1
|
van Gerwen J, Masson SWC, Cutler HB, Vegas AD, Potter M, Stöckli J, Madsen S, Nelson ME, Humphrey SJ, James DE. The genetic and dietary landscape of the muscle insulin signalling network. eLife 2024; 12:RP89212. [PMID: 38329473 PMCID: PMC10942587 DOI: 10.7554/elife.89212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Metabolic disease is caused by a combination of genetic and environmental factors, yet few studies have examined how these factors influence signal transduction, a key mediator of metabolism. Using mass spectrometry-based phosphoproteomics, we quantified 23,126 phosphosites in skeletal muscle of five genetically distinct mouse strains in two dietary environments, with and without acute in vivo insulin stimulation. Almost half of the insulin-regulated phosphoproteome was modified by genetic background on an ordinary diet, and high-fat high-sugar feeding affected insulin signalling in a strain-dependent manner. Our data revealed coregulated subnetworks within the insulin signalling pathway, expanding our understanding of the pathway's organisation. Furthermore, associating diverse signalling responses with insulin-stimulated glucose uptake uncovered regulators of muscle insulin responsiveness, including the regulatory phosphosite S469 on Pfkfb2, a key activator of glycolysis. Finally, we confirmed the role of glycolysis in modulating insulin action in insulin resistance. Our results underscore the significance of genetics in shaping global signalling responses and their adaptability to environmental changes, emphasising the utility of studying biological diversity with phosphoproteomics to discover key regulatory mechanisms of complex traits.
Collapse
Affiliation(s)
- Julian van Gerwen
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Stewart WC Masson
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Harry B Cutler
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Alexis Diaz Vegas
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Meg Potter
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Jacqueline Stöckli
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Søren Madsen
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Marin E Nelson
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
- Faculty of Medicine and Health, University of SydneySydneyAustralia
| |
Collapse
|
2
|
Cntnap2-dependent molecular networks in autism spectrum disorder revealed through an integrative multi-omics analysis. Mol Psychiatry 2023; 28:810-821. [PMID: 36253443 PMCID: PMC9908544 DOI: 10.1038/s41380-022-01822-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 12/28/2022]
Abstract
Autism spectrum disorder (ASD) is a major neurodevelopmental disorder in which patients present with core symptoms of social communication impairment, restricted interest, and repetitive behaviors. Although various studies have been performed to identify ASD-related mechanisms, ASD pathology is still poorly understood. CNTNAP2 genetic variants have been found that represent ASD genetic risk factors, and disruption of Cntnap2 expression has been associated with ASD phenotypes in mice. In this study, we performed an integrative multi-omics analysis by combining quantitative proteometabolomic data obtained with Cntnap2 knockout (KO) mice with multi-omics data obtained from ASD patients and forebrain organoids to elucidate Cntnap2-dependent molecular networks in ASD. To this end, a mass spectrometry-based proteometabolomic analysis of the medial prefrontal cortex in Cntnap2 KO mice led to the identification of Cntnap2-associated molecular features, and these features were assessed in combination with multi-omics data obtained on the prefrontal cortex in ASD patients to identify bona fide ASD cellular processes. Furthermore, a reanalysis of single-cell RNA sequencing data obtained from forebrain organoids derived from patients with CNTNAP2-associated ASD revealed that the aforementioned identified ASD processes were mainly linked to excitatory neurons. On the basis of these data, we constructed Cntnap2-associated ASD network models showing mitochondrial dysfunction, axonal impairment, and synaptic activity. Our results may shed light on the Cntnap2-dependent molecular networks in ASD.
Collapse
|
3
|
Cornell RB, Taneva SG, Dennis MK, Tse R, Dhillon RK, Lee J. Disease-linked mutations in the phosphatidylcholine regulatory enzyme CCTα impair enzymatic activity and fold stability. J Biol Chem 2018; 294:1490-1501. [PMID: 30559292 DOI: 10.1074/jbc.ra118.006457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/05/2018] [Indexed: 11/06/2022] Open
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in phosphatidylcholine (PC) synthesis and is activated by binding to PC-deficient membranes. Mutations in the gene encoding CCTα (PCYT1A) cause three distinct pathologies in humans: lipodystrophy, spondylometaphyseal dysplasia with cone-rod dystrophy (SMD-CRD), and isolated retinal dystrophy. Previous analyses showed that for some disease-linked PCYT1A variants steady state levels of CCTα and PC synthesis were reduced in patient fibroblasts, but other variants impaired PC synthesis with little effect on CCT levels. To explore the impact on CCT stability and function we expressed WT and mutant CCTs in COS-1 cells, which have very low endogenous CCT. Over-expression of two missense variants in the catalytic domain (V142M and P150A) generated aggregated enzymes that could not be refolded after solubilization by denaturation. Other mutations in the catalytic core that generated CCTs with reduced solubility could be purified. Five variants destabilized the catalytic domain-fold as assessed by lower transition temperatures for unfolding, and three of these manifested defects in substrate Km values. A mutation (R223S) in a signal-transducing linker between the catalytic and membrane-binding domains also impaired enzyme kinetics. E280del, a single amino acid deletion in the autoinhibitory helix increased the constitutive (lipid-independent) enzyme activity ∼4-fold. This helix also participates in membrane binding, and surprisingly E280del enhanced the enzyme's response to anionic lipid vesicles ∼4-fold. These in vitro analyses on purified mutant CCTs will complement future measurements of their impact on PC synthesis in cultured cells and in tissues with a stringent requirement for CCTα.
