1
|
Del Castillo Alferez J, Kooiker A, van Alphen FPJ, van der Zwaan C, Brinkman HJ, Meijers JCM, Meijer AB, van den Biggelaar M, van Duijl TT, SYMPHONY Consortium. Proteolytic signatures of coagulation identified by plasma peptidomics. J Thromb Haemost 2025:S1538-7836(25)00267-3. [PMID: 40286914 DOI: 10.1016/j.jtha.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/12/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Coagulation entails sequential proteolytic events in plasma, ultimately leading to fibrin clot formation. OBJECTIVES In this study, we employed a mass spectrometry-based peptidomics approach to characterize the molecular events of coagulation-induced limited proteolysis. METHODS Citrated plasma from healthy donors was in vitro-coagulated by recalcification combined with the addition of tissue factor (TF) in the absence or presence of hirudin. The formation of endogenous peptide products over time was monitored using a mass spectrometry approach with a de novo algorithm for peptide identification. RESULTS Plasma coagulation resulted in a distinct peptidome enriched with activation peptides of prothrombin and FXIIIA, fibrinopeptides A and B, reactive center loops of protease inhibitors, the bait region of α2-macroglobulin, and additional proteolytic hotspots outside the coagulation system. While thrombin inhibition blocked almost all TF-initiated limited proteolysis, most events were TF concentration-independent, with the exception of prothrombin, fibrinogen, FV, FXIIIA, α2-macroglobulin, protein C inhibitor, complement C3, and plexin domain-containing 2. The order of events of fibrinopeptide A and B formation-prothrombin conversion, FXIIIA activation, and protease inhibitor proteolysis-followed the kinetics of thrombin generation. CONCLUSION Plasma peptidomics of coagulation-initiated limited proteolysis captures peptide products derived from pro- and anticoagulant events and proteolytic signatures beyond the classical coagulation system. We envision that this peptidomics strategy enables the assessment of functional aspects of coagulation in bleeding and thrombotic disorders at the molecular level.
Collapse
Affiliation(s)
| | - Alette Kooiker
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | | | - Carmen van der Zwaan
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Herm-Jan Brinkman
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Joost C M Meijers
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Alexander B Meijer
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | | | - Tirsa T van Duijl
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands.
| | | |
Collapse
Collaborators
Emile van den Akker, Wala Al Arashi, Ryanne Arisz, Lieke Baas, Ruben Bierings, Maartje van den Biggelaar, Johan Boender, Anske van der Bom, Mettine Bos, Martijn Brands, Annelien Bredenoord, Laura Bukkems, Lex Burdorf, Jessica Del Castillo Alferez, Michael Cloesmeijer, Marjon Cnossen, Mariëtte Driessens, Jeroen Eikenboom, Karin Fijnvandraat, Kathelijn Fischer, Geertje Goedhart, Tine Goedhart, Samantha Gouw, Rieke van der Graaf, Masja de Haas, Lotte Haverman, Jan Hazelzet, Shannon van Hoorn, Elise Huisman, Nathalie Jansen, Alexander Janssen, Sean de Jong, Sjoerd Koopman, Marieke Kruip, Sebastiaan Laan, Frank Leebeek, Nikki van Leeuwen, Hester Lingsma, Moniek de Maat, Ron Mathôt, Felix van der Meer, Karina Meijer, Sander Meijer, Stephan Meijer, Iris van Moort, Caroline Mussert, Hans Kristian Ploos van Amstel, Suzanne Polinder, Diaz Prameyllawati, Simone Reitsma, Eliza Roest, Lorenzo Romano, Saskia Schols, Roger Schutgens, Rolf Urbanus, Carin Uyl, Jan Voorberg, Huan Zhang, Minka Zivkovic,
Collapse
|
2
|
Stojanovski BM, Mohammed BM, Di Cera E. The Prothrombin-Prothrombinase Interaction. Subcell Biochem 2024; 104:409-423. [PMID: 38963494 DOI: 10.1007/978-3-031-58843-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The hemostatic response to vascular injury entails a sequence of proteolytic events where several inactive zymogens of the trypsin family are converted to active proteases. The cascade starts with exposure of tissue factor from the damaged endothelium and culminates with conversion of prothrombin to thrombin in a reaction catalyzed by the prothrombinase complex composed of the enzyme factor Xa, cofactor Va, Ca2+, and phospholipids. This cofactor-dependent activation is paradigmatic of analogous reactions of the blood coagulation and complement cascades, which makes elucidation of its molecular mechanism of broad significance to the large class of trypsin-like zymogens to which prothrombin belongs. Because of its relevance as the most important reaction in the physiological response to vascular injury, as well as the main trigger of pathological thrombotic complications, the mechanism of prothrombin activation has been studied extensively. However, a molecular interpretation of this mechanism has become available only recently from important developments in structural biology. Here we review current knowledge on the prothrombin-prothrombinase interaction and outline future directions for the study of this key reaction of the coagulation cascade.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Bassem M Mohammed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Di Cera E, Mohammed BM, Pelc LA, Stojanovski BM. Cryo-EM structures of coagulation factors. Res Pract Thromb Haemost 2022; 6:e12830. [PMID: 36349261 PMCID: PMC9630041 DOI: 10.1002/rth2.12830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
Abstract
A State of the Art lecture titled "Cryo-EM structures of coagulation factors" was presented at the ISTH Congress in 2022. Cryogenic electron microscopy (cryo-EM) is a revolutionary technique capable of solving the structure of high molecular weight proteins and their complexes, unlike nuclear magnetic resonance (NMR), and under conditions not biased by crystal contacts, unlike X-ray crystallography. These features are particularly relevant to the analysis of coagulation factors that are too big for NMR and often recalcitrant to X-ray investigation. Using cryo-EM, we have solved the structures of coagulation factors V and Va, prothrombinase on nanodiscs, and the prothrombin-prothrombinase complex. These structures have advanced basic knowledge in the field of thrombosis and hemostasis, especially on the function of factor V and the molecular mechanism for prothrombin activation, and set the stage for exciting new lines of investigation. Finally, we summarize relevant new data on this topic presented during the 2022 ISTH Congress.
Collapse
Affiliation(s)
- Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Bassem M. Mohammed
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Leslie A. Pelc
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Bosko M. Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
4
|
Ruben EA, Summers B, Rau MJ, Fitzpatrick JAJ, Di Cera E. Cryo-EM structure of the prothrombin-prothrombinase complex. Blood 2022; 139:3463-3473. [PMID: 35427420 PMCID: PMC9203702 DOI: 10.1182/blood.2022015807] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
The intrinsic and extrinsic pathways of the coagulation cascade converge to a common step where the prothrombinase complex, comprising the enzyme factor Xa (fXa), the cofactor fVa, Ca2+ and phospholipids, activates the zymogen prothrombin to the protease thrombin. The reaction entails cleavage at 2 sites, R271 and R320, generating the intermediates prethrombin 2 and meizothrombin, respectively. The molecular basis of these interactions that are central to hemostasis remains elusive. We solved 2 cryogenic electron microscopy (cryo-EM) structures of the fVa-fXa complex, 1 free on nanodiscs at 5.3-Å resolution and the other bound to prothrombin at near atomic 4.1-Å resolution. In the prothrombin-fVa-fXa complex, the Gla domains of fXa and prothrombin align on a plane with the C1 and C2 domains of fVa for interaction with membranes. Prothrombin and fXa emerge from this plane in curved conformations that bring their protease domains in contact with each other against the A2 domain of fVa. The 672ESTVMATRKMHDRLEPEDEE691 segment of the A2 domain closes on the protease domain of fXa like a lid to fix orientation of the active site. The 696YDYQNRL702 segment binds to prothrombin and establishes the pathway of activation by sequestering R271 against D697 and directing R320 toward the active site of fXa. The cryo-EM structure provides a molecular view of prothrombin activation along the meizothrombin pathway and suggests a mechanism for cleavage at the alternative R271 site. The findings advance our basic knowledge of a key step of coagulation and bear broad relevance to other interactions in the blood.
Collapse
Affiliation(s)
- Eliza A Ruben
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | | | | | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging
- Department of Cell Biology and Physiology, and
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO; and
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
5
|
Nishiyama A, Ogiwara K, Nakajima Y, Furukawa S, Matsumoto T, Takeda H, Nogami K. A case of a young boy with hyper-fibrinolysis associated with natural fibrin precipitates suspected to have occurred through a novel coagulation and fibrinolysis mechanism. Int J Hematol 2022; 116:276-287. [PMID: 35416587 DOI: 10.1007/s12185-022-03339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
Abstract
An 8-year-old Japanese boy with no underlying disease presented with severe intramuscular hematoma of the hip, and was admitted for a disseminated intravascular coagulation-like state with fibrinolytic dominance. Laboratory examinations revealed severe hyper-fibrinolysis with elevated markers, markedly shortened euglobulin clot lysis time, mildly decreased prothrombin, and severely decreased fibrinogen and factor XIII. Natural fibrin precipitates rapidly appeared in citrate-treated, ethylene-diamine-tetra-acetic-treated, and heparin-treated samples, but not in argatroban-treated samples, indicating that the mechanism of thrombin and fibrin formation was Ca2+-independent. The precipitates were physically similar to thrombin-triggered plasma fibrin. A global coagulation assay revealed that thrombin generation potentials were normal throughout the clinical course, whereas plasmin generation was already detected before initiation of fibrin formation in the acute phase. This phenomenon disappeared with time. Changes in coagulation abnormalities and nature of fibrinolysis paralleled those seen in specific markers for streptococcal infections. Streptokinase was possibly involved in this disease, as SDS-polyacrylamide gel electrophoresis revealed that plasmin derived from streptokinase-plasminogen complex proteolyzed the prothrombin to approximately 35-kDa α-thrombin consisting of the A-B single chain, which was identified by NH2-terminal sequence analysis. The involvement of streptokinase-plasminogen-prothrombin caused by streptococcal infection may be one mechanism that produces marked hyper-fibrinolysis associated with natural fibrin precipitates.
