1
|
Li J, Perfetto M, Materna C, Li R, Thi Tran H, Vleminckx K, Duncan MK, Wei S. A new transgenic reporter line reveals Wnt-dependent Snai2 re-expression and cranial neural crest differentiation in Xenopus. Sci Rep 2019; 9:11191. [PMID: 31371771 PMCID: PMC6672020 DOI: 10.1038/s41598-019-47665-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
During vertebrate embryogenesis, the cranial neural crest (CNC) forms at the neural plate border and subsequently migrates and differentiates into many types of cells. The transcription factor Snai2, which is induced by canonical Wnt signaling to be expressed in the early CNC, is pivotal for CNC induction and migration in Xenopus. However, snai2 expression is silenced during CNC migration, and its roles at later developmental stages remain unclear. We generated a transgenic X. tropicalis line that expresses enhanced green fluorescent protein (eGFP) driven by the snai2 promoter/enhancer, and observed eGFP expression not only in the pre-migratory and migrating CNC, but also the differentiating CNC. This transgenic line can be used directly to detect deficiencies in CNC development at various stages, including subtle perturbation of CNC differentiation. In situ hybridization and immunohistochemistry confirm that Snai2 is re-expressed in the differentiating CNC. Using a separate transgenic Wnt reporter line, we show that canonical Wnt signaling is also active in the differentiating CNC. Blocking Wnt signaling shortly after CNC migration causes reduced snai2 expression and impaired differentiation of CNC-derived head cartilage structures. These results suggest that Wnt signaling is required for snai2 re-expression and CNC differentiation.
Collapse
Affiliation(s)
- Jiejing Li
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA.,Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical School, Kunming University of Science and Technology, Kunming, 650032, China
| | - Mark Perfetto
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Christopher Materna
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Rebecca Li
- Brown University, Providence, RI, 02912, USA
| | - Hong Thi Tran
- Department for Molecular Biomedical Research and Center for Medical Genetics, Ghent University, B-9052, Ghent, Belgium
| | - Kris Vleminckx
- Department for Molecular Biomedical Research and Center for Medical Genetics, Ghent University, B-9052, Ghent, Belgium
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
2
|
Guo Y, Dorn T, Kühl SJ, Linnemann A, Rothe M, Pfister AS, Vainio S, Laugwitz KL, Moretti A, Kühl M. The Wnt inhibitor Dkk1 is required for maintaining the normal cardiac differentiation program in Xenopus laevis. Dev Biol 2019; 449:1-13. [PMID: 30797757 PMCID: PMC6496975 DOI: 10.1016/j.ydbio.2019.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/15/2019] [Accepted: 02/16/2019] [Indexed: 12/15/2022]
Abstract
Wnt proteins can activate different intracellular signaling pathways. These pathways need to be tightly regulated for proper cardiogenesis. The canonical Wnt/β-catenin inhibitor Dkk1 has been shown to be sufficient to trigger cardiogenesis in gain-of-function experiments performed in multiple model systems. Loss-of-function studies however did not reveal any fundamental function for Dkk1 during cardiogenesis. Using Xenopus laevis as a model we here show for the first time that Dkk1 is required for proper differentiation of cardiomyocytes, whereas specification of cardiomyocytes remains unaffected in absence of Dkk1. This effect is at least in part mediated through regulation of non-canonical Wnt signaling via Wnt11. In line with these observations we also found that Isl1, a critical regulator for specification of the common cardiac progenitor cell (CPC) population, acts upstream of Dkk1. Dkk1 is required for cardiac development in Xenopus laevis. The Wnt inhibitor Dkk1 acts downstream of Isl1 during cardiac development in vivo. Loss of Dkk1 has no impact on cardiac specification in Xenopus. Normal cardiac differentiation is impaired upon Dkk1 inhibition in Xenopus. Dkk1 regulates canonical Wnt/β-catenin signaling during Xenopus cardiogenesis.
