1
|
Malysa A, Zhang XM, Bepler G. Minichromosome Maintenance Proteins: From DNA Replication to the DNA Damage Response. Cells 2024; 14:12. [PMID: 39791713 PMCID: PMC11719910 DOI: 10.3390/cells14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
The DNA replication machinery is highly conserved from bacteria to eukaryotic cells. Faithful DNA replication is vital for cells to transmit accurate genetic information to the next generation. However, both internal and external DNA damages threaten the intricate DNA replication process, leading to the activation of the DNA damage response (DDR) system. Dysfunctional DNA replication and DDR are a source of genomic instability, causing heritable mutations that drive cancer evolutions. The family of minichromosome maintenance (MCM) proteins plays an important role not only in DNA replication but also in DDR. Here, we will review the current strides of MCM proteins in these integrated processes as well as the acetylation/deacetylation of MCM proteins and the value of MCMs as biomarkers in cancer.
Collapse
Affiliation(s)
| | | | - Gerold Bepler
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA; (A.M.); (X.M.Z.)
| |
Collapse
|
2
|
Lim HE, Lim HJ, Yoo HY. Interaction of DDB1 with NBS1 in a DNA Damage Checkpoint Pathway. Int J Mol Sci 2024; 25:13097. [PMID: 39684807 DOI: 10.3390/ijms252313097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Various DNA damage checkpoint control mechanisms in eukaryotic cells help maintain genomic integrity. Among these, NBS1, a key component of the MRE11-RAD50-NBS1 (MRN) complex, is an essential protein involved in the DNA damage response (DDR). In this study, we discovered that DNA damage-binding protein 1 (DDB1) interacts with NBS1. DDB1 is a DDR sensor protein found in UV-induced DNA replication blocks. Through pull-down and immunoprecipitation assays conducted in Xenopus egg extracts and human cell lines, we demonstrated a specific interaction between NBS1 and DDB1. DDB1 was also found to associate with several proteins that interact with NBS1, including DNA topoisomerase 2-binding protein 1 (TopBP1) and Mediator of DNA damage checkpoint protein 1 (MDC1). Notably, the interaction between DDB1 and NBS1 is disrupted in MDC1-depleted egg extracts, indicating that MDC1 is necessary for this interaction. Furthermore, the depletion of DDB1 leads to increased Chk1 activation upon DNA damage. These novel findings regarding the interaction between NBS1 and DDB1 provide new insights into how DDB1 regulates DNA damage pathways.
Collapse
Affiliation(s)
- Hoe Eun Lim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Hee Jung Lim
- Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Hae Yong Yoo
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea
| |
Collapse
|
3
|
Joo YK, Ramirez C, Kabeche L. A TRilogy of ATR's Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer. Cancers (Basel) 2024; 16:3536. [PMID: 39456630 PMCID: PMC11506335 DOI: 10.3390/cancers16203536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Ataxia Telangiectasia and Rad3-related protein (ATR) is an apical kinase of the DNA Damage Response (DDR) pathway responsible for detecting and resolving damaged DNA. Because cancer cells depend heavily on the DNA damage checkpoint for their unchecked proliferation and propagation, ATR has gained enormous popularity as a cancer therapy target in recent decades. Yet, ATR inhibitors have not been the silver bullets as anticipated, with clinical trials demonstrating toxicity and mixed efficacy. To investigate whether the toxicity and mixed efficacy of ATR inhibitors arise from their off-target effects related to ATR's multiple roles within and outside the DDR pathway, we have analyzed recently published studies on ATR's non-canonical roles. Recent studies have elucidated that ATR plays a wide role throughout the cell cycle that is separate from its function in the DDR. This includes maintaining nuclear membrane integrity, detecting mechanical forces, and promoting faithful chromosome segregation during mitosis. In this review, we summarize the canonical, DDR-related roles of ATR and also focus on the non-canonical, multifaceted roles of ATR throughout the cell cycle and their clinical relevance. Through this summary, we also address the need for re-assessing clinical strategies targeting ATR as a cancer therapy based on these newly discovered roles for ATR.
Collapse
Affiliation(s)
- Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Carlos Ramirez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
4
|
Rankin BD, Rankin S. The MCM2-7 Complex: Roles beyond DNA Unwinding. BIOLOGY 2024; 13:258. [PMID: 38666870 PMCID: PMC11048021 DOI: 10.3390/biology13040258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
The MCM2-7 complex is a hexameric protein complex that serves as a DNA helicase. It unwinds the DNA double helix during DNA replication, thereby providing the single-stranded replication template. In recent years, it has become clear that the MCM2-7 complex has additional functions that extend well beyond its role in DNA replication. Through physical and functional interactions with different pathways, it impacts other nuclear events and activities, including folding of the genome, histone inheritance, chromosome segregation, DNA damage sensing and repair, and gene transcription. Collectively, the diverse roles of the MCM2-7 complex suggest it plays a critical role in maintaining genome integrity by integrating the regulation of DNA replication with other pathways in the nucleus.
Collapse
Affiliation(s)
- Brooke D. Rankin
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
- Cell Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Susannah Rankin
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
- Cell Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
5
|
Lal S, Bhola NE, Sun BC, Chen Y, Huang T, Morton V, Chen KX, Xia S, Zhang H, Parikh NS, Ye Q, Veiby OP, Bellovin DI, Ji Y. Discovery and Characterization of ZL-2201, a Potent, Highly Selective, and Orally Bioavailable Small-molecule DNA-PK Inhibitor. CANCER RESEARCH COMMUNICATIONS 2023; 3:1731-1742. [PMID: 37663435 PMCID: PMC10473160 DOI: 10.1158/2767-9764.crc-23-0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023]
Abstract
DNA-dependent protein kinase (DNA-PK), a driver of the non-homologous end-joining (NHEJ) DNA damage response pathway, plays an instrumental role in repairing double-strand breaks (DSB) induced by DNA-damaging poisons. We evaluate ZL-2201, an orally bioavailable, highly potent, and selective pharmacologic inhibitor of DNA-PK activity, for the treatment of human cancerous malignancies. ZL-2201 demonstrated greater selectivity for DNA-PK and effectively inhibited DNA-PK autophosphorylation in a concentration- and time-dependent manner. Initial data suggested a potential correlation between ataxia-telangiectasia mutated (ATM) deficiency and ZL-2201 sensitivity. More so, ZL-2201 showed strong synergy with topoisomerase II inhibitors independent of ATM status in vitro. In vivo oral administration of ZL-2201 demonstrated dose-dependent antitumor activity in the NCI-H1703 xenograft model and significantly enhanced the activity of approved DNA-damaging agents in A549 and FaDu models. From a phosphoproteomic mass spectrometry screen, we identified and validated that ZL-2201 and PRKDC siRNA decreased Ser108 phosphorylation of MCM2, a key DNA replication factor. Collectively, we have characterized a potent and selective DNA-PK inhibitor with promising monotherapy and combinatory therapeutic potential with approved DNA-damaging agents. More importantly, we identified phospho-MCM2 (Ser108) as a potential proximal biomarker of DNA-PK inhibition that warrants further preclinical and clinical evaluation. Significance ZL-2201, a potent and selective DNA-PK inhibitor, can target tumor models in combination with DNA DSB-inducing agents such as radiation or doxorubicin, with potential to improve recurrent therapies in the clinic.
Collapse
Affiliation(s)
- Shruti Lal
- Biologics Discovery, Zai Lab (US) LLC, Menlo Park, California
| | - Neil E. Bhola
- Biologics Discovery, Zai Lab (US) LLC, Menlo Park, California
| | - Bee-Chun Sun
- Biologics Discovery, Zai Lab (US) LLC, Menlo Park, California
| | - Yuping Chen
- Biologics Discovery, Zai Lab (US) LLC, Menlo Park, California
| | - Tom Huang
- Biologics Discovery, Zai Lab (US) LLC, Menlo Park, California
| | - Vivian Morton
- Biologics Discovery, Zai Lab (US) LLC, Menlo Park, California
| | | | | | | | - Nehal S. Parikh
- Biologics Discovery, Zai Lab (US) LLC, Menlo Park, California
| | - Qiuping Ye
- Biologics Discovery, Zai Lab (US) LLC, Menlo Park, California
| | - O. Petter Veiby
- Biologics Discovery, Zai Lab (US) LLC, Menlo Park, California
| | | | - Yuhua Ji
- Biologics Discovery, Zai Lab (US) LLC, Menlo Park, California
| |
Collapse
|
6
|
Yang N, Lu X, Jiang Y, Zhao L, Wang D, Wei Y, Yu Y, Kim MO, Laster KV, Li X, Yuan B, Dong Z, Liu K. Arbidol inhibits human esophageal squamous cell carcinoma growth in vitro and in vivo through suppressing ataxia telangiectasia and Rad3-related protein kinase. eLife 2022; 11:73953. [PMID: 36082941 PMCID: PMC9512399 DOI: 10.7554/elife.73953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/08/2022] [Indexed: 12/24/2022] Open
Abstract
Human esophageal cancer has a global impact on human health due to its high incidence and mortality. Therefore, there is an urgent need to develop new drugs to treat or prevent the prominent pathological subtype of esophageal cancer, esophageal squamous cell carcinoma (ESCC). Based upon the screening of drugs approved by the Food and Drug Administration, we discovered that Arbidol could effectively inhibit the proliferation of human ESCC in vitro. Next, we conducted a series of cell-based assays and found that Arbidol treatment inhibited the proliferation and colony formation ability of ESCC cells and promoted G1-phase cell cycle arrest. Phosphoproteomics experiments, in vitro kinase assays and pull-down assays were subsequently performed in order to identify the underlying growth inhibitory mechanism. We verified that Arbidol is a potential ataxia telangiectasia and Rad3-related (ATR) inhibitor via binding to ATR kinase to reduce the phosphorylation and activation of minichromosome maintenance protein 2 at Ser108. Finally, we demonstrated Arbidol had the inhibitory effect of ESCC in vivo by a patient-derived xenograft model. All together, Arbidol inhibits the proliferation of ESCC in vitro and in vivo through the DNA replication pathway and is associated with the cell cycle.
