1
|
Ni Y, Wang X, Yin X, Li Y, Liu X, Wang H, Liu X, Zhang J, Gao H, Shi B, Zhao S. Plectin protects podocytes from adriamycin-induced apoptosis and F-actin cytoskeletal disruption through the integrin α6β4/FAK/p38 MAPK pathway. J Cell Mol Med 2018; 22:5450-5467. [PMID: 30187999 PMCID: PMC6201223 DOI: 10.1111/jcmm.13816] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/16/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
Abstract
Podocyte injury is an early pathological change characteristic of various glomerular diseases, and apoptosis and F‐actin cytoskeletal disruption are typical features of podocyte injury. In this study, we found that adriamycin (ADR) treatment resulted in typical podocyte injury and repressed plectin expression. Restoring plectin expression protected against ADR‐induced podocyte injury whereas siRNA‐mediated plectin silencing produced similar effects as ADR‐induced podocyte injury, suggesting that plectin plays a key role in preventing podocyte injury. Further analysis showed that plectin repression induced significant integrin α6β4, focal adhesion kinase (FAK) and p38 MAPK phosphorylation. Mutating Y1494, a key tyrosine residue in the integrin β4 subunit, blocked FAK and p38 phosphorylation, thereby alleviating podocyte injury. Inhibitor studies demonstrated that FAK Y397 phosphorylation promoted p38 activation, resulting in podocyte apoptosis and F‐actin cytoskeletal disruption. In vivo studies showed that administration of ADR to rats resulted in significantly increased 24‐hour urine protein levels along with decreased plectin expression and activated integrin α6β4, FAK, and p38. Taken together, these findings indicated that plectin protects podocytes from ADR‐induced apoptosis and F‐actin cytoskeletal disruption by inhibiting integrin α6β4/FAK/p38 pathway activation and that plectin may be a therapeutic target for podocyte injury‐related glomerular diseases.
Collapse
Affiliation(s)
- Yongliang Ni
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Urology, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Xin Wang
- Department of Urology, Tengzhou Central People's Hospital affiliated to Jining Medical College, Xintan Road 181, Tengzhou, China
| | - Xiaoxuan Yin
- Department of Traditional Chinese Medicine, Yankuang Group General Hospital, Zoucheng, China
| | - Yan Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Xigao Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Haixin Wang
- Department of Urology, Yankuang Group General Hospital, Zoucheng, China
| | - Xiangjv Liu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University
| | - Jun Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University
| | - Haiqing Gao
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shaohua Zhao
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University
| |
Collapse
|
2
|
Osmani N, Pontabry J, Comelles J, Fekonja N, Goetz JG, Riveline D, Georges-Labouesse E, Labouesse M. An Arf6- and caveolae-dependent pathway links hemidesmosome remodeling and mechanoresponse. Mol Biol Cell 2017; 29:435-451. [PMID: 29237817 PMCID: PMC6014169 DOI: 10.1091/mbc.e17-06-0356] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 01/08/2023] Open
Abstract
Hemidesmosomes are epithelial-specific cell-matrix adhesions stably anchoring the intracellular keratin network to the extracellular matrix and providing mechanical resilience to epithelia. The small GTPase Arf6 and caveolae are essential for their remodeling, notably in response to external mechanical cues. Hemidesmosomes (HDs) are epithelial-specific cell–matrix adhesions that stably anchor the intracellular keratin network to the extracellular matrix. Although their main role is to protect the epithelial sheet from external mechanical strain, how HDs respond to mechanical stress remains poorly understood. Here we identify a pathway essential for HD remodeling and outline its role with respect to α6β4 integrin recycling. We find that α6β4 integrin chains localize to the plasma membrane, caveolae, and ADP-ribosylation factor-6+ (Arf6+) endocytic compartments. Based on fluorescence recovery after photobleaching and endocytosis assays, integrin recycling between both sites requires the small GTPase Arf6 but neither caveolin1 (Cav1) nor Cavin1. Strikingly, when keratinocytes are stretched or hypo-osmotically shocked, α6β4 integrin accumulates at cell edges, whereas Cav1 disappears from it. This process, which is isotropic relative to the orientation of stretch, depends on Arf6, Cav1, and Cavin1. We propose that mechanically induced HD growth involves the isotropic flattening of caveolae (known for their mechanical buffering role) associated with integrin diffusion and turnover.