Collapse
Affiliation(s)
- Rosemary B Cornell
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada; Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada.
| | - Svetla G Taneva
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| | - Melissa K Dennis
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| | - Ronnie Tse
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| | - Randeep K Dhillon
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| | - Jaeyong Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| |
Collapse
|
4
|
Fessler MB, Summer RS. Surfactant Lipids at the Host-Environment Interface. Metabolic Sensors, Suppressors, and Effectors of Inflammatory Lung Disease. Am J Respir Cell Mol Biol 2017; 54:624-35. [PMID: 26859434 DOI: 10.1165/rcmb.2016-0011ps] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The lipid composition of pulmonary surfactant is unlike that of any other body fluid. This extracellular lipid reservoir is also uniquely susceptible by virtue of its direct and continuous exposure to environmental oxidants, inflammatory agents, and pathogens. Historically, the greatest attention has been focused on those biophysical features of surfactant that serve to reduce surface tension at the air-liquid interface. More recently, surfactant lipids have also been recognized as bioactive molecules that maintain immune quiescence in the lung but can also be remodeled by the inhaled environment into neolipids that mediate key roles in inflammation, immunity, and fibrosis. This review focuses on the roles in inflammatory and infectious lung disease of two classes of native surfactant lipids, glycerophospholipids and sterols, and their corresponding oxidized species, oxidized glycerophospholipids and oxysterols. We highlight evidence that surfactant composition is sensitive to circulating lipoproteins and that the lipid milieu of the alveolus should thus be recognized as susceptible to diet and common systemic metabolic disorders. We also discuss intriguing evidence suggesting that oxidized surfactant lipids may represent an evolutionary link between immunity and tissue homeostasis that arose in the primordial lung. Taken together, the emerging picture is one in which the unique environmental susceptibility of the lung, together with its unique extracellular lipid requirements, may have made this organ both an evolutionary hub and an engine for lipid-immune cross-talk.
Collapse
Affiliation(s)
- Michael B Fessler
- 1 Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and
| | - Ross S Summer
- 2 Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Targeting Fat: Mechanisms of Protein Localization to Lipid Droplets. Trends Cell Biol 2016; 26:535-546. [PMID: 26995697 DOI: 10.1016/j.tcb.2016.02.007] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022]
Abstract
How proteins specifically localize to the phospholipid monolayer surface of lipid droplets (LDs) is being unraveled. We review here the major known pathways of protein targeting to LDs and suggest a classification framework based on the localization origin for the protein. Class I proteins often have a membrane-embedded, hydrophobic 'hairpin' motif, and access LDs from the endoplasmic reticulum (ER) either during LD formation or after formation via ER-LD membrane bridges. Class II proteins access the LD surface from the cytosol and bind through amphipathic helices or other hydrophobic domains. Other proteins require lipid modifications or protein-protein interactions to bind to LDs. We summarize knowledge for targeting and removal of the different classes, and highlight areas needing investigation.
Collapse
|
6
|
Membrane lipid compositional sensing by the inducible amphipathic helix of CCT. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:847-861. [PMID: 26747646 DOI: 10.1016/j.bbalip.2015.12.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 11/21/2022]
Abstract
The amphipathic helical (AH) membrane binding motif is recognized as a major device for lipid compositional sensing. We explore the function and mechanism of sensing by the lipid biosynthetic enzyme, CTP:phosphocholine cytidylyltransferase (CCT). As the regulatory enzyme in phosphatidylcholine (PC) synthesis, CCT contributes to membrane PC homeostasis. CCT directly binds and inserts into the surface of bilayers that are deficient in PC and therefore enriched in lipids that enhance surface charge and/or create lipid packing voids. These two membrane physical properties induce the folding of the CCT M domain into a ≥60 residue AH. Membrane binding activates catalysis by a mechanism that has been partially deciphered. We review the evidence for CCT compositional sensing, and the membrane and protein determinants for lipid selective membrane-interactions. We consider the factors that promote the binding of CCT isoforms to the membranes of the ER, nuclear envelope, or lipid droplets, but exclude CCT from other organelles and the plasma membrane. The CCT sensing mechanism is compared with several other proteins that use an AH motif for membrane compositional sensing. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
7
|
Cornell RB, Ridgway ND. CTP:phosphocholine cytidylyltransferase: Function, regulation, and structure of an amphitropic enzyme required for membrane biogenesis. Prog Lipid Res 2015; 59:147-71. [PMID: 26165797 DOI: 10.1016/j.plipres.2015.07.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022]
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) catalyzes a rate-limiting and regulated step in the CDP-choline pathway for the synthesis of phosphatidylcholine (PC) and PC-derived lipids. Control of CCT activity is multi-layered, and includes direct regulation by reversible membrane binding involving a built-in lipid compositional sensor. Thus CCT contributes to phospholipid compositional homeostasis. CCT also modifies the curvature of its target membrane. Knowledge of CCT structure and regulation of its catalytic function are relatively advanced compared to many lipid metabolic enzymes, and are reviewed in detail. Recently the genetic origins of two human developmental and lipogenesis disorders have been traced to mutations in the gene for CCTα.