Collapse
Affiliation(s)
- Ning Yang
- Department of Pathophysiology, Zhengzhou University
| | - Xuebo Lu
- Department of Pathophysiology, Zhengzhou University
| | - Yanan Jiang
- Department of Pathophysiology, Zhengzhou University
| | - Lili Zhao
- Department of Pathophysiology, Zhengzhou University
| | - Donghao Wang
- Department of Pathophysiology, Zhengzhou University
| | - Yaxing Wei
- Department of Pathophysiology, Zhengzhou University
| | - Yin Yu
- Department of Pathophysiology, Zhengzhou University
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University
| | | | - Xin Li
- Department of Pathophysiology, Zhengzhou University
| | - Baoyin Yuan
- Department of Pathophysiology, Zhengzhou University
| | - Zigang Dong
- Department of Pathophysiology, Zhengzhou University
| | - Kangdong Liu
- Department of Pathophysiology, Zhengzhou University
| |
Collapse
|
7
|
Chiappa M, Petrella S, Damia G, Broggini M, Guffanti F, Ricci F. Present and Future Perspective on PLK1 Inhibition in Cancer Treatment. Front Oncol 2022; 12:903016. [PMID: 35719948 PMCID: PMC9201472 DOI: 10.3389/fonc.2022.903016] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is the principle member of the well conserved serine/threonine kinase family. PLK1 has a key role in the progression of mitosis and recent evidence suggest its important involvement in regulating the G2/M checkpoint, in DNA damage and replication stress response, and in cell death pathways. PLK1 expression is tightly spatially and temporally regulated to ensure its nuclear activation at the late S-phase, until the peak of expression at the G2/M-phase. Recently, new roles of PLK1 have been reported in literature on its implication in the regulation of inflammation and immunological responses. All these biological processes are altered in tumors and, considering that PLK1 is often found overexpressed in several tumor types, its targeting has emerged as a promising anti-cancer therapeutic strategy. In this review, we will summarize the evidence suggesting the role of PLK1 in response to DNA damage, including DNA repair, cell cycle progression, epithelial to mesenchymal transition, cell death pathways and cancer-related immunity. An update of PLK1 inhibitors currently investigated in preclinical and clinical studies, in monotherapy and in combination with existing chemotherapeutic drugs and targeted therapies will be discussed.
Collapse
Affiliation(s)
- Michela Chiappa
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Serena Petrella
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Giovanna Damia
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Federica Guffanti
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Francesca Ricci
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| |
Collapse
|
8
|
Choi SH, Cho K, Kim ES, Yoo HY. Proline-serine-threonine-repeat region of MDC1 mediates Chk1 phosphorylation and the DNA double-strand break repair. Int J Biochem Cell Biol 2021; 143:106152. [PMID: 34974185 DOI: 10.1016/j.biocel.2021.106152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022]
Abstract
MDC1, a mediator of DNA damage response, recruits other repair proteins on double-strand break (DSB) sites. MDC1 is necessary for activating checkpoint kinases Chk1 and Chk2. It is unclear whether Chk1 interacts with MDC1. MDC1 also comprises many discrete domains. The role of the proline-serine-threonine (PST)-repeat domain of MDC1 in the DNA damage response is unclear. Here, we showed that MDC1 directly binds Chk1 through this PST-repeat region. Phosphorylation of Chk1 by ionizing radiation (IR) also required this PST-repeat domain. Degradation of intact MDC1 was accelerated depending on the PST-repeat domain after IR exposure. In the IR damage response, the PST-repeat-deleted MDC1 levels remained elevated with slow degradation. This abnormal regulation of MDC1 was F-box- and WD40 repeat-containing 7 (FBXW7)-dependent. The mutation of lysine 1413 within the PST-repeat of MDC1 deregulated MDC1 with or without damage. K1413R mutant and PST-deleted MDC1 displayed reduced ability to repair the damaged genome post-IR exposure. These results provide that the PST domain of MDC1 is involved in Chk1 and DNA repair activation. The findings suggest new insights into how MDC1 connects the checkpoint and DNA repair in the DNA damage response.
Collapse
Affiliation(s)
- Seung Ho Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06355, Korea; Samsung Biomedical Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06355, Korea
| | - Kyoungjoo Cho
- Department of Life Science, College of Fusion Science, Kyonggi University, Suwon 16227, Korea
| | - Eun Seon Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06355, Korea; Samsung Biomedical Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06355, Korea
| | - Hae Yong Yoo
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06355, Korea; Samsung Biomedical Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06355, Korea.
| |
Collapse
|
9
|
Hydroxyurea-The Good, the Bad and the Ugly. Genes (Basel) 2021; 12:genes12071096. [PMID: 34356112 PMCID: PMC8304116 DOI: 10.3390/genes12071096] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
Hydroxyurea (HU) is mostly referred to as an inhibitor of ribonucleotide reductase (RNR) and as the agent that is commonly used to arrest cells in the S-phase of the cycle by inducing replication stress. It is a well-known and widely used drug, one which has proved to be effective in treating chronic myeloproliferative disorders and which is considered a staple agent in sickle anemia therapy and—recently—a promising factor in preventing cognitive decline in Alzheimer’s disease. The reversibility of HU-induced replication inhibition also makes it a common laboratory ingredient used to synchronize cell cycles. On the other hand, prolonged treatment or higher dosage of hydroxyurea causes cell death due to accumulation of DNA damage and oxidative stress. Hydroxyurea treatments are also still far from perfect and it has been suggested that it facilitates skin cancer progression. Also, recent studies have shown that hydroxyurea may affect a larger number of enzymes due to its less specific interaction mechanism, which may contribute to further as-yet unspecified factors affecting cell response. In this review, we examine the actual state of knowledge about hydroxyurea and the mechanisms behind its cytotoxic effects. The practical applications of the recent findings may prove to enhance the already existing use of the drug in new and promising ways.
Collapse
|
10
|
Liu Y, Wang L, Xu X, Yuan Y, Zhang B, Li Z, Xie Y, Yan R, Zheng Z, Ji J, Murray JM, Carr AM, Kong D. The intra-S phase checkpoint directly regulates replication elongation to preserve the integrity of stalled replisomes. Proc Natl Acad Sci U S A 2021; 118:e2019183118. [PMID: 34108240 PMCID: PMC8214678 DOI: 10.1073/pnas.2019183118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA replication is dramatically slowed down under replication stress. The regulation of replication speed is a conserved response in eukaryotes and, in fission yeast, requires the checkpoint kinases Rad3ATR and Cds1Chk2 However, the underlying mechanism of this checkpoint regulation remains unresolved. Here, we report that the Rad3ATR-Cds1Chk2 checkpoint directly targets the Cdc45-MCM-GINS (CMG) replicative helicase under replication stress. When replication forks stall, the Cds1Chk2 kinase directly phosphorylates Cdc45 on the S275, S322, and S397 residues, which significantly reduces CMG helicase activity. Furthermore, in cds1Chk2 -mutated cells, the CMG helicase and DNA polymerases are physically separated, potentially disrupting replisomes and collapsing replication forks. This study demonstrates that the intra-S phase checkpoint directly regulates replication elongation, reduces CMG helicase processivity, prevents CMG helicase delinking from DNA polymerases, and therefore helps preserve the integrity of stalled replisomes and replication forks.
Collapse
Affiliation(s)
- Yang Liu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Lu Wang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xin Xu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yue Yuan
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Bo Zhang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zeyang Li
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yuchen Xie
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Rui Yan
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zeqi Zheng
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianguo Ji
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Johanne M Murray
- Genome Damage and Stability Center, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, United Kingdom
| | - Antony M Carr
- Genome Damage and Stability Center, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, United Kingdom
| | - Daochun Kong
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China;
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Lanz MC, Dibitetto D, Smolka MB. DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J 2019; 38:e101801. [PMID: 31393028 PMCID: PMC6745504 DOI: 10.15252/embj.2019101801] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022] Open
Abstract
From bacteria to mammalian cells, damaged DNA is sensed and targeted by DNA repair pathways. In eukaryotes, kinases play a central role in coordinating the DNA damage response. DNA damage signaling kinases were identified over two decades ago and linked to the cell cycle checkpoint concept proposed by Weinert and Hartwell in 1988. Connections between the DNA damage signaling kinases and DNA repair were scant at first, and the initial perception was that the importance of these kinases for genome integrity was largely an indirect effect of their roles in checkpoints, DNA replication, and transcription. As more substrates of DNA damage signaling kinases were identified, it became clear that they directly regulate a wide range of DNA repair factors. Here, we review our current understanding of DNA damage signaling kinases, delineating the key substrates in budding yeast and humans. We trace the progress of the field in the last 30 years and discuss our current understanding of the major substrate regulatory mechanisms involved in checkpoint responses and DNA repair.