Collapse
Affiliation(s)
- Naël Osmani
- IGBMC, Development and Stem Cells Program, CNRS (UMR 7104)/INSERM (U964), 67400 Illkirch, France.,Inserm U1109, MN3T, 67200 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg 67000, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Julien Pontabry
- IGBMC, Development and Stem Cells Program, CNRS (UMR 7104)/INSERM (U964), 67400 Illkirch, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - Jordi Comelles
- IGBMC, Development and Stem Cells Program, CNRS (UMR 7104)/INSERM (U964), 67400 Illkirch, France.,Université de Strasbourg, 67000 Strasbourg, France.,Laboratory of Cell Physics, ISIS/IGBMC, CNRS UMR 7006, 67000 Strasbourg, France
| | - Nina Fekonja
- Inserm U1109, MN3T, 67200 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg 67000, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Jacky G Goetz
- Inserm U1109, MN3T, 67200 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg 67000, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Daniel Riveline
- IGBMC, Development and Stem Cells Program, CNRS (UMR 7104)/INSERM (U964), 67400 Illkirch, France .,Université de Strasbourg, 67000 Strasbourg, France.,Laboratory of Cell Physics, ISIS/IGBMC, CNRS UMR 7006, 67000 Strasbourg, France
| | - Elisabeth Georges-Labouesse
- IGBMC, Development and Stem Cells Program, CNRS (UMR 7104)/INSERM (U964), 67400 Illkirch, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - Michel Labouesse
- IGBMC, Development and Stem Cells Program, CNRS (UMR 7104)/INSERM (U964), 67400 Illkirch, France .,Université de Strasbourg, 67000 Strasbourg, France.,UMR7622-CNRS, IBPS, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
3
|
Marshall JL, Crosbie-Watson RH. Sarcospan: a small protein with large potential for Duchenne muscular dystrophy. Skelet Muscle 2013; 3:1. [PMID: 23282144 PMCID: PMC3599653 DOI: 10.1186/2044-5040-3-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/27/2012] [Indexed: 01/09/2023] Open
Abstract
Purification of the proteins associated with dystrophin, the gene product responsible for Duchenne muscular dystrophy, led to the discovery of the dystrophin-glycoprotein complex. Sarcospan, a 25-kDa transmembrane protein, was the last component to be identified and its function in skeletal muscle has been elusive. This review will focus on progress over the last decade revealing that sarcospan is an important regulator of muscle cell adhesion, strength, and regeneration. Investigations using several transgenic mouse models demonstrate that overexpression of sarcospan in the mouse model for Duchenne muscular dystrophy ameliorates pathology and restores muscle cell binding to laminin. Sarcospan improves cell surface expression of the dystrophin- and utrophin-glycoprotein complexes as well as α7β1 integrin, which are the three major laminin-binding complexes in muscle. Utrophin and α7β1 integrin compensate for the loss of dystrophin and the finding that sarcospan increases their abundance at the extra-synaptic sarcolemma supports the use of sarcospan as a therapeutic target. Newly discovered phenotypes in sarcospan-deficient mice, including a reduction in specific force output and increased drop in force in the diaphragm muscle, result from decreased utrophin and dystrophin expression and further reveal sarcospan’s role in determining abundance of these complexes. Dystrophin protein levels and the specific force output of the diaphragm muscle are further reduced upon genetic removal of α7 integrin (Itga7) in SSPN-deficient mice, demonstrating that interactions between integrin and sarcospan are critical for maintenance of the dystrophin-glycoprotein complex and force production of the diaphragm muscle. Sarcospan is a major regulator of Akt signaling pathways and sarcospan-deficiency significantly impairs muscle regeneration, a process that is dependent on Akt activation. Intriguingly, sarcospan regulates glycosylation of a specific subpopulation of α-dystroglycan, the laminin-binding receptor associated with dystrophin and utrophin, localized to the neuromuscular junction. Understanding the basic mechanisms responsible for assembly and trafficking of the dystrophin- and utrophin-glycoprotein complexes to the cell surface is lacking and recent studies suggest that sarcospan plays a role in these essential processes.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E, Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA.