Collapse
Affiliation(s)
- Atsuko Nishiyama
- Department of Pediatrics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Kenichi Ogiwara
- Department of Pediatrics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan.
| | - Yuto Nakajima
- Department of Pediatrics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan.,Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Japan
| | - Shoko Furukawa
- Department of Pediatrics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Tomoko Matsumoto
- Department of Pediatrics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan.,Clinical Laboratory, Tenri Health Care University, Tenri, Japan
| | - Hiroki Takeda
- Division of Pediatric Critical Care, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Keiji Nogami
- Department of Pediatrics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| |
Collapse
|
6
|
Abstract
Thrombin is a multifunctional serine protease generated in injured cells. The generation of thrombin in coagulation plays a central role in the functioning of haemostasis. The last enzyme in the coagulation cascade is thrombin, with the function of cleaving fibrinogen to fibrin, which forms the fibrin clot of a haemostatic plug. Although thrombin primarily converts fibrinogen to fibrin, it also has many other positive regulatory effects on coagulation. Thrombin has procoagulant, inflammatory, cellular proliferation and anticoagulant effects. In coagulation system, thrombin has two very distinct roles. Firstly, it acts as a procoagulant when it converts fibrinogen into an insoluble fibrin clot, activates factor (F) XIII, activates thrombin activatable fibrinolysis inhibitor (TAFI) and activates FV, FVIII and FXI. Thrombin also enhances platelet adhesion by inactivating a disintegrin and metalloprotease with thrombospondin type1 motif (ADAMTS13). However, when thrombin activates protein C, it acts as an anticoagulant. A natural anticoagulant pathway that supplies regulation of the blood coagulation system contains protein C, which is the key component. This is accomplished by the specific proteolytic inactivation of FV and FVIII. In this review, the multiple roles of thrombin in the haemostatic response to injury are studied in addition to the cofactors that determine thrombin activity and how thrombin activity is thought to be coordinated.
Collapse
|
7
|
Soule EE, Yu H, Olson L, Naqvi I, Kumar S, Krishnaswamy S, Sullenger BA. Generation of an anticoagulant aptamer that targets factor V/Va and disrupts the FVa-membrane interaction in normal and COVID-19 patient samples. Cell Chem Biol 2022; 29:215-225.e5. [PMID: 35114109 PMCID: PMC8808741 DOI: 10.1016/j.chembiol.2022.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/11/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
Coagulation cofactors profoundly regulate hemostasis and are appealing targets for anticoagulants. However, targeting such proteins has been challenging because they lack an active site. To address this, we isolate an RNA aptamer termed T18.3 that binds to both factor V (FV) and FVa with nanomolar affinity and demonstrates clinically relevant anticoagulant activity in both plasma and whole blood. The aptamer also shows synergy with low molecular weight heparin and delivers potent anticoagulation in plasma collected from patients with coronavirus disease 2019 (COVID-19). Moreover, the aptamer's anticoagulant activity can be rapidly and efficiently reversed using protamine sulfate, which potentially allows fine-tuning of aptamer's activity post-administration. We further show that the aptamer achieves its anticoagulant activity by abrogating FV/FVa interactions with phospholipid membranes. Our success in generating an anticoagulant aptamer targeting FV/Va demonstrates the feasibility of using cofactor-binding aptamers as therapeutic protein inhibitors and reveals an unconventional working mechanism of an aptamer by interrupting protein-membrane interactions.
Collapse
Affiliation(s)
- Erin E. Soule
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC 27710, USA,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Haixiang Yu
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Lyra Olson
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC 27710, USA,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Ibtehaj Naqvi
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Shekhar Kumar
- The Children’s Hospital of Philadelphia, Division of Hematology, Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sriram Krishnaswamy
- The Children’s Hospital of Philadelphia, Division of Hematology, Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bruce A. Sullenger
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC 27710, USA,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA,Corresponding author
| |
Collapse
|
8
|
Mapping the Prothrombin Binding Site of Pseutarin C by Site-directed PEGylation. Blood 2022; 139:2972-2982. [PMID: 35148539 PMCID: PMC9101250 DOI: 10.1182/blood.2021014878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
Results support our previously published model and reveal the surprising role of the a1-loop in presenting Arg320 for initial cleavage. Using pseutarin C as model prothrombinase, the interaction site for prothrombin was probed by site-directed PEGylation and other mutations.
The prothrombinase complex processes prothrombin to thrombin through sequential cleavage at Arg320 followed by Arg271 when cofactor, factor (f) Va, protease, fXa, and substrate, prothrombin, are all bound to the same membrane surface. In the absence of the membrane or cofactor, cleavage occurs in the opposite order. For the less favorable cleavage site at Arg320 to be cleaved first, it is thought that prothrombin docks on fVa in a way that presents Arg320 and hides Arg271 from the active site of fXa. Based on the crystal structure of the prothrombinase complex from the venom of the Australian eastern brown snake, pseutarin C, we modeled an initial prothrombin docking mode, which involved an interaction with discrete portions of the A1 and A2 domains of fV and the loop connecting the 2 domains, known as the a1-loop. We interrogated the proposed interface by site-directed PEGylation and by swapping the a1-loop in pseutarin C with that of human fV and fVIII and measuring the effect on rate and pathway of thrombin generation. PEGylation of residues within our proposed binding site greatly reduced the rate of thrombin generation, without affecting the pathway, whereas those outside the proposed interface had no effect. PEGylation of residues within the a1-loop also reduced the rate of thrombin generation. The sequence of the a1-loop was found to play a critical role in prothrombin binding and in the presentation of Arg320 for initial cleavage.
Collapse
|
9
|
Stojanovski BM, Di Cera E. Role of sequence and position of the cleavage sites in prothrombin activation. J Biol Chem 2021; 297:100955. [PMID: 34265300 PMCID: PMC8348271 DOI: 10.1016/j.jbc.2021.100955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
In the penultimate step of the coagulation cascade, the multidomain vitamin-K-dependent zymogen prothrombin is converted to thrombin by the prothrombinase complex composed of factor Xa, cofactor Va, and phospholipids. Activation of prothrombin requires cleavage at two residues, R271 and R320, along two possible pathways generating either the intermediate prethrombin-2 (following initial cleavage at R271) or meizothrombin (following initial cleavage at R320). The former pathway is preferred in the absence of and the latter in the presence of cofactor Va. Several mechanisms have been proposed to explain this preference, but the role of the sequence and position of the sites of cleavage has not been thoroughly investigated. In this study, we engineered constructs where the sequences 261DEDSDRAIEGRTATSEYQT279 and 310RELLESYIDGRIVEGSDAE328 were swapped between the R271 and R320 sites. We found that in the absence of cofactor Va, the wild-type sequence at the R271 site is cleaved preferentially regardless of its position at the R271 or R320 site, whereas in the presence of cofactor Va, the R320 site is cleaved preferentially regardless of its sequence. Additional single-molecule FRET measurements revealed that the environment of R271 changes significantly upon cleavage at R320 due to the conformational transition from the closed form of prothrombin to the open form of meizothrombin. Detailed kinetics of cleavage at the R271 site were monitored by a newly developed assay based on loss of FRET. These findings show how sequence and position of the cleavage sites at R271 and R320 dictate the preferred pathway of prothrombin activation.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
10
|
Basavaraj MG, Krishnaswamy S. Exosite binding drives substrate affinity for the activation of coagulation factor X by the intrinsic Xase complex. J Biol Chem 2020; 295:15198-15207. [PMID: 32859749 DOI: 10.1074/jbc.ra120.015325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
Factor X activation by the intrinsic Xase complex, composed of factor IXa bound to factor VIIIa on membranes, is essential for the amplified blood coagulation response. The biological significance of this step is evident from bleeding arising from deficiencies in factors VIIIa or IXa in hemophilia. Here, we assess the mechanism(s) that enforce the distinctive specificity of intrinsic Xase for its biological substrate. Active-site function of IXa was assessed with a tripeptidyl substrate (PF-3688). The reversible S1 site binder, 4-aminobenzamidine (pAB), acted as a classical competitive inhibitor of PF-3688 cleavage by Xase. In contrast, pAB acted as a noncompetitive inhibitor of factor X activation. This disconnect between peptidyl substrate and protein substrate cleavage indicates a major role for interactions between factor X and extended sites on Xase in determining substrate affinity. Accordingly, an uncleavable factor X variant, not predicted to engage the active site of IXa within Xase, acted as a classical competitive inhibitor of factor X activation. Fluorescence studies confirmed the binding of factor X to Xase assembled with IXa with a covalently blocked active site. Our findings suggest that the recognition of factor X by the intrinsic Xase complex occurs through a multistep "dock-and-lock" pathway in which the initial interaction between factor X and intrinsic Xase occurs at exosites distant from the active site, followed by active-site docking and bond cleavage.
Collapse
Affiliation(s)
| | - Sriram Krishnaswamy
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Modeling Thrombin Generation in Plasma under Diffusion and Flow. Biophys J 2020; 119:162-181. [PMID: 32544388 DOI: 10.1016/j.bpj.2020.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/03/2020] [Accepted: 04/23/2020] [Indexed: 11/21/2022] Open
Abstract
We investigate the capacity of published numerical models of thrombin generation to reproduce experimentally observed threshold behavior under conditions in which diffusion and/or flow are important. Computational fluid dynamics simulations incorporating species diffusion, fluid flow, and biochemical reactions are compared with published data for thrombin generation in vitro in 1) quiescent plasma exposed to patches of tissue factor and 2) plasma perfused through a capillary coated with tissue factor. Clot time is correctly predicted in individual cases, and some models qualitatively replicate thrombin generation thresholds across a series of tissue factor patch sizes or wall shear rates. Numerical results suggest that there is not a genuine patch size threshold in quiescent plasma-clotting always occurs given enough time-whereas the shear rate threshold observed under flow is a genuine physical limit imposed by flow-mediated washout of active coagulation factors. Despite the encouraging qualitative results obtained with some models, no single model robustly reproduces all experiments, demonstrating that greater understanding of the underlying reaction network, and particularly of surface reactions, is required. In this direction, additional simulations provide evidence that 1) a surface-localized enzyme, speculatively identified as meizothrombin, is significantly active toward the fluorescent thrombin substrate used in the experiments or, less likely, 2) thrombin is irreversibly inhibited at a faster-than-expected rate, possibly explained by a stimulatory effect of plasma heparin on antithrombin. These results highlight the power of simulation to provide novel mechanistic insights that augment experimental studies and build our understanding of complex biophysicochemical processes. Further validation work is critical to unleashing the full potential of coagulation models as tools for drug development and personalized medicine.