Collapse
Affiliation(s)
- Michael Charles Lanz
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Diego Dibitetto
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Marcus Bustamante Smolka
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| |
Collapse
|
12
|
Drissi R, Chauvin A, McKenna A, Lévesque D, Blais-Brochu S, Jean D, Boisvert FM. Destabilization of the MiniChromosome Maintenance (MCM) complex modulates the cellular response to DNA double strand breaks. Cell Cycle 2018; 17:2593-2609. [PMID: 30516086 PMCID: PMC6300108 DOI: 10.1080/15384101.2018.1553336] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
DNA replication during S phase involves thousands of replication forks that must be coordinated to ensure that every DNA section is replicated only once. The minichromosome maintenance proteins, MCM2 to MCM7, form a heteromeric DNA helicase required for both the initiation and elongation of DNA replication. Although only two DNA helicase activities are necessary to establish a bidirectional replication fork from each replication origin, a large excess of MCM complexes is amassed and distributed along the chromatin. The function of the additional MCM complexes is not well understood, as most are displaced from the DNA during the S-phase, apparently without playing an active role in DNA replication. DNA damage response (DDR) kinases activated by stalled forks prevent the replication machinery from being activated, indicating a tight relationship between DDR and DNA replication. To investigate the role of MCM proteins in the cellular response to DNA damage, we used shRNA targeting MCM2 or MCM3 to determine the impact of a reduction in MCM complex. The alteration of MCM proteins induced a change in the activation of key factors of the DDR in response to Etoposide treatment. Etoposide-induced DNA damage affected the phosphorylation of γ-H2AX, CHK1 and CHK2 without affecting cell viability. Using assays measuring homologous recombination (HR) and non-homologous end-joining (NHEJ), we identified a decrease in both HR and NHEJ associated with a decrease in MCM complex.
Collapse
Affiliation(s)
- Romain Drissi
- a Department of Anatomy and Cell Biology , Université de Sherbrooke , 3201 Jean-Mignaul, Sherbrooke , Québec , Canada
| | - Anaïs Chauvin
- a Department of Anatomy and Cell Biology , Université de Sherbrooke , 3201 Jean-Mignaul, Sherbrooke , Québec , Canada
| | - Alyson McKenna
- a Department of Anatomy and Cell Biology , Université de Sherbrooke , 3201 Jean-Mignaul, Sherbrooke , Québec , Canada
| | - Dominique Lévesque
- a Department of Anatomy and Cell Biology , Université de Sherbrooke , 3201 Jean-Mignaul, Sherbrooke , Québec , Canada
| | - Simon Blais-Brochu
- a Department of Anatomy and Cell Biology , Université de Sherbrooke , 3201 Jean-Mignaul, Sherbrooke , Québec , Canada
| | - Dominique Jean
- a Department of Anatomy and Cell Biology , Université de Sherbrooke , 3201 Jean-Mignaul, Sherbrooke , Québec , Canada
| | - François-Michel Boisvert
- a Department of Anatomy and Cell Biology , Université de Sherbrooke , 3201 Jean-Mignaul, Sherbrooke , Québec , Canada
| |
Collapse
|
13
|
Mughal MJ, Mahadevappa R, Kwok HF. DNA replication licensing proteins: Saints and sinners in cancer. Semin Cancer Biol 2018; 58:11-21. [PMID: 30502375 DOI: 10.1016/j.semcancer.2018.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/08/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
DNA replication is all-or-none process in the cell, meaning, once the DNA replication begins it proceeds to completion. Hence, to achieve maximum control of DNA replication, eukaryotic cells employ a multi-subunit initiator protein complex known as "pre-replication complex or DNA replication licensing complex (DNA replication LC). This complex involves multiple proteins which are origin-recognition complex family proteins, cell division cycle-6, chromatin licensing and DNA replication factor 1, and minichromosome maintenance family proteins. Higher-expression of DNA replication LC proteins appears to be an early event during development of cancer since it has been a common hallmark observed in a wide variety of cancers such as oesophageal, laryngeal, pulmonary, mammary, colorectal, renal, urothelial etc. However, the exact mechanisms leading to the abnormally high expression of DNA replication LC have not been clearly deciphered. Increased expression of DNA replication LC leads to licensing and/or firing of multiple origins thereby inducing replication stress and genomic instability. Therapeutic approaches where the reduction in the activity of DNA replication LC was achieved either by siRNA or shRNA techniques, have shown increased sensitivity of cancer cell lines towards the anti-cancer drugs such as cisplatin, 5-Fluorouracil, hydroxyurea etc. Thus, the expression level of DNA replication LC within the cell determines a cell's fate thereby creating a paradox where DNA replication LC acts as both "Saint" and "Sinner". With a potential to increase sensitivity to chemotherapy drugs, DNA replication LC proteins have prospective clinical importance in fighting cancer. Hence, in this review, we will shed light on importance of DNA replication LC with an aim to use DNA replication LC in diagnosis and prognosis of cancer in patients as well as possible therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Ravikiran Mahadevappa
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
14
|
Abstract
The chemical treatment of cancer started with the realization that DNA damaging agents such as mustard gas present notable antitumoural properties. Consequently, early drug development focused on genotoxic chemicals, some of which are still widely used in the clinic. However, the efficacy of such therapies is often limited by the side effects of these drugs on healthy cells. A refinement to this approach is to use compounds that can exploit the presence of DNA damage in cancer cells. Given that replication stress (RS) is a major source of genomic instability in cancer, targeting the RS-response kinase ataxia telangiectasia and Rad3-related protein (ATR) has emerged as a promising alternative. With ATR inhibitors now entering clinical trials, we here revisit the biology behind this strategy and discuss potential biomarkers that could be used for a better selection of patients who respond to therapy.
Collapse
Affiliation(s)
- Emilio Lecona
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
15
|
Abstract
Proliferating cells rely on the so-called DNA replication checkpoint to ensure orderly completion of genome duplication, and its malfunction may lead to catastrophic genome disruption, including unscheduled firing of replication origins, stalling and collapse of replication forks, massive DNA breakage, and, ultimately, cell death. Despite many years of intensive research into the molecular underpinnings of the eukaryotic replication checkpoint, the mechanisms underlying the dismal consequences of its failure remain enigmatic. A recent development offers a unifying model in which the replication checkpoint guards against global exhaustion of rate-limiting replication regulators. Here we discuss how such a mechanism can prevent catastrophic genome disruption and suggest how to harness this knowledge to advance therapeutic strategies to eliminate cancer cells that inherently proliferate under increased DNA replication stress.
Collapse
Affiliation(s)
- Luis Toledo
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Kai John Neelsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Jiri Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| |
Collapse
|
16
|
Neves H, Kwok HF. In sickness and in health: The many roles of the minichromosome maintenance proteins. Biochim Biophys Acta Rev Cancer 2017; 1868:295-308. [DOI: 10.1016/j.bbcan.2017.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023]
|
17
|
Mutant p53 perturbs DNA replication checkpoint control through TopBP1 and Treslin. Proc Natl Acad Sci U S A 2017; 114:E3766-E3775. [PMID: 28439015 DOI: 10.1073/pnas.1619832114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accumulating evidence supports the gain-of-function of mutant forms of p53 (mutp53s). However, whether mutp53 directly perturbs the DNA replication checkpoint remains unclear. Previously, we have demonstrated that TopBP1 forms a complex with mutp53s and mediates their gain-of-function through NF-Y and p63/p73. Akt phosphorylates TopBP1 and induces its oligomerization, which inhibits its ATR-activating function. Here we show that various contact and conformational mutp53s bypass Akt to induce TopBP1 oligomerization and attenuate ATR checkpoint response during replication stress. The effect on ATR response caused by mutp53 can be exploited in a synthetic lethality strategy, as depletion of another ATR activator, DNA2, in mutp53-R273H-expressing cancer cells renders cells hypersensitive to cisplatin. Expression of mutp53-R273H also makes cancer cells more sensitive to DNA2 depletion or DNA2 inhibitors. In addition to ATR-activating function during replication stress, TopBP1 interacts with Treslin in a Cdk-dependent manner to initiate DNA replication during normal growth. We find that mutp53 also interferes with TopBP1 replication function. Several contact, but not conformational, mutp53s enhance the interaction between TopBP1 and Treslin and promote DNA replication despite the presence of a Cdk2 inhibitor. Together, these data uncover two distinct mechanisms by which mutp53 enhances DNA replication: (i) Both contact and conformational mutp53s can bind TopBP1 and attenuate the checkpoint response to replication stress, and (ii) during normal growth, contact (but not conformational) mutp53s can override the Cdk2 requirement to promote replication by facilitating the TopBP1/Treslin interaction.
Collapse
|
18
|
Hoogenboom WS, Klein Douwel D, Knipscheer P. Xenopus egg extract: A powerful tool to study genome maintenance mechanisms. Dev Biol 2017; 428:300-309. [PMID: 28427716 DOI: 10.1016/j.ydbio.2017.03.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 01/09/2023]
Abstract
DNA repair pathways are crucial to maintain the integrity of our genome and prevent genetic diseases such as cancer. There are many different types of DNA damage and specific DNA repair mechanisms have evolved to deal with these lesions. In addition to these repair pathways there is an extensive signaling network that regulates processes important for repair, such as cell cycle control and transcription. Despite extensive research, DNA damage repair and signaling are not fully understood. In vitro systems such as the Xenopus egg extract system, have played, and still play, an important role in deciphering the molecular details of these processes. Xenopus laevis egg extracts contain all factors required to efficiently perform DNA repair outside a cell, using mechanisms conserved in humans. These extracts have been used to study several genome maintenance pathways, including mismatch repair, non-homologous end joining, ICL repair, DNA damage checkpoint activation, and replication fork stability. Here we describe how the Xenopus egg extract system, in combination with specifically designed DNA templates, contributed to our detailed understanding of these pathways.
