1
|
Mahalingan KK, Grotjahn DA, Li Y, Lander GC, Zehr EA, Roll-Mecak A. Structural basis for α-tubulin-specific and modification state-dependent glutamylation. Nat Chem Biol 2024; 20:1493-1504. [PMID: 38658656 PMCID: PMC11529724 DOI: 10.1038/s41589-024-01599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/06/2024] [Indexed: 04/26/2024]
Abstract
Microtubules have spatiotemporally complex posttranslational modification patterns. Tubulin tyrosine ligase-like (TTLL) enzymes introduce the most prevalent modifications on α-tubulin and β-tubulin. How TTLLs specialize for specific substrate recognition and ultimately modification-pattern generation is largely unknown. TTLL6, a glutamylase implicated in ciliopathies, preferentially modifies tubulin α-tails in microtubules. Cryo-electron microscopy, kinetic analysis and single-molecule biochemistry reveal an unprecedented quadrivalent recognition that ensures simultaneous readout of microtubule geometry and posttranslational modification status. By binding to a β-tubulin subunit, TTLL6 modifies the α-tail of the longitudinally adjacent tubulin dimer. Spanning two tubulin dimers along and across protofilaments (PFs) ensures fidelity of recognition of both the α-tail and the microtubule. Moreover, TTLL6 reads out and is stimulated by glutamylation of the β-tail of the laterally adjacent tubulin dimer, mediating crosstalk between α-tail and β-tail. This positive feedback loop can generate localized microtubule glutamylation patterns. Our work uncovers general principles that generate tubulin chemical and topographic complexity.
Collapse
Affiliation(s)
- Kishore K Mahalingan
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Danielle A Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute La Jolla, La Jolla, CA, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute La Jolla, La Jolla, CA, USA
| | - Elena A Zehr
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
- Biochemistry & Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
2
|
Kubo T, Sasaki R, Oda T. Tubulin glycylation controls ciliary motility through modulation of outer-arm dyneins. Mol Biol Cell 2024; 35:ar90. [PMID: 38758663 PMCID: PMC11244163 DOI: 10.1091/mbc.e24-04-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
Tubulins undergo several kinds of posttranslational modifications (PTMs) including glutamylation and glycylation. The contribution of these PTMs to the motilities of cilia and flagella is still unclear. Here, we investigated the role of tubulin glycylation by examining a novel Chlamydomonas mutant lacking TTLL3, an enzyme responsible for initiating glycylation. Immunostaining of cells and flagella revealed that glycylation is only restricted to the axonemal tubulin composing the outer-doublet but not the central-pair microtubules. Furthermore, the flagellar localization of TTLL3 was found to be dependent on intraflagellar transport. The mutant, ttll3(ex5), completely lacks glycylation and consequently exhibits slower swimming velocity compared with the wild-type strain. By combining the ttll3(ex5) mutation with multiple axonemal dynein-deficient mutants, we found that the lack of glycylation does not affect the motility of the outer-arm dynein lacking mutations. Sliding disintegration assay using isolated axonemes revealed that the lack of glycylation decreases microtubule sliding velocity in the normal axoneme but not in the axoneme lacking the outerarm dyneins. Based on our recent study that glycylation occurs exclusively on β-tubulin in Chlamydomonas, these findings suggest that tubulin glycylation controls flagellar motility through modulating outer-arm dyneins, presumably by neutralizing the negative charges of glutamate residues at the C-terminus region of β-tubulin.
Collapse
Affiliation(s)
- Tomohiro Kubo
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Rinka Sasaki
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| |
Collapse
|
3
|
McKenna ED, Sarbanes SL, Cummings SW, Roll-Mecak A. The Tubulin Code, from Molecules to Health and Disease. Annu Rev Cell Dev Biol 2023; 39:331-361. [PMID: 37843925 DOI: 10.1146/annurev-cellbio-030123-032748] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Microtubules are essential dynamic polymers composed of α/β-tubulin heterodimers. They support intracellular trafficking, cell division, cellular motility, and other essential cellular processes. In many species, both α-tubulin and β-tubulin are encoded by multiple genes with distinct expression profiles and functionality. Microtubules are further diversified through abundant posttranslational modifications, which are added and removed by a suite of enzymes to form complex, stereotyped cellular arrays. The genetic and chemical diversity of tubulin constitute a tubulin code that regulates intrinsic microtubule properties and is read by cellular effectors, such as molecular motors and microtubule-associated proteins, to provide spatial and temporal specificity to microtubules in cells. In this review, we synthesize the rapidly expanding tubulin code literature and highlight limitations and opportunities for the field. As complex microtubule arrays underlie essential physiological processes, a better understanding of how cells employ the tubulin code has important implications for human disease ranging from cancer to neurological disorders.
Collapse
Affiliation(s)
- Elizabeth D McKenna
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Stephanie L Sarbanes
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Steven W Cummings
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Kubo T, Tani Y, Yanagisawa HA, Kikkawa M, Oda T. α- and β-tubulin C-terminal tails with distinct modifications are crucial for ciliary motility and assembly. J Cell Sci 2023; 136:jcs261070. [PMID: 37519241 DOI: 10.1242/jcs.261070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
α- and β-tubulin have an unstructured glutamate-rich region at their C-terminal tails (CTTs). The function of this region in cilia and flagella is still unclear, except that glutamates in CTTs act as the sites for post-translational modifications that affect ciliary motility. The unicellular alga Chlamydomonas possesses only two α-tubulin and two β-tubulin genes, each pair encoding an identical protein. This simple gene organization might enable a complete replacement of the wild-type tubulin with its mutated version. Here, using CRISPR/Cas9, we generated mutant strains expressing tubulins with modified CTTs. We found that the mutant strain in which four glutamate residues in the α-tubulin CTT had been replaced by alanine almost completely lacked polyglutamylated tubulin and displayed paralyzed cilia. In contrast, the mutant strain lacking the glutamate-rich region of the β-tubulin CTT assembled short cilia without the central apparatus. This phenotype is similar to mutant strains harboring a mutation in a subunit of katanin, the function of which has been shown to depend on the β-tubulin CTT. Therefore, our study reveals distinct and important roles of α- and β-tubulin CTTs in the formation and function of cilia.
Collapse
Affiliation(s)
- Tomohiro Kubo
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Yuma Tani
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haru-Aki Yanagisawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
5
|
Szczesna E, Zehr EA, Cummings SW, Szyk A, Mahalingan KK, Li Y, Roll-Mecak A. Combinatorial and antagonistic effects of tubulin glutamylation and glycylation on katanin microtubule severing. Dev Cell 2022; 57:2497-2513.e6. [PMID: 36347241 PMCID: PMC9665884 DOI: 10.1016/j.devcel.2022.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Microtubules have spatiotemporally complex posttranslational modification patterns. How cells interpret this tubulin modification code is largely unknown. We show that C. elegans katanin, a microtubule severing AAA ATPase mutated in microcephaly and critical for cell division, axonal elongation, and cilia biogenesis, responds precisely, differentially, and combinatorially to three chemically distinct tubulin modifications-glycylation, glutamylation, and tyrosination-but is insensitive to acetylation. Glutamylation and glycylation are antagonistic rheostats with glycylation protecting microtubules from severing. Katanin exhibits graded and divergent responses to glutamylation on the α- and β-tubulin tails, and these act combinatorially. The katanin hexamer central pore constrains the polyglutamate chain patterns on β-tails recognized productively. Elements distal to the katanin AAA core sense α-tubulin tyrosination, and detyrosination downregulates severing. The multivalent microtubule recognition that enables katanin to read multiple tubulin modification inputs explains in vivo observations and illustrates how effectors can integrate tubulin code signals to produce diverse functional outcomes.