Collapse
|
12
|
Maddur AA, Kroh HK, Aschenbrenner ME, Gibson BHY, Panizzi P, Sheehan JH, Meiler J, Bock PE, Verhamme IM. Specificity and affinity of the N-terminal residues in staphylocoagulase in binding to prothrombin. J Biol Chem 2020; 295:5614-5625. [PMID: 32156702 PMCID: PMC7186164 DOI: 10.1074/jbc.ra120.012588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Indexed: 11/06/2022] Open
Abstract
In Staphylococcus aureus-caused endocarditis, the pathogen secretes staphylocoagulase (SC), thereby activating human prothrombin (ProT) and evading immune clearance. A previous structural comparison of the SC(1-325) fragment bound to thrombin and its inactive precursor prethrombin 2 has indicated that SC activates ProT by inserting its N-terminal dipeptide Ile1-Val2 into the ProT Ile16 pocket, forming a salt bridge with ProT's Asp194, thereby stabilizing the active conformation. We hypothesized that these N-terminal SC residues modulate ProT binding and activation. Here, we generated labeled SC(1-246) as a probe for competitively defining the affinities of N-terminal SC(1-246) variants preselected by modeling. Using ProT(R155Q,R271Q,R284Q) (ProTQQQ), a variant refractory to prothrombinase- or thrombin-mediated cleavage, we observed variant affinities between ∼1 and 650 nm and activation potencies ranging from 1.8-fold that of WT SC(1-246) to complete loss of function. Substrate binding to ProTQQQ caused allosteric tightening of the affinity of most SC(1-246) variants, consistent with zymogen activation through occupation of the specificity pocket. Conservative changes at positions 1 and 2 were well-tolerated, with Val1-Val2, Ile1-Ala2, and Leu1-Val2 variants exhibiting ProTQQQ affinity and activation potency comparable with WT SC(1-246). Weaker binding variants typically had reduced activation rates, although at near-saturating ProTQQQ levels, several variants exhibited limiting rates similar to or higher than that of WT SC(1-246). The Ile16 pocket in ProTQQQ appears to favor nonpolar, nonaromatic residues at SC positions 1 and 2. Our results suggest that SC variants other than WT Ile1-Val2-Thr3 might emerge with similar ProT-activating efficiency.
Collapse
Affiliation(s)
- Ashoka A Maddur
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561.
| | - Heather K Kroh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561
| | - Mary E Aschenbrenner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561
| | - Breanne H Y Gibson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561
| | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama 36849
| | - Jonathan H Sheehan
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232; Institute for Drug Discovery, Departments of Chemistry and Computer Science, Leipzig University Medical School, SAC 04103 Leipzig, Germany
| | - Paul E Bock
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561
| | - Ingrid M Verhamme
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561.
| |
Collapse
|
13
|
Grzegorski SJ, Hu Z, Liu Y, Yu X, Ferguson AC, Madarati H, Friedmann AP, Reyon D, Kim PY, Kretz CA, Joung JK, Shavit JA. Disruption of the kringle 1 domain of prothrombin leads to late onset mortality in zebrafish. Sci Rep 2020; 10:4049. [PMID: 32132579 PMCID: PMC7055286 DOI: 10.1038/s41598-020-60840-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/22/2020] [Indexed: 02/04/2023] Open
Abstract
The ability to prevent blood loss in response to injury is a conserved function of all vertebrates. Complete deficiency of the central clotting enzyme prothrombin has never been observed in humans and is incompatible with postnatal life in mice, thus limiting the ability to study its role in vivo. Zebrafish are able to tolerate severe hemostatic deficiencies that are lethal in mammals. We have generated a targeted genetic deletion in the kringle 1 domain of zebrafish prothrombin. Homozygous mutant embryos develop normally into the mid-juvenile stage but demonstrate complete mortality by 2 months of age primarily due to internal hemorrhage. Mutants are unable to form occlusive venous and arterial thrombi in response to endothelial injury, a defect that was phenocopied using direct oral anticoagulants. Human prothrombin engineered with the equivalent mutation exhibits a severe reduction in secretion, thrombin generation, and fibrinogen cleavage. Together, these data demonstrate the conserved function of thrombin in zebrafish and provide insight into the role of kringle 1 in prothrombin maturation and activity. Understanding how zebrafish are able to develop normally and survive into early adulthood without thrombin activity will provide important insight into its pleiotropic functions as well as the management of patients with bleeding disorders.
Collapse
Affiliation(s)
| | - Zhilian Hu
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
- Oxford University, Oxford, UK
| | - Yang Liu
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
- Molecular Innovations, Inc., Novi, MI, USA
| | - Xinge Yu
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Hasam Madarati
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Thromosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | - Alexander P Friedmann
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Thromosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | - Deepak Reyon
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Editas Medicine Inc., Cambridge, MA, USA
| | - Paul Y Kim
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Thromosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | - Colin A Kretz
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Thromosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | - J Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Jordan A Shavit
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Acquasaliente L, Pelc LA, Di Cera E. Probing prothrombin structure by limited proteolysis. Sci Rep 2019; 9:6125. [PMID: 30992526 PMCID: PMC6467981 DOI: 10.1038/s41598-019-42524-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/02/2019] [Indexed: 01/06/2023] Open
Abstract
Prothrombin, or coagulation factor II, is a multidomain zymogen precursor of thrombin that undergoes an allosteric equilibrium between two alternative conformations, open and closed, that react differently with the physiological activator prothrombinase. Specifically, the dominant closed form promotes cleavage at R320 and initiates activation along the meizothrombin pathway, whilst the open form promotes cleavage at R271 and initiates activation along the alternative prethrombin-2 pathway. Here we report how key structural features of prothrombin can be monitored by limited proteolysis with chymotrypsin that attacks W468 in the flexible autolysis loop of the protease domain in the open but not the closed form. Perturbation of prothrombin by selective removal of its constituent Gla domain, kringles and linkers reveals their long-range communication and supports a scenario where stabilization of the open form switches the pathway of activation from meizothrombin to prethrombin-2. We also identify R296 in the A chain of the protease domain as a critical link between the allosteric open-closed equilibrium and exposure of the sites of cleavage at R271 and R320. These findings reveal important new details on the molecular basis of prothrombin function.
Collapse
Affiliation(s)
- Laura Acquasaliente
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Leslie A Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| |
Collapse
|
15
|
Bradford HN, Krishnaswamy S. Occlusion of anion-binding exosite 2 in meizothrombin explains its impaired ability to activate factor V. J Biol Chem 2019; 294:2422-2435. [PMID: 30578302 DOI: 10.1074/jbc.ra118.006510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
The proteolytic conversion of factor V to factor Va is central for amplified flux through the blood coagulation cascade. Heterodimeric factor Va is produced by cleavage at three sites in the middle of factor V by thrombin, yielding an N terminus-derived heavy chain and a C terminus-derived light chain. Here, we show that light chain formation resulting from the C-terminal cleavage is the rate-limiting step in the formation of fully cleaved Va. This rate-limiting step also corresponded to and was sufficient for the ability of cleaved factor V to bind Xa and assemble into the prothrombinase complex. Meizothrombin, the proteinase intermediate in thrombin formation, cleaves factor V more slowly than does thrombin, resulting in a pronounced defect in the formation of the light chain. A ∼100-fold reduced rate of meizothrombin-mediated light chain formation by meizothrombin corresponded to equally slow production of active cofactor and an impaired ability to amplify flux through the coagulation cascade initiated in plasma. We show that this defect arises from the occlusion of anion-binding exosite 2 in the catalytic domain by the covalently retained propiece in meizothrombin. Our findings provide structural insights into the prominent role played by exosite 2 in the rate-limiting step of factor V activation. They also bear on how factor V is converted into a cofactor capable of assembling into prothrombinase.
Collapse
Affiliation(s)
- Harlan N Bradford
- From the Research Institute, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and
| | - Sriram Krishnaswamy
- From the Research Institute, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and .,the Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
16
|
Stojanovski BM, Pelc LA, Zuo X, Pozzi N, Cera ED. Enhancing the anticoagulant profile of meizothrombin. Biomol Concepts 2018; 9:169-175. [PMID: 30864392 DOI: 10.1515/bmc-2018-0016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/19/2018] [Indexed: 11/15/2022] Open
Abstract
Meizothrombin is an active intermediate generated during the proteolytic activation of prothrombin to thrombin in the penultimate step of the coagulation cascade. Structurally, meizothrombin differs from thrombin because it retains the auxiliary Gla domain and two kringles. Functionally, meizothrombin shares with thrombin the ability to cleave procoagulant (fibrinogen), prothrombotic (PAR1) and anticoagulant (protein C) substrates, although its specificity toward fibrinogen and PAR1 is less pronounced. In this study we report information on the structural architecture of meizothrombin resolved by SAXS and single molecule FRET as an elongated arrangement of its individual domains. In addition, we show the properties of a meizothrombin construct analogous to the anticoagulant thrombin mutant W215A/E217A currently in Phase I for the treatment of thrombotic complications and stroke. The findings reveal new structural and functional aspects of meizothrombin that advance our understanding of a key intermediate of the prothrombin activation pathway.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104 USA
| | - Leslie A Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104 USA
| | - Xiaobing Zuo
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104 USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104 USA
| |
Collapse
|
17
|
Pozzi N, Chen Z, Di Cera E. How the Linker Connecting the Two Kringles Influences Activation and Conformational Plasticity of Prothrombin. J Biol Chem 2016; 291:6071-82. [PMID: 26763231 DOI: 10.1074/jbc.m115.700401] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 01/11/2023] Open
Abstract
A flexible linker (Lnk2) composed of 26 amino acids connects kringle-1 to kringle-2 in the coagulation factor prothrombin. Recent studies point to Lnk2 as a key determinant of the structure and function of this zymogen. Using a combination of mutagenesis, structural biology, and single molecule spectroscopy, we show how Lnk2 influences activation and conformational plasticity of prothrombin. Scrambling the sequence of Lnk2 is inconsequential on activation, and so is extension by as many as 22 residues. On the other hand, below a critical length of 15 residues, the rate of prothrombin activation increases (10-fold) in the absence of cofactor Va and decreases (3-fold) in the presence of cofactor. Furthermore, activation by prothrombinase takes place without preference along the prethrombin-2 (cleavage at Arg(271) first) or meizothrombin (cleavage at Arg(320) first) pathways. Notably, these transitions in the rate and pathway of activation require the presence of phospholipids, pointing to an important physiological role for Lnk2 when prothrombin is anchored to the membrane. Two new crystal structures of prothrombin lacking 22 (ProTΔ146-167) or 14 (ProTΔ154-167) residues of Lnk2 document striking conformational rearrangements of domains located across this linker. FRET measurements of freely diffusing single molecules prove that these structural transitions are genuine properties of the zymogen in solution. These findings support a molecular model of prothrombin activation where Lnk2 presents the sites of cleavage at Arg(271) and Arg(320) to factor Xa in different orientations by pivoting the C-terminal kringle-2/protease domain pair on the N-terminal Gla domain/kringle-1 pair anchored to the membrane.