Collapse
Affiliation(s)
- Wouter S Hoogenboom
- Hubrecht Institute - KNAW, University Medical Center Utrecht & Cancer GenomiCs Netherlands, The Netherlands
| | - Daisy Klein Douwel
- Hubrecht Institute - KNAW, University Medical Center Utrecht & Cancer GenomiCs Netherlands, The Netherlands
| | - Puck Knipscheer
- Hubrecht Institute - KNAW, University Medical Center Utrecht & Cancer GenomiCs Netherlands, The Netherlands.
| |
Collapse
|
19
|
S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion. Cell Mol Life Sci 2017; 74:2361-2380. [PMID: 28220209 PMCID: PMC5487892 DOI: 10.1007/s00018-017-2474-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/29/2016] [Accepted: 01/23/2017] [Indexed: 11/18/2022]
Abstract
DNA replication stress, an important source of genomic instability, arises upon different types of DNA replication perturbations, including those that stall replication fork progression. Inhibitors of the cellular pool of deoxynucleotide triphosphates (dNTPs) slow down DNA synthesis throughout the genome. Following depletion of dNTPs, the highly conserved replication checkpoint kinase pathway, also known as the S-phase checkpoint, preserves the functionality and structure of stalled DNA replication forks and prevents chromosome fragmentation. The underlying mechanisms involve pathways extrinsic to replication forks, such as those involving regulation of the ribonucleotide reductase activity, the temporal program of origin firing, and cell cycle transitions. In addition, the S-phase checkpoint modulates the function of replisome components to promote replication integrity. This review summarizes the various functions of the replication checkpoint in promoting replication fork stability and genome integrity in the face of replication stress caused by dNTP depletion.
Collapse
|
20
|
Abstract
The ATR (ATM and rad3-related) pathway is crucial for proliferation, responding to DNA replication stress and DNA damage. This critical signaling pathway is carefully orchestrated through a multistep process requiring initial priming of ATR prior to damage, recruitment of ATR to DNA damage lesions, activation of ATR signaling, and, finally, modulation of ATR activity through a variety of post-translational modifications. Following activation, ATR functions in several vital cellular processes, including suppression of replication origin firing, promotion of deoxynucleotide synthesis and replication fork restart, prevention of double-stranded DNA break formation, and avoidance of replication catastrophe and mitotic catastrophe. In many cancers, tumor cells have increased dependence on ATR signaling for survival, making ATR a promising target for cancer therapy. Tumor cells compromised in DNA repair pathways or DNA damage checkpoints, cells reliant on homologous recombination, and cells with increased replication stress are particularly sensitive to ATR inhibition. Understanding ATR signaling and modulation is essential to unraveling which tumors have increased dependence on ATR signaling as well as how the ATR pathway can best be exploited for targeted cancer therapy.
Collapse
Affiliation(s)
- Stephanie A Yazinski
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129;
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129; .,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
21
|
Choi SH, Yoo HY. Mdc1 modulates the interaction between TopBP1 and the MRN complex during DNA damage checkpoint responses. Biochem Biophys Res Commun 2016; 479:5-11. [PMID: 27590578 DOI: 10.1016/j.bbrc.2016.08.158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/27/2016] [Indexed: 10/21/2022]
Abstract
TopBP1 has been identified as a direct activator of ATR and interacts with the Nbs1 subunit of the Mre11-Rad50-Nbs1 (MRN) complex in egg extracts in a checkpoint-regulated manner. In this study, we show that Mdc1 associates with both TopBP1 and Nbs1 in egg extracts and human cells. We cloned a cDNA encoding the full-length version of Xenopus Mdc1. The association between Mdc1 and TopBP1 involves the first pair of BRCT repeats in TopBP1. The N-terminal region (161-230) of Mdc1 is required for this binding. The interaction between Mdc1 and Nbs1 involves the two tandem BRCT repeats of Nbs1. Functional studies with mutated forms of Mdc1, TopBP1, and Nbs1 indicate that the BRCT-dependent association of these proteins is critical for a normal checkpoint response to DSBs. TopBP1 cannot interact with Nbs1 in Mdc1-depleted egg extracts, suggesting that Mdc1 connects TopBP1 and Nbs1 together. These findings suggest that Mdc1 is a crucial mediator of the DNA damage checkpoint response.
Collapse
Affiliation(s)
- Seung Ho Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710, Republic of Korea; Samsung Biomedical Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 135-710, Republic of Korea
| | - Hae Yong Yoo
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710, Republic of Korea; Samsung Biomedical Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 135-710, Republic of Korea.
| |
Collapse
|
22
|
Dolgova EV, Potter EA, Proskurina AS, Minkevich AM, Chernych ER, Ostanin AA, Efremov YR, Bayborodin SI, Nikolin VP, Popova NA, Kolchanov NA, Bogachev SS. Properties of internalization factors contributing to the uptake of extracellular DNA into tumor-initiating stem cells of mouse Krebs-2 cell line. Stem Cell Res Ther 2016; 7:76. [PMID: 27225522 PMCID: PMC4881173 DOI: 10.1186/s13287-016-0338-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/20/2016] [Accepted: 05/06/2016] [Indexed: 01/14/2023] Open
Abstract
Background Previously, we demonstrated that poorly differentiated cells of various origins, including tumor-initiating stem cells present in the ascites form of mouse cancer cell line Krebs-2, are capable of naturally internalizing both linear double-stranded DNA and circular plasmid DNA. Methods The method of co-incubating Krebs-2 cells with extracellular plasmid DNA (pUC19) or TAMRA-5’-dUTP-labeled polymerase chain reaction (PCR) product was used. It was found that internalized plasmid DNA isolated from Krebs-2 can be transformed into competent Escherichia coli cells. Thus, the internalization processes taking place in the Krebs-2 cell subpopulation have been analyzed and compared, as assayed by E. coli colony formation assay (plasmid DNA) and cytofluorescence (TAMRA-DNA). Results We showed that extracellular DNA both in the form of plasmid DNA and a PCR product is internalized by the same subpopulation of Krebs-2 cells. We found that the saturation threshold for Krebs-2 ascites cells is 0.5 μg DNA/106 cells. Supercoiled plasmid DNA, human high-molecular weight DNA, and 500 bp PCR fragments are internalized into the Krebs-2 tumor-initiating stem cells via distinct, non-competing internalization pathways. Under our experimental conditions, each cell may harbor 340–2600 copies of intact plasmid material, or up to 3.097 ± 0.044×106 plasmid copies (intact or not), as detected by quantitative PCR. Conclusion The internalization dynamics of extracellular DNA, copy number of the plasmids taken up by the cells, and competition between different types of double-stranded DNA upon internalization into tumor-initiating stem cells of mouse ascites Krebs-2 have been comprehensively analyzed. Investigation of the extracellular DNA internalization into tumor-initiating stem cells is an important part of understanding their properties and possible destruction mechanisms. For example, a TAMRA-labeled DNA probe may serve as an instrument to develop a target for the therapy of cancer, aiming at elimination of tumor stem cells, as well as developing a straightforward test system for the quantification of poorly differentiated cells, including tumor-initiating stem cells, in the bulk tumor sample (biopsy or surgery specimen).
Collapse
Affiliation(s)
- Evgeniya V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave., Novosibirsk, 630090, Russia.
| | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave., Novosibirsk, 630090, Russia
| | - Anastasiya S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave., Novosibirsk, 630090, Russia
| | - Alexandra M Minkevich
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave., Novosibirsk, 630090, Russia
| | - Elena R Chernych
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, 14 Yadrintsevskaya Street, Novosibirsk, 630099, Russia
| | - Alexandr A Ostanin
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, 14 Yadrintsevskaya Street, Novosibirsk, 630099, Russia
| | - Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave., Novosibirsk, 630090, Russia.,Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
| | - Sergey I Bayborodin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave., Novosibirsk, 630090, Russia
| | - Valeriy P Nikolin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave., Novosibirsk, 630090, Russia
| | - Nelly A Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave., Novosibirsk, 630090, Russia.,Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave., Novosibirsk, 630090, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave., Novosibirsk, 630090, Russia
| |
Collapse
|
23
|
Zhong J, Martinez M, Sengupta S, Lee A, Wu X, Chaerkady R, Chatterjee A, O'Meally RN, Cole RN, Pandey A, Zachara NE. Quantitative phosphoproteomics reveals crosstalk between phosphorylation and O-GlcNAc in the DNA damage response pathway. Proteomics 2015; 15:591-607. [PMID: 25263469 DOI: 10.1002/pmic.201400339] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/02/2014] [Accepted: 09/24/2014] [Indexed: 11/07/2022]
Abstract
The modification of intracellular proteins by monosaccharides of O-linked β-N-acetylglucosamine (O-GlcNAc) is an essential and dynamic PTM of metazoans. The addition and removal of O-GlcNAc is catalyzed by the O-GlcNAc transferase (OGT) and O-GlcNAcase, respectively. One mechanism by which O-GlcNAc is thought to mediate proteins is by regulating phosphorylation. To provide insight into the pathways regulated by O-GlcNAc, we have utilized SILAC-based quantitative proteomics to carry out comparisons of site-specific phosphorylation in OGT wild-type and Null cells. Quantitation of the phosphoproteome demonstrated that of 5529 phosphoserine, phosphothreonine, and phosphotyrosine sites, 232 phosphosites were upregulated and 133 downregulated in the absence of O-GlcNAc. Collectively, these data suggest that deletion of OGT has a profound effect on the phosphorylation of cell cycle and DNA damage response proteins. Key events were confirmed by biochemical analyses and demonstrate an increase in the activating autophosphorylation event on ATM (Ser1987) and on ATM's downstream targets p53, H2AX, and Chk2. Together, these data support widespread changes in the phosphoproteome upon removal of O-GlcNAc, suggesting that O-GlcNAc regulates processes such as the cell cycle, genomic stability, and lysosomal biogenesis. All MS data have been deposited in the ProteomeXchange with identifier PXD001153 (http://proteomecentral.proteomexchange.org/dataset/PXD001153).