Collapse
Affiliation(s)
- Ewa Szczesna
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Elena A Zehr
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Steven W Cummings
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Agnieszka Szyk
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Kishore K Mahalingan
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomic Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA; Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Bera A, Gupta ML. Microtubules in Microorganisms: How Tubulin Isotypes Contribute to Diverse Cytoskeletal Functions. Front Cell Dev Biol 2022; 10:913809. [PMID: 35865635 PMCID: PMC9294176 DOI: 10.3389/fcell.2022.913809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
The cellular functions of the microtubule (MT) cytoskeleton range from relatively simple to amazingly complex. Assembled from tubulin, a heterodimeric protein with α- and β-tubulin subunits, microtubules are long, hollow cylindrical filaments with inherent polarity. They are intrinsically dynamic polymers that utilize GTP binding by tubulin, and subsequent hydrolysis, to drive spontaneous assembly and disassembly. Early studies indicated that cellular MTs are composed of multiple variants, or isotypes, of α- and β-tubulins, and that these multi-isotype polymers are further diversified by a range of posttranslational modifications (PTMs) to tubulin. These findings support the multi-tubulin hypothesis whereby individual, or combinations of tubulin isotypes possess unique properties needed to support diverse MT structures and/or cellular processes. Beginning 40 years ago researchers have sought to address this hypothesis, and the role of tubulin isotypes, by exploiting experimentally accessible, genetically tractable and functionally conserved model systems. Among these systems, important insights have been gained from eukaryotic microbial models. In this review, we illustrate how using microorganisms yielded among the earliest evidence that tubulin isotypes harbor distinct properties, as well as recent insights as to how they facilitate specific cellular processes. Ongoing and future research in microorganisms will likely continue to reveal basic mechanisms for how tubulin isotypes facilitate MT functions, along with valuable perspectives on how they mediate the range of conserved and diverse processes observed across eukaryotic microbes.
Collapse
|
7
|
Hoffmann F, Bolz S, Junger K, Klose F, Schubert T, Woerz F, Boldt K, Ueffing M, Beyer T. TTC30A and TTC30B Redundancy Protects IFT Complex B Integrity and Its Pivotal Role in Ciliogenesis. Genes (Basel) 2022; 13:genes13071191. [PMID: 35885974 PMCID: PMC9319246 DOI: 10.3390/genes13071191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022] Open
Abstract
Intraflagellar transport (IFT) is a microtubule-based system that supports the assembly and maintenance of cilia. The dysfunction of IFT leads to ciliopathies of variable severity. Two of the IFT-B components are the paralogue proteins TTC30A and TTC30B. To investigate whether these proteins constitute redundant functions, CRISPR/Cas9 was used to generate single TTC30A or B and double-knockout hTERT-RPE1 cells. Ciliogenesis assays showed the redundancy of both proteins while the polyglutamylation of cilia was affected in single knockouts. The localization of other IFT components was not affected by the depletion of a single paralogue. A loss of both proteins led to a severe ciliogenesis defect, resulting in no cilia formation, which was rescued by TTC30A or B. The redundancy can be explained by the highly similar interaction patterns of the paralogues; both equally interact with the IFT-B machinery. Our study demonstrates that a loss of one TTC30 paralogue can mostly be compensated by the other, thus preventing severe ciliary defects. However, cells assemble shorter cilia, which are potentially limited in their function, especially because of impaired polyglutamylation. A complete loss of both proteins leads to a deficit in IFT complex B integrity followed by disrupted IFT and subsequently no cilia formation.
Collapse
Affiliation(s)
- Felix Hoffmann
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Sylvia Bolz
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Franziska Klose
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Timm Schubert
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
| | - Franziska Woerz
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Marius Ueffing
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Tina Beyer
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
- Correspondence:
| |
Collapse
|
8
|
Abstract
The microtubule cytoskeleton is assembled from the α- and β-tubulin subunits of the canonical tubulin heterodimer, which polymerizes into microtubules, and a small number of other family members, such as γ-tubulin, with specialized functions. Overall, microtubule function involves the collective action of multiple α- and β-tubulin isotypes. However, despite 40 years of awareness that most eukaryotes harbor multiple tubulin isotypes, their role in the microtubule cytoskeleton has remained relatively unclear. Various model organisms offer specific advantages for gaining insight into the role of tubulin isotypes. Whereas simple unicellular organisms such as yeast provide experimental tractability that can facilitate deeper access to mechanistic details, more complex organisms, such as the fruit fly, nematode and mouse, can be used to discern potential specialized functions of tissue- and structure-specific isotypes. Here, we review the role of α- and β-tubulin isotypes in microtubule function and in associated tubulinopathies with an emphasis on the advances gained using model organisms. Overall, we argue that studying tubulin isotypes in a range of organisms can reveal the fundamental mechanisms by which they mediate microtubule function. It will also provide valuable perspectives on how these mechanisms underlie the functional and biological diversity of the cytoskeleton.
Collapse
Affiliation(s)
- Emmanuel T Nsamba
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Mohan L Gupta
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
9
|
Joachimiak E, Wloga D. Tubulin post-translational modifications in protists - Tiny models for solving big questions. Semin Cell Dev Biol 2021; 137:3-15. [PMID: 34922809 DOI: 10.1016/j.semcdb.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/09/2021] [Accepted: 12/01/2021] [Indexed: 11/15/2022]
Abstract
Protists are an exceptionally diverse group of mostly single-celled eukaryotes. The organization of the microtubular cytoskeleton in protists from various evolutionary lineages has different levels of sophistication, from a network of microtubules (MTs) supporting intracellular trafficking as in Dictyostelium, to complex structures such as basal bodies and cilia/flagella enabling cell motility, and lineage-specific adaptations such as the ventral disc in Giardia. MTs building these diverse structures have specific properties partly due to the presence of tubulin post-translational modifications (PTMs). Among them there are highly evolutionarily conserved PTMs: acetylation, detyrosination, (poly)glutamylation and (poly)glycylation. In some protists also less common tubulin PTMs were identified, including phosphorylation, methylation, Δ2-, Δ5- of α-tubulin, polyubiquitination, sumoylation, or S-palmitoylation. Not surprisingly, several single-celled organisms become models to study tubulin PTMs, including their effect on MT properties and discovery of the modifying enzymes. Here, we briefly summarize the current knowledge on tubulin PTMs in unicellular eukaryotes and highlight key findings in protists as model organisms.
Collapse
Affiliation(s)
- Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
10
|
Wall KP, Hart H, Lee T, Page C, Hawkins TL, Hough LE. C-Terminal Tail Polyglycylation and Polyglutamylation Alter Microtubule Mechanical Properties. Biophys J 2020; 119:2219-2230. [PMID: 33137305 DOI: 10.1016/j.bpj.2020.09.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Microtubules are biopolymers that perform diverse cellular functions. Microtubule behavior regulation occurs in part through post-translational modification of both the α- and β-subunits of tubulin. One class of modifications is the heterogeneous addition of glycine and/or glutamate residues to the disordered C-terminal tails (CTTs) of tubulin. Because of their prevalence in stable, high-stress cellular structures such as cilia, we sought to determine if these modifications alter microtubules' intrinsic stiffness. Here, we describe the purification and characterization of differentially modified pools of tubulin from Tetrahymena thermophila. We found that post-translational modifications do affect microtubule stiffness but do not affect the number of protofilaments incorporated into microtubules. We measured the spin dynamics of nuclei in the CTT backbone by NMR spectroscopy to explore the mechanism of this change. Our results show that the α-tubulin CTT does not protrude out from the microtubule surface, as is commonly depicted in models, but instead interacts with the dimer's surface. This suggests that the interactions of the α-tubulin CTT with the tubulin body contributes to the stiffness of the assembled microtubule, thus providing insight into the mechanism by which polyglycylation and polyglutamylation can alter microtubule mechanical properties.
