1
|
Characterization of microRNA Levels in Synovial Fluid from Knee Osteoarthritis and Anterior Cruciate Ligament Tears. Biomedicines 2022; 10:biomedicines10112909. [PMID: 36428476 PMCID: PMC9687202 DOI: 10.3390/biomedicines10112909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated modifications of microRNA expression profiles in knee synovial fluid of patients with osteoarthritis (OA) and rupture of the anterior cruciate ligament (ACL). Twelve microRNAs (26a-5p, 27a-3p, let7a-5p, 140-5p, 146-5p, 155-5p, 16-5p,186-5p, 199a-3p, 210-3p, 205-5p, and 30b-5p) were measured by real-time quantitative polymerase chain reaction (RT-qPCR) in synovial fluids obtained from 30 patients with ACL tear and 18 patients with knee OA. These 12 miRNAs were chosen on the basis of their involvement in pathological processes of bone and cartilage. Our results show that miR-26a-5p, miR-186-5p, and miR-30b-5p were expressed in the majority of OA and ACL tear samples, whereas miR-199a-3p, miR-210-3p, and miR-205-5p were detectable only in a few samples. Interestingly, miR-140-5p was expressed in only one sample of thirty in the ACL tear group. miR-140-5p has been proposed to modulate two genes (BGN and COL5A1100) that are involved in ligamentous homeostasis; their altered expression could be linked with ACL rupture susceptibility. The expression of miR-30b-5p was higher in OA and chronic ACL groups compared to acute ACL samples. We provide evidence that specific miRNAs could be detected not only in synovial fluid of patients with OA, but also in post-traumatic ACL tears.
Collapse
|
2
|
Gomez-Picos P, Ovens K, Eames BF. Limb Mesoderm and Head Ectomesenchyme Both Express a Core Transcriptional Program During Chondrocyte Differentiation. Front Cell Dev Biol 2022; 10:876825. [PMID: 35784462 PMCID: PMC9247276 DOI: 10.3389/fcell.2022.876825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
To explain how cartilage appeared in different parts of the vertebrate body at discrete times during evolution, we hypothesize that different embryonic populations co-opted expression of a core gene regulatory network (GRN) driving chondrocyte differentiation. To test this hypothesis, laser-capture microdissection coupled with RNA-seq was used to reveal chondrocyte transcriptomes in the developing chick humerus and ceratobranchial, which are mesoderm- and neural crest-derived, respectively. During endochondral ossification, two general types of chondrocytes differentiate. Immature chondrocytes (IMM) represent the early stages of cartilage differentiation, while mature chondrocytes (MAT) undergo additional stages of differentiation, including hypertrophy and stimulating matrix mineralization and degradation. Venn diagram analyses generally revealed a high degree of conservation between chondrocyte transcriptomes of the limb and head, including SOX9, COL2A1, and ACAN expression. Typical maturation genes, such as COL10A1, IBSP, and SPP1, were upregulated in MAT compared to IMM in both limb and head chondrocytes. Gene co-expression network (GCN) analyses of limb and head chondrocyte transcriptomes estimated the core GRN governing cartilage differentiation. Two discrete portions of the GCN contained genes that were differentially expressed in limb or head chondrocytes, but these genes were enriched for biological processes related to limb/forelimb morphogenesis or neural crest-dependent processes, respectively, perhaps simply reflecting the embryonic origin of the cells. A core GRN driving cartilage differentiation in limb and head was revealed that included typical chondrocyte differentiation and maturation markers, as well as putative novel "chondrocyte" genes. Conservation of a core transcriptional program during chondrocyte differentiation in both the limb and head suggest that the same core GRN was co-opted when cartilage appeared in different regions of the skeleton during vertebrate evolution.