Collapse
Affiliation(s)
- Jun Zhong
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dungrawala H, Rose KL, Bhat KP, Mohni KN, Glick GG, Couch FB, Cortez D. The Replication Checkpoint Prevents Two Types of Fork Collapse without Regulating Replisome Stability. Mol Cell 2015; 59:998-1010. [PMID: 26365379 DOI: 10.1016/j.molcel.2015.07.030] [Citation(s) in RCA: 291] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/17/2015] [Accepted: 07/28/2015] [Indexed: 02/06/2023]
Abstract
The ATR replication checkpoint ensures that stalled forks remain stable when replisome movement is impeded. Using an improved iPOND protocol combined with SILAC mass spectrometry, we characterized human replisome dynamics in response to fork stalling. Our data provide a quantitative picture of the replisome and replication stress response proteomes in 32 experimental conditions. Importantly, rather than stabilize the replisome, the checkpoint prevents two distinct types of fork collapse. Unsupervised hierarchical clustering of protein abundance on nascent DNA is sufficient to identify protein complexes and place newly identified replisome-associated proteins into functional pathways. As an example, we demonstrate that ZNF644 complexes with the G9a/GLP methyltransferase at replication forks and is needed to prevent replication-associated DNA damage. Our data reveal how the replication checkpoint preserves genome integrity, provide insights into the mechanism of action of ATR inhibitors, and will be a useful resource for replication, DNA repair, and chromatin investigators.
Collapse
Affiliation(s)
- Huzefa Dungrawala
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristie L Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kamakoti P Bhat
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kareem N Mohni
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Gloria G Glick
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Frank B Couch
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
25
|
Abstract
Billions of base pairs of DNA must be replicated trillions of times in a human lifetime. Complete and accurate replication once and only once per cell division cycle is essential to maintain genome integrity and prevent disease. Impediments to replication fork progression including difficult to replicate DNA sequences, conflicts with transcription, and DNA damage further add to the genome maintenance challenge. These obstacles frequently cause fork stalling, but only rarely cause a failure to complete replication. Robust mechanisms ensure that stalled forks remain stable and capable of either resuming DNA synthesis or being rescued by converging forks. However, when failures do happen the fork collapses leading to genome rearrangements, cell death and disease. Despite intense interest, the mechanisms to repair damaged replication forks, stabilize them, and ensure successful replication remain only partly understood. Different models of fork collapse have been proposed with varying descriptions of what happens to the DNA and replisome. Here, I will define fork collapse and describe what is known about how the replication checkpoint prevents it to maintain genome stability.
Collapse
|
26
|
Han X, Mayca Pozo F, Wisotsky JN, Wang B, Jacobberger JW, Zhang Y. Phosphorylation of Minichromosome Maintenance 3 (MCM3) by Checkpoint Kinase 1 (Chk1) Negatively Regulates DNA Replication and Checkpoint Activation. J Biol Chem 2015; 290:12370-8. [PMID: 25809478 DOI: 10.1074/jbc.m114.621532] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Indexed: 01/08/2023] Open
Abstract
Mechanisms controlling DNA replication and replication checkpoint are critical for the maintenance of genome stability and the prevention or treatment of human cancers. Checkpoint kinase 1 (Chk1) is a key effector protein kinase that regulates the DNA damage response and replication checkpoint. The heterohexameric minichromosome maintenance (MCM) complex is the core component of mammalian DNA helicase and has been implicated in replication checkpoint activation. Here we report that Chk1 phosphorylates the MCM3 subunit of the MCM complex at Ser-205 under normal growth conditions. Mutating the Ser-205 of MCM3 to Ala increased the length of DNA replication track and shortened the S phase duration, indicating that Ser-205 phosphorylation negatively controls normal DNA replication. Upon replicative stress treatment, the inhibitory phosphorylation of MCM3 at Ser-205 was reduced, and this reduction was accompanied with the generation of single strand DNA, the key platform for ataxia telangiectasia mutated and Rad3-related (ATR) activation. As a result, the replication checkpoint is activated. Together, these data provide significant insights into the regulation of both normal DNA replication and replication checkpoint activation through the novel phosphorylation of MCM3 by Chk1.
Collapse
Affiliation(s)
| | | | | | | | - James W Jacobberger
- Division of General Medical Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106 Case Comprehensive Cancer Center
| | - Youwei Zhang
- From the Departments of Pharmacology and Case Comprehensive Cancer Center, Genetics and Genome Science,
| |
Collapse
|
27
|
Rajendra E, Garaycoechea JI, Patel KJ, Passmore LA. Abundance of the Fanconi anaemia core complex is regulated by the RuvBL1 and RuvBL2 AAA+ ATPases. Nucleic Acids Res 2014; 42:13736-48. [PMID: 25428364 PMCID: PMC4267650 DOI: 10.1093/nar/gku1230] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/24/2014] [Accepted: 11/09/2014] [Indexed: 12/11/2022] Open
Abstract
Fanconi anaemia (FA) is a genome instability disease caused by defects in the FA DNA repair pathway that senses and repairs damage caused by DNA interstrand crosslinks. At least 8 of the 16 genes found mutated in FA encode proteins that assemble into the FA core complex, a multisubunit monoubiquitin E3 ligase. Here, we show that the RuvBL1 and RuvBL2 AAA+ ATPases co-purify with FA core complex isolated under stringent but native conditions from a vertebrate cell line. Depletion of the RuvBL1-RuvBL2 complex in human cells causes hallmark features of FA including DNA crosslinker sensitivity, chromosomal instability and defective FA pathway activation. Genetic knockout of RuvBL1 in a murine model is embryonic lethal while conditional inactivation in the haematopoietic stem cell pool confers profound aplastic anaemia. Together these findings reveal a function for RuvBL1-RuvBL2 in DNA repair through a physical and functional association with the FA core complex. Surprisingly, depletion of RuvBL1-RuvBL2 leads to co-depletion of the FA core complex in human cells. This suggests that a potential mechanism for the role of RuvBL1-RuvBL2 in maintaining genome integrity is through controlling the cellular abundance of FA core complex.
Collapse
Affiliation(s)
- Eeson Rajendra
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Juan I Garaycoechea
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ketan J Patel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK Department of Medicine, Level 5, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Lori A Passmore
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
28
|
Martínez TF, Phillips JW, Karanja KK, Polaczek P, Wang CM, Li BC, Campbell JL, Dervan PB. Replication stress by Py-Im polyamides induces a non-canonical ATR-dependent checkpoint response. Nucleic Acids Res 2014; 42:11546-59. [PMID: 25249630 PMCID: PMC4191428 DOI: 10.1093/nar/gku866] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pyrrole–imidazole polyamides targeted to the androgen response element were cytotoxic in multiple cell lines, independent of intact androgen receptor signaling. Polyamide treatment induced accumulation of S-phase cells and of PCNA replication/repair foci. Activation of a cell cycle checkpoint response was evidenced by autophosphorylation of ATR, the S-phase checkpoint kinase, and by recruitment of ATR and the ATR activators RPA, 9-1-1, and Rad17 to chromatin. Surprisingly, ATR activation was accompanied by only a slight increase in single-stranded DNA, and the ATR targets RPA2 and Chk1, a cell cycle checkpoint kinase, were not phosphorylated. However, ATR activation resulted in phosphorylation of the replicative helicase subunit MCM2, an ATR effector. Polyamide treatment also induced accumulation of monoubiquitinated FANCD2, which is recruited to stalled replication forks and interacts transiently with phospho-MCM2. This suggests that polyamides induce replication stress that ATR can counteract independently of Chk1 and that the FA/BRCA pathway may also be involved in the response to polyamides. In biochemical assays, polyamides inhibit DNA helicases, providing a plausible mechanism for S-phase inhibition.
Collapse
Affiliation(s)
- Thomas F Martínez
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - John W Phillips
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kenneth K Karanja
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Piotr Polaczek
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chieh-Mei Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Benjamin C Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Judith L Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Peter B Dervan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
29
|
Herridge RP, Day RC, Macknight RC. The role of the MCM2-7 helicase complex during Arabidopsis seed development. PLANT MOLECULAR BIOLOGY 2014; 86:69-84. [PMID: 24947836 DOI: 10.1007/s11103-014-0213-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/08/2014] [Indexed: 05/27/2023]
Abstract
The MINICHROMOSOME MAINTENANCE 2-7 (MCM2-7) complex, a ring-shaped heterohexamer, unwinds the DNA double helix ahead of the other replication machinery. Although there is evidence that individual components might have other roles, the essential nature of the MCM2-7 complex in DNA replication has made it difficult to uncover these. Here, we present a detailed analysis of Arabidopsis thaliana mcm2-7 mutants and reveal phenotypic differences. The MCM2-7 genes are coordinately expressed during development, although MCM7 is expressed at a higher level in the egg cell. Consistent with a role in the egg cell, heterozygous mcm7 mutants resulted in frequent ovule abortion, a phenotype that does not occur in other mcm mutants. All mutants showed a maternal effect, whereby seeds inheriting a maternal mutant allele occasionally aborted later in seed development with defects in embryo patterning, endosperm nuclear size, and cellularization, a phenotype that is variable between subunit mutants. We provide evidence that this maternal effect is due to the necessity of a maternal store of MCM protein in the central cell that is sufficient for maintaining seed viability and size in the absence of de novo MCM transcription. Reducing MCM levels using endosperm-specific RNAi constructs resulted in the up-regulation of DNA repair transcripts, consistent with the current hypothesis that excess MCM2-7 complexes are loaded during G1 phase, and are required during S phase to overcome replicative stress or DNA damage. Overall, this study demonstrates the importance of the MCM2-7 subunits during seed development and suggests that there are functional differences between the subunits.