| | | |
Collapse
|
4
|
Marshall JL, Holmberg J, Chou E, Ocampo AC, Oh J, Lee J, Peter AK, Martin PT, Crosbie-Watson RH. Sarcospan-dependent Akt activation is required for utrophin expression and muscle regeneration. ACTA ACUST UNITED AC 2012; 197:1009-27. [PMID: 22734004 PMCID: PMC3384411 DOI: 10.1083/jcb.201110032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Utrophin is normally confined to the neuromuscular junction (NMJ) in adult muscle and partially compensates for the loss of dystrophin in mdx mice. We show that Akt signaling and utrophin levels were diminished in sarcospan (SSPN)-deficient muscle. By creating several transgenic and knockout mice, we demonstrate that SSPN regulates Akt signaling to control utrophin expression. SSPN determined α-dystroglycan (α-DG) glycosylation by affecting levels of the NMJ-specific glycosyltransferase Galgt2. After cardiotoxin (CTX) injury, regenerating myofibers express utrophin and Galgt2-modified α-DG around the sarcolemma. SSPN-null mice displayed delayed differentiation after CTX injury caused by loss of utrophin and Akt signaling. Treatment of SSPN-null mice with viral Akt increased utrophin and restored muscle repair after injury, revealing an important role for the SSPN-Akt-utrophin signaling axis in regeneration. SSPN improved cell surface expression of utrophin by increasing transportation of utrophin and DG from endoplasmic reticulum/Golgi membranes. Our experiments reveal functions of utrophin in regeneration and new pathways that regulate utrophin expression at the cell surface.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology and 2 Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
The dermal-epidermal basement membrane is a complex assembly of proteins that provide adhesion and regulate many important processes such as development, wound healing, and cancer progression. This contribution focuses on the structure and function of individual components of the basement membrane, how they assemble together, and how they participate in human tissues and diseases, with an emphasis on skin involvement. Understanding the composition and structure of the basement membrane provides insight into the pathophysiology of inherited blistering disorders, such as epidermolysis bullosa, and acquired bullous diseases, such as the pemphigoid group of autoimmune diseases and epidermolysis bullosa acquisita.
Collapse
Affiliation(s)
- Sana Hashmi
- Stanford University School of Medicine, Li Ka Shing Building, 291 Campus Drive, Stanford, CA 94305, USA
| | | |
Collapse
|
6
|
Ortega E, Buey RM, Sonnenberg A, de Pereda JM. The structure of the plakin domain of plectin reveals a non-canonical SH3 domain interacting with its fourth spectrin repeat. J Biol Chem 2011; 286:12429-38. [PMID: 21288893 PMCID: PMC3069446 DOI: 10.1074/jbc.m110.197467] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/29/2010] [Indexed: 11/06/2022] Open
Abstract
Plectin belongs to the plakin family of cytoskeletal crosslinkers, which is part of the spectrin superfamily. Plakins contain an N-terminal conserved region, the plakin domain, which is formed by an array of spectrin repeats (SR) and a Src-homology 3 (SH3), and harbors binding sites for junctional proteins. We have combined x-ray crystallography and small angle x-ray scattering (SAXS) to elucidate the structure of the central region of the plakin domain of plectin, which corresponds to the SR3, SR4, SR5, and SH3 domains. The crystal structures of the SR3-SR4 and SR4-SR5-SH3 fragments were determined to 2.2 and 2.95 Å resolution, respectively. The SH3 of plectin presents major alterations as compared with canonical Pro-rich binding SH3 domains, suggesting that plectin does not recognize Pro-rich motifs. In addition, the SH3 binding site is partially occluded by an intramolecular contact with the SR4. Residues of this pseudo-binding site and the SR4/SH3 interface are conserved within the plakin family, suggesting that the structure of this part of the plectin molecule is similar to that of other plakins. We have created a model for the SR3-SR4-SR5-SH3 region, which agrees well with SAXS data in solution. The three SRs form a semi-flexible rod that is not altered by the presence of the SH3 domain, and it is similar to those found in spectrins. The flexibility of the plakin domain, in analogy with spectrins, might contribute to the role of plakins in maintaining the stability of tissues subject to mechanical stress.