Collapse
Affiliation(s)
- Patsy Gomez-Picos
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Chiu YS, Bamodu OA, Fong IH, Lee WH, Lin CC, Lu CH, Yeh CT. The JAK inhibitor Tofacitinib inhibits structural damage in osteoarthritis by modulating JAK1/TNF-alpha/IL-6 signaling through Mir-149-5p. Bone 2021; 151:116024. [PMID: 34052462 DOI: 10.1016/j.bone.2021.116024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Osteoarthritis (OA), a common articular bone degenerative disease, is exacerbated by proinflammatory cytokine signaling. Mounting evidence suggests that epigenetic modifiers, namely microRNAs (miRs), are dysregulated in articular chondrocytes (ACs) during OA. METHODS An initial database search led to the identification of miR-149-5p, which was downregulated in clinical OA samples and contributed to chronic inflammation, by increasing TNF-α/IL-6 signaling within the synovium, and OA progression. RESULTS We overexpressed miR-149-5p in the human chondrocyte cell lines C20A4 and C28/I2 to examine its role in chondrocyte hypertrophy and osteoclastogenesis and found a significant decrease in IL-6 expression, an increase in SOX9 expression, and a reduction in chondrocyte hypertrophy. We evaluated the therapeutic effects of tofacitinib (JAK inhibitor) by suppressing inflammation and restoring miR-149-5p expression. Tofacitinib-treated C20A4 and C28/I2 cells had a significantly lower expression of JAK/IL-6/TNF-α and an increased level of miR-149-5p. Notably, tofacitinib treatment reduced AC hypertrophy and secretion of RANKL and IL-6. Finally, an OA mouse model was used to evaluate the therapeutic potential of tofacitinib. Intra-articular injection of tofacitinib significantly lowered arthritis scores and bone degradation in treated mice compared with their control counterparts. CONCLUSION We show for the first time that tofacitinib suppresses the expression level of JAK1/TNF-α/IL-6 by upregulating miR-149-5p level. Our findings revealed the functional association between proinflammatory JAK1/TNF-α/IL-6 signaling and ACs development and highlight the therapeutic potential of tofacitinib in OA.
Collapse
Affiliation(s)
- Yen-Shuo Chiu
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan; School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City 235, Taiwan; Department of Urology, Taipei Medical University - Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Iat-Hang Fong
- Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Wei-Hwa Lee
- Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City 235, Taiwan; Department of Pathology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| | - Chih-Cheng Lin
- Department of Biotechnology and Pharmaceutical, Yuanpei University of Medical Technology, No. 306, Yuanpei Street, Hsinchu, Taiwan
| | - Chen-Hsu Lu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan; Department of Dentistry, Taipei Medical University - Shuang Ho Hospital, New Taipei City 235, Taiwan; Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu City 30015, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City 235, Taiwan; Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu City 30015, Taiwan.
| |
Collapse
|
4
|
Bian H, Zhu T, Liang Y, Hei R, Zhang X, Li X, Chen J, Lu Y, Gu J, Qiao L, Zheng Q. Expression Profiling and Functional Analysis of Candidate Col10a1 Regulators Identified by the TRAP Program. Front Genet 2021; 12:683939. [PMID: 34276786 PMCID: PMC8283764 DOI: 10.3389/fgene.2021.683939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Hypertrophic chondrocytes and their specific marker, the type X collagen gene (Col10a1), are critical components of endochondral bone formation during skeletal development. We previously found that Runx2 is an indispensable mouse Col10a1 gene regulator and identified many other transcription factors (TFs) that potentially interact with the 150-bp Col10a1 cis-enhancer. However, the roles of these candidate TFs in Col10a1 expression and chondrocyte hypertrophy have not been elucidated. Here, we focus on 32 candidate TFs recently identified by analyzing the 150-bp Col10a1 enhancer using the transcription factor affinity prediction (TRAP) program. We found that 12 TFs (Hoxa3, Lsx, Evx2, Dlx5, S8, Pax2, Egr2, Mef2a, Barhl2, GKlf, Sox17, and Crx) were significantly upregulated and four TFs (Lhx4, Tbx5, Mef2c, and Hb9) were significantly downregulated in hypertrophic MCT cells, which show upregulation of Col10a1 expression. Most of the differential expression pattern of these TFs conformed with the results obtained from ATDC5 cell model and primary mouse chondrocytes. Notably, Tbx5 was downregulated upon Col10a1 upregulation, overexpression of Tbx5 decreased Col10a1 expression, and knock-down of Tbx5 increased Col10a1 expression in hypertrophic chondrocytes, suggesting that Tbx5 is a negative regulator of Col10a1. We further generated a stable Tbx5-overexpressing ATDC5 cell line and ColX-Tbx5 transgenic mice driven by Col10a1-specific enhancers and promoters. Tbx5 overexpression decreased Col10a1 expression in ATDC5 cells cultured as early as day 7 and in limb tissue on post-natal day 1. Slightly weaker alkaline phosphatase staining was also observed in cell culture on day 7 and in limb digits on embryonic day 17.5, indicating mildly delayed ossification. Further characterization of these candidate Col10a1 transcriptional regulators could help identify novel therapeutic targets for skeletal diseases associated with abnormal chondrocyte hypertrophy.