Collapse
Affiliation(s)
- Rowan P Herridge
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | | | | |
Collapse
|
30
|
The Mcm2-7 replicative helicase: a promising chemotherapeutic target. BIOMED RESEARCH INTERNATIONAL 2014; 2014:549719. [PMID: 25243149 PMCID: PMC4163376 DOI: 10.1155/2014/549719] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/08/2014] [Accepted: 08/10/2014] [Indexed: 02/05/2023]
Abstract
Numerous eukaryotic replication factors have served as chemotherapeutic targets. One replication factor that has largely escaped drug development is the Mcm2-7 replicative helicase. This heterohexameric complex forms the licensing system that assembles the replication machinery at origins during initiation, as well as the catalytic core of the CMG (Cdc45-Mcm2-7-GINS) helicase that unwinds DNA during elongation. Emerging evidence suggests that Mcm2-7 is also part of the replication checkpoint, a quality control system that monitors and responds to DNA damage. As the only replication factor required for both licensing and DNA unwinding, Mcm2-7 is a major cellular regulatory target with likely cancer relevance. Mutations in at least one of the six MCM genes are particularly prevalent in squamous cell carcinomas of the lung, head and neck, and prostrate, and MCM mutations have been shown to cause cancer in mouse models. Moreover various cellular regulatory proteins, including the Rb tumor suppressor family members, bind Mcm2-7 and inhibit its activity. As a preliminary step toward drug development, several small molecule inhibitors that target Mcm2-7 have been recently discovered. Both its structural complexity and essential role at the interface between DNA replication and its regulation make Mcm2-7 a potential chemotherapeutic target.
Collapse
|
31
|
Jowsey PA, Blain PG. Whole genome expression analysis in primary bronchial epithelial cells after exposure to sulphur mustard. Toxicol Lett 2014; 230:393-401. [PMID: 25102026 DOI: 10.1016/j.toxlet.2014.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 12/23/2022]
Abstract
Sulphur mustard (SM) is a highly toxic chemical agent and poses a current threat to both civilians and military personnel in the event of a deliberate malicious release. Acute SM toxicity develops over the course of several hours and mainly affects the skin and mucosal surfaces of the eyes and respiratory system. In cases of acute severe exposure, significant lung injury can result in respiratory failure and death. Systemic levels of SM can also be fatal, frequently due to immunodepletion and the subsequent development of secondary infections. Whilst the physical effects associated with SM exposure are well documented, the molecular mechanisms mediating these changes are poorly understood, hindering the development of an effective therapeutic strategy. To gain a better understanding of the mechanism of SM toxicity, this study investigated whole genome transcriptional changes after SM in primary human bronchial epithelial cells, as a model for inhalation exposure. The analysis revealed >400 transcriptional changes associated with SM exposure. Pathways analysis confirmed the findings of previous studies suggesting that DNA damage, cell cycle arrest, cell death and inflammation were important components of SM toxicity. In addition, several other interesting observations were made, suggesting that protein oxidation as well as effects on the mitotic apparatus may contribute to SM toxicity.
Collapse
Affiliation(s)
- Paul A Jowsey
- Medical Toxicology Centre, Wolfson Unit, Newscastle University, Newcastle upon Tyne NE 4AA, United Kingdom.
| | - Peter G Blain
- Medical Toxicology Centre, Wolfson Unit, Newscastle University, Newcastle upon Tyne NE 4AA, United Kingdom
| |
Collapse
|
32
|
Zech J, Dalgaard JZ. Replisome components--post-translational modifications and their effects. Semin Cell Dev Biol 2014; 30:144-53. [PMID: 24685613 DOI: 10.1016/j.semcdb.2014.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/10/2014] [Accepted: 03/23/2014] [Indexed: 12/22/2022]
Abstract
The process of DNA replication is highly regulated, but at the same time very dynamic. Once S-phase is initiated and replication elongation is occurring, the cells are committed to complete replication in order to ensure genome stability and survival. Many pathways exist to resolve situations where normal replisome progression is not possible. It is becoming more and more evident that post-translational modifications of replisome components play a key role in regulating these pathways which ensure fork progression. Here we review the known modifications of the progressing replisome and how these modifications are thought to affect DNA replication in unperturbed and perturbed S-phases.
Collapse
Affiliation(s)
- Juergen Zech
- Warwick Medical School, University of Warwick, Gibbert Hill Campus, CV47AL Coventry, UK
| | - Jacob Zeuthen Dalgaard
- Warwick Medical School, University of Warwick, Gibbert Hill Campus, CV47AL Coventry, UK.
| |
Collapse
|
33
|
Interplay between the cell cycle and double-strand break response in mammalian cells. Methods Mol Biol 2014; 1170:41-59. [PMID: 24906308 DOI: 10.1007/978-1-4939-0888-2_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The cell cycle is intimately associated with the ability of cells to sense and respond to and repair DNA damage. Understanding how cell cycle progression, particularly DNA replication and cell division, are regulated and how DNA damage can affect these processes has been the subject of intense research. Recent evidence suggests that the repair of DNA damage is regulated by the cell cycle, and that cell cycle factors are closely associated with repair factors and participate in cellular decisions regarding how to respond to and repair damage. Precise regulation of cell cycle progression in the presence of DNA damage is essential to maintain genomic stability and avoid the accumulation of chromosomal aberrations that can promote tumor formation. In this review, we discuss the current understanding of how mammalian cells induce cell cycle checkpoints in response to DNA double-strand breaks. In addition, we discuss how cell cycle factors modulate DNA repair pathways to facilitate proper repair of DNA lesions.
Collapse
|
34
|
The C-terminal residues of Saccharomyces cerevisiae Mec1 are required for its localization, stability, and function. G3-GENES GENOMES GENETICS 2013; 3:1661-74. [PMID: 23934994 PMCID: PMC3789791 DOI: 10.1534/g3.113.006841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mec1, a member of the phosphoinositide three-kinase-related kinase (PIKK) family of proteins, is involved in the response to replicative stress and DNA damage and in telomere maintenance. An essential 30 to 35 residue, the FATC domain is found at the C-terminus of all PIKK family members. To investigate the roles of the C-terminal residues of Mec1, we characterized alleles of Saccharomyces cerevisiae mec1 that alter the FATC domain. A change of the terminal tryptophan to alanine resulted in temperature-sensitive growth, sensitivity to hydroxyurea, and diminished kinase activity in vitro. Addition of a terminal glycine or deletion of one, two, or three residues resulted in loss of cell viability and kinase function. Each of these Mec1 derivatives was less stable than wild-type Mec1, eluted abnormally from a size exclusion column, and showed reduced nuclear localization. We identified rpn3-L140P, which encodes a component of the 19S proteasomal regulatory particle of the 26S proteasome, as a suppressor of the temperature-sensitive growth caused by mec1-W2368A. The rpn3-L140P allele acted in a partially dominant fashion. It was not able to suppress the inviability of the C-terminal truncations or additions or the hydroxyurea sensitivity of mec1-W2368A. The rpn3-L140P allele restored Mec1-W2368A to nearly wild-type protein levels at 37°, an effect partially mimicked by the proteasome inhibitor MG-132. Our study supports a role for the C-terminus in Mec1 folding and stability, and suggests a role for the proteasome in regulating Mec1 levels.
Collapse
|
35
|
Replication checkpoint: tuning and coordination of replication forks in s phase. Genes (Basel) 2013; 4:388-434. [PMID: 24705211 PMCID: PMC3924824 DOI: 10.3390/genes4030388] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 12/01/2022] Open
Abstract
Checkpoints monitor critical cell cycle events such as chromosome duplication and segregation. They are highly conserved mechanisms that prevent progression into the next phase of the cell cycle when cells are unable to accomplish the previous event properly. During S phase, cells also provide a surveillance mechanism called the DNA replication checkpoint, which consists of a conserved kinase cascade that is provoked by insults that block or slow down replication forks. The DNA replication checkpoint is crucial for maintaining genome stability, because replication forks become vulnerable to collapse when they encounter obstacles such as nucleotide adducts, nicks, RNA-DNA hybrids, or stable protein-DNA complexes. These can be exogenously induced or can arise from endogenous cellular activity. Here, we summarize the initiation and transduction of the replication checkpoint as well as its targets, which coordinate cell cycle events and DNA replication fork stability.
Collapse
|
36
|
Sirbu BM, Cortez D. DNA damage response: three levels of DNA repair regulation. Cold Spring Harb Perspect Biol 2013; 5:a012724. [PMID: 23813586 DOI: 10.1101/cshperspect.a012724] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genome integrity is challenged by DNA damage from both endogenous and environmental sources. This damage must be repaired to allow both RNA and DNA polymerases to accurately read and duplicate the information in the genome. Multiple repair enzymes scan the DNA for problems, remove the offending damage, and restore the DNA duplex. These repair mechanisms are regulated by DNA damage response kinases including DNA-PKcs, ATM, and ATR that are activated at DNA lesions. These kinases improve the efficiency of DNA repair by phosphorylating repair proteins to modify their activities, by initiating a complex series of changes in the local chromatin structure near the damage site, and by altering the overall cellular environment to make it more conducive to repair. In this review, we focus on these three levels of regulation to illustrate how the DNA damage kinases promote efficient repair to maintain genome integrity and prevent disease.
