1
|
Chen Q, Wells MM, Tillman TS, Kinde MN, Cohen A, Xu Y, Tang P. Structural Basis of Alcohol Inhibition of the Pentameric Ligand-Gated Ion Channel ELIC. Structure 2016; 25:180-187. [PMID: 27916519 DOI: 10.1016/j.str.2016.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/30/2016] [Accepted: 11/07/2016] [Indexed: 11/18/2022]
Abstract
The structural basis for alcohol modulation of neuronal pentameric ligand-gated ion channels (pLGICs) remains elusive. We determined an inhibitory mechanism of alcohol on the pLGIC Erwinia chrysanthemi (ELIC) through direct binding to the pore. X-ray structures of ELIC co-crystallized with 2-bromoethanol, in both the absence and presence of agonist, reveal 2-bromoethanol binding in the pore near T237(6') and the extracellular domain (ECD) of each subunit at three different locations. Binding to the ECD does not appear to contribute to the inhibitory action of 2-bromoethanol and ethanol as indicated by the same functional responses of wild-type ELIC and mutants. In contrast, the ELIC-α1β3GABAAR chimera, replacing the ELIC transmembrane domain (TMD) with the TMD of α1β3GABAAR, is potentiated by 2-bromoethanol and ethanol. The results suggest a dominant role of the TMD in modulating alcohol effects. The X-ray structures and functional measurements support a pore-blocking mechanism for inhibitory action of short-chain alcohols.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Marta M Wells
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tommy S Tillman
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Monica N Kinde
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Aina Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
2
|
Burgos CF, Yévenes GE, Aguayo LG. Structure and Pharmacologic Modulation of Inhibitory Glycine Receptors. Mol Pharmacol 2016; 90:318-25. [PMID: 27401877 PMCID: PMC4998662 DOI: 10.1124/mol.116.105726] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/08/2016] [Indexed: 01/08/2023] Open
Abstract
Glycine receptors (GlyR) are inhibitory Cys-loop ion channels that contribute to the control of excitability along the central nervous system (CNS). GlyR are found in the spinal cord and brain stem, and more recently they were reported in higher regions of the CNS such as the hippocampus and nucleus accumbens. GlyR are involved in motor coordination, respiratory rhythms, pain transmission, and sensory processing, and they are targets for relevant physiologic and pharmacologic modulators. Several studies with protein crystallography and cryoelectron microscopy have shed light on the residues and mechanisms associated with the activation, blockade, and regulation of pentameric Cys-loop ion channels at the atomic level. Initial studies conducted on the extracellular domain of acetylcholine receptors, ion channels from prokaryote homologs-Erwinia chrysanthemi ligand-gated ion channel (ELIC), Gloeobacter violaceus ligand-gated ion channel (GLIC)-and crystallized eukaryotic receptors made it possible to define the overall structure and topology of the Cys-loop receptors. For example, the determination of pentameric GlyR structures bound to glycine and strychnine have contributed to visualizing the structural changes implicated in the transition between the open and closed states of the Cys-loop receptors. In this review, we summarize how the new information obtained in functional, mutagenesis, and structural studies have contributed to a better understanding of the function and regulation of GlyR.
Collapse
Affiliation(s)
- Carlos F Burgos
- Laboratory of Neurophysiology (C.F.B., L.G.A.), and Laboratory of Neuropharmacology (G.E.Y.), Department of Physiology, University of Concepción, Concepción, Chile
| | - Gonzalo E Yévenes
- Laboratory of Neurophysiology (C.F.B., L.G.A.), and Laboratory of Neuropharmacology (G.E.Y.), Department of Physiology, University of Concepción, Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology (C.F.B., L.G.A.), and Laboratory of Neuropharmacology (G.E.Y.), Department of Physiology, University of Concepción, Concepción, Chile
| |
Collapse
|
3
|
Seljeset S, Laverty D, Smart TG. Inhibitory Neurosteroids and the GABAA Receptor. DIVERSITY AND FUNCTIONS OF GABA RECEPTORS: A TRIBUTE TO HANNS MÖHLER, PART A 2015; 72:165-87. [DOI: 10.1016/bs.apha.2014.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
4
|
Nanoscale effects of ethanol and naltrexone on protein organization in the plasma membrane studied by photoactivated localization microscopy (PALM). PLoS One 2014; 9:e87225. [PMID: 24503624 PMCID: PMC3913589 DOI: 10.1371/journal.pone.0087225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 12/20/2013] [Indexed: 12/04/2022] Open
Abstract
Background Ethanol affects the signaling of several important neurotransmitter and neuromodulator systems in the CNS. It has been recently proposed that ethanol alters the dynamic lateral organization of proteins and lipids in the plasma membrane, thereby affecting surface receptor-mediated cellular signaling. Our aims are to establish whether pharmacologically relevant levels of ethanol can affect the lateral organization of plasma membrane and cytoskeletal proteins at the nanoscopic level, and investigate the relevance of such perturbations for mu-opioid receptor (MOP) function. Methodology/Principal Findings We used Photoactivated Localization Microscopy with pair-correlation analysis (pcPALM), a quantitative fluorescence imaging technique with high spatial resolution (15–25 nm) and single-molecule sensitivity, to study ethanol effects on protein organization in the plasma membrane. We observed that short (20 min) exposure to 20 and 40 mM ethanol alters protein organization in the plasma membrane of cells that harbor endogenous MOPs, causing a rearrangement of the lipid raft marker glycosylphosphatidylinositol (GPI). These effects could be largely occluded by pretreating the cells with the MOP antagonist naltrexone (200 nM for 3 hours). In addition, ethanol induced pronounced actin polymerization, leading to its partial co-localization with GPI. Conclusions/Significance Pharmacologically relevant levels of ethanol alter the lateral organization of GPI-linked proteins and induce actin cytoskeleton reorganization. Pretreatment with the MOP antagonist naltrexone is protective against ethanol action and significantly reduces the extent to which ethanol remodels the lateral organization of lipid-rafts-associated proteins in the plasma membrane. Super-resolution pcPALM reveals details of ethanol action at the nanoscale level, giving new mechanistic insight on the cellular and molecular mechanisms of its action.
Collapse
|
5
|
Borghese CM, Hicks JA, Lapid DJ, Trudell JR, Harris RA. GABA(A) receptor transmembrane amino acids are critical for alcohol action: disulfide cross-linking and alkyl methanethiosulfonate labeling reveal relative location of binding sites. J Neurochem 2013; 128:363-75. [PMID: 24117469 DOI: 10.1111/jnc.12476] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 11/27/2022]
Abstract
Alcohols and inhaled anesthetics modulate GABA(A) receptor (GABA(A)R) function via putative binding sites within the transmembrane regions. The relative position of the amino acids lining these sites could be either inter- or intra-subunit. We introduced cysteines in relevant TM locations and tested the proximity of cysteine pairs using oxidizing and reducing agents to induce or break disulfide bridges between cysteines, and thus change GABA-mediated currents in wild-type and mutant α1β2γ2 GABA(A)Rs expressed in Xenopus laevis oocytes. We tested for: (i) inter-subunit cross-linking: a cysteine located in α1TM1 [either α1(Q229C) or α1(L232C)] was paired with a cysteine in different positions of β2TM2 and TM3; (ii) intra-subunit cross-linking: a cysteine located either in β2TM1 [β2(T225C)] or in TM2 [β2(N265C)] was paired with a cysteine in different locations along β2TM3. Three inter-subunit cysteine pairs and four intra-subunits cross-linked. In three intra-subunit cysteine combinations, the alcohol effect was reduced by oxidizing agents, suggesting intra-subunit alcohol binding. We conclude that the structure of the alcohol binding site changes during activation and that potentiation or inhibition by binding at inter- or intra-subunit sites is determined by the specific receptor and ligand.