Collapse
Affiliation(s)
- Yanchun Guo
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; International Graduate School in Molecular Medicine Ulm, Ulm University, 89081 Ulm, Germany
| | - Tatjana Dorn
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar der Technischen Universität München, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Susanne J Kühl
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Alexander Linnemann
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Melanie Rothe
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; International Graduate School in Molecular Medicine Ulm, Ulm University, 89081 Ulm, Germany
| | - Astrid S Pfister
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, Oulu University and Biobank Borealis of Northern Finland, Oulu University Hospital, Aapistie 5, FIN-90014, University of Oulu, Finland
| | - Karl-Ludwig Laugwitz
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar der Technischen Universität München, Ismaninger Strasse 22, 81675 Munich, Germany; DZHK (German Centre for Cardiovascular Research) - Partner Site Munich Heart Alliance, Munich, Germany
| | - Alessandra Moretti
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar der Technischen Universität München, Ismaninger Strasse 22, 81675 Munich, Germany; DZHK (German Centre for Cardiovascular Research) - Partner Site Munich Heart Alliance, Munich, Germany.
| | - Michael Kühl
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
3
|
Peng X, He J, Zhao J, Wu Y, Shi X, Du L, Nong M, Zong S, Zeng G. Polygonatum Sibiricum Polysaccharide Promotes Osteoblastic Differentiation Through the ERK/GSK-3β/β-Catenin Signaling Pathway In Vitro. Rejuvenation Res 2018. [PMID: 28629266 DOI: 10.1089/rej.2017.1956] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Xiaoming Peng
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jichen He
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Department of Osteopathia, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Research Center for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Yunle Wu
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiongzhi Shi
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Du
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mengni Nong
- College of Public Hygiene of Guangxi Medical University, Nanning, China
| | - Shaohui Zong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Research Center for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Gaofeng Zeng
- Research Center for Regenerative Medicine, Guangxi Medical University, Nanning, China
- College of Public Hygiene of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Rothe M, Kanwal N, Dietmann P, Seigfried F, Hempel A, Schütz D, Reim D, Engels R, Linnemann A, Schmeisser MJ, Bockmann J, Kühl M, Boeckers TM, Kühl SJ. An Epha4/Sipa1l3/Wnt pathway regulates eye development and lens maturation. Development 2016; 144:321-333. [DOI: 10.1242/dev.147462] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 12/06/2016] [Indexed: 01/21/2023]
Abstract
The signal-induced proliferation associated family of proteins comprises four members, SIPA1 and SIPA1L1-1L3. Mutations of the human SIPA1L3 gene result in congenital cataracts. In Xenopus, loss of Sipa1l3 function led to a severe eye phenotype that was distinguished by smaller eyes and lenses including lens fiber cell maturation defects. We found a direct interaction between Sipa1l3 and Epha4, building a functional platform for proper ocular development. Epha4 deficiency phenocopied loss of Sipa1l3 and rescue experiments demonstrated that Epha4 acts up-stream of Sipa1l3 during eye development. Both, Sipa1l3 and Epha4 are required for early eye specification. The ocular phenotype, upon loss of either Epha4 or Sipa1l3, was partially mediated by rax. We demonstrated that canonical Wnt signaling is inhibited downstream of Epha4/Sipa1l3 during normal eye development. Depletion of either Sipa1l3 or Epha4 resulted in an up-regulation of axin2 expression, a direct Wnt/β-catenin target gene. In line with this, Sipa1l3 or Epha4 depletion could be rescued by blocking Wnt/β-catenin or activating non-canonical Wnt signaling. We therefore conclude that this pathomechanism prevents proper eye development and maturation of lens fiber cells resulting in congenital cataracts.