Collapse
Affiliation(s)
- Huiqin Bian
- Department of Hematology and Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ting Zhu
- Laboratory of Clinical Medicine, Huai'an Women & Children Hospital, Affiliated to Yangzhou University, Huai'an, China
| | - Yuting Liang
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ruoxuan Hei
- Department of Hematology and Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaojing Zhang
- Department of Hematology and Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaochen Li
- Department of Hematology and Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jinnan Chen
- Department of Hematology and Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yaojuan Lu
- Department of Hematology and Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.,Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd., Shenzhen, China
| | - Junxia Gu
- Department of Hematology and Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Longwei Qiao
- Suzhou Affiliated to State Key Laboratory of Reproductive Medicine, School of Gusu, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Qiping Zheng
- Department of Hematology and Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.,Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd., Shenzhen, China
| |
Collapse
|
5
|
Neefjes M, van Caam APM, van der Kraan PM. Transcription Factors in Cartilage Homeostasis and Osteoarthritis. BIOLOGY 2020; 9:biology9090290. [PMID: 32937960 PMCID: PMC7563835 DOI: 10.3390/biology9090290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease, and it is characterized by articular cartilage loss. In part, OA is caused by aberrant anabolic and catabolic activities of the chondrocyte, the only cell type present in cartilage. These chondrocyte activities depend on the intra- and extracellular signals that the cell receives and integrates into gene expression. The key proteins for this integration are transcription factors. A large number of transcription factors exist, and a better understanding of the transcription factors activated by the various signaling pathways active during OA can help us to better understand the complex etiology of OA. In addition, establishing such a profile can help to stratify patients in different subtypes, which can be a very useful approach towards personalized therapy. In this review, we discuss crucial transcription factors for extracellular matrix metabolism, chondrocyte hypertrophy, chondrocyte senescence, and autophagy in chondrocytes. In addition, we discuss how insight into these factors can be used for treatment purposes.
Collapse
|
6
|
Jahr H, Gunes S, Kuhn AR, Nebelung S, Pufe T. Bioreactor-Controlled Physoxia Regulates TGF-β Signaling to Alter Extracellular Matrix Synthesis by Human Chondrocytes. Int J Mol Sci 2019; 20:ijms20071715. [PMID: 30959909 PMCID: PMC6480267 DOI: 10.3390/ijms20071715] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 02/05/2023] Open
Abstract
Culturing articular chondrocytes under physiological oxygen tension exerts positive effects on their extracellular matrix synthesis. The underlying molecular mechanisms which enhance the chondrocytic phenotype are, however, still insufficiently elucidated. The TGF-β superfamily of growth factors, and the prototypic TGF-β isoforms in particular, are crucial in maintaining matrix homeostasis of these cells. We employed a feedback-controlled table-top bioreactor to investigate the role of TGF-β in microtissues of human chondrocytes over a wider range of physiological oxygen tensions (i.e., physoxia). We compared 1%, 2.5%, and 5% of partial oxygen pressure (pO2) to the ‘normoxic’ 20%. We confirmed physoxic conditions through the induction of marker genes (PHD3, VEGF) and oxygen tension-dependent chondrocytic markers (SOX9, COL2A1). We identified 2.5% pO2 as an oxygen tension optimally improving chondrocytic marker expression (ACAN, COL2A1), while suppressing de-differentiation markers (COL1A1,COL3A1). Expression of TGF-β isoform 2 (TGFB2) was, relatively, most responsive to 2.5% pO2, while all three isoforms were induced by physoxia. We found TGF-β receptors ALK1 and ALK5 to be regulated by oxygen tension on the mRNA and protein level. In addition, expression of type III co-receptors betaglycan and endoglin appeared to be regulated by oxygen tension as well. R-Smad signaling confirmed that physoxia divergently regulated phosphorylation of Smad1/5/8 and Smad2/3. Pharmacological inhibition of canonical ALK5-mediated signaling abrogated physoxia-induced COL2A1 and PAI-1 expression. Physoxia altered expression of hypertrophy markers and that of matrix metalloproteases and their activity, as well as expression ratios of specific proteins (Sp)/Krüppel-like transcription factor family members SP1 and SP3, proving a molecular concept of ECM marker regulation. Keeping oxygen levels tightly balanced within a physiological range is important for optimal chondrocytic marker expression. Our study provides novel insights into transcriptional regulations in chondrocytes under physoxic in vitro conditions and may contribute to improving future cell-based articular cartilage repair strategies.