Collapse
Affiliation(s)
- Esther Ortega
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, Campus Unamuno, E-37007 Salamanca, Spain
| | - Rubén M. Buey
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, Campus Unamuno, E-37007 Salamanca, Spain
- the Laboratory of Biomolecular Research, the Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland, and
| | - Arnoud Sonnenberg
- the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - José M. de Pereda
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, Campus Unamuno, E-37007 Salamanca, Spain
| |
Collapse
|
7
|
Ponomarev SY, Audie J. Computational prediction and analysis of the DR6-NAPP interaction. Proteins 2011; 79:1376-95. [DOI: 10.1002/prot.22962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/02/2010] [Accepted: 11/24/2010] [Indexed: 01/14/2023]
|
8
|
Postel R, Ketema M, Kuikman I, de Pereda JM, Sonnenberg A. Nesprin-3 augments peripheral nuclear localization of intermediate filaments in zebrafish. J Cell Sci 2011; 124:755-64. [PMID: 21303928 DOI: 10.1242/jcs.081174] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The outer nuclear membrane protein nesprin-3 binds the cytoskeletal linker protein plectin, which are proposed to anchor the intermediate filaments to the nuclear envelope. To investigate the function of nesprin-3 in vivo, we used the zebrafish as a vertebrate model system. Zebrafish nesprin-3 is expressed at the nuclear envelope of epidermal and skeletal muscle cells during development. Unexpectedly, loss of nesprin-3 did not affect embryonic development, viability or fertility. However, nesprin-3-deficient zebrafish embryos showed a reduced concentration of intermediate filaments around the nucleus. Additional analysis revealed the presence of two nesprin-3 isoforms in zebrafish, nesprin-3α and nesprin-3β. Nesprin-3β is only expressed during early development and lacks seven amino acids in its first spectrin repeat that are crucial for plectin binding and recruitment to the nuclear envelope. These seven amino acids are highly conserved and we showed that residues R43 and L44 within this motif are required for plectin binding. Furthermore, several residues in the actin-binding domain of plectin that are crucial for binding to the integrin β4 subunit are also important for the binding to nesprin-3α, indicating partial overlapping binding sequences for nesprin-3α and integrin β4. All this shows that nesprin-3 is dispensable for normal development in zebrafish, but important for mediating the association of the intermediate filament system with the nucleus in vivo.