Collapse
Affiliation(s)
- Rosemary B Cornell
- Department of Molecular Biology and Biochemistry and the Department of Chemistry, Simon Fraser University, Burnaby, B.C. V5A-1S6, Canada.
| | - Neale D Ridgway
- Departments of Pediatrics, and Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia B3H-4H7, Canada
| |
Collapse
|
8
|
Abstract
The alveolar type II epithelial (ATII) cell is highly specialised for the synthesis and storage, in intracellular lamellar bodies, of phospholipid destined for secretion as pulmonary surfactant into the alveolus. Regulation of the enzymology of surfactant phospholipid synthesis and metabolism has been extensively characterised at both molecular and functional levels, but understanding of surfactant phospholipid metabolism in vivo in either healthy or, especially, diseased lungs is still relatively poorly understood. This review will integrate recent advances in the enzymology of surfactant phospholipid metabolism with metabolic studies in vivo in both experimental animals and human subjects. It will highlight developments in the application of stable isotope-labelled precursor substrates and mass spectrometry to probe lung phospholipid metabolism in terms of individual molecular lipid species and identify areas where a more comprehensive metabolic model would have considerable potential for direct application to disease states.
Collapse
|
9
|
LI MENG, PENG ZHONGMIN, LIU QINGWEI, SUN JIAN, YAO SHUZHAN, LIU QI. Value of 11C-choline PET/CT for lung cancer diagnosis and the relation between choline metabolism and proliferation of cancer cells. Oncol Rep 2012; 29:205-11. [DOI: 10.3892/or.2012.2099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/17/2012] [Indexed: 11/06/2022] Open
|
10
|
Agassandian M, Mallampalli RK. Surfactant phospholipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:612-25. [PMID: 23026158 DOI: 10.1016/j.bbalip.2012.09.010] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/07/2012] [Accepted: 09/16/2012] [Indexed: 12/16/2022]
Abstract
Pulmonary surfactant is essential for life and is composed of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Marianna Agassandian
- Department of Medicine, Acute Lung Injury Center of Excellence, the University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
11
|
Phosphatidylcholine and the CDP-choline cycle. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:523-32. [PMID: 23010477 DOI: 10.1016/j.bbalip.2012.09.009] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/16/2012] [Indexed: 11/20/2022]
Abstract
The CDP-choline pathway of phosphatidylcholine (PtdCho) biosynthesis was first described more than 50 years ago. Investigation of the CDP-choline pathway in yeast provides a basis for understanding the CDP-choline pathway in mammals. PtdCho is considered as an intermediate in a cycle of synthesis and degradation, and the activity of a CDP-choline cycle is linked to subcellular membrane lipid movement. The components of the mammalian CDP-choline pathway include choline transport, choline kinase, phosphocholine cytidylyltransferase, and choline phosphotransferase activities. The protein isoforms and biochemical mechanisms of regulation of the pathway enzymes are related to their cell- and tissue-specific functions. Regulated PtdCho turnover mediated by phospholipases or neuropathy target esterase participates in the mammalian CDP-choline cycle. Knockout mouse models define the biological functions of the CDP-choline cycle in mammalian cells and tissues. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
|
12
|
Agassandian M, Chen BB, Pulijala R, Kaercher L, Glasser JR, Mallampalli RK. Calcium-calmodulin kinase I cooperatively regulates nucleocytoplasmic shuttling of CCTα by accessing a nuclear export signal. Mol Biol Cell 2012; 23:2755-69. [PMID: 22621903 PMCID: PMC3395663 DOI: 10.1091/mbc.e11-10-0863] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 05/04/2012] [Accepted: 05/16/2012] [Indexed: 12/28/2022] Open
Abstract
We identified a new calmodulin kinase I (CaMKI) substrate, cytidyltransferase (CCTα), a crucial enzyme required for maintenance of cell membranes. CCTα becomes activated with translocation from the cytoplasm to the nuclear membrane, resulting in increased membrane phospholipids. Calcium-activated CCTα nuclear import is mediated by binding of its C-terminus to 14-3-3 ζ, a regulator of nuclear trafficking. Here CaMK1 phosphorylates residues within this C-terminus that signals association of CCTα with 14-3-3 ζ to initiate calcium-induced nuclear entry. CaMKI docks within the CCTα membrane-binding domain (residues 290-299), a sequence that displays similarities to a canonical nuclear export signal (NES) that also binds CRM1/exportin 1. Expression of a CFP-CCTα mutant lacking residues 290-299 in cells results in cytosolically retained enzyme. CRM1/exportin 1 was required for CCTα nuclear export, and its overexpression in cells was partially sufficient to trigger CCTα nuclear export despite calcium stimulation. An isolated CFP-290-299 peptide remained in the nucleus in the presence of leptomycin B but was able to target to the cytoplasm with farnesol. Thus CaMKI vies with CRM1/exportin 1 for access to a NES, and assembly of a CaMKI-14-3-3 ζ-CCTα complex is a key effector mechanism that drives nuclear CCTα translocation.