Collapse
Affiliation(s)
- Holger Jahr
- Institute of Anatomy and Cell Biology, University Hospital Aachen, 52072 Aachen, Germany.
- Department of Orthopaedic Surgery, Maastricht University Medical Centre+, 6229 HXMaastricht, The Netherlands.
| | - Seval Gunes
- Institute of Anatomy and Cell Biology, University Hospital Aachen, 52072 Aachen, Germany.
| | - Annika-Ricarda Kuhn
- Institute of Anatomy and Cell Biology, University Hospital Aachen, 52072 Aachen, Germany.
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52072 Aachen, Germany.
| | - Thomas Pufe
- Institute of Anatomy and Cell Biology, University Hospital Aachen, 52072 Aachen, Germany.
| |
Collapse
|
7
|
Ferguson GB, Van Handel B, Bay M, Fiziev P, Org T, Lee S, Shkhyan R, Banks NW, Scheinberg M, Wu L, Saitta B, Elphingstone J, Larson AN, Riester SM, Pyle AD, Bernthal NM, Mikkola HK, Ernst J, van Wijnen AJ, Bonaguidi M, Evseenko D. Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes. Nat Commun 2018; 9:3634. [PMID: 30194383 PMCID: PMC6128860 DOI: 10.1038/s41467-018-05573-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 07/04/2018] [Indexed: 11/09/2022] Open
Abstract
Tissue-specific gene expression defines cellular identity and function, but knowledge of early human development is limited, hampering application of cell-based therapies. Here we profiled 5 distinct cell types at a single fetal stage, as well as chondrocytes at 4 stages in vivo and 2 stages during in vitro differentiation. Network analysis delineated five tissue-specific gene modules; these modules and chromatin state analysis defined broad similarities in gene expression during cartilage specification and maturation in vitro and in vivo, including early expression and progressive silencing of muscle- and bone-specific genes. Finally, ontogenetic analysis of freshly isolated and pluripotent stem cell-derived articular chondrocytes identified that integrin alpha 4 defines 2 subsets of functionally and molecularly distinct chondrocytes characterized by their gene expression, osteochondral potential in vitro and proliferative signature in vivo. These analyses provide new insight into human musculoskeletal development and provide an essential comparative resource for disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Gabriel B Ferguson
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Ben Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Maxwell Bay
- Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA, 90033, USA
| | - Petko Fiziev
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, 90095, USA.,Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, 90095, USA
| | - Tonis Org
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA, 90095, USA.,Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Siyoung Lee
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Ruzanna Shkhyan
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Nicholas W Banks
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Mila Scheinberg
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Ling Wu
- InVitro Cell Research, LLC, Cockeysville, MD, 21030, USA
| | - Biagio Saitta
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Joseph Elphingstone
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - A Noelle Larson
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Center of Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Scott M Riester
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Center of Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - April D Pyle
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, 90095, USA
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Hanna Ka Mikkola
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, 90095, USA.,Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA, 90095, USA
| | - Jason Ernst
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, 90095, USA.,Computer Science Department, University of California, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Andre J van Wijnen
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Center of Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michael Bonaguidi
- Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA, 90033, USA
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA. .,Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA, 90033, USA. .,Department of Orthopaedic Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
Su Y, Chen C, Guo L, Du J, Li X, Liu Y. Ecological Balance of Oral Microbiota Is Required to Maintain Oral Mesenchymal Stem Cell Homeostasis. Stem Cells 2018; 36:551-561. [PMID: 29266799 DOI: 10.1002/stem.2762] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 12/11/2022]
Abstract
Oral microbiome is essential for maintenance of oral cavity health. Imbalanced oral microbiome causes periodontal and other diseases. It is unknown whether oral microbiome affect oral stem cells function. This study used a common clinical antibiotic treatment approach to alter oral microbiome ecology and examine whether oral mesenchymal stem cells (MSCs) are affected. We found that altered oral microbiome resulted gingival MSCs deficiency, leading to a delayed wound healing in male mice. Mechanistically, oral microbiome release lipopolysaccharide (LPS) that stimulates the expression of microRNA-21 (miR-21) and then impair the normal function of gingival MSCs and wound healing process through miR-21/Sp1/telomerase reverse transcriptase pathway. This is the first study indicate that interplay between oral microbiome and MSCs homeostasis in male mice. Stem Cells 2018;36:551-561.