Collapse
Affiliation(s)
- Kathryn P Wall
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado; BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Harold Hart
- Physics Department, University of Wisconsin La Crosse, La Crosse, Wisconsin
| | - Thomas Lee
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Cynthia Page
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Taviare L Hawkins
- Physics Department, University of Wisconsin La Crosse, La Crosse, Wisconsin
| | - Loren E Hough
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado; Department of Physics, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
11
|
Tubulin modifying enzymes as target for the treatment oftau-related diseases. Pharmacol Ther 2020; 218:107681. [PMID: 32961263 DOI: 10.1016/j.pharmthera.2020.107681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/09/2020] [Indexed: 01/17/2023]
Abstract
In the brain of patients with Alzheimer's disease (AD), the number and length of microtubules (MTs) are significantly and selectively reduced. MTs are involved in a wide range of cellular functions, and defects of the microtubular system have emerged as a unifying hypothesis for the heterogeneous and variable clinical presentations of AD. MTs orchestrate their numerous functions through the spatiotemporal regulation of the binding of specialised microtubule-associated proteins (MAPs) and molecular motors. Covalent posttranslational modifications (PTMs) on the tubulin C-termini that protrude at the surface of MTs regulate the binding of these effectors. In neurons, MAP tau is highly abundant and its abnormal dissociation from MTs in the axon, cellular mislocalization and hyperphosphorylation, are primary events leading to neuronal death. Consequently, compounds targeting tau phosphorylation or aggregation are currently evaluated but their clinical significance has not been demonstrated yet. In this review, we discuss the emerging link between tubulin PTMs and tau dysfunction. In neurons, high levels of glutamylation and detyrosination profoundly impact the physicochemical properties at the surface of MTs. Moreover, in patients with early-onset progressive neurodegeneration, deleterious mutations in enzymes involved in modifying MTs at the surface have recently been identified, underscoring the importance of this enzymatic machinery in neurology. We postulate that pharmacologically targeting the tubulin-modifying enzymes holds promise as therapeutic approach for the treatment of neurodegenerative diseases.
Collapse
|
12
|
The emerging role of tubulin posttranslational modifications in cilia and ciliopathies. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00111-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
13
|
Soares H, Carmona B, Nolasco S, Viseu Melo L. Polarity in Ciliate Models: From Cilia to Cell Architecture. Front Cell Dev Biol 2019; 7:240. [PMID: 31681771 PMCID: PMC6813674 DOI: 10.3389/fcell.2019.00240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
Tetrahymena and Paramecium are highly differentiated unicellular organisms with elaborated cortical patterns showing a regular arrangement of hundreds to thousands of basal bodies in longitudinal rows that extend from the anterior to the posterior region of the cell. Thus both ciliates exhibit a permanent antero–posterior axis and left–right asymmetry. This cell polarity is reflected in the direction of the structures nucleated around each basal body such as the ciliary rootlets. Studies in these ciliates showed that basal bodies assemble two types of cilia, the cortical cilia and the cilia of the oral apparatus, a complex structure specialized in food capture. These two cilia types display structural differences at their tip domain. Basal bodies possessing distinct compositions creating specialized landmarks are also present. Cilia might be expected to express and transmit polarities throughout signaling pathways given their recognized role in signal transduction. This review will focus on how local polarities in basal bodies/cilia are regulated and transmitted through cell division in order to maintain the global polarity and shape of these cells and locally constrain the interpretation of signals by different cilia. We will also discuss ciliates as excellent biological models to study development and morphogenetic mechanisms and their relationship with cilia diversity and function in metazoans.
Collapse
Affiliation(s)
- Helena Soares
- Centro de Química e Bioquímica/Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Bruno Carmona
- Centro de Química e Bioquímica/Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Sofia Nolasco
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.,CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Luís Viseu Melo
- Physics Department and CEFEMA, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Akella JS, Silva M, Morsci NS, Nguyen KC, Rice WJ, Hall DH, Barr MM. Cell type-specific structural plasticity of the ciliary transition zone in C. elegans. Biol Cell 2019; 111:95-107. [PMID: 30681171 DOI: 10.1111/boc.201800042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND INFORMATION The current consensus on cilia development posits that the ciliary transition zone (TZ) is formed via extension of nine centrosomal microtubules. In this model, TZ structure remains unchanged in microtubule number throughout the cilium life cycle. This model does not however explain structural variations of TZ structure seen in nature and could also lend itself to the misinterpretation that deviations from nine-doublet microtubule ultrastructure represent an abnormal phenotype. Thus, a better understanding of events that occur at the TZ in vivo during metazoan development is required. RESULTS To address this issue, we characterized ultrastructure of two types of sensory cilia in developing Caenorhabditis elegans. We discovered that, in cephalic male (CEM) and inner labial quadrant (IL2Q) sensory neurons, ciliary TZs are structurally plastic and remodel from one structure to another during animal development. The number of microtubule doublets forming the TZ can be increased or decreased over time, depending on cilia type. Both cases result in structural TZ intermediates different from TZ in cilia of adult animals. In CEM cilia, axonemal extension and maturation occurs concurrently with TZ structural maturation. CONCLUSIONS AND SIGNIFICANCE Our work extends the current model to include the structural plasticity of metazoan transition zone, which can be structurally delayed, maintained or remodelled in cell type-specific manner.
Collapse
Affiliation(s)
- Jyothi S Akella
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, 08854, USA
| | - Malan Silva
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, 08854, USA.,Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Ken C Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - William J Rice
- Simons Electron Microscopy Center, New York Structural Biology Center, NY, 10027, USA
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, 08854, USA
| |
Collapse
|
15
|
Kubo T, Oda T. Chlamydomonas as a tool to study tubulin polyglutamylation. Microscopy (Oxf) 2019; 68:80-91. [PMID: 30364995 DOI: 10.1093/jmicro/dfy044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/11/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022] Open
Abstract
The diversity of α- and β-tubulin is facilitated by various post-translational modifications (PTMs), such as acetylation, tyrosination, glycylation, glutamylation, phosphorylation and methylation. These PTMs affect the stability and structure of microtubules as well as the interaction between microtubules and microtubule-associated proteins, including molecular motors. Therefore, it is extremely important to investigate the roles of tubulin PTMs for understanding the cell cycle, cell motility and intracellular trafficking. Tubulin PTMs were first studied in the 1980s, and considerable progress has been made since then; it is likely that additional mechanisms remain yet to be elucidated. Here, we discuss one such modification, tubulin glutamylation, and introduce our research on the eukaryotic flagellum of the unicellular green alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Tomohiro Kubo
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, Shimokato, Chuo, Yamanashi, Japan
| | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, Shimokato, Chuo, Yamanashi, Japan
| |
Collapse
|
16
|
Wloga D, Joachimiak E, Fabczak H. Tubulin Post-Translational Modifications and Microtubule Dynamics. Int J Mol Sci 2017; 18:ijms18102207. [PMID: 29065455 PMCID: PMC5666887 DOI: 10.3390/ijms18102207] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 11/24/2022] Open
Abstract
Microtubules are hollow tube-like polymeric structures composed of α,β-tubulin heterodimers. They play an important role in numerous cellular processes, including intracellular transport, cell motility and segregation of the chromosomes during cell division. Moreover, microtubule doublets or triplets form a scaffold of a cilium, centriole and basal body, respectively. To perform such diverse functions microtubules have to differ in their properties. Post-translational modifications are one of the factors that affect the properties of the tubulin polymer. Here we focus on the direct and indirect effects of post-translational modifications of tubulin on microtubule dynamics.
Collapse
Affiliation(s)
- Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland.
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland.
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland.
| |
Collapse
|
17
|
Vleugel M, Kok M, Dogterom M. Understanding force-generating microtubule systems through in vitro reconstitution. Cell Adh Migr 2017; 10:475-494. [PMID: 27715396 PMCID: PMC5079405 DOI: 10.1080/19336918.2016.1241923] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Microtubules switch between growing and shrinking states, a feature known as dynamic instability. The biochemical parameters underlying dynamic instability are modulated by a wide variety of microtubule-associated proteins that enable the strict control of microtubule dynamics in cells. The forces generated by controlled growth and shrinkage of microtubules drive a large range of processes, including organelle positioning, mitotic spindle assembly, and chromosome segregation. In the past decade, our understanding of microtubule dynamics and microtubule force generation has progressed significantly. Here, we review the microtubule-intrinsic process of dynamic instability, the effect of external factors on this process, and how the resulting forces act on various biological systems. Recently, reconstitution-based approaches have strongly benefited from extensive biochemical and biophysical characterization of individual components that are involved in regulating or transmitting microtubule-driven forces. We will focus on the current state of reconstituting increasingly complex biological systems and provide new directions for future developments.