Collapse
Affiliation(s)
- Melanie Rothe
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, 89081 Ulm University, Ulm, Germany
| | - Noreen Kanwal
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, 89081 Ulm University, Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Franziska Seigfried
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, 89081 Ulm University, Ulm, Germany
| | - Annemarie Hempel
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, 89081 Ulm University, Ulm, Germany
| | - Desiree Schütz
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Dominik Reim
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, 89081 Ulm University, Ulm, Germany
| | - Rebecca Engels
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Alexander Linnemann
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Michael J. Schmeisser
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Juergen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Tobias M. Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Susanne J. Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
5
|
Liu B, Chen S, Johnson C, Helms JA. A ciliopathy with hydrocephalus, isolated craniosynostosis, hypertelorism, and clefting caused by deletion of Kif3a. Reprod Toxicol 2014; 48:88-97. [PMID: 24887031 DOI: 10.1016/j.reprotox.2014.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/09/2014] [Accepted: 05/20/2014] [Indexed: 01/15/2023]
Abstract
Malformations of the facial midline are a consistent feature among individuals with defects in primary cilia. Here, we provide a framework in which to consider how these primary cilia-dependent facial anomalies occur. We generated mice in which the intraflagellar transport protein Kif3a was deleted in cranial neural crest cells. The Kif3a phenotypes included isolated metopic craniosynostosis, delayed closure of the anterior fontanelles, and hydrocephalus, as well as midline facial anomalies including hypertelorism, cleft palate, and bifid nasal septum. Although all cranial neural crest cells had truncated primary cilia as a result of the conditional deletion, only those in the midline showed evidence of hyper-proliferation and ectopic Wnt responsiveness. Thus, cranial neural crest cells do not rely on primary cilia for their migration but once established in the facial prominences, midline cranial neural crest cells require Kif3a function in order to integrate and respond to Wnt signals from the surrounding epithelia.
Collapse
Affiliation(s)
- B Liu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, United States
| | - S Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, United States
| | - C Johnson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, United States; College of Medicine, University of Arizona, Tucson, AZ 85721, United States
| | - J A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
6
|
Tran HT, Vleminckx K. Design and use of transgenic reporter strains for detecting activity of signaling pathways in Xenopus. Methods 2013; 66:422-32. [PMID: 23816788 DOI: 10.1016/j.ymeth.2013.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/02/2013] [Accepted: 06/21/2013] [Indexed: 12/19/2022] Open
Abstract
Embryos and larvae of vertebrate species with external development are ideal subjects for investigating the dynamic spatiotemporal activity of developmental signaling pathways. The availability of efficient transgene technologies in Xenopus and zebrafish and the translucency and/or transparency of their embryos and larvae make these two species attractive for direct in vivo imaging of reporter gene expression. In this article we describe the design of efficient signaling reporters, using the Wnt/β-catenin pathway as a representative example. We define methods for validating the reporter constructs and describe how they can be used to generate stable transgenic lines in Xenopus. We provide efficient methods used in our laboratory for raising the tadpoles and froglets rapidly to sexual maturity. We further discuss how the reporter lines can be used for delineating the dynamic activity of a signaling pathway and how modulators of the pathway can be scrutinized via chemical intervention and the micro-injection of synthetic RNAs or morpholinos. The strategic outline discussed in this paper provides a template for studying other developmental signaling pathways in Xenopus.
Collapse
Affiliation(s)
- Hong Thi Tran
- Department of Molecular Biomedical Research, VIB, Technologiepark 927, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Kris Vleminckx
- Department of Molecular Biomedical Research, VIB, Technologiepark 927, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| |
Collapse
|
7
|
McCoy KE, Zhou X, Vize PD. Non-canonical wnt signals antagonize and canonical wnt signals promote cell proliferation in early kidney development. Dev Dyn 2011; 240:1558-66. [PMID: 21465621 DOI: 10.1002/dvdy.22626] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2011] [Indexed: 11/11/2022] Open
Abstract
Canonical and non-canonical wnt signals often have opposed roles. In this report, we use developing Xenopus embryos to demonstrate a novel anti-proliferative role for non-canonical wnt signals in the very earliest stages of kidney development. Non-canonical wnt signals were down-regulated using PDZ domain mutants of dishevelled 2 and up-regulated using wild-type vang-like 2, while canonical signals were manipulated using dominant-negative forms of lef1 or treatment with lithium. When non-canonical signals are down-regulated in the developing Xenopus pronephros, cell proliferation rates increased and when canonical signals were shutdown the opposite occurred. Treatment with lithium chloride has a powerful pro-proliferative effect on the forming nephric primordium. Together these data show that in addition to previously documented antagonisms between these distinct wnt signaling pathways, they also have opposing effects on cell division.