Collapse
Affiliation(s)
- Ruben Postel
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Natsuga K, Nishie W, Akiyama M, Nakamura H, Shinkuma S, McMillan JR, Nagasaki A, Has C, Ouchi T, Ishiko A, Hirako Y, Owaribe K, Sawamura D, Bruckner-Tuderman L, Shimizu H. Plectin expression patterns determine two distinct subtypes of epidermolysis bullosa simplex. Hum Mutat 2010; 31:308-16. [PMID: 20052759 DOI: 10.1002/humu.21189] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Plectin is a cytoskeletal linker protein that has a dumbbell-like structure with a long central rod and N- and C-terminal globular domains. Mutations in the gene encoding plectin (PLEC1) cause two distinct autosomal recessive subtypes of epidermolysis bullosa (EB): EB simplex with muscular dystrophy (EBS-MD), and EB simplex with pyloric atresia (EBS-PA). Here, we demonstrate that normal human fibroblasts express two different plectin isoforms including full-length and rodless forms of plectin. We performed detailed analysis of plectin expression patterns in six EBS-MD and three EBS-PA patients. In EBS-PA, expression of all plectin domains was found to be markedly attenuated or completely lost; in EBS-MD, the expression of the N- and C-terminal domains of plectin remained detectable, although the expression of rod domains was absent or markedly reduced. Our data suggest that loss of the full-length plectin isoform with residual expression of the rodless plectin isoform leads to EBS-MD, and that complete loss or marked attenuation of full-length and rodless plectin expression underlies the more severe EBS-PA phenotype. These results also clearly account for the majority of EBS-MD PLEC1 mutation restriction within the large exon 31 that encodes the plectin rod domain, whereas EBS-PA PLEC1 mutations are generally outside exon 31.
Collapse
Affiliation(s)
- Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ko MS, Marinkovich MP. Role of dermal-epidermal basement membrane zone in skin, cancer, and developmental disorders. Dermatol Clin 2010; 28:1-16. [PMID: 19945611 DOI: 10.1016/j.det.2009.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The dermal-epidermal basement membrane zone is an important epithelial and stromal interface, consisting of an intricately organized collection of intracellular, transmembrane, and extracellular matrix proteins. The basement membrane zone has several main functions including acting as a permeability barrier, forming an adhesive interface between epithelial cells and the underlying matrix, and controlling cellular organization and differentiation. This article identifies key molecular players of the dermal-epidermal membrane zone, and highlights recent research studies that have identified structural and functional roles of these components in the context of various blistering, neoplastic, and developmental syndromes.
Collapse
Affiliation(s)
- Myung S Ko
- Program in Epithelial Biology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | | |
Collapse
|
11
|
Xu R, DeVries S, Camboni M, Martin PT. Overexpression of Galgt2 reduces dystrophic pathology in the skeletal muscles of alpha sarcoglycan-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:235-47. [PMID: 19498002 DOI: 10.2353/ajpath.2009.080967] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies have shown that a number of genes that are not mutated in various forms of muscular dystrophy may serve as surrogates to protect skeletal myofibers from injury. One such gene is Galgt2, which is also called cytotoxic T cell GalNAc transferase in mice. In this study, we show that Galgt2 overexpression reduces the development of dystrophic pathology in the skeletal muscles of mice lacking alpha sarcoglycan (Sgca), a mouse model for limb girdle muscular dystrophy 2D. Galgt2 transgenic Sgca(-/-) mice showed reduced levels of myofiber damage, as evidenced by i) normal levels of serum creatine kinase activity, ii) a lack of Evans blue dye uptake into myofibers, iii) normal levels of mouse locomotor activity, and iv) near normal percentages of myofibers with centrally located nuclei. In addition, the overexpression of Galgt2 in the early postnatal period using an adeno-associated virus gene therapy vector protected Sgca(-/-) myofibers from damage, as observed using histopathology measurements. Galgt2 transgenic Sgca(-/-) mice also had increased levels of glycosylation of alpha dystroglycan with the CT carbohydrate, but showed no up-regulation of beta, gamma, delta, or epsilon sarcoglycan. These data, coupled with results from our previous studies, show that Galgt2 has therapeutic effects in three distinct forms of muscular dystrophy and may, therefore, have a broad spectrum of therapeutic potential for the treatment of various myopathies.