Collapse
Affiliation(s)
- Cecilia M Borghese
- Cellular and Molecular Biology, Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, USA
| | | | | | | | | |
Collapse
|
6
|
Llorente J, Withey S, Rivero G, Cunningham M, Cooke A, Saxena K, McPherson J, Oldfield S, Dewey WL, Bailey CP, Kelly E, Henderson G. Ethanol reversal of cellular tolerance to morphine in rat locus coeruleus neurons. Mol Pharmacol 2013; 84:252-60. [PMID: 23716621 PMCID: PMC3716327 DOI: 10.1124/mol.113.085936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/28/2013] [Indexed: 12/16/2022] Open
Abstract
Consumption of ethanol is a considerable risk factor for death in heroin overdose. We sought to determine whether a mildly intoxicating concentration of ethanol could alter morphine tolerance at the cellular level. In rat locus coeruleus (LC) neurons, tolerance to morphine was reversed by acute exposure of the brain slice to ethanol (20 mM). Tolerance to the opioid peptide [d-Ala(2),N-MePhe(4),Gly-ol]-enkephalin was not reversed by ethanol. Previous studies in LC neurons have revealed a role for protein kinase C (PKC)α in μ-opioid receptor (MOPr) desensitization by morphine and in the induction and maintenance of morphine tolerance, but we have been unable to demonstrate that 20 mM ethanol produces significant inhibition of PKCα. The ability of ethanol to reverse cellular tolerance to morphine in LC neurons was absent in the presence of the phosphatase inhibitor okadaic acid, indicating that dephosphorylation is involved. In human embryonic kidney 293 cells expressing the MOPr, ethanol reduced the level of MOPr phosphorylation induced by morphine. Ethanol reversal of tolerance did not appear to result from a direct effect on MOPr since acute exposure to ethanol (20 mM) did not modify the affinity of binding of morphine to the MOPr or the efficacy of morphine for G-protein activation as measured by guanosine 5'-O-(3-[(35)S]thio)triphosphate binding. Similarly, ethanol did not affect MOPr trafficking. We conclude that acute exposure to ethanol enhances the effects of morphine by reversing the processes underlying morphine cellular tolerance.
Collapse
Affiliation(s)
- Javier Llorente
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Carignan D, Désy O, Ghani K, Caruso M, de Campos-Lima PO. The size of the unbranched aliphatic chain determines the immunomodulatory potency of short and long chain n-alkanols. J Biol Chem 2013; 288:24948-55. [PMID: 23839943 DOI: 10.1074/jbc.m113.466334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aliphatic n-alkanols are a family of ubiquitous substances that display general anesthetic properties in accordance to their degree of hydrophobicity. In addition, the immunomodulatory activity of one of its members, ethanol, has long been recognized. We reasoned that because unbranched aliphatic n-alkanols are structurally very similar they might have an immunological impact that mirrors their anesthetic potency. We report the impact of the homologous C1-C12 alcohol series on the ability of activated primary human lymphocytes to produce IFN-γ. Methanol enhanced IFN-γ production whereas C2-C10 alcohols reduced the release of this cytokine. The activity of the n-alkanol series was observed within a wide concentration window ranging from millimolar levels for short chain alcohols to micromolar amounts for C7-C10 alcohols. There was a clear correlation between immunomodulatory activity and hydrophobicity of the compounds, but a cutoff effect was evident at C11. n-Alkanols were shown to act downstream of the cell membrane because T cell receptor early signaling was preserved. The activation of the nuclear factor of activated T cells (NFAT) was down-regulated progressively in accordance to the size of the n-alkanol aliphatic chains with a clear downward trend that was interrupted at C11. The nuclear factor-κB (NF-κB) signaling was also compromised, but the cutoff appeared earlier at C10. The pattern of immunomodulation and transcriptional dysregulation induced by the n-alkanol series suggested the existence of interaction pockets of defined dimensions within intracellular targets that compromise the activation of NFAT and NF-κB transcription factors and ultimately modulate the effector function of the T lymphocyte.
Collapse
Affiliation(s)
- Damien Carignan
- Laval University Cancer Research Center, Quebec City, Quebec G1R 2J6, Canada
| | | | | | | | | |
Collapse
|
8
|
Désy O, Carignan D, de Campos-Lima PO. Short-term immunological effects of non-ethanolic short-chain alcohols. Toxicol Lett 2012; 210:44-52. [PMID: 22266471 DOI: 10.1016/j.toxlet.2012.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
Abstract
Short-chain alcohols are embedded into several aspects of modern life. The societal costs emanating from the long history of use and abuse of the prototypical example of these molecules, ethanol, have stimulated considerable interest in its general toxicology. A much more modest picture exists for other short-chain alcohols, notably as regards their immunotoxicity. A large segment of the general population is potentially exposed to two of these alcohols, methanol and isopropanol. Their ubiquitous nature and their eventual use as ethanol surrogates are predictably associated to accidental or deliberate poisoning. This review addresses the immunological consequences of acute exposure to methanol and isopropanol. It first examines the general mechanisms of short-chain alcohol-induced biological dysregulation and then provides a tentative model to explain the molecular events that underlie the immunological dysfunction produced by methanol and isopropanol. The time-related context of serum alcohol concentrations in acute poisoning, as well as the clinical implications of their short-term immunotoxicity, is also discussed.
Collapse
Affiliation(s)
- Olivier Désy
- Laval University Cancer Research Center, Quebec City, Quebec, Canada
| | | | | |
Collapse
|
9
|
Carignan D, Désy O, de Campos-Lima PO. The dysregulation of the monocyte/macrophage effector function induced by isopropanol is mediated by the defective activation of distinct members of the AP-1 family of transcription factors. Toxicol Sci 2011; 125:144-56. [PMID: 22020770 DOI: 10.1093/toxsci/kfr283] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Isopropanol is the second most common cause of short-chain alcohol acute intoxication. Nonethanolic short-chain alcohols mediate their immunomodulatory effect by interfering with nuclear factor of activated T cells (NFAT) activation with or without additional activator protein-1 (AP-1) involvement. In the present study, we examined the immunomodulation induced by isopropanol in conditions that are not reliant on NFAT: the inflammatory cytokine response of lipopolysaccharide (LPS)-stimulated monocytes. Our hypothesis was that isopropanol acute exposure would have an attenuated effect or no consequence in this setting. To our surprise, the impairment of AP-1 activation was sufficient to mediate a severe and dose-dependent phenotype in human monocytes in vitro at alcohol concentrations as low as 0.16% (or 26 mM). There were three outcomes: interleukin (IL)-1β/IL-8 were unaltered; IL-6 was upregulated; and tumor necrosis factor alpha (TNF-α)/CCL2 were downregulated. The effector function of human monocyte-derived macrophages was also compromised. Our results showed that Toll-like receptor 4 early signaling was preserved, as isopropanol did not change the kinase activity of the IL-1 receptor-associated kinase 1 in LPS-stimulated cells. The nuclear factor-κB signaling cascade and the p38/c-Jun N-terminal kinase modules of the mitogen-activated protein kinase pathway were alcohol insensitive. Conversely, the activation of extracellular signal-regulated protein kinase and, ultimately, of c-Fos and JunB were impaired. The alcohol-induced cytokine dysregulation was confirmed in a mouse model of isopropanol intoxication in which the production of TNF-α in response to LPS challenge was virtually abolished. The magnitude of this alcohol effect was sufficiently high to rescue animals from LPS-induced toxic shock. Our data contribute to the dismal body of information on the immunotoxicology of isopropanol, one of the most ubiquitous chemicals to which the general population is significantly exposed.