Collapse
Affiliation(s)
- Kyle E McCoy
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
8
|
Correlations Among mRNA Expression Levels of Engrailed, BMP2 and Smad3 in Mantle Cells of Pearl Oyster Pinctada fucata*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2010.00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo. Proc Natl Acad Sci U S A 2010; 107:16160-5. [PMID: 20805504 DOI: 10.1073/pnas.1007725107] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The formation of primitive (embryonic) blood in vertebrates is mediated by spatio-temporally restricted signaling between different tissue layers. In Xenopus, in which primitive blood originates in the ventral blood island, this involves the secretion of bone morphogenetic protein (BMP) ligands by the ectoderm that signal to the underlying mesoderm during gastrulation. Using novel transgenic reporter lines, we report that the canonical Wnt/β-catenin pathway is also activated in the blood islands in Xenopus. Furthermore, Wnt-reporter activity was also detected in the blood islands of the mouse yolk sac. By using morpholino-mediated depletion in Xenopus, we identified Wnt4 as the ligand that is expressed in the mesoderm of the ventral blood island and is essential for the expression of hematopoietic and erythroid marker genes. Injection of an inducible Wnt-interfering construct further showed that, during gastrulation, Wnt/β-catenin signaling is required both in the mesoderm and in the overlying ectoderm for the formation of the ventral blood island. Using recombination assays with embryonic explants, we document that ectodermal BMP4 expression is dependent on Wnt4 signals from the mesoderm. Our results thus reveal a unique role for Wnt4-mediated canonical signaling in the formation and maintenance of the ventral blood island in Xenopus.
Collapse
|
10
|
Lyons JP, Miller RK, Zhou X, Weidinger G, Deroo T, Denayer T, Park JI, Ji H, Hong JY, Li A, Moon RT, Jones EA, Vleminckx K, Vize PD, McCrea PD. Requirement of Wnt/beta-catenin signaling in pronephric kidney development. Mech Dev 2008; 126:142-59. [PMID: 19100832 DOI: 10.1016/j.mod.2008.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 11/24/2008] [Indexed: 01/02/2023]
Abstract
The pronephric kidney controls water and electrolyte balance during early fish and amphibian embryogenesis. Many Wnt signaling components have been implicated in kidney development. Specifically, in Xenopus pronephric development as well as the murine metanephroi, the secreted glycoprotein Wnt-4 has been shown to be essential for renal tubule formation. Despite the importance of Wnt signals in kidney organogenesis, little is known of the definitive downstream signaling pathway(s) that mediate their effects. Here we report that inhibition of Wnt/beta-catenin signaling within the pronephric field of Xenopus results in significant losses to kidney epithelial tubulogenesis with little or no effect on adjoining axis or somite development. We find that the requirement for Wnt/beta-catenin signaling extends throughout the pronephric primordium and is essential for the development of proximal and distal tubules of the pronephros as well as for the development of the duct and glomus. Although less pronounced than effects upon later pronephric tubule differentiation, inhibition of the Wnt/beta-catenin pathway decreased expression of early pronephric mesenchymal markers indicating it is also needed in early pronephric patterning. We find that upstream inhibition of Wnt/beta-catenin signals in zebrafish likewise reduces pronephric epithelial tubulogenesis. We also find that exogenous activation of Wnt/beta-catenin signaling within the Xenopus pronephric field results in significant tubulogenic losses. Together, we propose Wnt/beta-catenin signaling is required for pronephric tubule, duct and glomus formation in Xenopus laevis, and this requirement is conserved in zebrafish pronephric tubule formation.