Collapse
Affiliation(s)
- Rui Xu
- the Departments of Pediatrics, Center for Gene Therapy, Physiology and Cell Biology, Ohio State University College of Medicine, Columbus, Ohio 43205, USA
| | | | | | | |
Collapse
|
12
|
de Pereda JM, Lillo MP, Sonnenberg A. Structural basis of the interaction between integrin alpha6beta4 and plectin at the hemidesmosomes. EMBO J 2009; 28:1180-90. [PMID: 19242489 DOI: 10.1038/emboj.2009.48] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Accepted: 02/02/2009] [Indexed: 01/20/2023] Open
Abstract
The interaction between the integrin alpha6beta4 and plectin is essential for the assembly and stability of hemidesmosomes, which are junctional adhesion complexes that anchor epithelial cells to the basement membrane. We describe the crystal structure at 2.75 A resolution of the primary alpha6beta4-plectin complex, formed by the first pair of fibronectin type III domains and the N-terminal region of the connecting segment of beta4 and the actin-binding domain of plectin. Two missense mutations in beta4 (R1225H and R1281W) linked to nonlethal forms of epidermolysis bullosa prevent essential intermolecular contacts. We also present two structures at 1.75 and 2.05 A resolution of the beta4 moiety in the absence of plectin, which reveal a major rearrangement of the connecting segment of beta4 on binding to plectin. This conformational switch is correlated with the way alpha6beta4 promotes stable adhesion or cell migration and suggests an allosteric control of the integrin.
Collapse
Affiliation(s)
- José M de Pereda
- Department of Structural Biology, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Campus Unamuno, Salamanca, Spain.
| | | | | |
Collapse
|
13
|
Regulation of hemidesmosome disassembly by growth factor receptors. Curr Opin Cell Biol 2008; 20:589-96. [DOI: 10.1016/j.ceb.2008.05.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 05/13/2008] [Indexed: 11/20/2022]
|
14
|
Ketema M, Wilhelmsen K, Kuikman I, Janssen H, Hodzic D, Sonnenberg A. Requirements for the localization of nesprin-3 at the nuclear envelope and its interaction with plectin. J Cell Sci 2008; 120:3384-94. [PMID: 17881500 DOI: 10.1242/jcs.014191] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The outer nuclear membrane proteins nesprin-1 and nesprin-2 are retained at the nuclear envelope through an interaction of their klarsicht/ANC-1/syne homology (KASH) domain with Sun proteins present at the inner nuclear membrane. We investigated the requirements for the localization of nesprin-3alpha at the outer nuclear membrane and show that the mechanism by which its localization is mediated is similar to that reported for the localization of nesprin-1 and nesprin-2: the last four amino acids of the nesprin-3alpha KASH domain are essential for its interaction with Sun1 and Sun2. Moreover, deletion of these amino acids or knockdown of the Sun proteins results in a redistribution of nesprin-3alpha away from the nuclear envelope and into the endoplasmic reticulum (ER), where it becomes colocalized with the cytoskeletal crosslinker protein plectin. Both nesprin-3alpha and plectin can form dimers, and dimerization of plectin is required for its interaction with nesprin-3alpha at the nuclear envelope, which is mediated by its N-terminal actin-binding domain. Additionally, overexpression of the plectin actin-binding domain stabilizes the actin cytoskeleton and prevents the recruitment of endogenous plectin to the nuclear envelope. Our studies support a model in which the actin cytoskeleton influences the binding of plectin dimers to dimers of nesprin-3alpha, which in turn are retained at the nuclear envelope through an interaction with Sun proteins.