Collapse
Affiliation(s)
- Damien Carignan
- Laval University Cancer Research Center, Quebec City, Quebec G1R 2J6, Canada
| | | | | |
Collapse
|
10
|
Structural basis for alcohol modulation of a pentameric ligand-gated ion channel. Proc Natl Acad Sci U S A 2011; 108:12149-54. [PMID: 21730162 DOI: 10.1073/pnas.1104480108] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite its long history of use and abuse in human culture, the molecular basis for alcohol action in the brain is poorly understood. The recent determination of the atomic-scale structure of GLIC, a prokaryotic member of the pentameric ligand-gated ion channel (pLGIC) family, provides a unique opportunity to characterize the structural basis for modulation of these channels, many of which are alcohol targets in brain. We observed that GLIC recapitulates bimodal modulation by n-alcohols, similar to some eukaryotic pLGICs: methanol and ethanol weakly potentiated proton-activated currents in GLIC, whereas n-alcohols larger than ethanol inhibited them. Mapping of residues important to alcohol modulation of ionotropic receptors for glycine, γ-aminobutyric acid, and acetylcholine onto GLIC revealed their proximity to transmembrane cavities that may accommodate one or more alcohol molecules. Site-directed mutations in the pore-lining M2 helix allowed the identification of four residues that influence alcohol potentiation, with the direction of their effects reflecting α-helical structure. At one of the potentiation-enhancing residues, decreased side chain volume converted GLIC into a highly ethanol-sensitive channel, comparable to its eukaryotic relatives. Covalent labeling of M2 positions with an alcohol analog, a methanethiosulfonate reagent, further implicated residues at the extracellular end of the helix in alcohol binding. Molecular dynamics simulations elucidated the structural consequences of a potentiation-enhancing mutation and suggested a structural mechanism for alcohol potentiation via interaction with a transmembrane cavity previously termed the "linking tunnel." These results provide a unique structural model for independent potentiating and inhibitory interactions of n-alcohols with a pLGIC family member.
Collapse
|
11
|
McCracken ML, Borghese CM, Trudell JR, Harris RA. A transmembrane amino acid in the GABAA receptor β2 subunit critical for the actions of alcohols and anesthetics. J Pharmacol Exp Ther 2010; 335:600-6. [PMID: 20826568 PMCID: PMC2993559 DOI: 10.1124/jpet.110.170472] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 09/02/2010] [Indexed: 01/27/2023] Open
Abstract
Alcohols and inhaled anesthetics enhance the function of GABA(A) receptors containing α, β, and γ subunits. Molecular analysis has focused on the role of the α subunits; however, there is evidence that the β subunits may also be important. The goal of our study was to determine whether Asn265, which is homologous to the site implicated in the α subunit (Ser270), contributes to an alcohol and volatile anesthetic binding site in the GABA(A) receptor β(2) subunit. We substituted cysteine for Asn265 and exposed the mutant to the sulfhydryl-specific reagent octyl methanethiosulfonate (OMTS). We used two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes and found that, after OMTS application, GABA-induced currents were irreversibly potentiated in mutant α(1)β(2)(N265C)γ(2S) receptors [but not α(1)β(2)(I264C)γ(2S)], presumably because of the covalent linking of octanethiol to the thiol group in the substituted cysteine. It is noteworthy that this effect was blocked when OMTS was applied in the presence of octanol. We found that potentiation by butanol, octanol, or isoflurane in the N265C mutant was nearly abolished after the application of OMTS, suggesting that an alcohol and volatile anesthetic binding site at position 265 of the β(2) subunit was irreversibly occupied by octanethiol and consequently prevented butanol or isoflurane from binding and producing their effects. OMTS did not affect modulation or direct activation by pentobarbital, but there was a partial reduction of allosteric modulation by flunitrazepam and alphaxalone in mutant α(1)β(2)(N265C)γ(2S) receptors after OMTS was applied. Our findings provide evidence that Asn265 may contribute to an alcohol and anesthetic binding site.
Collapse
Affiliation(s)
- Mandy L McCracken
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
12
|
Désy O, Carignan D, Caruso M, de Campos-Lima PO. Methanol induces a discrete transcriptional dysregulation that leads to cytokine overproduction in activated lymphocytes. Toxicol Sci 2010; 117:303-13. [PMID: 20616203 DOI: 10.1093/toxsci/kfq212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Methanol is an important cause of acute alcohol intoxication; it is ubiquitously present at home and in the workplace. Although the existing literature provides a reasonable insight into the immunological impact of ethanol and to a much lesser extent of isopropanol, much less data are available on methanol. We hypothesized on structural grounds that methanol would share the immunosuppressive properties of the two other short-chain alcohols. We report here that methanol increases the proliferative capacity of human T lymphocytes and synergizes with the activating stimuli to augment cytokine production. The cytokine upregulation was observed in vitro at methanol concentrations as low as 0.08% (25mM) as measured by interleukin-2, interferon-γ, and tumor necrosis factor-α release in T cells. Methanol did not affect the antigen receptor-mediated early signaling but promoted a selective and differential activation of the nuclear factor of activated T cells family of transcription factors. These results were further substantiated in a mouse model of acute methanol intoxication in which there was an augmented release of proinflammatory cytokines in the serum in response to the staphylococcal enterotoxin B. Our results suggest that methanol has a discrete immunological footprint of broad significance given the exposure of the general population to this multipurpose solvent.
Collapse
Affiliation(s)
- Olivier Désy
- Laval University Cancer Research Center, Quebec City, Quebec, Canada G1R 2J6
| | | | | | | |
Collapse
|
13
|
McCracken LM, McCracken ML, Gong DH, Trudell JR, Harris RA. Linking of Glycine Receptor Transmembrane Segments Three and Four Allows Assignment of Intrasubunit-Facing Residues. ACS Chem Neurosci 2010; 1:482. [PMID: 21326622 DOI: 10.1021/cn100019g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Glycine receptors (GlyRs) are pentameric ligand-gated ion channels that mediate inhibitory neurotransmission in the brain and spinal cord and are targets of alcohols and anesthetics. The transmembrane (TM) domain of GlyR subunits is composed of four α-helical segments (TM1-4), but there are conflicting data about the orientation of TM3 and TM4 and, therefore, also the proximity of residues (e.g., A288) that are important for alcohol and anesthetic effects. In the present study, we investigated the proximity of A288 in TM3 to residues in TM4 from M404 to K411. We generated eight double mutant GlyRs (A288C/M404C, A288C/F405C, A288C/Y406C, A288C/W407C, A288C/I408C, A288C/I409C, A288C/Y410C, and A288C/K411C), as well as the corresponding single mutants, and expressed them in Xenopus laevis oocytes. To measure glycine responses, we used two-electrode voltage clamp electrophysiology. We built homology models of the GlyR using structures of the nicotinic acetylcholine receptor (nAChR) and a prokaryotic ion channel (Gloeobacter violaceus, GLIC) as templates, and asked which model best fit our experimental data. Application of the cross-linking reagent HgCl(2) in the closed state produced a leftward shift in the glycine concentration-response curves of the A288C/W407C and A288C/Y410C mutants, suggesting they are able to form cross-links. In addition, when HgCl(2) was coapplied with glycine, responses were changed in the A288C/Y406C, A288C/I409C, and A288C/Y410C double mutants, suggesting that agonist-induced rotation of TM4 allows A288C/Y406C and A288C/I409C to cross-link. These results are consistent with a model of GlyR, based on nAChR, in which A288, Y406, W407, I409, and Y410 face into a four-helical bundle.