Collapse
Affiliation(s)
- Mathijs Vleugel
- a Department of Bionanoscience , Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft Institute of Technology , Delft , The Netherlands
| | - Maurits Kok
- a Department of Bionanoscience , Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft Institute of Technology , Delft , The Netherlands
| | - Marileen Dogterom
- a Department of Bionanoscience , Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft Institute of Technology , Delft , The Netherlands
| |
Collapse
|
18
|
Gadadhar S, Dadi H, Bodakuntla S, Schnitzler A, Bièche I, Rusconi F, Janke C. Tubulin glycylation controls primary cilia length. J Cell Biol 2017; 216:2701-2713. [PMID: 28687664 PMCID: PMC5584158 DOI: 10.1083/jcb.201612050] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/28/2017] [Accepted: 05/24/2017] [Indexed: 02/05/2023] Open
Abstract
In motile cilia and flagella, tubulin glycylation is involved in axoneme stabilization. Using a newly developed antibody, Gadadhar et al. now show that glycylation also accumulates in primary cilia, where it controls ciliary length. This suggests an important role for this PTM in primary cilia homeostasis. As essential components of the eukaryotic cytoskeleton, microtubules fulfill a variety of functions that can be temporally and spatially controlled by tubulin posttranslational modifications. Tubulin glycylation has so far been mostly found on motile cilia and flagella, where it is involved in the stabilization of the axoneme. In contrast, barely anything is known about the role of glycylation in primary cilia because of limitations in detecting this modification in these organelles. We thus developed novel glycylation-specific antibodies with which we detected glycylation in many primary cilia. Glycylation accumulates in primary cilia in a length-dependent manner, and depletion or overexpression of glycylating enzymes modulates the length of primary cilia in cultured cells. This strongly suggests that glycylation is essential for the homeostasis of primary cilia, which has important implications for human disorders related to primary cilia dysfunctions, such as ciliopathies and certain types of cancer.
Collapse
Affiliation(s)
- Sudarshan Gadadhar
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Hala Dadi
- Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR8000, Orsay, France
| | - Satish Bodakuntla
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Anne Schnitzler
- Department of Genetics, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, Paris Sciences et Lettres Research University, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Filippo Rusconi
- Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR8000, Orsay, France
| | - Carsten Janke
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique UMR3348, Orsay, France .,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| |
Collapse
|
19
|
Crystal structure of tubulin tyrosine ligase-like 3 reveals essential architectural elements unique to tubulin monoglycylases. Proc Natl Acad Sci U S A 2017; 114:6545-6550. [PMID: 28576883 DOI: 10.1073/pnas.1617286114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycylation and glutamylation, the posttranslational addition of glycines and glutamates to genetically encoded glutamates in the intrinsically disordered tubulin C-terminal tails, are crucial for the biogenesis and stability of cilia and flagella and play important roles in metazoan development. Members of the diverse family of tubulin tyrosine ligase-like (TTLL) enzymes catalyze these modifications, which are part of an evolutionarily conserved and complex tubulin code that regulates microtubule interactions with cellular effectors. The site specificity of TTLL enzymes and their biochemical interplay remain largely unknown. Here, we report an in vitro characterization of a tubulin glycylase. We show that TTLL3 glycylates the β-tubulin tail at four sites in a hierarchical order and that TTLL3 and the glutamylase TTLL7 compete for overlapping sites on the tubulin tail, providing a molecular basis for the anticorrelation between glutamylation and glycylation observed in axonemes. This anticorrelation demonstrates how a combinatorial tubulin code written in two different posttranslational modifications can arise through the activities of related but distinct TTLL enzymes. To elucidate what structural elements differentiate TTLL glycylases from glutamylases, with which they share the common TTL scaffold, we determined the TTLL3 X-ray structure at 2.3-Å resolution. This structure reveals two architectural elements unique to glycyl initiases and critical for their activity. Thus, our work sheds light on the structural and functional diversification of TTLL enzymes, and constitutes an initial important step toward understanding how the tubulin code is written through the intersection of activities of multiple TTLL enzymes.
Collapse
|
20
|
Wall KP, Pagratis M, Armstrong G, Balsbaugh JL, Verbeke E, Pearson CG, Hough LE. Molecular Determinants of Tubulin's C-Terminal Tail Conformational Ensemble. ACS Chem Biol 2016; 11:2981-2990. [PMID: 27541566 DOI: 10.1021/acschembio.6b00507] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tubulin is important for a wide variety of cellular processes including cell division, ciliogenesis, and intracellular trafficking. To perform these diverse functions, tubulin is regulated by post-translational modifications (PTM), primarily at the C-terminal tails of both the α- and β-tubulin heterodimer subunits. The tubulin C-terminal tails are disordered segments that are predicted to extend from the ordered tubulin body and may regulate both intrinsic properties of microtubules and the binding of microtubule associated proteins (MAP). It is not understood how either interactions with the ordered tubulin body or PTM affect tubulin's C-terminal tails. To probe these questions, we developed a method to isotopically label tubulin for C-terminal tail structural studies by NMR. The conformational changes of the tubulin tails as a result of both proximity to the ordered tubulin body and modification by mono- and polyglycine PTM were determined. The C-terminal tails of the tubulin dimer are fully disordered and, in contrast with prior simulation predictions, exhibit a propensity for β-sheet conformations. The C-terminal tails display significant chemical shift differences as compared to isolated peptides of the same sequence, indicating that the tubulin C-terminal tails interact with the ordered tubulin body. Although mono- and polyglycylation affect the chemical shift of adjacent residues, the conformation of the C-terminal tail appears insensitive to the length of polyglycine chains. Our studies provide important insights into how the essential disordered domains of tubulin function.
Collapse
Affiliation(s)
| | - Maria Pagratis
- University of Colorado, Boulder, Colorado, United States
| | | | | | - Eric Verbeke
- University of Colorado, Boulder, Colorado, United States
| | - Chad G. Pearson
- University of Colorado, Anschutz Medical Campus, Colorado, United States
| | - Loren E. Hough
- University of Colorado, Boulder, Colorado, United States
| |
Collapse
|
21
|
Valenstein ML, Roll-Mecak A. Graded Control of Microtubule Severing by Tubulin Glutamylation. Cell 2016; 164:911-21. [PMID: 26875866 DOI: 10.1016/j.cell.2016.01.019] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/17/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
Abstract
Microtubule-severing enzymes are critical for the biogenesis and maintenance of complex microtubule arrays in axons, spindles, and cilia where tubulin detyrosination, acetylation, and glutamylation are abundant. These modifications exhibit stereotyped patterns suggesting spatial and temporal control of microtubule functions. Using human-engineered and differentially modified microtubules we find that glutamylation is the main regulator of the hereditary spastic paraplegia microtubule severing enzyme spastin. Glutamylation acts as a rheostat and tunes microtubule severing as a function of glutamate number added per tubulin. Unexpectedly, glutamylation is a non-linear biphasic tuner and becomes inhibitory beyond a threshold. Furthermore, the inhibitory effect of localized glutamylation propagates across neighboring microtubules, modulating severing in trans. Our work provides the first quantitative evidence for a graded response to a tubulin posttranslational modification and a biochemical link between tubulin glutamylation and complex architectures of microtubule arrays such as those in neurons where spastin deficiency causes disease.
Collapse
Affiliation(s)
- Max L Valenstein
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA; National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Jerber J, Thomas J, Durand B. [Transcriptional control of ciliogenesis in animal development]. Biol Aujourdhui 2012; 206:205-18. [PMID: 23171843 DOI: 10.1051/jbio/2012023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Indexed: 12/20/2022]
Abstract
Cilia and flagella are eukaryotic organelles with a conserved structure and function from unicellular organisms to human. In animals, different types of cilia can be found and cilia assembly during development is a highly dynamic process. Ciliary defects in human lead to a wide spectrum of diseases called ciliopathies. Understanding the molecular mechanisms that govern dynamic cilia assembly during development and in different tissues in metazoans is an important biological challenge. The FOXJ1 (Forkhead Box J1) and RFX (Regulatory Factor X) family of transcription factors have been shown to be important factors in ciliogenesis control. FOXJ1 proteins are required for motile ciliogenesis in vertebrates. By contrast, RFX proteins are essential to assemble both primary and motile cilia through the regulation of specific sets of genes such as those encoding intraflagellar transport components. Recently, new actors with more specific roles in cilia biogenesis and physiology have also been discovered. All these factors are subject to complex regulation, allowing for the dynamic and specific regulation of ciliogenesis in metazoans.