Collapse
Affiliation(s)
- Bianca M Sirbu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37027, USA
| | | |
Collapse
|
37
|
Rainey MD, Harhen B, Wang GN, Murphy PV, Santocanale C. Cdc7-dependent and -independent phosphorylation of Claspin in the induction of the DNA replication checkpoint. Cell Cycle 2013; 12:1560-8. [PMID: 23598722 DOI: 10.4161/cc.24675] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Claspin is a critical mediator protein in the DNA replication checkpoint, responsible for ATR-dependent activation of the effector kinase Chk1. Cdc7, an essential kinase required for the initiation of DNA replication, can also interact with and phosphorylate Claspin. In this study we use small-molecule inhibitors of Cdc7 kinase to further understand the relationship between Cdc7, Claspin and Chk1 activation. We demonstrate that inhibition of Cdc7 kinase delays HU-induced phosphorylation of Chk1 but does not affect the maintenance of the replication checkpoint once it is established. We find that while chromatin association of Claspin is not affected by Cdc7 inhibition, Claspin phosphorylation is attenuated following HU treatment, which may be responsible for the altered kinetics of HU-induced Chk1 phosphorylation. We demonstrate that Claspin is an in vitro substrate of Cdc7 kinase, and using mass-spectrometry, we identify multiple phosphorylation sites that help to define a Cdc7 phosphorylation motif. Finally, we show that the interaction between Claspin and Cdc7 is not dependent on Cdc7 kinase activity, but Claspin interaction with the DNA helicase subunit Mcm2 is lost upon Cdc7 inhibition. We propose Cdc7-dependent phosphorylation regulates critical protein-protein interactions and modulates Claspin's function in the DNA replication checkpoint.
Collapse
Affiliation(s)
- Michael D Rainey
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | | | | | | |
Collapse
|
38
|
Lee J, Dunphy WG. The Mre11-Rad50-Nbs1 (MRN) complex has a specific role in the activation of Chk1 in response to stalled replication forks. Mol Biol Cell 2013; 24:1343-53. [PMID: 23468519 PMCID: PMC3639046 DOI: 10.1091/mbc.e13-01-0025] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The activation of Chk1 in response to stalled replication forks involves a pathway containing ATR, TopBP1, Rad17, and Claspin. We show that the Mre11-Rad50-Nbs1 (MRN) complex also has an important role in this pathway that is distinct from its role in response to double-stranded DNA breaks. These studies reveal a novel insight into the functions of the MRN complex. The activation of Chk1 in response to stalled replication forks in Xenopus egg extracts involves a complex pathway containing ATM and Rad3-related (ATR), topoisomerase IIβ-binding protein 1 (TopBP1), Rad17, the Rad9-Hus1-Rad1 (9-1-1) complex, and Claspin. We have observed that egg extracts lacking the Mre11-Rad50-Nbs1 (MRN) complex show greatly, although not completely, reduced activation of Chk1 in response to replication blockages. Depletion of both Rad17 and MRN leads to a further, essentially complete, reduction in the activation of Chk1. Thus, Rad17 and MRN act in at least a partially additive manner in promoting activation of Chk1. There was not an obvious change in the binding of RPA, ATR, Rad17, or the 9-1-1 complex to chromatin in aphidicolin (APH)-treated, MRN-depleted extracts. However, there was a substantial reduction in the binding of TopBP1. In structure–function studies of the MRN complex, we found that the Mre11 subunit is necessary for the APH-induced activation of Chk1. Moreover, a nuclease-deficient mutant of Mre11 cannot substitute for wild-type Mre11 in this process. These results indicate that the MRN complex, in particular the nuclease activity of Mre11, plays an important role in the activation of Chk1 in response to stalled replication forks. These studies reveal a previously unknown property of the MRN complex in genomic stability.
Collapse
Affiliation(s)
- Joon Lee
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
39
|
Suyal G, Mukherjee SK, Srivastava PS, Choudhury NR. Arabidopsis thaliana MCM2 plays role(s) in mungbean yellow mosaic India virus (MYMIV) DNA replication. Arch Virol 2012; 158:981-92. [PMID: 23242774 DOI: 10.1007/s00705-012-1563-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/24/2012] [Indexed: 02/02/2023]
Abstract
Geminiviruses are plant pathogens with single-stranded (ss) DNA genomes of about 2.7 kb in size. They replicate primarily via rolling-circle replication (RCR) with the help of a few virally encoded factors and various host-cell machineries. The virally encoded replication initiator protein (Rep) is essential for geminivirus replication. In this study, by interaction screening of an Arabidopsis thaliana cDNA library, we have identified a host factor, MCM2, that interacts with the Rep protein of the geminivirus mungbean yellow mosaic India virus (MYMIV). Using yeast two-hybrid, β-galactosidase and co-immunoprecipitation assays, we demonstrated an interaction between MYMIV-Rep and the host factor AtMCM2. We investigated the possible role of AtMCM2 in geminiviral replication using a yeast-based geminivirus DNA replication restoration assay and observed that the AtMCM2 protein complemented the mcm2∆ mutation of S. cerevisiae. Our data suggest the involvement of AtMCM2 in the replication of MYMIV ex vivo. The role of MCM2 in replication was confirmed in planta by a transient replication assay in both wild-type and mutant Arabidopsis plants through agroinoculation. Our data provide evidence for the involvement of AtMCM2 in geminiviral DNA replication, presumably in conjunction with other host factors, and suggest its importance in MYMIV DNA replication.
Collapse
Affiliation(s)
- Geetika Suyal
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology ICGEB, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| | | | | | | |
Collapse
|
40
|
Bøe CA, Knutsen JHJ, Boye E, Grallert B. Hpz1 modulates the G1-S transition in fission yeast. PLoS One 2012; 7:e44539. [PMID: 22970243 PMCID: PMC3435320 DOI: 10.1371/journal.pone.0044539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/03/2012] [Indexed: 11/29/2022] Open
Abstract
Here we characterize a novel protein in S. pombe. It has a high degree of homology with the Zn-finger domain of the human Poly(ADP-ribose) polymerase (PARP). Surprisingly, the gene for this protein is, in many fungi, fused with and in the same reading frame as that encoding Rad3, the homologue of the human ATR checkpoint protein. We name the protein Hpz1 (Homologue of PARP-type Zn-finger). Hpz1 does not possess PARP activity, but is important for resistance to ultraviolet light in the G1 phase and to treatment with hydroxyurea, a drug that arrests DNA replication forks in the S phase. However, we find no evidence of a checkpoint function of Hpz1. Furthermore, absence of Hpz1 results in an advancement of S-phase entry after a G1 arrest as well as earlier recovery from a hydroxyurea block. The hpz1 gene is expressed mainly in the G1 phase and Hpz1 is localized to the nucleus. We conclude that Hpz1 regulates the initiation of the S phase and may cooperate with Rad3 in this function.
Collapse
Affiliation(s)
- Cathrine A. Bøe
- Department of Cell Biology, Institute for Cancer Research, Oslo, Norway
- Institute for Molecular Biosciences, University of Oslo, Norway
| | - Jon Halvor J. Knutsen
- Department of Cell Biology, Institute for Cancer Research, Oslo, Norway
- Institute for Molecular Biosciences, University of Oslo, Norway
| | - Erik Boye
- Department of Cell Biology, Institute for Cancer Research, Oslo, Norway
- Institute for Molecular Biosciences, University of Oslo, Norway
| | - Beáta Grallert
- Department of Cell Biology, Institute for Cancer Research, Oslo, Norway
- Institute for Molecular Biosciences, University of Oslo, Norway
- * E-mail:
| |
Collapse
|
41
|
Checkpoint kinase 2 (Chk2) inhibits the activity of the Cdc45/MCM2-7/GINS (CMG) replicative helicase complex. Proc Natl Acad Sci U S A 2012; 109:13163-70. [PMID: 22853956 DOI: 10.1073/pnas.1211525109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The replication of eukaryote chromosomes slows down when DNA is damaged and the proteins that work at the fork (the replisome) are known targets for the signaling pathways that mediate such responses critical for accurate genomic inheritance. However, the molecular mechanisms and details of how this response is mediated are poorly understood. In this report we show that the activity of replisome helicase, the Cdc45/MCM2-7/GINS (CMG) complex, can be inhibited by protein phosphorylation. Recombinant Drosophila melanogaster CMG can be stimulated by treatment with phosphatase whereas Chk2 but not Chk1 interferes with the helicase activity in vitro. The targets for Chk2 phosphorylation have been identified and reside in MCM subunits 3 and 4 and in the GINS protein Psf2. Interference requires a combination of modifications and we suggest that the formation of negative charges might create a surface on the helicase to allosterically affect its function. The treatment of developing fly embryos with ionizing radiation leads to hyperphosphorylation of Psf2 subunit in the active helicase complex. Taken together these data suggest that the direct modification of the CMG helicase by Chk2 is an important nexus for response to DNA damage.