Collapse
Affiliation(s)
- Marianna Agassandian
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Bill B. Chen
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Roopa Pulijala
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Leah Kaercher
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jennifer R. Glasser
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Rama K. Mallampalli
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15213
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240
| |
Collapse
|
13
|
Zhao J, Wei J, Mialki R, Zou C, Mallampalli RK, Zhao Y. Extracellular signal-regulated kinase (ERK) regulates cortactin ubiquitination and degradation in lung epithelial cells. J Biol Chem 2012; 287:19105-14. [PMID: 22514278 DOI: 10.1074/jbc.m112.339507] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cortactin, an actin-binding protein, is essential for cell growth and motility. We have shown that cortactin is regulated by reversible phosphorylation, but little is known regarding cortactin protein stability. Here, we show that lipopolysaccharide (LPS)-induced cortactin degradation is mediated by extracellular regulated signal kinase (ERK). LPS induces cortactin serine phosphorylation, ubiquitination, and degradation in mouse lung epithelia, an effect abrogated by ERK inhibition. Serine phosphorylation sites mutant, cortactin(S405A/S418A), enhances its protein stability. Cortactin is polyubiquitinated and degraded within the proteasome, whereas a cortactin(K79R) mutant exhibited proteolytic stability during cyclohexamide (CHX) or LPS treatment. The E3 ligase subunit β-Trcp interacts with cortactin, and its overexpression reduced cortactin protein levels, an effect attenuated by ERK inhibition. Overexpression of β-Trcp was sufficient to reduce the protective effects of exogenous cortactin on epithelial cell barrier integrity, an effect not observed after expression of a cortactin(K79R) mutant. These results provide evidence that LPS modulation of cortactin stability is coordinately regulated by stress kinases and the ubiquitin-proteasomal network.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
14
|
Strakova J, Demizieux L, Campenot RB, Vance DE, Vance JE. Involvement of CTP:phosphocholine cytidylyltransferase-β2 in axonal phosphatidylcholine synthesis and branching of neurons. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:617-25. [DOI: 10.1016/j.bbalip.2011.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 06/06/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
|
15
|
Dennis MK, Taneva SG, Cornell RB. The intrinsically disordered nuclear localization signal and phosphorylation segments distinguish the membrane affinity of two cytidylyltransferase isoforms. J Biol Chem 2011; 286:12349-60. [PMID: 21303909 DOI: 10.1074/jbc.m110.201715] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane phosphatidylcholine homeostasis is maintained in part by a sensing device in the key regulatory enzyme, CTP:phosphocholine cytidylyltransferase (CCT). CCT responds to decreases in membrane phosphatidylcholine content by reversible membrane binding and activation. Two prominent isoforms, CCTα and -β2, have nearly identical catalytic domains and very similar membrane binding amphipathic helical (M) domains but have divergent and structurally disordered N-terminal (N) and C-terminal phosphorylation (P) regions. We found that the binding affinity of purified CCTβ2 for anionic membranes was weaker than CCTα by more than an order of magnitude. Using chimeric CCTs, insertion/deletion mutants, and truncated CCTs, we show that the stronger affinity of CCTα can be attributed in large part to the electrostatic membrane binding function of the polybasic nuclear localization signal (NLS) motif, present in the unstructured N-terminal segment of CCTα but lacking in CCTβ2. The membrane partitioning of CCTβ2 in cells enriched with the lipid activator, oleic acid, was also weaker than that of CCTα and was elevated by incorporation of the NLS motif. Thus, the polybasic NLS can function as a secondary membrane binding motif not only in vitro but in the context of cell membranes. A comparison of phosphorylated, dephosphorylated, and region P-truncated forms showed that the in vitro membrane affinity of CCTβ2 is more sensitive than CCTα to phosphorylation status, which antagonizes membrane binding of both isoforms. These data provide a model wherein the primary membrane binding motif, an amphipathic helical domain, works in collaboration with other intrinsically disordered segments that modulate membrane binding strength. The NLS reinforces, whereas the phosphorylated tail antagonizes the attraction of domain M for anionic membranes.
Collapse
Affiliation(s)
- Melissa K Dennis
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | |
Collapse
|
16
|
Marcucci H, Paoletti L, Jackowski S, Banchio C. Phosphatidylcholine biosynthesis during neuronal differentiation and its role in cell fate determination. J Biol Chem 2010; 285:25382-93. [PMID: 20525991 DOI: 10.1074/jbc.m110.139477] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neuronal differentiation is characterized by neuritogenesis and neurite outgrowth, processes that are dependent on membrane biosynthesis. Thus, the production of phosphatidylcholine (PtdCho), the major membrane phospholipid, should be stimulated during neuronal differentiation. We demonstrate that during retinoic acid (RA)-induced differentiation of Neuro-2a cells, PtdCho synthesis was promoted by an ordered and sequential activation of choline kinase alpha (CK(alpha)) and choline cytidylyltransferase alpha (CCT(alpha)). Early after RA stimulation, the increase in PtdCho synthesis is mainly governed by the biochemical activation of CCT(alpha). Later, the transcription of CK(alpha)- and CCT(alpha)-encoding genes was induced. Both PtdCho biosynthesis and neuronal differentiation are dependent on ERK activation. A novel mechanism is proposed by which PtdCho biosynthesis is coordinated during neuronal differentiation. Enforced expression of either CK(alpha) or CCTalpha increased the rate of synthesis and the amount of PtdCho, and these cells initiated differentiation without RA stimulation, as evidenced by cell morphology and the expression of genes associated with neuritogenesis. The differentiation resulting from enforced expression of CCT(alpha) or CK(alpha) was dependent on persistent ERK activation. These results indicate that elevated PtdCho synthesis could mimic the RA signals and thus determine neuronal cell fate. Moreover, they could explain the key role that PtdCho plays during neuronal regeneration.