Collapse
Affiliation(s)
- Julie Jerber
- Centre de Genetique et de Physiologie Moleculare et Cellulaire, Universite Lyon, Villeurbanne, Lyon, France
| | | | | |
Collapse
|
24
|
Konno A, Setou M, Ikegami K. Ciliary and flagellar structure and function--their regulations by posttranslational modifications of axonemal tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:133-70. [PMID: 22364873 DOI: 10.1016/b978-0-12-394305-7.00003-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Eukaryotic cilia and flagella are evolutionarily conserved microtubule-based organelles protruding from the cell surface. They perform dynein-driven beating which contributes to cell locomotion or flow generation. They also play important roles in sensing as cellular antennae, which allows cells to respond to various external stimuli. The main components of cilia and flagella, α- and β-tubulins, are known to undergo various posttranslational modifications (PTMs), including phosphorylation, palmitoylation, tyrosination/detyrosination, Δ2 modification, acetylation, glutamylation, and glycylation. Recent identification of tubulin-modifying enzymes, especially tubulin tyrosine ligase-like proteins which perform tubulin glutamylation and glycylation, has demonstrated the importance of tubulin modifications for the assembly and functions of cilia and flagella. In this chapter, we review recent work on PTMs of ciliary and flagellar tubulins in conjunction with discussing the basic knowledge.
Collapse
Affiliation(s)
- Alu Konno
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | |
Collapse
|
25
|
Larkins CE, Aviles GDG, East MP, Kahn RA, Caspary T. Arl13b regulates ciliogenesis and the dynamic localization of Shh signaling proteins. Mol Biol Cell 2011; 22:4694-703. [PMID: 21976698 PMCID: PMC3226485 DOI: 10.1091/mbc.e10-12-0994] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We show Arl13b is localized to the ciliary membrane and regulates tubulin modifications and ciliary length in vitro. Significantly, we found that Smoothened is enriched in Arl13b null fibroblasts, even without Sonic hedgehog stimulation, but that Glis are not similarly enriched. Arl13b, a ciliary protein within the ADP-ribosylation factor family and Ras superfamily of GTPases, is required for ciliary structure but has poorly defined ciliary functions. In this paper, we further characterize the role of Arl13b in cilia by examining mutant cilia in vitro and determining the localization and dynamics of Arl13b within the cilium. Previously, we showed that mice lacking Arl13b have abnormal Sonic hedgehog (Shh) signaling; in this study, we show the dynamics of Shh signaling component localization to the cilium are disrupted in the absence of Arl13b. Significantly, we found Smoothened (Smo) is enriched in Arl13b-null cilia regardless of Shh pathway stimulation, indicating Arl13b regulates the ciliary entry of Smo. Furthermore, our analysis defines a role for Arl13b in regulating the distribution of Smo within the cilium. These results suggest that abnormal Shh signaling in Arl13b mutant embryos may result from defects in protein localization and distribution within the cilium.
Collapse
Affiliation(s)
- Christine E Larkins
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
26
|
Cryo-electron tomography reveals conserved features of doublet microtubules in flagella. Proc Natl Acad Sci U S A 2011; 108:E845-53. [PMID: 21930914 DOI: 10.1073/pnas.1106178108] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The axoneme forms the essential and conserved core of cilia and flagella. We have used cryo-electron tomography of Chlamydomonas and sea urchin flagella to answer long-standing questions and to provide information about the structure of axonemal doublet microtubules (DMTs). Solving an ongoing controversy, we show that B-tubules of DMTs contain exactly 10 protofilaments (PFs) and that the inner junction (IJ) and outer junction between the A- and B-tubules are fundamentally different. The outer junction, crucial for the initiation of doublet formation, appears to be formed by close interactions between the tubulin subunits of three PFs with unusual tubulin interfaces; other investigators have reported that this junction is weakened by mutations affecting posttranslational modifications of tubulin. The IJ consists of an axially periodic ladder-like structure connecting tubulin PFs of the A- and B-tubules. The recently discovered microtubule inner proteins (MIPs) on the inside of the A- and B-tubules are more complex than previously thought. They are composed of alternating small and large subunits with periodicities of 16 and/or 48 nm. MIP3 forms arches connecting B-tubule PFs, contrary to an earlier report that MIP3 forms the IJ. Finally, the "beak" structures within the B-tubules of Chlamydomonas DMT1, DMT5, and DMT6 are clearly composed of a longitudinal band of proteins repeating with a periodicity of 16 nm. These findings, discussed in relation to genetic and biochemical data, provide a critical foundation for future work on the molecular assembly and stability of the axoneme, as well as its function in motility and sensory transduction.
Collapse
|
27
|
Chatterjee N, Rollins J, Mahowald AP, Bazinet C. Neurotransmitter Transporter-Like: a male germline-specific SLC6 transporter required for Drosophila spermiogenesis. PLoS One 2011; 6:e16275. [PMID: 21298005 PMCID: PMC3029318 DOI: 10.1371/journal.pone.0016275] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/13/2010] [Indexed: 02/03/2023] Open
Abstract
The SLC6 class of membrane transporters, known primarily as neurotransmitter transporters, is increasingly appreciated for its roles in nutritional uptake of amino acids and other developmentally specific functions. A Drosophila SLC6 gene, Neurotransmitter transporter-like (Ntl), is expressed only in the male germline. Mobilization of a transposon inserted near the 3' end of the Ntl coding region yields male-sterile mutants defining a single complementation group. Germline transformation with Ntl cDNAs under control of male germline-specific control elements restores Ntl/Ntl homozygotes to normal fertility, indicating that Ntl is required only in the germ cells. In mutant males, sperm morphogenesis appears normal, with elongated, individualized and coiled spermiogenic cysts accumulating at the base of the testes. However, no sperm are transferred to the seminal vesicle. The level of polyglycylation of Ntl mutant sperm tubulin appears to be significantly lower than that of wild type controls. Glycine transporters are the most closely related SLC6 transporters to Ntl, suggesting that Ntl functions as a glycine transporter in developing sperm, where augmentation of the cytosolic pool of glycine may be required for the polyglycylation of the massive amounts of tubulin in the fly's giant sperm. The male-sterile phenotype of Ntl mutants may provide a powerful genetic system for studying the function of an SLC6 transporter family in a model organism.
Collapse
Affiliation(s)
- Nabanita Chatterjee
- Department of Biological Sciences, St. John's University, Jamaica, New York, United States of America
| | - Janet Rollins
- Department of Biological Sciences, St. John's University, Jamaica, New York, United States of America
| | - Anthony P. Mahowald
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Christopher Bazinet
- Department of Biological Sciences, St. John's University, Jamaica, New York, United States of America
| |
Collapse
|
28
|
Pathak N, Austin CA, Drummond IA. Tubulin tyrosine ligase-like genes ttll3 and ttll6 maintain zebrafish cilia structure and motility. J Biol Chem 2011; 286:11685-95. [PMID: 21262966 DOI: 10.1074/jbc.m110.209817] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Tubulin post-translational modifications generate microtubule heterogeneity and modulate microtubule function, and are catalyzed by tubulin tyrosine ligase-like (TTLL) proteins. Using antibodies specific to monoglycylated, polyglycylated, and glutamylated tubulin in whole mount immunostaining of zebrafish embryos, we observed distinct, tissue-specific patterns of tubulin modifications. Tubulin modification patterns in cilia correlated with the expression of ttll3 and ttll6 in ciliated cells. Expression screening of all zebrafish tubulin tyrosine ligase-like genes revealed additional tissue-specific expression of ttll1 in brain neurons, ttll4 in muscle, and ttll7 in otic placodes. Knockdown of ttll3 eliminated cilia tubulin glycylation but had surprisingly mild effects on cilia structure and motility. Similarly, knockdown of ttll6 strongly reduced cilia tubulin glutamylation but only partially affected cilia structure and motility. Combined loss of function of ttll3 and ttll6 caused near complete loss of cilia motility and induced a variety of axonemal ultrastructural defects similar to defects previously observed in zebrafish fleer mutants, which were shown to lack tubulin glutamylation. Consistently, we find that fleer mutants also lack tubulin glycylation. These results indicate that tubulin glycylation and glutamylation have overlapping functions in maintaining cilia structure and motility and that the fleer/dyf-1 TPR protein is required for both types of tubulin post-translational modification.
