1
|
Huang Z, Wang SL, Chen H, Shen RK, Li XD, Huang QS, Wu CY, Weng DF, Lin JH. Clinicopathological and prognostic values of ErbB receptor family amplification in primary osteosarcoma. Scandinavian Journal of Clinical and Laboratory Investigation 2019; 79:601-612. [PMID: 31663373 DOI: 10.1080/00365513.2019.1683764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteosarcoma is a malignant bone tumor with extremely high invasion, metastasis and mortality. The prognosis of patients with osteosarcoma remains poor. The ErbB receptor family was found to be overexpressed in human cancers and associated with poor prognosis. However, the role of ErbB receptor family in osteosarcoma has not been fully understood. The present study aimed to investigate the clinicopathological and prognostic significances of ErbB receptors in primary osteosarcoma. Western blot (WB), reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and fluorescence in situ hybridization (FISH) were used to detect the protein and gene expression of ErbB receptors in 60 primary osteosarcoma specimens and 30 non-neoplastic bone tissues. WB and RT-qPCR analyses showed that the protein and mRNA expression levels of EGFR, ErbB3 and ErbB4 in osteosarcoma specimens were significantly higher than those in non-neoplastic bone tissues. Seventeen (28.33%), 15 (25.00%) and 15 (25.00%) osteosarcoma specimens presented with amplification of EGFR, ErbB3 and ErbB4 gene, respectively, which were significantly higher compared with non-neoplastic bone tissues. The amplification of ErbB3 and ErbB4 in osteosarcoma was associated with advanced surgical stage. The amplification of EGFR, ErbB3, ErbB4 and the co-amplification of EGFR-ErbB3, EGFR-ErbB4, ErbB3-ErbB4 was linked with poor response to chemotherapy and distant metastasis. The amplification of EGFR, ErbB3 and ErbB4, as well as their co-amplification demonstrated independent prognostic values for reduced survival time of osteosarcoma patients and may serve as potential therapeutic targets for osteosarcoma patients in the future.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Sheng-Lin Wang
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Hui Chen
- Department of Nephrology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Rong-Kai Shen
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Xiao-Dong Li
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Qing-Shan Huang
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Chao-Yang Wu
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Dan-Feng Weng
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Jian-Hua Lin
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China.,Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| |
Collapse
|
2
|
Saarinen S, Kato H, Uchiyama T, Miyoshi-Akiyama T, Papageorgiou AC. Crystal Structure of Streptococcus dysgalactiae-Derived Mitogen Reveals a Zinc-Binding Site and Alterations in TcR Binding. J Mol Biol 2007; 373:1089-97. [PMID: 17900619 DOI: 10.1016/j.jmb.2007.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/13/2007] [Accepted: 08/14/2007] [Indexed: 11/25/2022]
Abstract
Bacterial superantigens are protein toxins with an ability to cause serious diseases in humans by activating a large number of T cells. Streptococcus dysgalactiae-derived mitogen (SDM) is a novel superantigen that is distinct from other known superantigens based on phylogenetic analysis. The X-ray structure of SDM has been determined at 1.95 A resolution. SDM shares the same characteristic fold with other superantigens, but it shows a major structural difference due to the lack of the alpha5 helix between the beta10 and beta11 strands. A bound zinc ion was identified in the structure at the C-terminal domain of the molecule. SDM appears to bind to the major histocompatibility complex class II beta-chain through the zinc-binding site, as described by mutagenesis data and structural comparisons. T-cell binding instead shows a significant difference compared to other superantigens. The mutation of Asn11 (a conserved residue that is known to be significant for T-cell-receptor binding in other superantigens) and Lys15 to Ala did not cause any decrease in the mitogenic activity of SDM. This observation and the lack of the alpha5 helix suggest alterations in T-cell-receptor binding.