Collapse
Affiliation(s)
- Nicola Pozzi
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Zhiwei Chen
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Enrico Di Cera
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|
18
|
Jenny L, Dobó J, Gál P, Schroeder V. MASP-1 Induced Clotting--The First Model of Prothrombin Activation by MASP-1. PLoS One 2015; 10:e0144633. [PMID: 26645987 PMCID: PMC4672900 DOI: 10.1371/journal.pone.0144633] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/21/2015] [Indexed: 01/24/2023] Open
Abstract
Mannan-binding lectin-associated serine protease-1 (MASP-1), a protein of the complement lectin pathway, resembles thrombin in terms of structural features and substrate specificity. Due to its interplay with several coagulation factors, it has the ability to induce fibrin clot formation independent of the usual coagulation activation pathways. We have recently shown that MASP-1 activates prothrombin and identified arginine (R) 155, R271, and R393 as potential cleavage sites. FXa cleaves R320 instead of R393, and thrombin cleaves R155 and R284 in prothrombin. Here we have used three arginine-to-glutamine mutants of prothrombin, R271Q, R320Q, R393Q and the serine-to-alanine active site mutant S525A to investigate in detail the mechanism of MASP-1 mediated prothrombin activation. Prothrombin wildtype and mutants were digested with MASP-1 and the cleavage products were analysed by SDS-PAGE and N-terminal sequencing. A functional clotting assay was performed by thrombelastography. We have found that MASP-1 activates prothrombin via two simultaneous pathways, either cleaving at R271 or R393 first. Both pathways result in the formation of several active alternative thrombin species. Functional studies confirmed that both R393 and R320 are required for prothrombin activation by MASP-1, whereas R155 is not considered to be an important cleavage site in this process. In conclusion, we have described for the first time a detailed model of prothrombin activation by MASP-1.
Collapse
Affiliation(s)
- Lorenz Jenny
- University Clinic of Haematology, Haemostasis Research Laboratory, University Hospital Bern, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Verena Schroeder
- University Clinic of Haematology, Haemostasis Research Laboratory, University Hospital Bern, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Abstract
The structure of prothrombin has eluded investigators for decades but recent efforts have succeeded in revealing the architecture of this important clotting factor. Unanticipated features have emerged outlining the significant flexibility of the zymogen due to linker regions connecting the γ carboxyglutamic domain, kringles and protease domain. A new, structure-based framework helps in defining a molecular mechanism of prothrombin activation, rationalizes the severe bleeding phenotypes of several naturally occurring mutations and identifies targets for drug design.
Collapse
Affiliation(s)
- Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | |
Collapse
|
20
|
The linker connecting the two kringles plays a key role in prothrombin activation. Proc Natl Acad Sci U S A 2014; 111:7630-5. [PMID: 24821807 DOI: 10.1073/pnas.1403779111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The zymogen prothrombin is proteolytically converted by factor Xa to the active protease thrombin in a reaction that is accelerated >3,000-fold by cofactor Va. This physiologically important effect is paradigmatic of analogous cofactor-dependent reactions in the coagulation and complement cascades, but its structural determinants remain poorly understood. Prothrombin has three linkers connecting the N-terminal Gla domain to kringle-1 (Lnk1), the two kringles (Lnk2), and kringle-2 to the C-terminal protease domain (Lnk3). Recent developments indicate that the linkers, and particularly Lnk2, confer on the zymogen significant flexibility in solution and enable prothrombin to sample alternative conformations. The role of this flexibility in the context of prothrombin activation was tested with several deletions. Removal of Lnk2 in almost its entirety (ProTΔ146-167) drastically reduces the enhancement of thrombin generation by cofactor Va from >3,000-fold to 60-fold because of a significant increase in the rate of activation in the absence of cofactor. Deletion of Lnk2 mimics the action of cofactor Va and offers insights into how prothrombin is activated at the molecular level. The crystal structure of ProTΔ146-167 reveals a contorted architecture where the domains are not vertically stacked, kringle-1 comes within 9 Å of the protease domain, and the Gla-domain primed for membrane binding comes in contact with kringle-2. These findings broaden our molecular understanding of a key reaction of the blood coagulation cascade where cofactor Va enhances activation of prothrombin by factor Xa by compressing Lnk2 and morphing prothrombin into a conformation similar to the structure of ProTΔ146-167.
Collapse
|
21
|
|
22
|
Bradford HN, Orcutt SJ, Krishnaswamy S. Membrane binding by prothrombin mediates its constrained presentation to prothrombinase for cleavage. J Biol Chem 2013; 288:27789-800. [PMID: 23940050 DOI: 10.1074/jbc.m113.502005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Long-standing dogma proposes a profound contribution of membrane binding by prothrombin in determining the rate at which it is converted to thrombin by prothrombinase. We have examined the action of prothrombinase on full-length prothrombin variants lacking γ-carboxyglutamate modifications (desGla) with impaired membrane binding. We show an unexpectedly modest decrease in the rate of thrombin formation for desGla prothrombin but with a major effect on the pathway for substrate cleavage. Using desGla prothrombin variants in which the individual cleavage sites have been singly rendered uncleavable, we find that loss of membrane binding and other Gla-dependent functions in the substrate leads to a decrease in the rate of cleavage at Arg(320) and a surprising increase in the rate of cleavage at Arg(271). These compensating effects arise from a loss in the membrane component of exosite-dependent tethering of substrate to prothrombinase and a relaxation in the constrained presentation of the individual cleavage sites for active site docking and catalysis. Loss of constraint is evident as a switch in the pathway for prothrombin cleavage and the intermediate produced but without the expected profound decrease in rate. Extension of these findings to the action of prothrombinase assembled on platelets and endothelial cells on fully carboxylated prothrombin reveals new mechanistic insights into function on physiological membranes. Cell-dependent enzyme function is probably governed by a differential ability to support prothrombin binding and the variable accumulation of intermediates from the two possible pathways of prothrombin activation.
Collapse
Affiliation(s)
- Harlan N Bradford
- From the Research Institute, Children's Hospital of Philadelphia, and
| | | | | |
Collapse
|
23
|
Abstract
The prothrombinase complex, composed of the protease factor (f)Xa and cofactor fVa, efficiently converts prothrombin to thrombin by specific sequential cleavage at 2 sites. How the complex assembles and its mechanism of prothrombin processing are of central importance to human health and disease, because insufficient thrombin generation is the root cause of hemophilia, and excessive thrombin production results in thrombosis. Efforts to determine the crystal structure of the prothrombinase complex have been thwarted by the dependence of complex formation on phospholipid membrane association. Pseutarin C is an intrinsically stable prothrombinase complex preassembled in the venom gland of the Australian Eastern Brown Snake (Pseudonaja textilis). Here we report the crystal structures of the fX-fV complex and of activated fXa from P textilis venom and the derived model of active pseutarin C. Structural analysis supports a single substrate binding channel on fVa, to which prothrombin and the intermediate meizothrombin bind in 2 different orientations, providing insight into the architecture and mechanism of the prothrombinase complex-the molecular engine of blood coagulation.
Collapse
|
24
|
Abstract
The proteolytic conversion of prothrombin to thrombin catalyzed by prothrombinase is one of the more extensively studied reactions of blood coagulation. Sophisticated biophysical and biochemical insights into the players of this reaction were developed in the early days of the field. Yet, many basic enzymological questions remained unanswered. I summarize new developments that uncover mechanisms by which high substrate specificity is achieved, and the impact of these strategies on enzymic function. Two principles emerge that deviate from conventional wisdom that has otherwise dominated thinking in the field. (i) Enzymic specificity is dominated by the contribution of exosite binding interactions between substrate and enzyme rather than by specific recognition of sequences flanking the scissile bond. Coupled with the regulation of substrate conformation as a result of the zymogen to proteinase transition, novel mechanistic insights result for numerous aspects of enzyme function. (ii) The transition of zymogen to proteinase following cleavage is not absolute and instead, thrombin can reversibly interconvert between zymogen-like and proteinase-like forms depending on the complement of ligands bound to it. This establishes new paradigms for considering proteinase allostery and how enzyme function may be modulated by ligand binding. These insights into the action of prothrombinase on prothrombin have wide-ranging implications for the understanding of function in blood coagulation.