Collapse
Affiliation(s)
- Narendra Pathak
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
29
|
Lalle M, Camerini S, Cecchetti S, Blasetti Fantauzzi C, Crescenzi M, Pozio E. Giardia duodenalis 14-3-3 protein is polyglycylated by a tubulin tyrosine ligase-like member and deglycylated by two metallocarboxypeptidases. J Biol Chem 2010; 286:4471-84. [PMID: 21135098 DOI: 10.1074/jbc.m110.181511] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The flagellated protozoan Giardia duodenalis is a parasite of the upper part of the small intestine of mammals, including humans, and an interesting biological model. Giardia harbors a single 14-3-3 isoform, a multifunctional protein family, that is modified at the C terminus by polyglycylation, an unusual post-translational modification consisting of the covalent addition of one or multiple glycines on the γ-carboxyl groups of specific glutamic acids. Polyglycylation affects the intracellular localization of g14-3-3, as the shortening of the polyglycine chain is correlated with a partial relocalization of 14-3-3 inside the nuclei during encystation. In this work we demonstrate that the gTTLL3, a member of the tubulin tyrosine ligase-like family, is the enzyme responsible for the 14-3-3 polyglycylation. We also identify two metallopeptidases of the M20 family, here termed gDIP1 (giardial dipeptidase 1) and gDIP2, as enzymes able to shorten the g14-3-3 polyglycine tail both in vivo and in vitro. Finally, we show that the ectopic expression of gDIP2 alters the g14-3-3 localization and strongly hampers the cyst formation. In conclusion, we have identified a polyglycylase and two deglycylases that act in concert to modulate the stage-dependent glycylation status of the multifunctional regulatory g14-3-3 protein in G. duodenalis.
Collapse
Affiliation(s)
- Marco Lalle
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Transcriptional control of genes involved in ciliogenesis: a first step in making cilia. Biol Cell 2010; 102:499-513. [PMID: 20690903 DOI: 10.1042/bc20100035] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cilia and flagella have essential functions in a wide range of organisms. Cilia assembly is dynamic during development and different types of cilia are found in multicellular organisms. How this dynamic and specific assembly is regulated remains an important question in cilia biology. In metazoans, the regulation of the overall expression level of key components necessary for cilia assembly or function is an important way to achieve ciliogenesis control. The FOXJ1 (forkhead box J1) and RFX (regulatory factor X) family of transcription factors have been shown to be important players in controlling ciliary gene expression. They fulfill a complementary and synergistic function by regulating specific and common target genes. FOXJ1 is essential to allow for the assembly of motile cilia in vertebrates through the regulation of genes specific to motile cilia or necessary for basal body apical transport, whereas RFX proteins are necessary to assemble both primary and motile cilia in metazoans, in particular, by regulating genes involved in intraflagellar transport. Recently, different transcription factors playing specific roles in cilia biogenesis and physiology have also been discovered. All these factors are subject to complex regulation to allow for the dynamic and specific regulation of ciliogenesis in metazoans.
Collapse
|
31
|
Abstract
The beating of cilia and flagella depends on microtubule sliding generated by dynein motors, but the interaction of these motors with their tracks is still under investigation. New evidence suggests that some dynein motors will not function properly unless their track has been modified by a specific post-translational modification.
Collapse
|
32
|
Affiliation(s)
- Narendra H Pathak
- Department of Medicine and Genetics, Harvard Medical School and Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
33
|
Acetylation of microtubules influences their sensitivity to severing by katanin in neurons and fibroblasts. J Neurosci 2010; 30:7215-26. [PMID: 20505088 DOI: 10.1523/jneurosci.0048-10.2010] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Here we investigated whether the sensitivity of microtubules to severing by katanin is regulated by acetylation of the microtubules. During interphase, fibroblasts display long microtubules with discrete regions rich in acetylated tubulin. Overexpression of katanin for short periods of time produced breaks preferentially in these regions. In fibroblasts with experimentally enhanced or diminished microtubule acetylation, the sensitivity of the microtubules to severing by katanin was increased or decreased, respectively. In neurons, microtubules are notably more acetylated in axons than in dendrites. Experimental manipulation of microtubule acetylation in neurons yielded similar results on dendrites as observed on fibroblasts. However, under these experimental conditions, axonal microtubules were not appreciably altered with regard to their sensitivity to katanin. We hypothesized that this may be attributable to the effects of tau on the axonal microtubules, and this was validated by studies in which overexpression of tau caused microtubules in dendrites and fibroblasts to be more resistant to severing by katanin in a manner that was not dependent on the acetylation state of the microtubules. Interestingly, none of these various findings apply to spastin, because the severing of microtubules by spastin does not appear to be strongly influenced by either the acetylation state of the microtubules or tau. We conclude that sensitivity to microtubule severing by katanin is regulated by a balance of factors, including the acetylation state of the microtubules and the binding of tau to the microtubules. In the neuron, this contributes to regional differences in the microtubule arrays of axons and dendrites.
Collapse
|
34
|
Beisson J, Bétermier M, Bré MH, Cohen J, Duharcourt S, Duret L, Kung C, Malinsky S, Meyer E, Preer JR, Sperling L. Paramecium tetraurelia: the renaissance of an early unicellular model. Cold Spring Harb Protoc 2010; 2010:pdb.emo140. [PMID: 20150105 DOI: 10.1101/pdb.emo140] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Janine Beisson
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, FRE3144, F-91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fan ZC, Behal RH, Geimer S, Wang Z, Williamson SM, Zhang H, Cole DG, Qin H. Chlamydomonas IFT70/CrDYF-1 is a core component of IFT particle complex B and is required for flagellar assembly. Mol Biol Cell 2010; 21:2696-706. [PMID: 20534810 PMCID: PMC2912355 DOI: 10.1091/mbc.e10-03-0191] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
DYF-1 is a highly conserved protein essential for ciliogenesis in several model organisms. In Caenorhabditis elegans, DYF-1 serves as an essential activator for an anterograde motor OSM-3 of intraflagellar transport (IFT), the ciliogenesis-required motility that mediates the transport of flagellar precursors and removal of turnover products. In zebrafish and Tetrahymena DYF-1 influences the cilia tubulin posttranslational modification and may have more ubiquitous function in ciliogenesis than OSM-3. Here we address how DYF-1 biochemically interacts with the IFT machinery by using the model organism Chlamydomonas reinhardtii, in which the anterograde IFT does not depend on OSM-3. Our results show that this protein is a stoichiometric component of the IFT particle complex B and interacts directly with complex B subunit IFT46. In concurrence with the established IFT protein nomenclature, DYF-1 is also named IFT70 after the apparent size of the protein. IFT70/CrDYF-1 is essential for the function of IFT in building the flagellum because the flagella of IFT70/CrDYF-1-depleted cells were greatly shortened. Together, these results demonstrate that IFT70/CrDYF-1 is a canonical subunit of IFT particle complex B and strongly support the hypothesis that the IFT machinery has species- and tissue-specific variations with functional ramifications.