Collapse
|
42
|
Stead BE, Brandl CJ, Sandre MK, Davey MJ. Mcm2 phosphorylation and the response to replicative stress. BMC Genet 2012; 13:36. [PMID: 22564307 PMCID: PMC3517340 DOI: 10.1186/1471-2156-13-36] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 05/07/2012] [Indexed: 12/30/2022] Open
Abstract
Background The replicative helicase in eukaryotic cells is comprised of minichromosome maintenance (Mcm) proteins 2 through 7 (Mcm2-7) and is a key target for regulation of cell proliferation. In addition, it is regulated in response to replicative stress. One of the protein kinases that targets Mcm2-7 is the Dbf4-dependent kinase Cdc7 (DDK). In a previous study, we showed that alanine mutations of the DDK phosphorylation sites at S164 and S170 in Saccharomyces cerevisiae Mcm2 result in sensitivity to caffeine and methyl methanesulfonate (MMS) leading us to suggest that DDK phosphorylation of Mcm2 is required in response to replicative stress. Results We show here that a strain with the mcm2 allele lacking DDK phosphorylation sites (mcm2AA) is also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU) and to the base analogue 5-fluorouracil (5-FU) but not the radiomimetic drug, phleomycin. We screened the budding yeast non-essential deletion collection for synthetic lethal interactions with mcm2AA and isolated deletions that include genes involved in the control of genome integrity and oxidative stress. In addition, the spontaneous mutation rate, as measured by mutations in CAN1, was increased in the mcm2AA strain compared to wild type, whereas with a phosphomimetic allele (mcm2EE) the mutation rate was decreased. These results led to the idea that the mcm2AA strain is unable to respond properly to DNA damage. We examined this by screening the deletion collection for suppressors of the caffeine sensitivity of mcm2AA. Deletions that decrease spontaneous DNA damage, increase homologous recombination or slow replication forks were isolated. Many of the suppressors of caffeine sensitivity suppressed other phenotypes of mcm2AA including sensitivity to genotoxic drugs, the increased frequency of cells with RPA foci and the increased mutation rate. Conclusions Together these observations point to a role for DDK-mediated phosphorylation of Mcm2 in the response to replicative stress, including some forms of DNA damage. We suggest that phosphorylation of Mcm2 modulates Mcm2-7 activity resulting in the stabilization of replication forks in response to replicative stress.
Collapse
Affiliation(s)
- Brent E Stead
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | | | | | | |
Collapse
|
43
|
Shin MH, Yuan M, Zhang H, Margolick JB, Kai M. ATM-dependent phosphorylation of the checkpoint clamp regulates repair pathways and maintains genomic stability. Cell Cycle 2012; 11:1796-803. [PMID: 22453082 PMCID: PMC3372382 DOI: 10.4161/cc.20161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Upon genotoxic stress and during normal S phase, ATM phosphorylates the checkpoint clamp protein Rad9 in a manner that depends on Ser272. Ser272 is the only known ATM-dependent phosphorylation site in human Rad9. However, Ser272 phosphorylation is not required for survival or checkpoint activation after DNA damage. The physiological function of Ser272 remains elusive. Here, we show that ATM-dependent Rad9(Ser272) phosphorylation requires the MRN complex and controls repair pathways. Furthermore, the mutant cells accumulate large numbers of chromosome breaks and induce gross chromosomal rearrangements. Our findings establish a new and unexpected role for ATM: it phosphorylates the checkpoint clamp in order to control repair pathways, thereby maintaining genomic integrity during unperturbed cell cycle and upon DNA damage.
Collapse
Affiliation(s)
- Min Hwa Shin
- Department of Radiation Oncology and Molecular Radiation Sciences; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Ming Yuan
- Department of Radiation Oncology and Molecular Radiation Sciences; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology; Bloomberg School of Public Health; Johns Hopkins University; Baltimore, MD USA
| | - Joseph B. Margolick
- Department of Molecular Microbiology and Immunology; Bloomberg School of Public Health; Johns Hopkins University; Baltimore, MD USA
| | - Mihoko Kai
- Department of Radiation Oncology and Molecular Radiation Sciences; Johns Hopkins University School of Medicine; Baltimore, MD USA
| |
Collapse
|
44
|
Shin S, Wolgamott L, Yoon SO. Glycogen synthase kinase (GSK)-3 and mammalian target of rapamycin complex 1 (mTORC1) cooperate to regulate protein S6 kinase 1 (S6K1). Cell Cycle 2012; 11:1053-4. [DOI: 10.4161/cc.11.6.19784] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
45
|
Kumar S, Yoo HY, Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. Role for Rif1 in the checkpoint response to damaged DNA in Xenopus egg extracts. Cell Cycle 2012; 11:1183-94. [PMID: 22391207 DOI: 10.4161/cc.11.6.19636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
TopBP1 is critical for both DNA replication and checkpoint regulation in vertebrate cells. In this study, we have identified Rif1 as a binding partner of TopBP1 in Xenopus egg extracts. In addition, Rif1 also interacts with both ATM and the Mre11-Rad50-Nbs1 (MRN) complex, which are key regulators of checkpoint responses to double-stranded DNA breaks (DSBs). Depletion of Rif1 from egg extracts compromises the activation of Chk1 in response to DSBs but not stalled replication forks. Removal of Rif1 also has a significant impact on the chromatin-binding behavior of key checkpoint proteins. In particular, binding of TopBP1, ATR and the MRN complex to chromatin containing DSBs is reduced in the absence of Rif1. Rif1 interacts with chromatin in a highly regulated and dynamic manner. In unperturbed egg extracts, the association of Rif1 with chromatin depends upon formation of replication forks. In the presence of DSBs, there is elevated accumulation of Rif1 on chromatin under conditions where the activation of ATM is suppressed. Taken together, these results suggest that Rif1 plays a dynamic role in the early steps of a checkpoint response to DSBs in the egg-extract system by promoting the correct accumulation of key regulators on the DNA.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Biology 147-75, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Blow JJ, Ge XQ, Jackson DA. How dormant origins promote complete genome replication. Trends Biochem Sci 2011; 36:405-14. [PMID: 21641805 PMCID: PMC3329722 DOI: 10.1016/j.tibs.2011.05.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/26/2011] [Accepted: 05/04/2011] [Indexed: 01/21/2023]
Abstract
Many replication origins that are licensed by loading MCM2-7 complexes in G1 are not normally used. Activation of these dormant origins during S phase provides a first line of defence for the genome if replication is inhibited. When replication forks fail, dormant origins are activated within regions of the genome currently engaged in replication. At the same time, DNA damage-response kinases activated by the stalled forks preferentially suppress the assembly of new replication factories, thereby ensuring that chromosomal regions experiencing replicative stress complete synthesis before new regions of the genome are replicated. Mice expressing reduced levels of MCM2-7 have fewer dormant origins, are cancer-prone and are genetically unstable, demonstrating the importance of dormant origins for preserving genome integrity. We review the function of dormant origins, the molecular mechanism of their regulation and their physiological implications.
Collapse
Affiliation(s)
- J Julian Blow
- Wellcome Trust Centre for Gene Regulation & Expression, University of Dundee Dow Street, Dundee DD1 5EH, UK.
| | | | | |
Collapse
|
48
|
Abstract
Preservation of genome integrity via the DNA-damage response is critical to prevent disease. ATR (ataxia telangiectasia mutated- and Rad3-related) is essential for life and functions as a master regulator of the DNA-damage response, especially during DNA replication. ATR controls and co-ordinates DNA replication origin firing, replication fork stability, cell cycle checkpoints and DNA repair. Since its identification 15 years ago, a model of ATR activation and signalling has emerged that involves localization to sites of DNA damage and activation through protein-protein interactions. Recent research has added an increasingly detailed understanding of the canonical ATR pathway, and an appreciation that the canonical model does not fully capture the complexity of ATR regulation. In the present article, we review the ATR signalling process, focusing on mechanistic findings garnered from the identification of new ATR-interacting proteins and substrates. We discuss how to incorporate these new insights into a model of ATR regulation and point out the significant gaps in our understanding of this essential genome-maintenance pathway.
Collapse
Affiliation(s)
- Edward A. Nam
- Vanderbilt University School of Medicine, Department of Biochemistry, 613 Light Hall, 2215 Garland Avenue, Nashville, TN 37232
| | - David Cortez
- Vanderbilt University School of Medicine, Department of Biochemistry, 613 Light Hall, 2215 Garland Avenue, Nashville, TN 37232
| |
Collapse
|
49
|
Stead BE, Brandl CJ, Davey MJ. Phosphorylation of Mcm2 modulates Mcm2-7 activity and affects the cell's response to DNA damage. Nucleic Acids Res 2011; 39:6998-7008. [PMID: 21596784 PMCID: PMC3167627 DOI: 10.1093/nar/gkr371] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The S-phase kinase, DDK controls DNA replication through phosphorylation of the replicative helicase, Mcm2–7. We show that phosphorylation of Mcm2 at S164 and S170 is not essential for viability. However, the relevance of Mcm2 phosphorylation is demonstrated by the sensitivity of a strain containing alanine at these positions (mcm2AA) to methyl methanesulfonate (MMS) and caffeine. Consistent with a role for Mcm2 phosphorylation in response to DNA damage, the mcm2AA strain accumulates more RPA foci than wild type. An allele with the phosphomimetic mutations S164E and S170E (mcm2EE) suppresses the MMS and caffeine sensitivity caused by deficiencies in DDK function. In vitro, phosphorylation of Mcm2 or Mcm2EE reduces the helicase activity of Mcm2–7 while increasing DNA binding. The reduced helicase activity likely results from the increased DNA binding since relaxing DNA binding with salt restores helicase activity. The finding that the ATP site mutant mcm2K549R has higher DNA binding and less ATPase than mcm2EE, but like mcm2AA results in drug sensitivity, supports a model whereby a specific range of Mcm2–7 activity is required in response to MMS and caffeine. We propose that phosphorylation of Mcm2 fine-tunes the activity of Mcm2–7, which in turn modulates DNA replication in response to DNA damage.
Collapse
Affiliation(s)
- Brent E Stead
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada, N6A 5C1
| | | | | |
Collapse
|
50
|
Muraki K, Nabetani A, Nishiyama A, Ishikawa F. Essential roles of Xenopus TRF2 in telomere end protection and replication. Genes Cells 2011; 16:728-39. [DOI: 10.1111/j.1365-2443.2011.01520.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|