Collapse
Affiliation(s)
- S Krishnaswamy
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Brown MA, Stenberg LM, Stenflo J. Coagulation Factor Xa. HANDBOOK OF PROTEOLYTIC ENZYMES 2013. [PMCID: PMC7149769 DOI: 10.1016/b978-0-12-382219-2.00642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The third edition of the Handbook of Proteolytic Enzymes aims to be a comprehensive reference work for the enzymes that cleave proteins and peptides, and contains over 800 chapters. Each chapter is organized into sections describing the name and history, activity and specificity, structural chemistry, preparation, biological aspects, and distinguishing features for a specific peptidase. The subject of Chapter 642 is Coagulation Factor Xa. Keywords Coagulation factor, prothrombin, thrombin, proconvertin, Stuart’s factor, Prower’s factor.
Collapse
|
26
|
Kroh HK, Bock PE. Effect of zymogen domains and active site occupation on activation of prothrombin by von Willebrand factor-binding protein. J Biol Chem 2012; 287:39149-57. [PMID: 23012355 DOI: 10.1074/jbc.m112.415562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prothrombin is conformationally activated by von Willebrand factor-binding protein (vWbp) from Staphylococcus aureus through insertion of the NH(2)-terminal residues of vWbp into the prothrombin catalytic domain. The rate of prothrombin activation by vWbp(1-263) is controlled by a hysteretic kinetic mechanism initiated by substrate binding. The present study evaluates activation of prothrombin by full-length vWbp(1-474) through activity progress curve analysis. Additional interactions from the COOH-terminal half of vWbp(1-474) strengthened the initial binding of vWbp to prothrombin, resulting in higher activity and an ∼100-fold enhancement in affinity. The affinities of vWbp(1-263) or vWbp(1-474) were compared by equilibrium binding to the prothrombin derivatives prethrombin 1, prethrombin 2, thrombin, meizothrombin, and meizothrombin(des-fragment 1) and their corresponding active site-blocked analogs. Loss of fragment 1 in prethrombin 1 enhanced affinity for both vWbp(1-263) and vWbp(1-474), with a 30-45% increase in Gibbs free energy, implicating a regulatory role for fragment 1 in the activation mechanism. Active site labeling of all prothrombin derivatives with D-Phe-Pro-Arg-chloromethyl ketone, analogous to irreversible binding of a substrate, decreased their K(D) values for vWbp into the subnanomolar range, reflecting the dependence of the activating conformational change on substrate binding. The results suggest a role for prothrombin domains in the pathophysiological activation of prothrombin by vWbp, and may reveal a function for autocatalysis of the vWbp·prothrombin complexes during initiation of blood coagulation.
Collapse
Affiliation(s)
- Heather K Kroh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
27
|
Geng Y, Verhamme IM, Messer A, Sun MF, Smith SB, Bajaj SP, Gailani D. A sequential mechanism for exosite-mediated factor IX activation by factor XIa. J Biol Chem 2012; 287:38200-9. [PMID: 22961984 DOI: 10.1074/jbc.m112.376343] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During blood coagulation, the protease factor XIa (fXIa) activates factor IX (fIX). We describe a new mechanism for this process. FIX is cleaved initially after Arg(145) to form fIXα, and then after Arg(180) to form the protease fIXaβ. FIXα is released from fXIa, and must rebind for cleavage after Arg(180) to occur. Catalytic efficiency of cleavage after Arg(180) is 7-fold greater than for cleavage after Arg(145), limiting fIXα accumulation. FXIa contains four apple domains (A1-A4) and a catalytic domain. Exosite(s) on fXIa are required for fIX binding, however, there is lack of consensus on their location(s), with sites on the A2, A3, and catalytic domains described. Replacing the A3 domain with the prekallikrein A3 domain increases K(m) for fIX cleavage after Arg(145) and Arg(180) 25- and ≥ 90-fold, respectively, and markedly decreases k(cat) for cleavage after Arg(180). Similar results were obtained with the isolated fXIa catalytic domain, or fXIa in the absence of Ca(2+). Forms of fXIa lacking the A3 domain exhibit 15-fold lower catalytic efficiency for cleavage after Arg(180) than for cleavage after Arg(145), resulting in fIXα accumulation. Replacing the A2 domain does not affect fIX activation. The results demonstrate that fXIa activates fIX by an exosite- and Ca(2+)-mediated release-rebind mechanism in which efficiency of the second cleavage is enhanced by conformational changes resulting from the first cleavage. Initial binding of fIX and fIXα requires an exosite on the fXIa A3 domain, but not the A2 or catalytic domain.
Collapse
Affiliation(s)
- Yipeng Geng
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Bradford HN, Krishnaswamy S. Meizothrombin is an unexpectedly zymogen-like variant of thrombin. J Biol Chem 2012; 287:30414-25. [PMID: 22815477 DOI: 10.1074/jbc.m112.394809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Thrombin is produced by the ordered action of prothrombinase on two cleavage sites in prothrombin. Meizothrombin, a proteinase precursor of thrombin, is a singly cleaved species that accumulates abundantly as an intermediate. We now show that covalent linkage of the N-terminal propiece with the proteinase domain in meizothrombin imbues it with exceptionally zymogen-like character. Meizothrombin exists in a slowly reversible equilibrium between two equally populated states, differing by as much as 140-fold in their affinity for active site-directed ligands. The distribution between the two forms, designated zymogen-like and proteinase-like, is affected by Na(+), thrombomodulin binding, or active site ligation. In rapid kinetic measurements with prothrombinase, we also show that the zymogen-like form is produced following the initial cleavage reaction and slowly equilibrates with the proteinase-like form in a previously unanticipated rate-limiting step before it can be further cleaved to thrombin. The reversible equilibration of meizothrombin between zymogen- and proteinase-like states provides new insights into its ability to selectively exhibit the anticoagulant function of thrombin and the mechanistic basis for its accumulation during prothrombin activation. Our findings also provide unexpected insights into the regulation of proteinase function and how the formation of meizothrombin may yield a long lived intermediate with an important regulatory role in coagulation.
Collapse
Affiliation(s)
- Harlan N Bradford
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | |
Collapse
|
29
|
Lee CJ, Wu S, Pedersen LG. A revisit to the one-form kinetic model of prothrombinase: A comment on the rebuttal. Biophys Chem 2012. [DOI: 10.1016/j.bpc.2011.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Kim PY, Nesheim ME. A revisit of the two-form kinetic model of prothrombinase: A rebuttal. Biophys Chem 2011; 160:75-6; author reply 77-8. [PMID: 22001061 DOI: 10.1016/j.bpc.2011.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 11/25/2022]
|
31
|
Newell-Caito JL, Laha M, Tharp AC, Creamer JI, Xu H, Maddur AA, Tans G, Bock PE. Notecarin D binds human factor V and factor Va with high affinity in the absence of membranes. J Biol Chem 2011; 286:38286-38297. [PMID: 21911491 DOI: 10.1074/jbc.m111.247122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Notecarin D (NotD) is a prothrombin (ProT) activator in the venom of the tiger snake, Notechis scutatus, and a factor Xa (FXa) homolog. NotD binds specifically to the FXa binding site expressed on factor V (FV) upon activation to factor Va (FVa) by thrombin. NotD active site-labeled with 5-fluorescein ([5F]FFR-NotD) binds FV and FVa with remarkably high affinity in the absence of phospholipids (K(D) 12 and ≤ 0.01 nm, respectively). In the presence of membranes, the affinity of [5F]FFR-NotD for FVa is similar, but increased ∼55-fold for FV. Binding of FXa active site-labeled with Oregon Green to FV and FVa in the presence of phospholipids is ∼5,000- and ∼80-fold weaker than [5F]FFR-NotD, respectively. NotD reports FVa and not FV binding by a 3-fold increase in tripeptide substrate hydrolysis, demonstrating allosteric regulation by FVa. The NotD·FVa·membrane complex activates ProT with K(m)((app)) similar to prothrombinase, and ∼85-fold weaker without membranes. Active site-blocked NotD exhibits potent anticoagulant activity in plasma thrombin generation assays, representing inhibition of productive prothrombinase assembly and possible disruption of FXa inhibition by the tissue factor pathway inhibitor. The results show that high affinity binding of NotD to FVa is membrane-independent, unlike the strict membrane dependence of FXa for high affinity FVa binding.
Collapse
Affiliation(s)
- Jennifer L Newell-Caito
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561
| | - Malabika Laha
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561
| | - Anthony C Tharp
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561
| | - Jonathan I Creamer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561
| | - Hong Xu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561
| | - Ashoka A Maddur
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561
| | - Guido Tans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, 6200MD Maastricht, The Netherlands
| | - Paul E Bock
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561.
| |
Collapse
|
32
|
Kroh HK, Panizzi P, Tchaikovski S, Baird TR, Wei N, Krishnaswamy S, Tans G, Rosing J, Furie B, Furie BC, Bock PE. Active site-labeled prothrombin inhibits prothrombinase in vitro and thrombosis in vivo. J Biol Chem 2011; 286:23345-56. [PMID: 21531712 DOI: 10.1074/jbc.m111.230292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mouse and human prothrombin (ProT) active site specifically labeled with D-Phe-Pro-Arg-CH(2)Cl (FPR-ProT) inhibited tissue factor-initiated thrombin generation in platelet-rich and platelet-poor mouse and human plasmas. FPR-prethrombin 1 (Pre 1), fragment 1 (F1), fragment 1.2 (F1.2), and FPR-thrombin produced no significant inhibition, demonstrating the requirement for all three ProT domains. Kinetics of inhibition of ProT activation by the inactive ProT(S195A) mutant were compatible with competitive inhibition as an alternate nonproductive substrate, although FPR-ProT deviated from this mechanism, implicating a more complex process. FPR-ProT exhibited ∼10-fold more potent anticoagulant activity compared with ProT(S195A) as a result of conformational changes in the ProT catalytic domain that induce a more proteinase-like conformation upon FPR labeling. Unlike ProT and ProT(S195A), the pathway of FPR-ProT cleavage by prothrombinase was redirected from meizothrombin toward formation of the FPR-prethrombin 2 (Pre 2)·F1.2 inhibitory intermediate. Localization of ProT labeled with Alexa Fluor® 660 tethered through FPR-CH(2)Cl ([AF660]FPR-ProT) during laser-induced thrombus formation in vivo in murine arterioles was examined in real time wide-field and confocal fluorescence microscopy. [AF660]FPR-ProT bound rapidly to the vessel wall at the site of injury, preceding platelet accumulation, and subsequently to the thrombus proximal, but not distal, to the vessel wall. [AF660]FPR-ProT inhibited thrombus growth, whereas [AF660]FPR-Pre 1, lacking the F1 membrane-binding domain did not bind or inhibit. Labeled F1.2 localized similarly to [AF660]FPR-ProT, indicating binding to phosphatidylserine-rich membranes, but did not inhibit thrombosis. The studies provide new insight into the mechanism of ProT activation in vivo and in vitro, and the properties of a unique exosite-directed prothrombinase inhibitor.