Collapse
Affiliation(s)
- Zhen-Chuan Fan
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Young NL, Plazas-Mayorca MD, Garcia BA. Systems-wide proteomic characterization of combinatorial post-translational modification patterns. Expert Rev Proteomics 2010; 7:79-92. [PMID: 20121478 DOI: 10.1586/epr.09.100] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein post-translational modifications (PTMs) have been widely shown to influence protein-protein interactions, direct subcellular location and transduce a variety of both internal and externally generated signals into cellular/phenotypic outcomes. Mass spectrometry has been a key tool for the elucidation of several types of PTMs in both qualitative and quantitative manners. As large datasets on the proteome-wide level are now being generated on a daily basis, the identification of combinatorial PTM patterns has become feasible. A survey of the recent literature in this area shows that many proteins undergo multiple modifications and that sequential or hierarchal patterns exist on many proteins; the biology of these modification patterns is only starting to be unraveled. This review will outline combinatorial PTM examples in biology, and the mass spectrometry-based techniques and applications utilized in the investigations of these combinatorial PTMs.
Collapse
Affiliation(s)
- Nicolas L Young
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
37
|
Ikegami K, Setou M. Unique post-translational modifications in specialized microtubule architecture. Cell Struct Funct 2010; 35:15-22. [PMID: 20190462 DOI: 10.1247/csf.09027] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microtubules (MTs) play specialized roles in a wide variety of cellular events, e.g. molecular transport, cell motility, and cell division. Specialized MT architectures, such as bundles, axonemes, and centrioles, underlie the function. The specialized function and highly organized structure depend on interactions with MT-binding proteins. MT-associated proteins (e.g. MAP1, MAP2, and tau), molecular motors (kinesin and dynein), plus-end tracking proteins (e.g. CLIP-170), and MT-severing proteins (e.g. katanin) interact with MTs. How can the MT-binding proteins know temporospatial information to associate with MTs and to properly play their roles? Post-translational modifications (PTMs) including detyrosination, polyglutamylation, and polyglycylation can provide molecular landmarks for the proteins. Recent efforts to identify modification-regulating enzymes (TTL, carboxypeptidase, polyglutamylase, polyglycylase) and to generate genetically manipulated animals enable us to understand the roles of the modifications. In this review, we present recent advances in understanding regulation of MT function, structure, and stability by PTMs.
Collapse
Affiliation(s)
- Koji Ikegami
- Department of Molecular Anatomy, Molecular Imaging Advanced Research Center, Hamamatsu University School of Medicine, Japan
| | | |
Collapse
|
38
|
Lalle M, Bavassano C, Fratini F, Cecchetti S, Boisguerin P, Crescenzi M, Pozio E. Involvement of 14-3-3 protein post-translational modifications in Giardia duodenalis encystation. Int J Parasitol 2010; 40:201-13. [DOI: 10.1016/j.ijpara.2009.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 11/28/2022]
|
39
|
Redeker V. Mass spectrometry analysis of C-terminal posttranslational modifications of tubulins. Methods Cell Biol 2010; 95:77-103. [PMID: 20466131 DOI: 10.1016/s0091-679x(10)95006-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In mammalian brain and ciliary axonemes from ciliates, alpha- and beta-tubulins exhibit an extraordinary heterogeneity due to a combination of multigene family expression and numerous posttranslational modifications (PTMs). The combination of several PTMs located in the C-terminal tail of tubulins plays a major role in this important polymorphism of tubulin: polyglutamylation, polyglycylation, detyrosination, tyrosination, removal of the penultimate glutamate residue, and phosphorylation. In order to document the relationship and functions of these PTMs, we have developed a tubulin C-terminal Peptide Mass Fingerprinting (PMF) method. Using simplified microtubule proteins and tubulin C-terminal peptides purifications, direct matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) analysis can generate a complete picture of all tubulin isotype-specific C-terminal peptides together with their respective PTMs. This chapter will illustrate the capability of this approach to compare tubulin isoform compositions and document the changes in PTMs between samples with different tubulin assembly properties or consecutively to inactivation of modification sites or modification enzymes. Complementary MS-based approaches useful to document the structure of the highly heterogeneous posttranslational polymodifications will also be presented.
Collapse
Affiliation(s)
- Virginie Redeker
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
40
|
Abstract
Tubulin and other flagellar and ciliary proteins are the substrates for a host of posttranslational modifications (PTMs), many of which have been highly conserved over evolutionary time. In addition to the binding of MAPs (microtubule-associated proteins) that provide a specific functionality, or the use of different tubulin isotypes to convey a specific function, most cells rely on an array of PTMs. These include phosphorylation, acetylation, glycylation, glutamylation, and methylation. The first and the last of this list are not unique to the tubulin in cilia and flagella, while the others are. This chapter will review briefly these varying modifications and will conclude with detailed methods for their detection and localization at the limit of resolution provided by electron microscopy.
Collapse
Affiliation(s)
- Roger D Sloboda
- Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
41
|
Dave D, Wloga D, Sharma N, Gaertig J. DYF-1 Is required for assembly of the axoneme in Tetrahymena thermophila. EUKARYOTIC CELL 2009; 8:1397-406. [PMID: 19581442 PMCID: PMC2747827 DOI: 10.1128/ec.00378-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 06/24/2009] [Indexed: 01/17/2023]
Abstract
In most cilia, the axoneme can be subdivided into three segments: proximal (the transition zone), middle (with outer doublet microtubules), and distal (with singlet extensions of outer doublet microtubules). How the functionally distinct segments of the axoneme are assembled and maintained is not well understood. DYF-1 is a highly conserved ciliary protein containing tetratricopeptide repeats. In Caenorhabditis elegans, DYF-1 is specifically needed for assembly of the distal segment (G. Ou, O. E. Blacque, J. J. Snow, M. R. Leroux, and J. M. Scholey. Nature. 436:583-587, 2005). We show that Tetrahymena cells lacking an ortholog of DYF-1, Dyf1p, can assemble only extremely short axoneme remnants that have structural defects of diverse natures, including the absence of central pair and outer doublet microtubules and incomplete or absent B tubules on the outer microtubules. Thus, in Tetrahymena, DYF-1 is needed for either assembly or stability of the entire axoneme. Our observations support the conserved function for DYF-1 in axoneme assembly or stability but also show that the consequences of loss of DYF-1 for axoneme segments are organism specific.
Collapse
Affiliation(s)
- Drashti Dave
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Numerous posttranslational modifications alter surface-exposed residues of tubulin within stable microtubules. The significance of one modification, glycylation, characteristic of ciliary and flagellar microtubules, has been particularly elusive. Two groups now identify the glycylation enzymes and determine the developmental consequences of their depletion. Glycylation enzymes and those responsible for another modification, glutamylation, work in opposition to one another in modifying microtubules.
Collapse
Affiliation(s)
- J Chloë Bulinski
- Department of Biological Sciences, Columbia University, New York, NY 10027-2450, USA.
| |
Collapse
|
43
|
Wloga D, Webster DM, Rogowski K, Bré MH, Levilliers N, Jerka-Dziadosz M, Janke C, Dougan ST, Gaertig J. TTLL3 Is a tubulin glycine ligase that regulates the assembly of cilia. Dev Cell 2009; 16:867-76. [PMID: 19531357 DOI: 10.1016/j.devcel.2009.04.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 03/09/2009] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
Abstract
In most ciliated cell types, tubulin is modified by glycylation, a posttranslational modification of unknown function. We show that the TTLL3 proteins act as tubulin glycine ligases with chain-initiating activity. In Tetrahymena, deletion of TTLL3 shortened axonemes and increased their resistance to paclitaxel-mediated microtubule stabilization. In zebrafish, depletion of TTLL3 led to either shortening or loss of cilia in several organs, including the Kupffer's vesicle and olfactory placode. We also show that, in vivo, glutamic acid and glycine ligases oppose each other, likely by competing for shared modification sites on tubulin. We propose that tubulin glycylation regulates the assembly and dynamics of axonemal microtubules and acts either directly or indirectly by inhibiting tubulin glutamylation.