Collapse
Affiliation(s)
- Susanna Saarinen
- Turku Center for Biotechnology, University of Turku and Abo Akademi University, PO Box 123, Tykistökatu 6, BioCity, Turku 20521, Finland
| | | | | | | | | |
Collapse
|
3
|
Chung MC, Wines BD, Baker H, Langley RJ, Baker EN, Fraser JD. The crystal structure of staphylococcal superantigen-like protein 11 in complex with sialyl Lewis X reveals the mechanism for cell binding and immune inhibition. Mol Microbiol 2007; 66:1342-55. [DOI: 10.1111/j.1365-2958.2007.05989.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Li H, Zhao Y, Guo Y, Li Z, Eisele L, Mourad W. Zinc induces dimerization of the class II major histocompatibility complex molecule that leads to cooperative binding to a superantigen. J Biol Chem 2007; 282:5991-6000. [PMID: 17166841 PMCID: PMC3924565 DOI: 10.1074/jbc.m608482200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dimerization of class II major histocompatibility complex (MHC) plays an important role in the MHC biological function. Mycoplasma arthritidis-derived mitogen (MAM) is a superantigen that can activate large fractions of T cells bearing specific T cell receptor Vbeta elements. Here we have used structural, sedimentation, and surface plasmon resonance detection approaches to investigate the molecular interactions between MAM and the class II MHC molecule HLA-DR1 in the context of a hemagglutinin peptide-(306-318) (HA). Our results revealed that zinc ion can efficiently induce the dimerization of the HLA-DR1/HA complex. Because the crystal structure of the MAM/HLA-DR1/hemagglutinin complex in the presence of EDTA is nearly identical to the structure of the complex crystallized in the presence of zinc ion, Zn(2+) is evidently not directly involved in the binding between MAM and HLA-DR1. Sedimentation and surface plasmon resonance studies further revealed that MAM binds the HLA-DR1/HA complex with high affinity in a 1:1 stoichiometry, in the absence of Zn(2+). However, in the presence of Zn(2+), a dimerized MAM/HLA-DR1/HA complex can arise through the Zn(2+)-induced DR1 dimer. In the presence of Zn(2+), cooperative binding of MAM to the DR1 dimer was also observed.
Collapse
Affiliation(s)
- Hongmin Li
- Wadsworth Center, New York State Department of Health, University of Albany, State University of New York, Albany, New York 12208, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Li H, Zhao Y, Guo Y, VanVranken SJ, Li Z, Eisele L, Mourad W. Mutagenesis, biochemical, and biophysical characterization of Mycoplasma arthritidis-derived mitogen. Mol Immunol 2007; 44:763-73. [PMID: 16753217 PMCID: PMC3923304 DOI: 10.1016/j.molimm.2006.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 04/11/2006] [Indexed: 02/02/2023]
Abstract
Mycoplasma arthritidis-derived mitogen (MAM) is a superantigen (SAg) that can activate large fractions of T cells bearing particular TCR Vbeta elements. Here we report the mutagenesis, biochemical and biophysical studies on the dimerization of MAM in solution. Our studies showed that although MAM mainly exists as a monomer in solution, a small percentage of MAM molecules form homodimer at high protein concentration, regardless of the presence of Zn2+. A distinct peak corresponding to a MAM homodimer was detected in the presence of EDTA, using both chemical cross-linking and analytical ultracentrifugation methods. Further mutagenesis studies revealed that single mutation of residues at the interface of the crystallographic dimer of MAM does not significantly affect the dimerization of MAM in solution. Circular dichroism (CD) analysis indicated that addition of Zn2+ does not induce conformational changes of MAM from its apo-state. Thermal denaturation experiments indicated that addition of Zn2+ to MAM solution resulted in a decrease of melting point (Tm), whereas addition of EDTA did not affect the Tm of MAM. These results imply that there is no defined Zn2+-binding site on MAM.
Collapse
Affiliation(s)
- Hongmin Li
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, United States
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, United States
| | - Yiwei Zhao
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, United States
| | - Yi Guo
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, United States
| | - Sandra J. VanVranken
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, United States
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, United States
| | - Leslie Eisele
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, United States
| | - Walid Mourad
- Université de Montreal, CHUM, Campus St-Luc, PEA, 264, Boul. René Lévesque Est, Bureau 313, Montréal, Qué. H2X 1P1, Canada
| |
Collapse
|
6
|
Sriskandan S, Faulkner L, Hopkins P. Streptococcus pyogenes: Insight into the function of the streptococcal superantigens. Int J Biochem Cell Biol 2007; 39:12-9. [PMID: 17029999 DOI: 10.1016/j.biocel.2006.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 08/02/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
The group A streptococcus produces a number of highly potent exoproteins that act as superantigens. The cascade of pro-inflammatory events that follow invasive streptococcal infection is greatly enhanced by production of such toxins, leading to profound hypotension and multi-organ failure in some cases. Superantigens such as streptococcal mitogenic exotoxin Z (SMEZ) interact with host MHC class II and the T cell receptor, leading to activation events in both cells. In vitro, these interactions lead to expansion and cytokine production by specified T cell subsets. Studies using humanized HLA class II transgenic mice and isogenic streptococcal strains have characterised the in vivo responses to superantigens produced in the context of live infection. Notwithstanding the obvious deleterious role of superantigens in toxic shock, the evolutionary advantage conferred by these toxins remains a subject of speculation.
Collapse
Affiliation(s)
- Shiranee Sriskandan
- Gram-Positive Molecular Pathogenesis Group, Department of Infectious Diseases, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom.
| | | | | |
Collapse
|