Collapse
Affiliation(s)
- Yingying Su
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chider Chen
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
9
|
Rosa J, Tiago DM, Marques CL, Vijayakumar P, Fonseca L, Cancela ML, Laizé V. Central role of betaine-homocysteine S-methyltransferase 3 in chondral ossification and evidence for sub-functionalization in neoteleost fish. Biochim Biophys Acta Gen Subj 2016; 1860:1373-87. [PMID: 27036080 DOI: 10.1016/j.bbagen.2016.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND To better understand the complex mechanisms of bone formation it is fundamental that genes central to signaling/regulatory pathways and matrix formation are identified. Cell systems were used to analyze genes differentially expressed during extracellular matrix mineralization and bhmt3, coding for a betaine-homocysteine S-methyltransferase, was shown to be down-regulated in mineralizing gilthead seabream cells. METHODS Levels and sites of bhmt3 expression were determined by qPCR and in situ hybridization throughout seabream development and in adult tissues. Transcriptional regulation of bhmt3 was assessed from the activity of promoter constructs controlling luciferase gene expression. Molecular phylogeny of vertebrate BHMT was determined from maximum likelihood analysis of available sequences. RESULTS bhmt3 transcript is abundant in calcified tissues and localized in cartilaginous structures undergoing endo/perichondral ossification. Promoter activity is regulated by transcription factors involved in bone and cartilage development, further demonstrating the central role of Bhmt3 in chondrogenesis and/or osteogenesis. Molecular phylogeny revealed the explosive diversity of bhmt genes in neoteleost fish, while tissue distribution of bhmt genes in seabream suggested that neoteleostean Bhmt may have undergone several steps of sub-functionalization. CONCLUSIONS Data on bhmt3 gene expression and promoter activity evidences a novel function for betaine-homocysteine S-methyltransferase in bone and cartilage development, while phylogenetic analysis provides new insights into the evolution of vertebrate BHMTs and suggests that multiple gene duplication events occurred in neoteleost fish lineage. GENERAL SIGNIFICANCE High and specific expression of Bhmt3 in gilthead seabream calcified tissues suggests that bone-specific betaine-homocysteine S-methyltransferases could represent a suitable marker of chondral ossification.
Collapse
Affiliation(s)
- Joana Rosa
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; PhD Program in Biomedical Sciences, Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Daniel M Tiago
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Cátia L Marques
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | | | - Luis Fonseca
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.