Collapse
Affiliation(s)
- Dorota Wloga
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rogowski K, Juge F, van Dijk J, Wloga D, Strub JM, Levilliers N, Thomas D, Bré MH, Van Dorsselaer A, Gaertig J, Janke C. Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation. Cell 2009; 137:1076-87. [PMID: 19524510 DOI: 10.1016/j.cell.2009.05.020] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 03/16/2009] [Accepted: 05/11/2009] [Indexed: 11/19/2022]
Abstract
Polyglycylation is a posttranslational modification that generates glycine side chains on proteins. Here we identify a family of evolutionarily conserved glycine ligases that modify tubulin using different enzymatic mechanisms. In mammals, two distinct enzyme types catalyze the initiation and elongation steps of polyglycylation, whereas Drosophila glycylases are bifunctional. We further show that the human elongating glycylase has lost enzymatic activity due to two amino acid changes, suggesting that the functions of protein glycylation could be sufficiently fulfilled by monoglycylation. Depletion of a glycylase in Drosophila using RNA interference results in adult flies with strongly decreased total glycylation levels and male sterility associated with defects in sperm individualization and axonemal maintenance. A more severe RNAi depletion is lethal at early developmental stages, indicating that protein glycylation is essential. Together with the observation that multiple proteins are glycylated, our functional data point towards a general role of glycylation in protein functions.
Collapse
|
45
|
Ikegami K, Setou M. TTLL10 can perform tubulin glycylation when co-expressed with TTLL8. FEBS Lett 2009; 583:1957-63. [PMID: 19427864 DOI: 10.1016/j.febslet.2009.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/27/2009] [Accepted: 05/02/2009] [Indexed: 11/16/2022]
Abstract
Tubulin can undergo unusual post-translational modifications, glycylation and glutamylation. We previously failed to find glycylase (glycine ligase) for tubulin while identifying TTLL10 as a polyglycylase for nucleosome assembly protein 1. We here examine whether TTLL10 performs tubulin glycylation. We used a polyclonal antibody (R-polygly) raised against a poly(glycine) chain, which does not recognize monoglycylated protein. R-polygly strongly reacted with mouse tracheal cilia and axonemal tubulins. R-polygly detected many proteins in cell lysates co-expressing TTLL10 with TTLL8. Two-dimensional electrophoresis revealed that the R-polygly-reactive proteins included alpha- and beta-tubulin. R-polygly labeling signals overlapped with microtubules. These results indicate that TTLL10 can strongly glycylate tubulin in a TTLL8-dependent manner. Furthermore, these two TTLL proteins can glycylate unidentified 170-, 110-, 75-, 40-, 35-, and 30-kDa acidic proteins.
Collapse
Affiliation(s)
- Koji Ikegami
- Department of Molecular Anatomy, Molecular Imaging Advanced Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | | |
Collapse
|
46
|
Fukushima N, Furuta D, Hidaka Y, Moriyama R, Tsujiuchi T. Post-translational modifications of tubulin in the nervous system. J Neurochem 2009; 109:683-93. [DOI: 10.1111/j.1471-4159.2009.06013.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Kovács P, Pállinger E, Csaba G. Effects of sodium fluoride (NaF) on the cilia and microtubular system of Tetrahymena. Cell Biochem Funct 2008; 26:591-7. [PMID: 18508387 DOI: 10.1002/cbf.1482] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effect of the nucleophilic reagent NaF on the microtubular system of Tetrahymena was studied by using scanning electron microscopy (SEM), confocal microscopy, and flow cytometry. Treatments with 40 mM NaF significantly reduced the amount of alpha-tubulin while 80 mM treatment did not alter its quantity. One possible explanation for this alpha-tubulin overexpression is that the higher amount of alpha-tubulin enables this organism to carry out the appropriate function of the cytoskeleton under this undesirable influence of higher amounts of 80 nM NaF. However, the amount of acetylated tubulin increased in a dose-dependent manner. The cilia became fragile under the effect of 80 mM NaF. Confocal microscopy revealed that after 40 mM NaF treatment transversal microtubule bands (TMs) and longitudinal microtubule bands (LMs) as well as basal bodies (BBs) were extremely strong decorated with anti-acetylated tubulin antibody and TM-localization abnormalities were visible. In the 80 mM NaF-treated cells, the deep fiber of oral apparatus was very strongly labeled, while the TMs and LMs were less decorated with anti-acetylated tubulin antibody, and LM deformities were visible. It is supposed that post-translational tubulin modifications (e.g., acetylation) defend the microtubules against the NaF-induced injury. NaF is able to influence the activity of several enzymes and G-proteins, therefore is capable to alter the structure, metabolism, and the dynamics of microtubular system. The possible connection of signaling and cytoskeletal system in Tetrahymena is discussed.
Collapse
Affiliation(s)
- P Kovács
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.
| | | | | |
Collapse
|
48
|
Verdier-Pinard P, Pasquier E, Xiao H, Burd B, Villard C, Lafitte D, Miller LM, Angeletti RH, Horwitz SB, Braguer D. Tubulin proteomics: towards breaking the code. Anal Biochem 2008; 384:197-206. [PMID: 18840397 DOI: 10.1016/j.ab.2008.09.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 01/02/2023]
Affiliation(s)
- Pascal Verdier-Pinard
- INSERM UMR 911 CRO2, Aix-Marseille Université, Faculté de Pharmacie, 27 bd Jean Moulin, 13285 Marseille cedex 05, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Cell migration is an evolutionarily conserved mechanism that underlies the development and functioning of uni- and multicellular organisms and takes place in normal and pathogenic processes, including various events of embryogenesis, wound healing, immune response, cancer metastases, and angiogenesis. Despite the differences in the cell types that take part in different migratory events, it is believed that all of these migrations occur by similar molecular mechanisms, whose major components have been functionally conserved in evolution and whose perturbation leads to severe developmental defects. These mechanisms involve intricate cytoskeleton-based molecular machines that can sense the environment, respond to signals, and modulate the entire cell behavior. A big question that has concerned the researchers for decades relates to the coordination of cell migration in situ and its relation to the intracellular aspects of the cell migratory mechanisms. Traditionally, this question has been addressed by researchers that considered the intra- and extracellular mechanisms driving migration in separate sets of studies. As more data accumulate researchers are now able to integrate all of the available information and consider the intracellular mechanisms of cell migration in the context of the developing organisms that contain additional levels of complexity provided by extracellular regulation. This review provides a broad summary of the existing and emerging data in the cell and developmental biology fields regarding cell migration during development.
Collapse
Affiliation(s)
- Satoshi Kurosaka
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
50
|
Hoyle HD, Turner FR, Raff EC. Axoneme-dependent tubulin modifications in singlet microtubules of the Drosophila sperm tail. ACTA ACUST UNITED AC 2008; 65:295-313. [PMID: 18205200 DOI: 10.1002/cm.20261] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Drosophila melanogaster sperm tubulins are posttranslationally glutamylated and glycylated. We show here that axonemes are the substrate for these tubulin C-terminal modifications. Axoneme architecture is required, but full length, motile axonemes are not necessary. Tubulin glutamylation occurs during or shortly after assembly into the axoneme; only glutamylated tubulins are glycylated. Tubulins in other testis microtubules are not modified. Only a small subset of total Drosophila sperm axoneme tubulins have these modifications. Biochemical fractionation of Drosophila sperm showed that central pair and accessory microtubules have the majority of poly-modified tubulins, whereas doublet microtubules have only small amounts of mono- and oligo-modified tubulins. Glutamylation patterns for different beta-tubulins experimentally assembled into axonemes were consistent with utilization of modification sites corresponding to those identified in other organisms, but surrounding sequence context was also important. We compared tubulin modifications in the 9 + 9 + 2 insect sperm tail axonemes of Drosophila with the canonical 9 + 2 axonemes of sperm of the sea urchin Lytichinus pictus and the 9 + 0 motile sperm axonemes of the eel Anguilla japonica. In contrast to Drosophila sperm, L. pictus sperm have equivalent levels of modified tubulins in both doublet and central pair microtubule fractions, whereas the doublets of A. japonica sperm exhibit little glutamylation but extensive glycylation. Tubulin C-terminal modifications are a prevalent feature of motile axonemes, but there is no conserved pattern for placement or amount of these
Collapse
Affiliation(s)
- Henry D Hoyle
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|