Collapse
Affiliation(s)
- Heather K Kroh
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Development of a recombinant antithrombin variant as a potent antidote to fondaparinux and other heparin derivatives. Blood 2011; 117:2054-60. [DOI: 10.1182/blood-2010-06-288522] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Abstract
Heparin derivative-based therapy has evolved from unfractionated heparin (UFH) to low-molecular-weight heparins (LMWHs) and now fondaparinux, a synthetic pentasaccharide. Contrary to UFH or LMWHs, fondaparinux is not neutralized by protamine sulfate, and no antidote is available to counteract bleeding disorders associated with overdosing. To make the use of fondaparinux safer, we developed an antithrombin (AT) variant as a potent antidote to heparin derivatives. This variant (AT-N135Q-Pro394) combines 2 mutations: substitution of Asn135 by a Gln to remove a glycosylation site and increase affinity for heparins, and the insertion of a Pro between Arg393 and Ser394 to abolish its anticoagulant activity. As expected, AT-N135Q-Pro394 anticoagulant activity was almost abolished, and it exhibited a 3-fold increase in fondaparinux affinity. AT-N135Q-Pro394 was shown to reverse fondaparinux overdosing in vitro in a dose-dependent manner through a competitive process with plasma AT for fondaparinux binding. This antidote effect was also observed in vivo: administration of AT-N135Q-Pro394 in 2.5-fold molar excess versus plasma AT neutralized 86% of the anti-Xa activity within 5 minutes in mice treated with fondaparinux. These results clearly demonstrate that AT-N135Q-Pro394 can reverse the anticoagulant activity of fondaparinux and thus could be used as an antidote for this drug.
Collapse
|
34
|
Prothrombin activation on the activated platelet surface optimizes expression of procoagulant activity. Blood 2010; 117:1710-8. [PMID: 21131592 DOI: 10.1182/blood-2010-09-311035] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Effective hemostasis relies on the timely formation of α-thrombin via prothrombinase, a Ca(2+)-dependent complex of factors Va and Xa assembled on the activated platelet surface, which cleaves prothrombin at Arg271 and Arg320. Whereas initial cleavage at Arg271 generates the inactive intermediate prethrombin-2, initial cleavage at Arg320 generates the enzymatically active intermediate meizothrombin. To determine which of these intermediates is formed when prothrombin is processed on the activated platelet surface, the cleavage of prothrombin, and prothrombin mutants lacking either one of the cleavage sites, was monitored on the surface of either thrombin- or collagen-activated platelets. Regardless of the agonist used, prothrombin was initially cleaved at Arg271 generating prethrombin-2, with α-thrombin formation quickly after via cleavage at Arg320. The pathway used was independent of the source of factor Va (plasma- or platelet-derived) and was unaffected by soluble components of the platelet releasate. When both cleavage sites are presented within the same substrate molecule, Arg271 effectively competes against Arg320 (with an apparent IC(50) = 0.3μM), such that more than 90% to 95% of the initial cleavage occurs at Arg271. We hypothesize that use of the prethrombin-2 pathway serves to optimize the procoagulant activity expressed by activated platelets, by limiting the anticoagulant functions of the alternate intermediate, meizothrombin.
Collapse
|
35
|
Vogt AD, Bah A, Di Cera E. Evidence of the E*-E equilibrium from rapid kinetics of Na+ binding to activated protein C and factor Xa. J Phys Chem B 2010; 114:16125-30. [PMID: 20809655 DOI: 10.1021/jp105502c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Na(+) binding to thrombin enhances the procoagulant and prothrombotic functions of the enzyme and obeys a mechanism that produces two kinetic phases: one fast (in the microsecond time scale) due to Na(+) binding to the low activity form E to produce the high activity form E:Na(+) and another considerably slower (in the millisecond time scale) that reflects a pre-equilibrium between E and the inactive form E*. In this study, we demonstrate that this mechanism also exists in other Na(+)-activated clotting proteases like factor Xa and activated protein C. These findings, along with recent structural data, suggest that the E*-E equilibrium is a general feature of the trypsin fold.
Collapse
Affiliation(s)
- Austin D Vogt
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | |
Collapse
|
36
|
Kamath P, Huntington JA, Krishnaswamy S. Ligand binding shuttles thrombin along a continuum of zymogen- and proteinase-like states. J Biol Chem 2010; 285:28651-8. [PMID: 20639195 DOI: 10.1074/jbc.m110.154914] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The critical and multiple roles of thrombin in blood coagulation are regulated by ligands and cofactors. Zymogen activation imparts proteolytic activity to thrombin and also affects the binding of ligands to its two principal exosites. We have used the activation peptide fragment 1.2 (F12), a ligand for anion-binding exosite 2, to probe the zymogenicity of thrombin by isothermal titration calorimetry. We show that F12 binding is sensitive to subtle aspects of proteinase formation beyond simply reporting on zymogen cleavage. Large thermodynamic differences in F12 binding distinguish between a series of thrombin species poised along the transition of zymogen to proteinase. Active-site ligands transitioned a zymogen-like state to a proteinase-like state. Conversely, removal of Na(+) converted proteinase-like thrombin to a more zymogen-like form. Thrombin mutants, with deformed x-ray structures, previously considered to be emblematic of specific regulated states of the enzyme, are instead shown to be variously zymogen-like and can be made proteinase-like by active-site ligation. Thermodynamic linkage between anion-binding exosite 2, the Na(+)-binding site, and the active site arises from interconversions of thrombin between a continuum of zymogen- and proteinase-like states. These interconversions, reciprocally regulated by different ligands, cast new light on the problem of thrombin allostery and provide a thermodynamic framework to explain the regulation of thrombin by different ligands.
Collapse
Affiliation(s)
- Parvathi Kamath
- Research Institute, Children's Hospital of Philadelphia, USA
| | | | | |
Collapse
|
37
|
Nicolaes GAF, Bock PE, Segers K, Wildhagen KCAA, Dahlbäck B, Rosing J. Inhibition of thrombin formation by active site mutated (S360A) activated protein C. J Biol Chem 2010; 285:22890-900. [PMID: 20484050 DOI: 10.1074/jbc.m110.131029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activated protein C (APC) down-regulates thrombin formation through proteolytic inactivation of factor Va (FVa) by cleavage at Arg(506) and Arg(306) and of factor VIIIa (FVIIIa) by cleavage at Arg(336) and Arg(562). To study substrate recognition by APC, active site-mutated APC (APC(S360A)) was used, which lacks proteolytic activity but exhibits anticoagulant activity. Experiments in model systems and in plasma show that APC(S360A), and not its zymogen protein C(S360A), expresses anticoagulant activities by competing with activated coagulation factors X and IX for binding to FVa and FVIIIa, respectively. APC(S360A) bound to FVa with a K(D) of 0.11 +/- 0.05 nm and competed with active site-labeled Oregon Green activated coagulation factor X for binding to FVa. The binding of APC(S360A) to FVa was not affected by protein S but was inhibited by prothrombin. APC(S360A) binding to FVa was critically dependent upon the presence of Arg(506) and not Arg(306) and additionally required an active site accessible to substrates. Inhibition of FVIIIa activity by APC(S360A) was >100-fold less efficient than inhibition of FVa. Our results show that despite exosite interactions near the Arg(506) cleavage site, binding of APC(S360A) to FVa is almost completely dependent on Arg(506) interacting with APC(S360A) to form a nonproductive Michaelis complex. Because docking of APC to FVa and FVIIIa constitutes the first step in the inactivation of the cofactors, we hypothesize that the observed anticoagulant activity may be important for in vivo regulation of thrombin formation.
Collapse
Affiliation(s)
- Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6200MD Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
38
|
Page MJ, Di Cera E. Combinatorial enzyme design probes allostery and cooperativity in the trypsin fold. J Mol Biol 2010; 399:306-19. [PMID: 20399789 DOI: 10.1016/j.jmb.2010.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 01/05/2023]
Abstract
Converting one enzyme into another is challenging due to the uneven distribution of important amino acids for function in both protein sequence and structure. We report a strategy for protein engineering allowing an organized mixing and matching of genetic material that leverages lower throughput with increased quality of screens. Our approach successfully tested the contribution of each surface-exposed loop in the trypsin fold alone and the cooperativity of their combinations towards building the substrate selectivity and Na(+)-dependent allosteric activation of the protease domain of human coagulation factor Xa into a bacterial trypsin. As the created proteases lack additional protein domains and protein co-factor activation mechanism requisite for the complexity of blood coagulation, they are stepping-stones towards further understanding and engineering of artificial clotting factors.
Collapse
Affiliation(s)
- Michael J Page
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
39
|
A revisit to the one form kinetic model of prothrombinase. Biophys Chem 2010; 149:28-33. [PMID: 20435402 DOI: 10.1016/j.bpc.2010.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 11/22/2022]
Abstract
Thrombin is generated enzymatically from prothrombin by two pathways with the intermediates of meizothrombin and prethrombin-2. Experimental concentration profiles from two independent groups for these two pathways have been re-analyzed. By rationally combining the independent data sets, a simple mechanism can be established and rate constants determined. A structural model is consistent with the data-derived finding that mechanisms that feature channeling or ratcheting are not necessary to describe thrombin production.