Collapse
Affiliation(s)
- Hebe Marcucci
- Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | | | | | | |
Collapse
|
17
|
Butler PL, Mallampalli RK. Cross-talk between remodeling and de novo pathways maintains phospholipid balance through ubiquitination. J Biol Chem 2009; 285:6246-58. [PMID: 20018880 DOI: 10.1074/jbc.m109.017350] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylcholine (PtdCho), the major phospholipid of animal membranes, is generated by its remodeling and de novo synthesis. Overexpression of the remodeling enzyme, LPCAT1 (acyl-CoA:lysophosphatidylcholine acyltransferase) in epithelia decreased de novo PtdCho synthesis without significantly altering cellular PtdCho mass. Overexpression of LPCAT1 increased degradation of CPT1 (cholinephosphotransferase), a resident Golgi enzyme that catalyzes the terminal step for de novo PtdCho synthesis. CPT1 degradation involved its multiubiquitination and processing via the lysosomal pathway. CPT1 mutants harboring arginine substitutions at multiple carboxyl-terminal lysines exhibited proteolytic resistance to effects of LPCAT1 overexpression in cells and restored de novo PtdCho synthesis. Thus, cross-talk between phospholipid remodeling and de novo pathways involves ubiquitin-lysosomal processing of a key molecular target that mechanistically provides homeostatic control of cellular PtdCho content.
Collapse
Affiliation(s)
- Phillip L Butler
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
18
|
Agassandian M, Chen BB, Schuster CC, Houtman JCD, Mallampalli RK. 14-3-3zeta escorts CCTalpha for calcium-activated nuclear import in lung epithelia. FASEB J 2009; 24:1271-83. [PMID: 20007511 DOI: 10.1096/fj.09-136044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Integrity of animal biomembranes is critical to preserve normal cellular functions and viability. Phosphatidylcholine, an indispensible membrane component, requires the enzyme CCTalpha for its biosynthesis. Nuclear expression of CCTalpha is needed for expansion of the nuclear membrane network, but mechanisms for CCTalpha nuclear import are unknown. Herein, we show that in epithelia, extracellular Ca(2+) triggers CCTalpha cytoplasmic-nuclear translocation. CCTalpha nuclear import was associated with binding to 14-3-3zeta, a key regulator of protein trafficking. 14-3-3zeta was both sufficient and required for CCTalpha nuclear import. Helix G within the 14-3-3zeta binding groove interacts with a putative molecular signature within the CCTalpha carboxyl-terminal phosphoserine motif (residues 328-343). 14-3-3zeta was critically involved in preserving phosphatidylcholine synthesis and cell viability in a model of Pseudomonas aeruginosa infection where Ca(2+) concentrations increase within epithelia. Thus, 14-3-3zeta controls CCTalpha nuclear import in response to calcium signals, thereby regulating mammalian phospholipid synthesis. Agassandian, M., Chen, B. B., Schuster, C. C., Houtman, J. C. D., Mallampalli, R. K. 14-3-3zeta escorts CCTalpha for calcium-activated nuclear import in lung epithelia.
Collapse
Affiliation(s)
- Marianna Agassandian
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
19
|
Bai C, Wang X. Multiple-systems dysfunction within the lung: A new angle for understanding pulmonary dysfunction. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/17471060500462393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Masking of a nuclear signal motif by monoubiquitination leads to mislocalization and degradation of the regulatory enzyme cytidylyltransferase. Mol Cell Biol 2009; 29:3062-75. [PMID: 19332566 DOI: 10.1128/mcb.01824-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monoubiquitination aids in the nuclear export and entrance of proteins into the lysosomal degradative pathway, although the mechanisms are unknown. Cytidylyltransferase (CCTalpha) is a proteolytically sensitive lipogenic enzyme containing an NH(2)-terminal nuclear localization signal (NLS). We show here that CCTalpha is monoubiquitinated at a molecular site (K(57)) juxtaposed near its NLS, resulting in disruption of its interaction with importin-alpha, nuclear exclusion, and subsequent degradation within the lysosome. Cellular expression of a CCTalpha-ubiquitin fusion protein that mimics the monoubiquitinated enzyme resulted in cytoplasmic retention. A CCTalpha K(57R) mutant exhibited an extended half-life, was retained in the nucleus, and displayed proteolytic resistance. Importantly, by using CCTalpha-ubiquitin hybrid constructs that vary in the intermolecular distance between ubiquitin and the NLS, we show that CCTalpha monoubiquitination masks its NLS, resulting in cytoplasmic retention. These results unravel a unique molecular mechanism whereby monoubiquitination governs the trafficking and life span of a critical regulatory enzyme in vivo.
Collapse
|
21
|
Karten B, Peake KB, Vance JE. Mechanisms and consequences of impaired lipid trafficking in Niemann-Pick type C1-deficient mammalian cells. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:659-70. [PMID: 19416638 DOI: 10.1016/j.bbalip.2009.01.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 01/20/2009] [Indexed: 11/18/2022]
Abstract
Niemann-Pick C disease is a fatal progressive neurodegenerative disorder caused in 95% of cases by mutations in the NPC1 gene; the remaining 5% of cases result from mutations in the NPC2 gene. The major biochemical manifestation of NPC1 deficiency is an abnormal sequestration of lipids, including cholesterol and glycosphingolipids, in late endosomes/lysosomes (LE/L) of all cells. In this review, we summarize the current knowledge of the NPC1 protein in mammalian cells with particular focus on how defects in NPC1 alter lipid trafficking and neuronal functions. NPC1 is a protein of LE/L and is predicted to contain thirteen transmembrane domains, five of which constitute a sterol-sensing domain. The precise function of NPC1, and the mechanism by which NPC1 and NPC2 (both cholesterol binding proteins) act together to promote the movement of cholesterol and other lipids out of the LE/L, have not yet been established. Recent evidence suggests that the sequestration of cholesterol in LE/L of cells of the brain (neurons and glial cells) contributes to the widespread death and dysfunction of neurons in the brain. Potential therapies include treatments that promote the removal of cholesterol and glycosphingolipids from LE/L. Currently, the most promising approach for extending life-span and improving the quality of life for NPC patients is a combination of several treatments each of which individually modestly slows disease progression.