Collapse
Affiliation(s)
- L. M. McCracken
- Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, Texas
| | - M. L. McCracken
- Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, Texas
| | - D. H. Gong
- Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, Texas
| | - J. R. Trudell
- Department of Anesthesia and Beckman Program for Molecular and Genetic Medicine, Stanford School of Medicine, Stanford, California 94305-5117
| | - R. A. Harris
- Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, Texas
| |
Collapse
|
14
|
Molecular targets and mechanisms for ethanol action in glycine receptors. Pharmacol Ther 2010; 127:53-65. [PMID: 20399807 DOI: 10.1016/j.pharmthera.2010.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 03/23/2010] [Indexed: 11/23/2022]
Abstract
Glycine receptors (GlyRs) are recognized as the primary mediators of neuronal inhibition in the spinal cord, brain stem and higher brain regions known to be sensitive to ethanol. Building evidence supports the notion that ethanol acting on GlyRs causes at least a subset of its behavioral effects and may be involved in modulating ethanol intake. For over two decades, GlyRs have been studied at the molecular level as targets for ethanol action. Despite the advances in understanding the effects of ethanol in vivo and in vitro, the precise molecular sites and mechanisms of action for ethanol in ligand-gated ion channels in general, and in GlyRs specifically, are just now starting to become understood. The present review focuses on advances in our knowledge produced by using molecular biology, pressure antagonism, electrophysiology and molecular modeling strategies over the last two decades to probe, identify and model the initial molecular sites and mechanisms of ethanol action in GlyRs. The molecular targets on the GlyR are covered on a global perspective, which includes the intracellular, transmembrane and extracellular domains. The latter has received increasing attention in recent years. Recent molecular models of the sites of ethanol action in GlyRs and their implications to our understanding of possible mechanism of ethanol action and novel targets for drug development in GlyRs are discussed.
Collapse
|
15
|
Law RJ, Lightstone FC. Gaba Receptor Insecticide Non-Competitive Antagonists May Bind at Allosteric Modulator Sites. Int J Neurosci 2009; 118:705-34. [DOI: 10.1080/00207450701750216] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Vukojević V, Ming Y, D'Addario C, Rigler R, Johansson B, Terenius L. Ethanol/naltrexone interactions at the mu-opioid receptor. CLSM/FCS study in live cells. PLoS One 2008; 3:e4008. [PMID: 19104662 PMCID: PMC2602977 DOI: 10.1371/journal.pone.0004008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 11/24/2008] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Alcoholism is a widespread chronic disorder of complex aetiology with a significant negative impact on the individual and the society. Mechanisms of ethanol action are not sufficiently well understood at the molecular level and the pharmacotherapy of alcoholism is still in its infancy. Our study focuses at the cellular and molecular level on ethanol-induced effects that are mediated through the micro-opioid receptor (MOP) and on the effects of naltrexone, a well-known antagonist at MOP that is used clinically to prevent relapse in alcoholism. METHODOLOGY/PRINCIPAL FINDINGS Advanced fluorescence imaging by Confocal Laser Scanning Microscopy (CLSM) and Fluorescence Correlation Spectroscopy (FCS) are used to study ethanol effects on MOP and plasma membrane lipid dynamics in live PC12 cells. We observed that relevant concentrations of ethanol (10-40 mM) alter MOP mobility and surface density, and affect the dynamics of plasma membrane lipids. Compared to the action of specific ligands at MOP, ethanol-induced effects show complex kinetics and point to a biphasic underlying mechanism. Pretreatment with naloxone or naltrexone considerably mitigates the effects of ethanol. CONCLUSIONS/SIGNIFICANCE We suggest that ethanol acts by affecting the sorting of MOP at the plasma membrane of PC12 cells. Naltrexone exerts opposite effects on MOP sorting at the plasma membrane, thereby countering the effects of ethanol. Our experimental findings give new insight on MOP-mediated ethanol action at the cellular and molecular level. We suggest a new hypothesis to explain the well established ethanol-induced increase in the activity of the endogenous opioid system.
Collapse
Affiliation(s)
- Vladana Vukojević
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
17
|
Désy O, Carignan D, Caruso M, de Campos-Lima PO. Immunosuppressive effect of isopropanol: down-regulation of cytokine production results from the alteration of discrete transcriptional pathways in activated lymphocytes. THE JOURNAL OF IMMUNOLOGY 2008; 181:2348-55. [PMID: 18684924 DOI: 10.4049/jimmunol.181.4.2348] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Isopropanol (IPA) is widely used in household applications and constitutes a leading cause of acute alcohol intoxication second only to ethanol. Although the effects of ethanol on the immune system have been extensively studied, far fewer data are available on IPA. Given the structural similarity between the two molecules, we hypothesized that IPA could as well have immunomodulatory properties. We report here that acute IPA exposure is detrimental to human T lymphocyte and NK cell activity in vitro in concentrations as low as 0.08-0.16% (13-26 mM). IPA treatment did not affect receptor-mediated early signaling but had a reproducible and dose-dependent effect on the nuclear translocation of NFAT and AP-1. Furthermore, we show in a model of acute IPA intoxication that animals became immunosuppressed as judged by their reduced ability to release IL-2 and IFN-gamma in the serum in response to staphylococcal enterotoxin B. This effect was also associated to the down-regulation of TNF-alpha production and was sufficiently strong to rescue susceptible animals from enterotoxin-induced toxic shock. Our results suggest that IPA is potentially immunosuppressive to the adaptive and innate immune system and have broad significance given the exposure of the general population to this ubiquitous chemical.
Collapse
Affiliation(s)
- Olivier Désy
- Laval University Cancer Research Center, Quebec City, Quebec, Canada
| | | | | | | |
Collapse
|
18
|
Conserved site for neurosteroid modulation of GABA A receptors. Neuropharmacology 2008; 56:149-54. [PMID: 18762201 DOI: 10.1016/j.neuropharm.2008.07.050] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 07/29/2008] [Accepted: 07/31/2008] [Indexed: 11/23/2022]
Abstract
This study addresses whether the potentiation site for neurosteroids on GABA(A) receptors is conserved amongst different GABA(A) receptor isoforms. The neurosteroid potentiation site was previously identified in the alpha1beta2gamma2S receptor by mutation of Q241 to methionine or leucine, which reduced the potentiation of GABA currents by the naturally occurring neurosteroids, allopregnanolone or tetrahydrodeoxycorticosterone (THDOC). By using heterologous expression of GABA(A) receptors in HEK cells, in combination with whole-cell patch clamp recording methods, a relatively consistent potentiation by allopregnanolone of GABA-activated currents was evident for receptors composed of one alpha subunit isoform (alpha2-5) assembled with beta3 and gamma2S subunits. Using mutant alphabetagamma receptors, the neurosteroid potentiation was universally dependent on the conserved glutamine residue in M1 of the respective alpha subunit. Studying wild-type and mutant receptors composed of alpha4beta3delta subunits revealed that the delta subunit is unlikely to contribute to the neurosteroid potentiation binding site and probably affects the efficacy of potentiation. Thus, in keeping with the ability of neurosteroids to potentiate GABA currents via a broad variety of GABA(A) receptor isoforms in neurons, the potentiation site is structurally highly conserved on this important neurotransmitter receptor family.