Collapse
|
40
|
Sarilla S, Habib SY, Kravtsov DV, Matafonov A, Gailani D, Verhamme IM. Sucrose octasulfate selectively accelerates thrombin inactivation by heparin cofactor II. J Biol Chem 2010; 285:8278-89. [PMID: 20053992 DOI: 10.1074/jbc.m109.005967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inactivation of thrombin (T) by the serpins heparin cofactor II (HCII) and antithrombin (AT) is accelerated by a heparin template between the serpin and thrombin exosite II. Unlike AT, HCII also uses an allosteric interaction of its NH(2)-terminal segment with exosite I. Sucrose octasulfate (SOS) accelerated thrombin inactivation by HCII but not AT by 2000-fold. SOS bound to two sites on thrombin, with dissociation constants (K(D)) of 10 +/- 4 microm and 400 +/- 300 microm that were not kinetically resolvable, as evidenced by single hyperbolic SOS concentration dependences of the inactivation rate (k(obs)). SOS bound HCII with K(D) 1.45 +/- 0.30 mm, and this binding was tightened in the T.SOS.HCII complex, characterized by K(complex) of approximately 0.20 microm. Inactivation data were incompatible with a model solely depending on HCII.SOS but fit an equilibrium linkage model employing T.SOS binding in the pathway to higher order complex formation. Hirudin-(54-65)(SO(3)(-)) caused a hyperbolic decrease of the inactivation rates, suggesting partial competitive binding of hirudin-(54-65)(SO(3)(-)) and HCII to exosite I. Meizothrombin(des-fragment 1), binding SOS with K(D) = 1600 +/- 300 microm, and thrombin were inactivated at comparable rates, and an exosite II aptamer had no effect on the inactivation, suggesting limited exosite II involvement. SOS accelerated inactivation of meizothrombin 1000-fold, reflecting the contribution of direct exosite I interaction with HCII. Thrombin generation in plasma was suppressed by SOS, both in HCII-dependent and -independent processes. The ex vivo HCII-dependent process may utilize the proposed model and suggests a potential for oversulfated disaccharides in controlling HCII-regulated thrombin generation.
Collapse
Affiliation(s)
- Suryakala Sarilla
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
41
|
Buddai SK, Layzer JM, Lu G, Rusconi CP, Sullenger BA, Monroe DM, Krishnaswamy S. An anticoagulant RNA aptamer that inhibits proteinase-cofactor interactions within prothrombinase. J Biol Chem 2009; 285:5212-23. [PMID: 20022942 DOI: 10.1074/jbc.m109.049833] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of factor Xa with factor Va on membranes to form prothrombinase profoundly increases the rate of the proteolytic conversion of prothrombin to thrombin. We present the characterization of an RNA aptamer (RNA(11F7t)) selected from a combinatorial library based on its ability to bind factor Xa. We show that RNA(11F7t) inhibits thrombin formation catalyzed by prothrombinase without obscuring the active site of Xa within the enzyme complex. Selective inhibition of protein substrate cleavage arises from the ability of the aptamer to bind to factor Xa and exclude interactions between the proteinase and cofactor within prothrombinase. Competition for enzyme complex assembly results from the binding of RNA(11F7t) to factor Xa with nanomolar affinity in a Ca(2+)-dependent interaction. RNA(11F7t) binds equivalently to the zymogen factor X as well as derivatives lacking gamma-carboxyglutamic acid residues. We suggest that the ability of RNA(11F7t) to compete for the Xa-Va interaction with surprisingly high affinity likely reflects a significant contribution from its ability to indirectly impact regions of Xa that participate in the proteinase-cofactor interaction. Thus, despite the complexity of the macromolecular interactions that underlie the assembly of prothrombinase, efficient inhibition of enzyme complex assembly and thrombin formation can be achieved by tight binding ligands that target factor Xa in a discrete manner.
Collapse
Affiliation(s)
- Sai K Buddai
- Joseph Stokes Research Institute, Children's Hospital of Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Bradford HN, Micucci JA, Krishnaswamy S. Regulated cleavage of prothrombin by prothrombinase: repositioning a cleavage site reveals the unique kinetic behavior of the action of prothrombinase on its compound substrate. J Biol Chem 2009; 285:328-38. [PMID: 19858193 DOI: 10.1074/jbc.m109.070334] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prothrombinase converts prothrombin to thrombin via cleavage at Arg(320) followed by cleavage at Arg(271). Exosite-dependent binding of prothrombin to prothrombinase facilitates active site docking by Arg(320) and initial cleavage at this site. Precise positioning of the Arg(320) site for cleavage is implied by essentially normal cleavage at Arg(320) in recombinant prothrombin variants bearing additional Arg side chains either one or two residues away. However, mutation of Arg(320) to Gln reveals that prothrombinase can cleave prothrombin following Arg side chains shifted by as many as two residues N-terminal to the 320 position at near normal rates. Further repositioning leads to a loss in cleavage at this region with an abrupt shift toward slow cleavage at Arg(271). In contrast, the binding constant for the active site docking step is strongly dependent on the sequence preceding the scissile bond as well as position. Large effects on binding only yield minor changes in rate until the binding constant passes a threshold value. This behavior is expected for a substrate that can engage the enzyme through mutually exclusive active site docking reactions followed by cleavage to yield different products. Cleavage site specificity as well as the ordered action of prothrombinase on its compound substrate is regulated by the thermodynamics of active site engagement of the individual sites as well as competition between alternate cleavage sites for active site docking.
Collapse
Affiliation(s)
- Harlan N Bradford
- Joseph Stokes Research Institute, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
43
|
Yegneswaran S, Nguyen PM, Gale AJ, Griffin JH. Prothrombin amino terminal region helps protect coagulation factor Va from proteolytic inactivation by activated protein C. Thromb Haemost 2009; 101:55-61. [PMID: 19132189 PMCID: PMC2730196 DOI: 10.1160/th08-07-0491] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The hypothesis that prothrombin (FII) protects coagulation factor Va (FVa) from proteolytic inactivation by activated protein C (APC) was tested using purified proteins. FII dose-dependently protected FVa from APC proteolysis under conditions where competition of proteins for binding to negatively-charged phospholipid surface was not relevant (i.e. either at high phospholipid vesicle concentrations or using soluble dicaproylphosphatidylserine at levels below its critical micellar concentration). Cleavages in FVa at both Arg(506) and Arg(306) by APC were inhibited by FII. FII did not alter the amidolytic activity of APC towards chromogenic oligopeptide substrates or inhibit FVIIIa inactivation by APC, implying that the FII-mediated protection of FVa from APC proteolysis was due to the ability of FII to inhibit protein-protein interactions between FVa and APC. FII also protected FVa from inactivation by Gla-domainless APC, ruling out a role for the APC Gla domain for these observations. To identify domains of FII responsible for the observed phenomenon, various forms or fragments of FII were employed. Biotin-Phe-ProArg-CMK-inhibited meizothrombin and fII-fragment 1*2 protected FVa from proteolysis by APC. In contrast, no significant protection of FVa from APC cleavage was observed for Gladomainless-FII, prethrombin-1, prethrombin-2, FII fragment 1 or active site inhibited-thrombin (DEGR-thrombin). Overall, these data demonstrate that the Gla domain of FII linked to kringle 1 and 2 is necessary for the ability of FII to protect FVa from APC cleavage and support the general concept that assembly of the FII activation complex (FXa*FVa*FII*lipid surface) protects FVa from APC inactivation so that the procoagulant, thrombin generating pathway can act unhindered by APC. Only following FII activation and dissociation of the FII Gla domain fragments from the FII-ase complex, can APC inactivate FVa and down-regulate thrombin generation.
Collapse
Affiliation(s)
- Subramanian Yegneswaran
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550, North Torrey Pines Road, MEM180, La Jolla, CA, 92037, USA
| | | | | | | |
Collapse
|
44
|
Kamath P, Krishnaswamy S. Fate of membrane-bound reactants and products during the activation of human prothrombin by prothrombinase. J Biol Chem 2008; 283:30164-73. [PMID: 18765660 DOI: 10.1074/jbc.m806158200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane binding by prothrombin, mediated by its N-terminal fragment 1 (F1) domain, plays an essential role in its proteolytic activation by prothrombinase. Thrombin is produced in two cleavage reactions. One at Arg(320) yields the proteinase meizothrombin that retains membrane binding properties. The second, at Arg(271), yields thrombin and severs covalent linkage with the N-terminal fragment 1.2 (F12) region. Covalent linkage with the membrane binding domain is also lost when prethrombin 2 (P2) and F12 are produced following initial cleavage at Arg(271). We show that at the physiological concentration of prothrombin, thrombin formation results in rapid release of the proteinase into solution. Product release from the surface can be explained by the weak interaction between the proteinase and F12 domains. In contrast, the zymogen intermediate P2, formed following cleavage at Arg(271), accumulates on the surface because of a approximately 20-fold higher affinity for F12. By kinetic studies, we show that this enhanced binding adequately explains the ability of unexpectedly low concentrations of F12 to greatly enhance the conversion of P2 to thrombin. Thus, the utilization of all three possible substrate species by prothrombinase is regulated by their ability to bind membranes regardless of whether covalent linkage to the F12 region is maintained. The product, thrombin, interacts with sufficiently poor affinity with F12 so that it is rapidly released from its site of production to participate in its numerous hemostatic functions.
Collapse
Affiliation(s)
- Parvathi Kamath
- Joseph Stokes Research Institute, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
45
|
Smith SB, Verhamme IM, Sun MF, Bock PE, Gailani D. Characterization of Novel Forms of Coagulation Factor XIa: independence of factor XIa subunits in factor IX activation. J Biol Chem 2008; 283:6696-705. [PMID: 18192270 DOI: 10.1074/jbc.m707234200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Factor XI is the zymogen of a dimeric plasma protease, factor XIa, with two active sites. In solution, and during contact activation in plasma, conversion of factor XI to factor XIa proceeds through an intermediate with one active site (1/2-FXIa). Factor XIa and 1/2-FXIa activate the substrate factor IX, with similar kinetic parameters in purified and plasma systems. During hemostasis, factor IX is activated by factors XIa or VIIa, by cleavage of the peptide bonds after Arg145 and Arg180. Factor VIIa cleaves these bonds sequentially, with accumulation of factor IX alpha, an intermediate cleaved after Arg145. Factor XIa also cleaves factor IX preferentially after Arg145, but little intermediate is detected. It has been postulated that the two factor XIa active sites cleave both factor IX peptide bonds prior to releasing factor IX abeta. To test this, we examined cleavage of factor IX by four single active site factor XIa proteases. Little intermediate formation was detected with 1/2-FXIa, factor XIa with one inhibited active site, or a recombinant factor XIa monomer. However, factor IX alpha accumulated during activation by the factor XIa catalytic domain, demonstrating the importance of the factor XIa heavy chain. Fluorescence titration of active site-labeled factor XIa revealed a binding stoichiometry of 1.9 +/- 0.4 mol of factor IX/mol of factor XIa (Kd = 70 +/- 40 nm). The results indicate that two forms of activated factor XI are generated during coagulation, and that each half of a factor XIa dimer behaves as an independent enzyme with respect to factor IX.