Collapse
Affiliation(s)
- Jon P Lyons
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1000, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chesneau A, Sachs LM, Chai N, Chen Y, Pasquier LD, Loeber J, Pollet N, Reilly M, Weeks DL, Bronchain OJ. Transgenesis procedures in Xenopus. Biol Cell 2008; 100:503-21. [PMID: 18699776 PMCID: PMC2967756 DOI: 10.1042/bc20070148] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stable integration of foreign DNA into the frog genome has been the purpose of several studies aimed at generating transgenic animals or producing mutations of endogenous genes. Inserting DNA into a host genome can be achieved in a number of ways. In Xenopus, different strategies have been developed which exhibit specific molecular and technical features. Although several of these technologies were also applied in various model organizms, the attributes of each method have rarely been experimentally compared. Investigators are thus confronted with a difficult choice to discriminate which method would be best suited for their applications. To gain better understanding, a transgenesis workshop was organized by the X-omics consortium. Three procedures were assessed side-by-side, and the results obtained are used to illustrate this review. In addition, a number of reagents and tools have been set up for the purpose of gene expression and functional gene analyses. This not only improves the status of Xenopus as a powerful model for developmental studies, but also renders it suitable for sophisticated genetic approaches. Twenty years after the first reported transgenic Xenopus, we review the state of the art of transgenic research, focusing on the new perspectives in performing genetic studies in this species.
Collapse
Affiliation(s)
- Albert Chesneau
- Laboratoire Evolution et Développement, Université Paris Sud, F-91405 Orsay cedex, France
- CNRS UMR 8080, F-91405 Orsay, France
| | - Laurent M. Sachs
- Département Régulation, Développement et Diversité Moléculaire, MNHN USM 501, CNRS UMR 5166, CP32, 7 rue Cuvier, 75231 Paris cedex 05, France
| | - Norin Chai
- Muséum National d’Histoire Naturelle, Ménagerie du Jardin des Plantes, 57 rue Cuvier, 75005 Paris, France
| | - Yonglong Chen
- Georg-August-Universitat Gottingen, Zentrum Biochemie und Molekular Zellbiologie, Abteilung Entwicklungsbiochemie, 37077 Gottingen, Germany
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Science City, 510663 Guangzhou, People’s Republic of China
| | - Louis Du Pasquier
- Institute of Zoology and Evolutionary Biology, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Jana Loeber
- Georg-August-Universitat Gottingen, Zentrum Biochemie und Molekular Zellbiologie, Abteilung Entwicklungsbiochemie, 37077 Gottingen, Germany
| | - Nicolas Pollet
- Laboratoire Evolution et Développement, Université Paris Sud, F-91405 Orsay cedex, France
- CNRS UMR 8080, F-91405 Orsay, France
| | - Michael Reilly
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, U.K
| | - Daniel L. Weeks
- Department of Biochemistry, Bowen Science Building, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Odile J. Bronchain
- Laboratoire Evolution et Développement, Université Paris Sud, F-91405 Orsay cedex, France
- CNRS UMR 8080, F-91405 Orsay, France
| |
Collapse
|
12
|
Denayer T, Locker M, Borday C, Deroo T, Janssens S, Hecht A, van Roy F, Perron M, Vleminckx K. Canonical Wnt signaling controls proliferation of retinal stem/progenitor cells in postembryonic Xenopus eyes. Stem Cells 2008; 26:2063-74. [PMID: 18556512 DOI: 10.1634/stemcells.2007-0900] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Vertebrate retinal stem cells, which reside quiescently within the ciliary margin, may offer a possibility for treatment of degenerative retinopathies. The highly proliferative retinal precursor cells in Xenopus eyes are confined to the most peripheral region, called the ciliary marginal zone (CMZ). Although the canonical Wnt pathway has been implicated in the developing retina of different species, little is known about its involvement in postembryonic retinas. Using