Collapse
|
19
|
Enoch MA. The role of GABA(A) receptors in the development of alcoholism. Pharmacol Biochem Behav 2008; 90:95-104. [PMID: 18440057 DOI: 10.1016/j.pbb.2008.03.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 02/29/2008] [Accepted: 03/05/2008] [Indexed: 11/18/2022]
Abstract
Alcoholism is a common, heritable, chronic relapsing disorder. GABA(A) receptors undergo allosteric modulation by ethanol, anesthetics, benzodiazepines and neurosteroids and have been implicated in the acute as well as the chronic effects of ethanol including tolerance, dependence and withdrawal. Medications targeting GABA(A) receptors ameliorate the symptoms of acute withdrawal. Ethanol induces plasticity in GABA(A) receptors: tolerance is associated with generally decreased GABA(A) receptor activation and differentially altered subunit expression. The dopamine (DA) mesolimbic reward pathway originating in the ventral tegmental area (VTA), and interacting stress circuitry play an important role in the development of addiction. VTA GABAergic interneurons are the primary inhibitory regulators of DA neurons and a subset of VTA GABA(A) receptors may be implicated in the switch from heavy drinking to dependence. GABA(A) receptors modulate anxiety and response to stress; important elements of sustained drinking and relapse. The GABA(A) receptor subunit genes clustered on chromosome 4 are highly expressed in the reward pathway. Several recent studies have provided strong evidence that one of these genes, GABRA2, is implicated in alcoholism in humans. The influence of the interaction between ethanol and GABA(A) receptors in the reward pathway on the development of alcoholism together with genetic and epigenetic vulnerabilities will be explored in this review.
Collapse
MESH Headings
- Alcohol Drinking/genetics
- Alcohol Drinking/psychology
- Alcoholism/drug therapy
- Alcoholism/genetics
- Alcoholism/physiopathology
- Animals
- Chromosomes, Human, Pair 4/genetics
- Chromosomes, Human, Pair 4/physiology
- Chromosomes, Human, Pair 5/genetics
- Chromosomes, Human, Pair 5/physiology
- Dopamine/physiology
- Gene Expression Regulation/physiology
- Humans
- Neuronal Plasticity/physiology
- Receptors, GABA-A/chemistry
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/genetics
- Receptors, GABA-A/physiology
- Receptors, Presynaptic/drug effects
- Reward
- Steroids/physiology
Collapse
Affiliation(s)
- Mary-Anne Enoch
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| |
Collapse
|
20
|
Lobo IA, Harris RA. GABA(A) receptors and alcohol. Pharmacol Biochem Behav 2008; 90:90-4. [PMID: 18423561 DOI: 10.1016/j.pbb.2008.03.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 02/19/2008] [Accepted: 03/05/2008] [Indexed: 12/31/2022]
Abstract
There is substantial evidence that GABAergic neurotransmission is important for many behavioral actions of ethanol and there are reports spanning more than 30 years of literature showing that low to moderate (3-30 mM) concentrations of ethanol enhance GABAergic neurotransmission. A key question is which GABA receptor subunits are sensitive to low concentrations of ethanol in vivo and in vitro. Recent evidence points to a role for extrasynaptic receptors. Another question is which behavioral actions of alcohol result from enhancement of GABAergic neurotransmission. Some clues are beginning to emerge from studies of knock-out and knock-in mice and from genetic analysis of human alcoholics. These approaches are converging on a role for GABAergic actions in regulating alcohol consumption and, perhaps, the development of alcoholism.
Collapse
Affiliation(s)
- Ingrid A Lobo
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | | |
Collapse
|
21
|
Ren H, Salous AK, Paul JM, Lamb KA, Dwyer DS, Peoples RW. Functional interactions of alcohol-sensitive sites in the N-methyl-D-aspartate receptor M3 and M4 domains. J Biol Chem 2008; 283:8250-7. [PMID: 18208816 DOI: 10.1074/jbc.m705933200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-methyl-D-aspartate receptor is an important mediator of the behavioral effects of ethanol in the central nervous system. Previous studies have demonstrated sites in the third and fourth membrane-associated (M) domains of the N-methyl-D-aspartate receptor NR2A subunit that influence alcohol sensitivity and ion channel gating. We investigated whether two of these sites, Phe-637 in M3 and Met-823 in M4, interactively regulate the ethanol sensitivity of the receptor by testing dual substitution mutants at these positions. A majority of the mutations decreased steady-state glutamate EC(50) values and maximal steady-state to peak current ratios (I(ss)/I(p)), whereas only two mutations altered peak glutamate EC(50) values. Steady-state glutamate EC(50) values were correlated with maximal glutamate I(ss)/I(p) values, suggesting that changes in glutamate potency were attributable to changes in desensitization. In addition, there was a significant interaction between the substituents at positions 637 and 823 with respect to glutamate potency and desensitization. IC(50) values for ethanol among the mutants varied over the approximate range 100-325 mm. The sites in M3 and M4 significantly interacted in regulating ethanol sensitivity, although this was apparently dependent upon the presence of methionine in position 823. Molecular dynamics simulations of the NR2A subunit revealed possible binding sites for ethanol near both positions in the M domains. Consistent with this finding, the sum of the molecular volumes of the substituents at the two positions was not correlated with ethanol IC(50) values. Thus, there is a functional interaction between Phe-637 and Met-823 with respect to glutamate potency, desensitization, and ethanol sensitivity, but the two positions do not appear to form a unitary site of alcohol action.
Collapse
Affiliation(s)
- Hong Ren
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201-1881, USA
| | | | | | | | | | | |
Collapse
|
22
|
Lobo IA, Harris RA, Trudell JR. Cross-linking of sites involved with alcohol action between transmembrane segments 1 and 3 of the glycine receptor following activation. J Neurochem 2007; 104:1649-62. [PMID: 18036150 DOI: 10.1111/j.1471-4159.2007.05090.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The glycine receptor is a member of the Cys-loop, ligand-gated ion channel family and is responsible for inhibition in the CNS. We examined the orientation of amino acids I229 in transmembrane 1 (TM1) and A288 in TM3, which are both critical for alcohol and volatile anesthetic action. We mutated these two amino acids to cysteines either singly or in double mutants and expressed the receptors in Xenopus laevis oocytes. We tested whether disulfide bonds could form between A288C in TM3 paired with M227C, Y228C, I229C, or S231C in TM1. Application of cross-linking (mercuric chloride) or oxidizing (iodine) agents had no significant effect on the glycine response of wild-type receptors or the single mutants. In contrast, the glycine response of the I229C/A288C double mutant was diminished after application of either mercuric chloride or iodine only in the presence of glycine, indicating that channel gating causes I229C and A288C to fluctuate to be within 6 A apart and form a disulfide bond. Molecular modeling was used to thread the glycine receptor sequence onto a nicotinic acetylcholine receptor template, further demonstrating that I229 and A288 are near-neighbors that can cross-link and providing evidence that these residues contribute to a single binding cavity.