Collapse
Affiliation(s)
- Barbara Karten
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|
22
|
Oxysterol activation of phosphatidylcholine synthesis involves CTP:phosphocholine cytidylyltransferase α translocation to the nuclear envelope. Biochem J 2009; 418:209-17. [DOI: 10.1042/bj20081923] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In addition to suppressing cholesterol synthesis and uptake, oxysterols also activate glycerophospholipid and SM (sphingomyelin) synthesis, possibly to buffer cells from excess sterol accumulation. In the present study, we investigated the effects of oxysterols on the CDP-choline pathway for PtdCho (phosphatidylcholine) synthesis using wild-type and sterol-resistant CHO (Chinese-hamster ovary) cells expressing a mutant of SCAP [SREBP (sterol-regulatory-element-binding protein) cleavage-activating protein] (CHO-SCAP D443N). [3H]Choline-labelling experiments showed that 25OH (25-hydroxycholesterol), 22OH (22-hydroxycholesterol) and 27OH (27-hydroxycholesterol) increased PtdCho synthesis in CHO cells as a result of CCTα (CTP:phosphocholine cytidylyltransferase α) translocation and activation at the NE (nuclear envelope). These oxysterols also activate PtdCho synthesis in J774 macrophages. in vitro, CCTα activity was stimulated 2- to 2.5-fold by liposomes containing 5 mol% 25OH, 22OH or 27OH. Inclusion of up to 5 mol% cholesterol did not further activate CCTα. 25OH activated CCTα in CHO-SCAP D443N cells leading to a transient increase in PtdCho synthesis and accumulation of CDP-choline. CCTα translocation to the NE and intranuclear tubules in CHO-SCAP D443N cells was complete after 1 h exposure to 25OH compared with only partial translocation by 4–6 h in CHO-Mock cells. These enhanced responses in CHO-D443N cells were sterol-dependent since depletion with cyclodextrin or lovastatin resulted in reduced sensitivity to 25OH. However, the lack of effect of cholesterol on in vitro CCT activity indicates an indirect relationship or involvement of other sterols or oxysterol. We conclude that translocation and activation of CCTα at nuclear membranes by side-chain hydroxylated sterols are regulated by the cholesterol status of the cell.
Collapse
|
23
|
Liver X Receptor Agonists Inhibit the Phospholipid Regulatory Gene CTP: Phosphoethanolamine Cytidylyltransferase-Pcyt2. Res Lett Biochem 2008; 2008:801849. [PMID: 22820672 PMCID: PMC3005827 DOI: 10.1155/2008/801849] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 04/07/2008] [Indexed: 01/04/2023] Open
Abstract
Metabolic pulse-chase experiments demonstrated that 25-hydroxycholesterol (25-OH), the endogenous activator of the liver X receptor (LXR), significantly reduced the biosynthesis of phosphatidylethanolamine via CDP-ethanolamine (Kennedy) pathway at the step catalyzed by CTP: phosphoethanolamine cytidylyltransferase (Pcyt2). In the mouse embryonic fibroblasts C3H10T1/2, the LXR synthetic agonist TO901317 lowered Pcyt2 promoter-luciferase activity in a concentration-dependent manner. Furthermore, 25-OH and TO901317 reduced mouse Pcyt2 mRNA and protein levels by 35–60%. The inhibitory effects of oxysterols and TO901317 on the Pcyt2 promoter function, mRNA and protein expression were conserved in the human breast cancer cells MCF-7. These studies identify the Pcyt2 gene as a novel target whereby LXR agonists may indirectly modulate inflammatory responses and atherosclerosis.
Collapse
|
24
|
Sugimoto H, Banchio C, Vance DE. Transcriptional regulation of phosphatidylcholine biosynthesis. Prog Lipid Res 2008; 47:204-20. [PMID: 18295604 DOI: 10.1016/j.plipres.2008.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phosphatidylcholine biosynthesis in animal cells is primarily regulated by the rapid translocation of CTP:phosphocholine cytidylyltransferase alpha between a soluble form that is inactive and a membrane-associated form that is activated. Until less than 10 years ago there was no information on the transcriptional regulation of phosphatidylcholine biosynthesis. Research has identified the transcription factors Sp1, Rb, TEF4, Ets-1 and E2F as enhancing the expression of the cytidylyltransferase and Net as a factor that represses cytidylyltransferase expression. Key transcription factors involved in cholesterol or fatty acid metabolism (SREBPs, LXRs, PPARs) do not have a major role in transcriptional regulation of the cytidylyltransferase. Rather than being linked to cholesterol or energy metabolism, regulation of the cytidylyltransferase is linked to the cell cycle, cell growth and differentiation. Transcriptional regulation of phospholipid biosynthesis is more elegantly understood in yeast and involves responses to inositol, choline and zinc in the culture medium.