Collapse
Affiliation(s)
- Stephen B Smith
- Department of Pathology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
46
|
Hacisalihoglu A, Panizzi P, Bock PE, Camire RM, Krishnaswamy S. Restricted active site docking by enzyme-bound substrate enforces the ordered cleavage of prothrombin by prothrombinase. J Biol Chem 2007; 282:32974-82. [PMID: 17848548 PMCID: PMC2292459 DOI: 10.1074/jbc.m706529200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The preferred pathway for prothrombin activation by prothrombinase involves initial cleavage at Arg(320) to produce meizothrombin, which is then cleaved at Arg(271) to liberate thrombin. Exosite binding drives substrate affinity and is independent of the bond being cleaved. The pathway for cleavage is determined by large differences in V(max) for cleavage at the two sites within intact prothrombin. By fluorescence binding studies in the absence of catalysis, we have assessed the ability of the individual cleavage sites to engage the active site of Xa within prothrombinase at equilibrium. Using a panel of recombinant cleavage site mutants, we show that in intact prothrombin, the Arg(320) site effectively engages the active site in a 1:1 interaction between substrate and enzyme. In contrast, the Arg(271) site binds to the active site poorly in an interaction that is approximately 600-fold weaker. Perceived substrate affinity is independent of active site engagement by either cleavage site. We further show that prior cleavage at the 320 site or the stabilization of the uncleaved zymogen in a proteinase-like state facilitates efficient docking of Arg(271) at the active site of prothrombinase. Therefore, we establish direct relationships between docking of either cleavage site at the active site of the catalyst, the V(max) for cleavage at that site, substrate conformation, and the resulting pathway for prothrombin cleavage. Exosite tethering of the substrate in either the zymogen or proteinase conformation dictates which cleavage site can engage the active site of the catalyst and enforces the sequential cleavage of prothrombin by prothrombinase.
Collapse
Affiliation(s)
| | - Peter Panizzi
- Department of Pathology, Vanderbilt University, Nashville, Tennessee 37232
| | - Paul E. Bock
- Department of Pathology, Vanderbilt University, Nashville, Tennessee 37232
| | - Rodney M. Camire
- Joseph Stokes Research Institute, Children’s Hospital of Philadelphia
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sriram Krishnaswamy
- Joseph Stokes Research Institute, Children’s Hospital of Philadelphia
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- To whom correspondence should be addressed: 310 Abramson, 3615 Civic Center Blvd., Philadelphia, PA 19104. Tel.: 215-590-3346; Fax: 215-590-2320; E-mail:
| |
Collapse
|
47
|
Kim PY, Nesheim ME. Further evidence for two functional forms of prothrombinase each specific for either of the two prothrombin activation cleavages. J Biol Chem 2007; 282:32568-81. [PMID: 17726029 DOI: 10.1074/jbc.m701781200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work showed that prothrombin derivatives cleavable only at Arg-320 (rMZ) or Arg-271 (rP2) are partial, rather than competitive, inhibitors of prothrombin activation by prothrombinase. A "ping-pong"-like model, which posits two equilibrating forms of prothrombinase, explained the inhibition pattern. The present studies were undertaken to further investigate this putative mechanism. Two models were developed, one allowing for one form of the enzyme and the other allowing for two forms. Both models also allowed channeling and ratcheting. The models were fit to full time courses of prothrombin, meizothrombin, prethrombin-2, and the B-chain. In the absence of ratcheting and channeling, neither model fits the data. In their presence, however, both models fit very well, and thus they could not be distinguished. Therefore, inhibition of rMZ activation by rP2 was studied. Inhibition was partial and the two-form model fit the data with randomly distributed residuals, whereas the one-form model did not. Initial rates of fluorescein-labeled prothrombin cleavage in the presence of various prothrombin derivatives reported by Brufatto and Nesheim (Brufatto, N., and Nesheim, M. E. (2003) J. Biol. Chem. 278, 6755-6764) were also analyzed using the two models. The two-form model fit the partial inhibition data well, whereas the one-form model did not. In addition, prothrombin at varying concentrations was activated, and subsequently, the initial rates were plotted with respect to the initial prothrombin concentration. When compared with the expected initial rates as determined by the simulation of the models, the two-form model fit the observed rates better than the one-form model. The results obtained here further support the existence of two functional forms of prothrombinase.
Collapse
Affiliation(s)
- Paul Y Kim
- Departments of Biochemistry and Medicine, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
48
|
Abstract
The specificity of blood coagulation proteinases for substrate, inhibitor, and effector recognition is mediated by exosites on the surfaces of the catalytic domains, physically separated from the catalytic site. Some thrombin ligands bind specifically to either exosite I or II, while others engage both exosites. The involvement of different, overlapping constellations of exosite residues enables binding of structurally diverse ligands. The flexibility of the thrombin structure is central to the mechanism of complex formation and the specificity of exosite interactions. Encounter complex formation is driven by electrostatic ligand-exosite interactions, followed by conformational rearrangement to a stable complex. Exosites on some zymogens are in low affinity proexosite states and are expressed concomitant with catalytic site activation. The requirement for exosite expression controls the specificity of assembly of catalytic complexes on the coagulation pathway, such as the membrane-bound factor Xa*factor Va (prothrombinase) complex, and prevents premature assembly. Substrate recognition by prothrombinase involves a two-step mechanism with initial docking of prothrombin to exosites, followed by a conformational change to engage the FXa catalytic site. Prothrombin and its activation intermediates bind prothrombinase in two alternative conformations determined by the zymogen to proteinase transition that are hypothesized to involve prothrombin (pro)exosite I interactions with FVa, which underpin the sequential activation pathway. The role of exosites as the major source of substrate specificity has stimulated development of exosite-targeted anticoagulants for treatment of thrombosis.
Collapse
Affiliation(s)
- P E Bock
- Department of Pathology, Vanderbilt University, Nashville, TN 37232-2561, USA.
| | | | | |
Collapse
|
49
|
Abstract
Following vascular injury, blood loss is controlled by the mechanisms of hemostasis. During this process, the serine proteinase, thrombin, is generated both locally and rapidly at sites of vessel damage. It plays a pivotal role in clot promotion and inhibition, and cell signaling, as well as additional processes that influence fibrinolysis and inflammation. These functions involve numerous cleavage reactions, which must be tightly coordinated. Failure to do so can lead to either bleeding or thrombosis. The crystal structures of thrombin, in combination with biochemical analyses of thrombin mutants, have provided insight into the ways in which thrombin functions, and how its different activities are modulated. Many of the interactions of thrombin are facilitated by exosites on its surface that bind to its substrates and/or cofactors. The use of cofactors not only extends the range of thrombin specificity, but also enhances its catalytic efficiency for different substrates. This explains a paradox (i.e. thrombin is a specific proteinase, and yet one that has multiple, and sometimes opposing, substrate reactions). In this review, we describe the context in which thrombin acts during hemostasis and explain the roles that its exosites and cofactors play in directing thrombin function. Thereafter, we develop the concept of cofactor competition as a means by which the activities of thrombin are controlled.
Collapse
Affiliation(s)
- J T B Crawley
- Department of Haematology, Imperial College London, London, UK
| | | | | | | |
Collapse
|
50
|
Gale AJ, Yegneswaran S, Xu X, Pellequer JL, Griffin JH. Characterization of a factor Xa binding site on factor Va near the Arg-506 activated protein C cleavage site. J Biol Chem 2007; 282:21848-55. [PMID: 17553804 DOI: 10.1074/jbc.m702192200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prothrombin is proteolytically activated by the prothrombinase complex comprising the serine protease Factor (F) Xa complexed with its cofactor, FVa. Based on inhibition of the prothrombinase complex by synthetic peptides, FVa residues 493-506 were proposed as a FXa binding site. FVa is homologous to FVIIIa, the cofactor for the FIXa protease, in the FX-activating complex, and FVIIIa residues 555-561 (homologous to FVa residues 499-506) are recognized as a FIXa binding sequence. To test the hypothesis that FVa residues 499-505 contribute to FXa binding, we created the FVa loop swap mutant (designated 499-505(VIII) FV) with residues 499-505 replaced by residues 555-561 of FVIIIa, which differ at five of seven positions. Based on kinetic measurements and spectroscopic titrations, this FVa loop swap mutant had significantly reduced affinity for FXa. The fully formed prothrombinase complex containing this FVa mutant had fairly normal kinetic parameters (k(cat) and K(m)) for cleavage of prothrombin at Arg-320. However, small changes in both Arg-320 and Arg-271 cleavage rates result together in a moderate change in the pathway of prothrombin activation. Although residues 499-505 directly precede the Arg-506 cleavage site for activated protein C (APC), the 499-505(VIII) FVa mutant was inactivated entirely normally by APC. These results suggest that this A2 domain sequence of the FVa and FVIIIa cofactors evolved to have different specificity for binding FXa and FIXa while retaining compatibility as substrate for APC. In an updated three-dimensional model for the FVa structure, residues 499-505, along with Arg-506, Arg-306, and other previously suggested FXa binding sequences, delineate a continuous surface on the A2 domain that is strongly implicated as an extended FXa binding surface in the prothrombinase complex.
Collapse
Affiliation(s)
- Andrew J Gale
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|