Collapse
Affiliation(s)
- Ingrid A Lobo
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712-1065, USA
| | | | | |
Collapse
|
23
|
Smith SS, Gong QH. Ethanol effects on GABA-gated current in a model of increased alpha4betadelta GABAA receptor expression depend on time course and preexposure to low concentrations of the drug. Alcohol 2007; 41:223-31. [PMID: 17591545 PMCID: PMC2658629 DOI: 10.1016/j.alcohol.2007.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 04/17/2007] [Accepted: 04/17/2007] [Indexed: 01/28/2023]
Abstract
Several recent studies have suggested that alphabetadelta subtypes of gamma-aminobutyric acid type A (GABAA) receptors (delta-GABAR) are a target for low dose ethanol (<30 mM). However, there are also conflicting reports suggesting that only high doses of the drug (100 mM) modulate these receptors. In addition, the studies which have demonstrated a clear effect of low dose ethanol on delta-GABAR find different effective concentrations for this effect. Here, we test the hypothesis that the apparent disparity in effective concentration is due to time-course effects when low (1-3 mM) dose ethanol is preapplied. To this end, we tested ethanol effects on native GABAR in CA1 hippocampus in a model of increased alpha4betadelta GABAR expression following 48h administration of the GABA-modulatory steroid THP (3alpha-OH-5beta-pregnan-20-one) to adult, female rats. GABA(EC20)-gated current was recorded with whole-cell patch clamp procedures from acutely isolated pyramidal cells. We assessed ethanol's effect on GABA-gated current using either (1) 2-5 min application of ethanol in increasing concentrations (0.1-30 mM) or (2) coadministration of ethanol with GABA. Two minute application of 1-3 mM ethanol produced optimal potentiation of GABA-gated current following steroid treatment, with higher concentrations less effective. In contrast, 30 mM ethanol produced optimal effects when ethanol was not preapplied. However, following preapplication of 1mM ethanol, 30 mM ethanol decreased the peak GABA-gated current. These findings suggest that ethanol may act at multiple interacting sites to affect GABAR efficacy and desensitization. These data also suggest that ethanol effects on GABA-gated current are affected by the time course of exposure and previous exposure to low concentrations of the drug.
Collapse
Affiliation(s)
- Sheryl S Smith
- Department of Physiology and Pharmacology, Box 31, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
24
|
Szabo G, Dolganiuc A, Dai Q, Pruett SB. TLR4, ethanol, and lipid rafts: a new mechanism of ethanol action with implications for other receptor-mediated effects. THE JOURNAL OF IMMUNOLOGY 2007; 178:1243-9. [PMID: 17237368 DOI: 10.4049/jimmunol.178.3.1243] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ethanol (EtOH) is the most widely abused substance in the United States, and it contributes to well-documented harmful (at high dosages) and beneficial (at low dosages) changes in inflammatory and immune responses. Lipid rafts have been implicated in the regulation and activation of several important receptor complexes in the immune system, including the TLR4 complex. Many questions remain about the precise mechanisms by which rafts regulate the assembly of these receptor complexes. Results summarized in this review indicate that EtOH acts by altering the LPS-induced redistribution of components of the TLR4 complex within the lipid raft and that this is related to changes in actin cytoskeleton rearrangement, receptor clustering, and subsequent signaling. EtOH provides an example of an immunomodulatory drug that acts at least in part by modifying lipid rafts, and it could represent a model to probe the relationships between rafts, receptor complexes, and signaling.
Collapse
Affiliation(s)
- Gyongyi Szabo
- University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
25
|
Otero-Cruz JD, Báez-Pagán CA, Caraballo-González IM, Lasalde-Dominicci JA. Tryptophan-scanning mutagenesis in the alphaM3 transmembrane domain of the muscle-type acetylcholine receptor. A spring model revealed. J Biol Chem 2007; 282:9162-71. [PMID: 17242410 DOI: 10.1074/jbc.m607492200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Membrane proteins constitute a large fraction of all proteins, yet very little is known about their structure and conformational transitions. A fundamental question that remains obscure is how protein domains that are in direct contact with the membrane lipids move during the conformational change of the membrane protein. Important structural and functional information of several lipid-exposed transmembrane domains of the acetylcholine receptor (AChR) and other ion channel membrane proteins have been provided by the tryptophan-scanning mutagenesis. Here, we use the tryptophan-scanning mutagenesis to monitor the conformational change of the alphaM3 domain of the muscle-type AChR. The perturbation produced by the systematic tryptophan substitution along the alphaM3 domain were characterized through two-electrode voltage clamp and 125I-labeled alpha-bungarotoxin binding. The periodicity profiles of the changes in AChR expression (closed state) and ACh EC50 (open-channel state) disclose two different helical structures; a thinner-elongated helix for the closed state and a thicker-shrunken helix for the open-channel state. The existence of two different helical structures suggest that the conformational transition of the alphaM3 domain between both states resembles a spring motion and reveals that the lipid-AChR interface plays a key role in the propagation of the conformational wave evoked by agonist binding. In addition, the present study also provides evidence about functional and structural differences between the alphaM3 domains of the Torpedo and muscle-type receptors AChR.
Collapse
Affiliation(s)
- José David Otero-Cruz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan P. R. 00931, Puerto Rico
| | | | | | | |
Collapse
|
26
|
Hosie AM, Wilkins ME, da Silva HMA, Smart TG. Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 2006; 444:486-9. [PMID: 17108970 DOI: 10.1038/nature05324] [Citation(s) in RCA: 569] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 10/09/2006] [Indexed: 11/09/2022]
Abstract
Inhibitory neurotransmission mediated by GABA(A) receptors can be modulated by the endogenous neurosteroids, allopregnanolone and tetrahydro-deoxycorticosterone. Neurosteroids are synthesized de novo in the brain during stress, pregnancyand after ethanol consumption, and disrupted steroid regulation of GABAergic transmission is strongly implicated in several debilitating conditions such as panic disorder, major depression, schizophrenia, alcohol dependence and catamenial epilepsy. Determining how neurosteroids interact with the GABA(A) receptor is a prerequisite for understanding their physiological and pathophysiological roles in the brain. Here we identify two discrete binding sites in the receptor's transmembrane domains that mediate the potentiating and direct activation effects of neurosteroids. They potentiate GABA responses from a cavity formed by the alpha-subunit transmembrane domains, whereas direct receptor activation is initiated by interfacial residues between alpha and beta subunits and is enhanced by steroid binding to the potentiation site. Thus, significant receptor activation by neurosteroids relies on occupancy of both the activation and potentiation sites. These sites are highly conserved throughout the GABA(A )receptor family, and their identification provides a unique opportunity for the development of new therapeutic, neurosteroid-based ligands and transgenic disease models of neurosteroid dysfunction.
Collapse
Affiliation(s)
- Alastair M Hosie
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | |
Collapse
|
27
|
Chen L, Durkin KA, Casida JE. Spontaneous mobility of GABAA receptor M2 extracellular half relative to noncompetitive antagonist action. J Biol Chem 2006; 281:38871-8. [PMID: 17050528 DOI: 10.1074/jbc.m608301200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The gamma-aminobutyric acid type A receptor beta(3) homopentamer is spontaneously open and highly sensitive to many noncompetitive antagonists(NCAs) and Zn(2+). Our earlier study of the M2 cytoplasmic half (-1' to 10') established a model in which NCAs bind at pore-lining residues Ala(2)', Thr(6)', and Leu(9)'. To further define transmembrane 2 (M2) structure relative to NCA action, we extended the Cys scanning to the extra cellular half of the beta(3) homopentamer (11' to 20'). Spontaneous disulfides formed with T13'C, L18'C, and E20'C from M2/M2 cross-linking and with I14'C (weak), H17'C, and R19'Con bridging M2/M3 intersubunits, based on single (M2 Cys only) and dual (M2 Cys plus M3 C289S) mutations. Induced disulfides also formed with T16'C, but there were few or none with M11'C, T12'C, and N15'C. These findings show conformational flexibility/mobility in the M2 extracellular half 17' to 20' region interpreted as a deformed beta-like conformation in the open channel. The NCA radioligands used were [(3)H]1-(4-ethynylphenyl)-4-n-propyl-2,6,7-trioxabicyclo[2.2.2]octane ([(3)H]EBOB) and [(3)H]3,3-bis-trifluoromethylbicyclo[2.2.1]heptane-2,2-dicarbonitrile with essentially the same results. NCA binding was disrupted by individual Cys substitutions at 13',14',16',17', and 19'. The inactivity of T13'C/T13'S may have been due to disturbance of the channel gate; I14'S and T16'S showed much better binding activity than their Cys counterparts, and the low activities of H17'C and R19'C were reversed by dithiothreitol. Zn(2+) potency for inhibition of [(3)H]EBOB binding was lowered 346-fold by the mutation H17'A. We propose that NCAs enter their binding site both directly, through the channel pore, and indirectly, through the water cavity of adjacent subunits.