a green fluorescent protein-based Wnt-responsive reporter, we show that in transgenic Xenopus tadpoles, the canonical Wnt signaling is activated in the postembryonic CMZ. To further investigate the functional implications of this, we generated transgenic, hormone-inducible canonical Wnt pathway activating and repressing systems, which are directed to specifically intersect at the nuclear endpoint of transcriptional Wnt target gene activation. We found that postembryonic induction of the canonical Wnt pathway in transgenic retinas resulted in increased proliferation in the CMZ compartment. This is most likely due to delayed cell cycle exit, as inferred from a pulse-chase experiment on 5-bromo-2'-deoxyuridine-labeled retinal precursors. Conversely, repression of the canonical Wnt pathway inhibited proliferation of CMZ cells. Neither activation nor repression of the Wnt pathway affected the differentiated cells in the central retina. We conclude that even at postembryonic stages, the canonical Wnt signaling pathway continues to have a major function in promoting proliferation and maintaining retinal stem cells. These findings may contribute to the eventual design of vertebrate, stem cell-based retinal therapies. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Tinneke Denayer
- Department of Molecular Biomedical Research, VIB, Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Denayer T, Van Roy F, Vleminckx K. In vivo tracing of canonical Wnt signaling inXenopustadpoles by means of an inducible transgenic reporter tool. FEBS Lett 2005; 580:393-8. [PMID: 16376877 DOI: 10.1016/j.febslet.2005.11.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 11/24/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
The canonical Wnt pathway is recurrently used during embryogenesis and adult life. To track the cellular output of Wnt signaling in a living organism, we designed a hormone-inducible Wnt responsive system, capable to dynamically and specifically report Wnt pathway activities through eGFP expression. In contrast to previous in vivo reporters, our system essentially avoids interference of consecutive signals by remaining dormant until addition of hormone, which makes it a valuable tool to map canonical Wnt signaling in post-embryonic stages. Transgenic Xenopus laevis embryos were analyzed revealing at tadpole stage in specific tissues and organs cell populations with high Wnt pathway activity.
Collapse
Affiliation(s)
- Tinneke Denayer
- Developmental Biology Unit, Department for Molecular Biomedical Research, VIB-Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | | | | |
Collapse
|
14
|
Park JI, Kim SW, Lyons JP, Ji H, Nguyen TT, Cho K, Barton MC, Deroo T, Vleminckx K, Moon RT, McCrea PD. Kaiso/p120-catenin and TCF/beta-catenin complexes coordinately regulate canonical Wnt gene targets. Dev Cell 2005; 8:843-54. [PMID: 15935774 DOI: 10.1016/j.devcel.2005.04.010] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 03/01/2005] [Accepted: 04/16/2005] [Indexed: 11/18/2022]
Abstract
Beta-catenin-dependent or canonical Wnt signals are fundamental in animal development and tumor progression. Using Xenopus laevis, we report that the BTB/POZ zinc finger family member Kaiso directly represses canonical Wnt gene targets (Siamois, c-Fos, Cyclin-D1, and c-Myc) in conjunction with TCF/LEF (TCF). Analogous to beta-catenin relief of TCF repressive activity, we show that p120-catenin relieves Kaiso-mediated repression of Siamois. Furthermore, Kaiso and TCF coassociate, and combined Kaiso and TCF derepression results in pronounced Siamois expression and increased beta-catenin coprecipitation with the Siamois promoter. The functional interdependency is underlined by Kaiso suppression of beta-catenin-induced axis duplication and by TCF-3 rescue of Kaiso depletion phenotypes. These studies point to convergence of parallel p120-catenin/Kaiso and beta-catenin/TCF signaling pathways to regulate gene expression in vertebrate development and possibly carcinogenesis.
Collapse
Affiliation(s)
- Jae-Il Park
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|