Collapse
Affiliation(s)
- Mirjam Ketema
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
McMillan JR, Akiyama M, Rouan F, Mellerio JE, Lane EB, Leigh IM, Owaribe K, Wiche G, Fujii N, Uitto J, Eady RAJ, Shimizu H. Plectin defects in epidermolysis bullosa simplex with muscular dystrophy. Muscle Nerve 2007; 35:24-35. [PMID: 16967486 DOI: 10.1002/mus.20655] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Epidermolysis bullosa simplex with muscular dystrophy (EBS-MD, MIM 226670) is caused by plectin defects. We performed mutational analysis and immunohistochemistry using EBS-MD (n = 3 cases) and control skeletal muscle to determine pathogenesis. Mutational analysis revealed a novel homozygous plectin-exon32 rod domain mutation (R2465X). All plectin/HD1-121 antibodies stained the control skeletal muscle membrane. However, plectin antibodies stained the cytoplasm of type II control muscle fibers (as confirmed by ATPase staining), whereas HD1-121 stained the cytoplasm of type I fibers. EBS-MD samples lacked membrane (n = 3) but retained cytoplasmic HD1-121 (n = 1) and plectin staining in type II fibers (n = 3). Ultrastructurally, EBS-MD demonstrated widening and vacuolization adjacent to the membrane and disorganization of Z-lines (n = 2 of 3) compared to controls (n = 5). Control muscle immunogold labeling colocalized plectin and desmin to filamentous bridges between Z-lines and the membrane that were disrupted in EBS-MD muscle. We conclude that fiber-specific plectin expression is associated with the desmin-cytoskeleton, Z-lines, and crucially myocyte membrane linkage, analogous to hemidesmosomes in skin.
Collapse
MESH Headings
- Adult
- Cell Membrane/metabolism
- Cell Membrane/pathology
- Cell Membrane/ultrastructure
- Child
- Cytoplasm/metabolism
- Cytoplasm/pathology
- Cytoplasm/ultrastructure
- Cytoskeleton/metabolism
- Cytoskeleton/pathology
- Cytoskeleton/ultrastructure
- DNA Mutational Analysis
- Desmosomes/metabolism
- Desmosomes/pathology
- Desmosomes/ultrastructure
- Epidermolysis Bullosa Simplex/complications
- Epidermolysis Bullosa Simplex/metabolism
- Epidermolysis Bullosa Simplex/pathology
- Female
- Genetic Predisposition to Disease/genetics
- Humans
- Immunohistochemistry
- Male
- Microscopy, Immunoelectron
- Middle Aged
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Fast-Twitch/ultrastructure
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/pathology
- Muscle Fibers, Slow-Twitch/ultrastructure
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/ultrastructure
- Muscular Dystrophies/complications
- Muscular Dystrophies/metabolism
- Muscular Dystrophies/pathology
- Mutation/genetics
- Plectin/analysis
- Plectin/genetics
- Plectin/metabolism
- Protein Structure, Tertiary/genetics
Collapse
Affiliation(s)
- J R McMillan
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo 060-8638, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Litjens SHM, de Pereda JM, Sonnenberg A. Current insights into the formation and breakdown of hemidesmosomes. Trends Cell Biol 2006; 16:376-83. [PMID: 16757171 DOI: 10.1016/j.tcb.2006.05.004] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 05/03/2006] [Accepted: 05/24/2006] [Indexed: 11/20/2022]
Abstract
Hemidesmosomes are multiprotein adhesion complexes that promote epithelial stromal attachment in stratified and complex epithelia. Modulation of their function is of crucial importance in a variety of biological processes, such as differentiation and migration of keratinocytes during wound healing and carcinoma invasion, in which cells become detached from the substrate and acquire a motile phenotype. Although much is known about the signaling potential of the alpha6beta4 integrin in carcinoma cells, the events that coordinate the disassembly of hemidesmosomes during differentiation and wound healing remain unclear. The binding of alpha6beta4 to plectin has a central role in hemidesmosome assembly and it is becoming clear that disrupting this interaction is a crucial event in hemidesmosome disassembly. In addition, further insight into the functional interplay between alpha3beta1 and alpha6beta4 has contributed to our understanding of hemidesmosome disassembly and cell migration.
Collapse
Affiliation(s)
- Sandy H M Litjens
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|