Collapse
Affiliation(s)
- Ligong Chen
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy, and Management, College of Chemistry, University of California-Berkeley, CA 94720, USA
| | | | | |
Collapse
|
28
|
Lundbæk JA. Regulation of membrane protein function by lipid bilayer elasticity-a single molecule technology to measure the bilayer properties experienced by an embedded protein. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2006; 18:S1305-S1344. [PMID: 21690843 DOI: 10.1088/0953-8984/18/28/s13] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Membrane protein function is generally regulated by the molecular composition of the host lipid bilayer. The underlying mechanisms have long remained enigmatic. Some cases involve specific molecular interactions, but very often lipids and other amphiphiles, which are adsorbed to lipid bilayers, regulate a number of structurally unrelated proteins in an apparently non-specific manner. It is well known that changes in the physical properties of a lipid bilayer (e.g., thickness or monolayer spontaneous curvature) can affect the function of an embedded protein. However, the role of such changes, in the general regulation of membrane protein function, is unclear. This is to a large extent due to lack of a generally accepted framework in which to understand the many observations. The present review summarizes studies which have demonstrated that the hydrophobic interactions between a membrane protein and the host lipid bilayer provide an energetic coupling, whereby protein function can be regulated by the bilayer elasticity. The feasibility of this 'hydrophobic coupling mechanism' has been demonstrated using the gramicidin channel, a model membrane protein, in planar lipid bilayers. Using voltage-dependent sodium channels, N-type calcium channels and GABA(A) receptors, it has been shown that membrane protein function in living cells can be regulated by amphiphile induced changes in bilayer elasticity. Using the gramicidin channel as a molecular force transducer, a nanotechnology to measure the elastic properties experienced by an embedded protein has been developed. A theoretical and technological framework, to study the regulation of membrane protein function by lipid bilayer elasticity, has been established.
Collapse
Affiliation(s)
- Jens August Lundbæk
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| |
Collapse
|
29
|
Abstract
The glycine and gamma-aminobutyric acid receptors (GlyR and GABA(A)R, respectively) are the major inhibitory neurotransmitter-gated receptors in the central nervous system of animals. Given the important role of these receptors in neuronal inhibition, they are prime targets of many therapeutic agents and are the object of intense studies aimed at correlating their structure and function. In this review, the structure and dynamics of these and other homologous members of the nicotinicoid superfamily are described. The modulatory actions of the major biological macromolecules that bind and allosterically affect these receptors are also discussed.
Collapse
Affiliation(s)
- Michael Cascio
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
30
|
Deng H, Xie WJ, Le WD, Huang MS, Jankovic J. Genetic analysis of the GABRA1 gene in patients with essential tremor. Neurosci Lett 2006; 401:16-9. [PMID: 16530959 DOI: 10.1016/j.neulet.2006.02.066] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 02/20/2006] [Accepted: 02/22/2006] [Indexed: 11/22/2022]
Abstract
The gamma-aminobutyric acid A (GABA-A) receptor mediates inhibitory neurotransmission in the brain and as such may be involved in certain neurological movement disorders, such as tremor. GABA-A receptor alpha 1 (Gabra)(-/-) mice have been reported to exhibit postural and kinetic, alcohol-responsive, tremor that is characteristic of essential tremor (ET), the most common form of tremor. To determine whether ET is associated with the GABRA1 gene mutation, we screened 76 patients with familial ET and found a novel nucleotide variant: IVS8+24 G>T (nt 6119289) in a male patient, and a known 156T>C polymorphism (nt 6090903) in exon 4 in 41% patients, which results in a silent mutation (G52G). No significant association between 156T>C variant and disease risk was found (adjusted OR=0.95, 95% CI=0.57-1.61; p=0.858) by further analysis of 121 familial ET patients and 114 normal controls, except a novel 96A>G (Q32Q; nt 6090743) variant, found in a normal control. Since the 156T>C variant appears to be not pathogenically relevant, our results suggest that missense, nonsense or splice site mutation in the coding region of the GABRA1 gene is not a major genetic cause of ET in Caucasian subjects.
Collapse
Affiliation(s)
- Hao Deng
- Department of Neurology, Baylor College of Medicine, 6501 Fannin Street, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
31
|
Jung S, Harris RA. Sites in TM2 and 3 are critical for alcohol-induced conformational changes in GABA receptors. J Neurochem 2006; 96:885-92. [PMID: 16405501 DOI: 10.1111/j.1471-4159.2005.03617.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Abstract gamma-Aminobutyric acid type A (GABA(A)) receptors are molecular targets for alcohols. Previous work suggests that S270 and A291 residues in the transmembrane (TM) 2 and 3 domains of the GABA(A) receptor alpha subunit are components of an alcohol-binding pocket, and S270I and A291W mutants abolished ethanol potentiation. Our results showed that A295C and F296C residues in the TM3 of the GABA(A) receptor alpha1 subunit are accessible to hexylmethanethiosulfonate (HMTS) in the alcohol-bound state, but not in the resting state. Thus, the A295C and F296C sites become water-accessible as a result of alcohol-induced conformational changes. If S270 or A291 residues are sites of alcohol binding, then S270I or A291W mutations should prevent alcohol-induced conformational movements within the TM3 domain. To investigate this question, the accessibility of HMTS reagent to double mutants (A291W/A295C, A291W/F296C, S270I/A295C or S270I/F296C) in the presence of ethanol or hexanol was tested. The A291W or S270I mutations markedly reduced the accessibility of HMTS to all the double mutants in the ethanol-bound state, and to S270I/F296C, A291W/A295C and A291W/F296C double mutants in the hexanol-bound state, suggesting that the A291 or S270 residues are critical sites for alcohol binding and alcohol-induced conformational changes.
Collapse
Affiliation(s)
- Sangwook Jung
- Cell and Molecular Biology Program and Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, TX, USA.
| | | |
Collapse
|
32
|
Boehm SL, Ponomarev I, Blednov YA, Harris RA. From Gene to Behavior and Back Again: New Perspectives on GABAA Receptor Subunit Selectivity of Alcohol Actions1. GABA 2006; 54:171-203. [PMID: 17175815 DOI: 10.1016/s1054-3589(06)54008-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
gamma-Aminobutyric acid A (GABA(A)) receptors are believed to mediate a number of alcohol's behavioral actions. Because the subunit composition of GABA(A) receptors determines receptor pharmacology, behavioral sensitivity to alcohol (ethanol) may depend on which subunits are present (or absent). A number of knockout and/or transgenic mouse models have been developed (alpha1, alpha2, alpha5, alpha6, beta2, beta3, gamma2S, gamma2L, delta) and tested for behavioral sensitivity to ethanol. Here we review the current GABA(A) receptor subunit knockout and transgenic literature for ethanol sensitivity, and integrate these results into those obtained using quantitative trait loci (QTL) analysis and gene expression assays. Converging evidence from these three approaches support the notion that different behavioral actions of ethanol are mediated by specific subunits, and suggest that new drugs that target specific GABA(A subunits may selectively alter some behavioral actions of ethanol without altering others. Current data sets provide stronge)st evidence for a role of alpha1 subunits in ethanol-induced loss of righting reflex and alpha5 subunits in ethanol-stimulated locomotion. Nevertheless, three-way validation is hampered by the incomplete behavioral characterization of many of the mutant mice, and additional subunits are likely to be linked to alcohol actions as behavioral testing progresses.