Collapse
Affiliation(s)
- Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan.
| | | | | |
Collapse
|
25
|
Chen BB, Mallampalli RK. Calmodulin binds and stabilizes the regulatory enzyme, CTP: phosphocholine cytidylyltransferase. J Biol Chem 2007; 282:33494-33506. [PMID: 17804406 DOI: 10.1074/jbc.m706472200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CTP:phosphocholine cytidylyltransferase (CCTalpha) is a proteolytically sensitive enzyme essential for production of phosphatidylcholine, the major phospholipid of animal cell membranes. The molecular signals that govern CCTalpha protein stability are unknown. An NH(2)-terminal PEST sequence within CCTalpha did not serve as a degradation signal for the proteinase, calpain. Calmodulin (CaM) stabilized CCTalpha from calpain proteolysis. Adenoviral gene transfer of CaM in cells protected CCTalpha, whereas CaM small interfering RNA accentuated CCTalpha degradation by calpains. CaM bound CCTalpha as revealed by fluorescence resonance energy transfer and two-hybrid analysis. Mapping and site-directed mutagenesis of CCTalpha uncovered a motif (LQERVDKVK) harboring a vital recognition site, Gln(243), whereby CaM directly binds to the enzyme. Mutagenesis of CCTalpha Gln(243) not only resulted in loss of CaM binding but also led to complete calpain resistance in vitro and in vivo. Thus, calpains and CaM both access CCTalpha using a structurally similar molecular signature that profoundly affects CCTalpha levels. These data suggest that CaM, by antagonizing calpain, serves as a novel binding partner for CCTalpha that stabilizes the enzyme under proinflammatory stress.
Collapse
Affiliation(s)
- Bill B Chen
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, 52242
| | - Rama K Mallampalli
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, 52242; Department of Internal Medicine, University of Iowa, Iowa City, Iowa, 52242; Department of Veterans Affairs Medical Center and the Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
26
|
Andreeva AV, Kutuzov MA, Voyno-Yasenetskaya TA. Regulation of surfactant secretion in alveolar type II cells. Am J Physiol Lung Cell Mol Physiol 2007; 293:L259-71. [PMID: 17496061 DOI: 10.1152/ajplung.00112.2007] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Molecular mechanisms of surfactant delivery to the air/liquid interface in the lung, which is crucial to lower the surface tension, have been studied for more than two decades. Lung surfactant is synthesized in the alveolar type II cells. Its delivery to the cell surface is preceded by surfactant component synthesis, packaging into specialized organelles termed lamellar bodies, delivery to the apical plasma membrane and fusion. Secreted surfactant undergoes reuptake, intracellular processing, and finally resecretion of recycled material. This review focuses on the mechanisms of delivery of surfactant components to and their secretion from lamellar bodies. Lamellar bodies-independent secretion is also considered. Signal transduction pathways involved in regulation of these processes are discussed as well as disorders associated with their malfunction.
Collapse
Affiliation(s)
- Alexandra V Andreeva
- Department of Pharmacology, University of Illinois College of Medicine, Center for Lung and Vascular Biology, Chicago, IL, USA
| | | | | |
Collapse
|
27
|
Fagone P, Sriburi R, Ward-Chapman C, Frank M, Wang J, Gunter C, Brewer JW, Jackowski S. Phospholipid Biosynthesis Program Underlying Membrane Expansion during B-lymphocyte Differentiation. J Biol Chem 2007; 282:7591-605. [PMID: 17213195 DOI: 10.1074/jbc.m608175200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Stimulated B-lymphocytes differentiate into plasma cells committed to antibody production. Expansion of the endoplasmic reticulum and Golgi compartments is a prerequisite for high rate synthesis, assembly, and secretion of immunoglobulins. The bacterial cell wall component lipopolysaccharide (LPS) stimulates murine B-cells to proliferate and differentiate into antibody-secreting cells that morphologically resemble plasma cells. LPS activation of CH12 B-cells augmented phospholipid production and initiated a genetic program, including elevated expression of the genes for the synthesis, elongation, and desaturation of fatty acids that supply the phospholipid acyl moieties. Likewise, many of the genes in phospholipid biosynthesis were up-regulated, most notably those encoding Lipin1 and choline phosphotransferase. In contrast, CTP:phosphocholine cytidylyltransferase alpha (CCTalpha) protein, a key control point in phosphatidylcholine biosynthesis, increased because of stabilization of protein turnover rather than transcriptional activation. Furthermore, an elevation in cellular diacylglycerol and fatty acid correlated with enhanced allosteric activation of CCTalpha by the membrane lipids. This work defines a genetic and biochemical program for membrane phospholipid biogenesis that correlates with an increase in the phospholipid components of the endoplasmic reticulum and Golgi compartments in LPS-stimulated B-cells.
Collapse
Affiliation(s)
- Paolo Fagone
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
McCoy DM, Fisher K, Robichaud J, Ryan AJ, Mallampalli RK. Transcriptional regulation of lung cytidylyltransferase in developing transgenic mice. Am J Respir Cell Mol Biol 2006; 35:394-402. [PMID: 16645180 PMCID: PMC2643291 DOI: 10.1165/rcmb.2005-0401oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 04/17/2006] [Indexed: 11/24/2022] Open
Abstract
Lung development is associated with a surge in surfactant phosphatidylcholine (PC) production to prepare the newborn for extrauterine breathing. This process is associated with a marked increase in the activity of the rate-regulatory surfactant enzyme, CTP:phosphocholine cytidylyltransferase (CCTalpha). To investigate the molecular basis for developmental activation of CCTalpha, we analyzed expression of endogenous CCTalpha and a reporter gene, beta-galactosidase, in fetal, newborn, and adult promoter-reporter transgenic mice. Transgenics harboring approximately 2 kb of the CCTalpha promoter linked upstream of a beta-galactosidase reporter gene displayed relatively high expression in distal lung epithelia. Endogenous lung CCTalpha and beta-galactosidase activities, protein content, and transcript levels displayed maximal expression within the newborn period. CCTalpha and beta-galactosidase activities and enzyme levels increased with time in cultured fetal lung explants isolated from transgenics. Transfectional analysis using CCTalpha promoter-reporter constructs in developing rat type II cells revealed that a region encompassing -169/+71 contained the DNA elements required for perinatal activation. The studies demonstrate that developmental induction of surfactant phospholipid is due, at least in part, to transcriptional activation of the CCTalpha gene.
