosome segregation, analogous to the eukaryotic cytoskeletal proteins. The molecular mechanisms by which these proteins function are beginning to be revealed, and these proteins show numerous three-dimensional structural features and biochemical properties similar to those of eukaryotic actin and tubulin, revealing their evolutionary relationship. Recent technological advances have illuminated links between cell division and chromosome segregation, suggesting a higher complexity and organization of the bacterial cell than was previously thought.
Collapse
Affiliation(s)
- Katharine A Michie
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, UK.
| | | |
Collapse
|
37
|
Marrington R, Dafforn TR, Halsall DJ, MacDonald JI, Hicks M, Rodger A. Validation of new microvolume Couette flow linear dichroism cells. Analyst 2005; 130:1608-16. [PMID: 16284659 DOI: 10.1039/b506149k] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Long molecules such as fibrous proteins are particularly difficult to characterise structurally. We have recently designed a microvolume Couette flow linear dichroism (LD) cell whose sample volume is only 20-40 microL in contrast to previous cells where the volume of sample required has typically been of the order of 1000-2000 microL. This brings the sample requirements of LD to a level where it can be used for biological samples. Since LD is the difference in absorption of light polarised parallel to an orientation direction and perpendicular to that direction, it is the ideal technique for determining relative orientations of subunits of e.g. fibrous proteins, DNA-drug systems, etc. For solution phase samples, Couette flow orientation, whereby the sample is sandwiched between two cylinders, one of which rotates, has proved to be the optimal technique for LD experiments in many laboratories. Our capillary microvolume LD cell has been designed using extruded quartz rods and capillaries and focusing and collecting lenses. We have developed applications with PCR products, fibrous proteins, liposome-bound membrane proteins, as well as DNA-dye systems. Despite this range of applications, to date there is nothing reported in the literature to enable one to validate the performance of Couette flow LD cells. In this paper we establish validation criteria and show that the data from the microvolume cells are reproducible, vary by less than 1% with sample reloading, follow the Beer-Lambert law, and have signals linear in voltage over a wide voltage range. The microvolume cell data are consistent with those from the large-volume cells for DNA samples. Surprisingly, upon extending the wavelength range by adding the intercalator ethidium bromide, the spectra in the microvolume and large-volume cells differ by a wavelength dependent orientation parameter. This wavelength variation was concluded to be the result of Taylor-vortices in the large-volume cells which have inner rotating cylinders in our laboratory. Thus the microvolume LD cells can be concluded to provide better data than our large-volume LD cells, though the latter are still to be preferred for titration series as it is extremely difficult to add sample to the capillary cells without introducing artefacts.
Collapse
Affiliation(s)
- Rachel Marrington
- Department of Chemistry, University of Warwick, Coventry, UK CV4 7AL
| | | | | | | | | | | |
Collapse
|
38
|
Addinall SG, Small E, Whitaker D, Sturrock S, Donachie WD, Khattar MM. New temperature-sensitive alleles of ftsZ in Escherichia coli. J Bacteriol 2005; 187:358-65. [PMID: 15601720 PMCID: PMC538815 DOI: 10.1128/jb.187.1.358-365.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated five new temperature-sensitive alleles of the essential cell division gene ftsZ in Escherichia coli, using P1-mediated, localized mutagenesis. The five resulting single amino acid changes (Gly109-->Ser109 for ftsZ6460, Ala129-->Thr129 for ftsZ972, Val157-->Met157 for ftsZ2066, Pro203-->Leu203 for ftsZ9124, and Ala239-->Val239 for ftsZ2863) are distributed throughout the FtsZ core region, and all confer a lethal cell division block at the nonpermissive temperature of 42 degrees C. In each case the division block is associated with loss of Z-ring formation such that fewer than 2% of cells show Z rings at 42 degrees C. The ftsZ9124 and ftsZ6460 mutations are of particular interest since both result in abnormal Z-ring formation at 30 degrees C and therefore cause significant defects in FtsZ polymerization, even at the permissive temperature. Neither purified FtsZ9124 nor purified FtsZ6460 exhibited polymerization when it was assayed by light scattering or electron microscopy, even in the presence of calcium or DEAE-dextran. Hence, both mutations also cause defects in FtsZ polymerization in vitro. Interestingly, FtsZ9124 has detectable GTPase activity, although the activity is significantly reduced compared to that of the wild-type FtsZ protein. We demonstrate here that unlike expression of ftsZ84, multicopy expression of the ftsZ6460, ftsZ972, and ftsZ9124 alleles does not complement the respective lethalities at the nonpermissive temperature. In addition, all five new mutant FtsZ proteins are stable at 42 degrees C. Therefore, the novel isolates carrying single ftsZ(Ts) point mutations, which are the only such strains obtained since isolation of the classical ftsZ84 mutation, offer significant opportunities for further genetic characterization of FtsZ and its role in cell division.
Collapse
|