Collapse
Affiliation(s)
- Stephen L Boehm
- Department of Psychology, State University of New York at Binghamton, New York 13902, USA
| | | | | | | |
Collapse
|
33
|
Ernst M, Bruckner S, Boresch S, Sieghart W. Comparative models of GABAA receptor extracellular and transmembrane domains: important insights in pharmacology and function. Mol Pharmacol 2005; 68:1291-300. [PMID: 16103045 DOI: 10.1124/mol.105.015982] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Comparative models of the extracellular and transmembrane domains of GABAA receptors in the agonist-free state were generated based on the recently published structures of the nicotinic acetylcholine receptor. The models were validated by computational methods, and their reliability was estimated by analyzing conserved and variable elements of the cys-loop receptor topology. In addition, the methodological limits in the interpretation of such anion channel receptor models are discussed. Alignment ambiguities in the helical domain were resolved for helix 3 by placing two gaps into the linker connecting helices 2 and 3. The resulting models were shown to be consistent with a wide range of pharmacological and mutagenesis data from GABAA and glycine receptors. The loose packing of the models results in a large amount of solvent-accessible space and offers a natural explanation for the rich pharmacology and the great flexibility of these receptors that are known to exist in numerous drug-induced conformational states. Putative drug binding pockets found within and between subunits are described, and amino acid residues important for the action and subtype selectivity of volatile and intravenous anesthetics, barbiturates, and furosemide are shown to be part of these pockets. The entire helical domain, however, seems to be crucial not only for binding of drugs but also for transduction of binding to gating or of allosteric modulation. These models can now be used to design new experiments for clarification of pharmacological and structural questions as well as for investigating and visualizing drug induced conformational changes.
Collapse
Affiliation(s)
- Margot Ernst
- Center for Brain Research, Medical University Vienna, Division of Biochemistry and Molecular Biology, Spitalgasse 4, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
34
|
Lobo IA, Trudell JR, Harris RA. Accessibility to residues in transmembrane segment four of the glycine receptor. Neuropharmacology 2005; 50:174-81. [PMID: 16225893 DOI: 10.1016/j.neuropharm.2005.08.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 08/23/2005] [Accepted: 08/24/2005] [Indexed: 11/26/2022]
Abstract
Glycine receptors (GlyRs) are members of the ligand-gated ion channel superfamily. Each subunit has four transmembrane segments (TM1-TM4). Several studies suggest that amino acids in all four TMs face into a water-filled, alcohol and anesthetic binding cavity in the extracellular portion of the transmembrane domain. TM4 should contribute a "wall" to this cavity, but the residues involved are unknown. Here, we determined the ability of an alcohol analog, propyl methanethiosulfonate (propyl MTS), to covalently react with twelve GlyR TM4 positions (I401-I412) after mutating the original amino acids to cysteines. Reactivity of a cysteine with propyl MTS implies that the cysteine is exposed to water. W407C, I409C, Y410C, and K411C showed altered receptor function following reaction with propyl MTS in the presence or absence of glycine. The cysteine mutations alone eliminated the effects of ethanol for I409C, Y410C, and K411C, and reduced the effects of octanol for I409C and isoflurane for K411C. The ability of propyl MTS to reduce isoflurane and chloroform potentiation was examined in the reactive mutants. Potentiation by isoflurane was significantly reduced for I409C after reaction. These data demonstrate water-accessibility of specific TM4 positions in the GlyR and suggest involvement of these residues with alcohol and anesthetic action.
Collapse
Affiliation(s)
- Ingrid A Lobo
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, MBB 1.124, A4800 Austin, TX 78712, USA.
| | | | | |
Collapse
|
35
|
Gagnon DG, Holt A, Bourgeois F, Wallendorff B, Coady MJ, Lapointe JY. Membrane topology of loop 13-14 of the Na+/glucose cotransporter (SGLT1): a SCAM and fluorescent labelling study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1712:173-84. [PMID: 15904891 DOI: 10.1016/j.bbamem.2005.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 03/29/2005] [Accepted: 04/18/2005] [Indexed: 11/23/2022]
Abstract
The accessibility of the hydrophilic loop between putative transmembrane segments XIII and XIV of the Na+/glucose cotransporter (SGLT1) was studied in Xenopus oocytes, using the substituted cysteine accessibility method (SCAM) and fluorescent labelling. Fifteen cysteine mutants between positions 565 and 664 yielded cotransport currents of similar amplitude than the wild-type SGLT1 (wtSGLT1). Extracellular, membrane-impermeant MTSES(-) and MTSET(+) had no effect on either cotransport or Na+ leak currents of wtSGLT1 but 9 mutants were affected by MTSES and/or MTSET. We also performed fluorescent labelling on SGLT1 mutants, using tetramethylrhodamine-5-maleimide and showed that positions 586, 588 and 624 were accessible. As amino acids 604 to 610 in SGLT1 have been proposed to form part of a phlorizin (Pz) binding site, we measured the K(i)(Pz) and K(m)(alphaMG) for wtSGLT1 and for cysteine mutants at positions 588, 605-608 and 625. Although mutants A605C, Y606C and D607C had slightly higher K(i)(Pz) values than wtSGLT1 with minimal changes in K(m)((alpha)MG), the effects were modest and do not support the original hypothesis. We conclude that the large, hydrophilic loop near the carboxyl terminus of SGLT1 is thus accessible to the external solution but does not appear to play a major part in the binding of phlorizin.
Collapse
Affiliation(s)
- Dominique G Gagnon
- Groupe d'étude des protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succ. centre-ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Arevalo E, Chiara DC, Forman SA, Cohen JB, Miller KW. Gating-enhanced accessibility of hydrophobic sites within the transmembrane region of the nicotinic acetylcholine receptor's {delta}-subunit. A time-resolved photolabeling study. J Biol Chem 2005; 280:13631-40. [PMID: 15664985 DOI: 10.1074/jbc.m413911200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
General anesthetics often interact more strongly with sites on open than on closed states of ligand-gated ion channels. To seek such sites, Torpedo membranes enriched in nicotinic acetylcholine receptors (nAChRs) were preincubated with the hydrophobic probe 3-(trifluoromethyl)-3-(m-iodophenyl) diazirine ([125I]TID) and exposed to agonist for either 0 ms (closed state), 1.5 and 10 ms (activated states), 1 s (fast desensitized state), or > or =1 h (equilibrium or slow desensitized state) and then rapidly frozen (<1 ms) and photolabeled. Within 1.5 ms, the fractional change in photoincorporation relative to the closed state decreased to 0.7 in the beta- and gamma-subunits, whereas in the alpha-subunit, it changed little. The most dramatic change occurred in the delta-subunit, where it increased to 1.6 within 10 ms but fell to 0.7 during fast desensitization. Four residues in the delta-subunit's transmembrane domain accounted for the enhanced photoincorporation induced by a 10-ms agonist exposure both when TID was added simultaneously with agonist and when it was preincubated with membranes. In the published closed state structure, two residues (deltaThr274 and deltaLeu278) are situated toward the extracellular end of helix M2, both contralateral to the ion channel and adjacent to the third residue (deltaPhe232) on M1. The fourth labeled residue (deltaIle288) is toward the end of the M2-M3 loop. Contact with these residues occurs on the time scale of a rapid phase of TID inhibition in Torpedo nAChRs, suggesting the formation of a transient hydrophobic pocket between M1, M2, and M3 in the delta-subunit during gating.
Collapse
Affiliation(s)
- Enrique Arevalo
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|