Collapse
Affiliation(s)
- Diann M McCoy
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
29
|
Zhou J, Wu Y, Henderson F, McCoy DM, Salome RG, McGowan SE, Mallampalli RK. Adenoviral gene transfer of a mutant surfactant enzyme ameliorates pseudomonas-induced lung injury. Gene Ther 2006; 13:974-85. [PMID: 16511521 DOI: 10.1038/sj.gt.3302746] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Surfactant deficiency is an important contributor to the acute respiratory distress syndrome, a disorder that commonly occurs after bacterial sepsis. CTP:phosphocholine cytidylyltransferase (CCTalpha) is the rate-limiting enzyme required for the biosynthesis of dipalmitoylphosphatidylcholine (DPPC), the major phospholipid of surfactant. In this study, a cDNA encoding a novel, calpain-resistant mutant CCTalpha enzyme was delivered intratracheally in mice using a replication-deficient adenovirus 5 CTP:phosphocholine cytidylyltransferase construct (Ad5-CCT(Penta)) in models of bacterial sepsis. Ad5-CCT(Penta) gene transfer produced high-level CCTalpha gene expression, increased alveolar surfactant (DPPC) levels and improved lung surface tension and pressure-volume relationships relative to control mice. Pseudomonas aeruginosa (PA103) decreased DPPC synthesis, in part, via calpain-mediated degradation of CCTalpha. Deleterious effects of Pseudomonas on surfactant were lessened after infection with a mutant strain lacking the type III exotoxin, Exo U. Replication-deficient adenovirus 5 CTP:phosphocholine cytidylyltransferase gene delivery improved lung biophysical properties by optimizing surface activity in this Pseudomonas model of proteinase-mediated lung injury. The studies are the first demonstration of in vivo gene transfer of a lipogenic enzyme resulting in improved lung mechanics. The studies suggest that augmentation of DPPC synthesis via gene delivery of CCTalpha can attenuate impaired lung function in surfactant-deficient states such as bacterial sepsis.
Collapse
Affiliation(s)
- J Zhou
- Department of Internal Medicine, Pulmonary and Critical Care Division, Roy J and Lucille A Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Ryan AJ, Andrews M, Zhou J, Mallampalli RK. c-Jun N-terminal kinase regulates CTP:phosphocholine cytidylyltransferase. Arch Biochem Biophys 2006; 447:23-33. [PMID: 16466687 DOI: 10.1016/j.abb.2006.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 01/09/2006] [Accepted: 01/11/2006] [Indexed: 11/19/2022]
Abstract
CTP:phosphocholine cytidylyltransferase (CCTalpha) is a rate-regulatory enzyme required for phosphatidylcholine (PtdCho) synthesis. CCTalpha is also a phosphoenzyme, but the physiologic role of kinases on enzyme function remains unclear. We report high-level expression of two major isoforms of the c-Jun N-terminal kinase family (JNK1 and JNK2) in murine lung epithelia. Further, JNK1 and JNK2 phosphorylated purified CCTalpha in vitro, and this was associated with a dose-dependent decrease (approximately 40%) in CCT activity. To evaluate JNK in vivo, lung epithelial cells were infected with a replication defective adenoviral vector encoding murine JNK2 (Adv-JNK2) or an empty vector. Adv-JNK2 infection, unlike the empty vector, markedly increased JNK2 expression concomitant with increased incorporation of [32P]orthophosphate into endogenous CCTalpha. Although Adv-JNK2 infection only modestly reduced CCT activity, it reduced PtdCho synthesis by approximately 30% in cells. These observations suggest a role for JNK kinases as negative regulators of phospholipid synthesis in murine lung epithelia.
Collapse
Affiliation(s)
- Alan J Ryan
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
31
|
Howe AG, McMaster CR. Regulation of phosphatidylcholine homeostasis by Sec14This paper is one of a selection of papers published in this Special Issue, entitled Young Investigator's Forum. Can J Physiol Pharmacol 2006; 84:29-38. [PMID: 16845888 DOI: 10.1139/y05-138] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phosphatidylcholine is the major phospholipid in eukaryotic cells and serves as both a permeability barrier as well as a modulator of a plethora of cellular and biological functions. This review touches on the importance of proper regulation of phosphatidylcholine metabolism on health, and discusses how yeast genetics has contributed to furthering our understanding of the precise molecular events regulated by alterations in phosphatidylcholine metabolism. Yeast studies have determined that the phosphatidylcholine and (or) phosphatidylinositol binding protein, Sec14, is a major regulator of phosphatidylcholine homeostasis. Sec14 itself regulates vesicular transport from the Golgi, and the interrelationship between phosphatidylcholine metabolism and membrane movement within the cell is described in detail. The recent convergence of the yeast genetic studies with that of mammalian cell biology in how cells maintain phosphatidylcholine homeostasis is highlighted.
Collapse
Affiliation(s)
- Alicia G Howe
- Atlantic Research Centre, Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|