| |
Collapse
|
10
|
Ye X, Liu H, Gong YS, Liu SF. LPS Down-Regulates Specificity Protein 1 Activity by Activating NF-κB Pathway in Endotoxemic Mice. PLoS One 2015; 10:e0130317. [PMID: 26103469 PMCID: PMC4478004 DOI: 10.1371/journal.pone.0130317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/19/2015] [Indexed: 02/06/2023] Open
Abstract
Background Specificity protein (Sp) 1 mediates the transcription of a large number of constitutive genes encoding physiological mediators. NF-κB mediates the expression of hundreds of inducible genes encoding pathological mediators. Crosstalk between Sp1 and NF-κB pathways could be pathophysiologically significant, but has not been studied. This study examined the crosstalk between the two pathways and defined the role of NF-κB signaling in LPS-induced down-regulation of Sp1 activity. Methods and Main Findings Challenge of wild type mice with samonelia enteritidis LPS (10 mg/kg, i.p.) down-regulated Sp1 binding activity in lungs in a time-dependent manner, which was concomitantly associated with an increased NF-κB activity. LPS down-regulates Sp1 activity by inducing an LPS inducible Sp1-degrading enzyme (LISPDE) activity, which selectively degrades Sp1 protein, resulting in Sp1 down-regulation. Blockade of NF-κB activation in mice deficient in NF-κB p50 gene (NF-κB-KO) suppressed LISPDE activity, prevented Sp1 protein degradation, and reversed the down-regulation of Sp1 DNA binding activity and eNOS expression (an indicator of Sp1 transactivation activity). Inhibition of LISPDE activity using a selective LISPDE inhibitor mimicked the effects of NF-κB blockade. Pretreatment of LPS-challenged WT mice with a selective LISPDE inhibitor increased nuclear Sp1 protein content, restored Sp1 DNA binding activity and reversed eNOS protein down-regulation in lungs. Enhancing tissue level of Sp1 activity by inhibiting NF-κB-mediated Sp1 down-regulation increased tissue level of IL-10 and decreased tissue level of TNF- αin the lungs. Conclusions NF-κB signaling mediates LPS-induced down-regulation of Sp1 activity. Activation of NF-κB pathway suppresses Sp1 activity and Sp1-mediated anti-inflammatory signals. Conversely, Sp1 signaling counter-regulates NF-κB-mediated inflammatory response. Crosstalk between NF-κB and Sp1 pathways regulates the balance between pro- and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Xiaobing Ye
- Centers for Heart and Lung Research, and Pulmonary and Critical Care Medicine, the Feinstein Institute for Medical Research, Manhasset, New York, United States
| | - Hong Liu
- Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yong-Sheng Gong
- Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shu Fang Liu
- Centers for Heart and Lung Research, and Pulmonary and Critical Care Medicine, the Feinstein Institute for Medical Research, Manhasset, New York, United States
- Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, China
- * E-mail:
| |
Collapse
|
11
|
Mammoto T, Mammoto A, Jiang A, Jiang E, Hashmi B, Ingber DE. Mesenchymal condensation-dependent accumulation of collagen VI stabilizes organ-specific cell fates during embryonic tooth formation. Dev Dyn 2015; 244:713-23. [PMID: 25715693 DOI: 10.1002/dvdy.24264] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/01/2015] [Accepted: 02/04/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mechanical compression of cells during mesenchymal condensation triggers cells to undergo odontogenic differentiation during tooth organ formation in the embryo. However, the mechanism by which cell compaction is stabilized over time to ensure correct organ-specific cell fate switching remains unknown. RESULTS Here, we show that mesenchymal cell compaction induces accumulation of collagen VI in the extracellular matrix (ECM), which physically stabilizes compressed mesenchymal cell shapes and ensures efficient organ-specific cell fate switching during tooth organ development. Mechanical induction of collagen VI deposition is mediated by signaling through the actin-p38MAPK-SP1 pathway, and the ECM scaffold is stabilized by lysyl oxidase in the condensing mesenchyme. Moreover, perturbation of synthesis or cross-linking of collagen VI alters the size of the condensation in vivo. CONCLUSIONS These findings suggest that the odontogenic differentiation process that is induced by cell compaction during mesenchymal condensation is stabilized and sustained through mechanically regulated production of collagen VI within the mesenchymal ECM.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Akiko Mammoto
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amanda Jiang
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elisabeth Jiang
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Basma Hashmi
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Donald E Ingber
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts.,Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts
| |
Collapse
|
12
|
Gu J, Lu Y, Li F, Qiao L, Wang Q, Li N, Borgia JA, Deng Y, Lei G, Zheng Q. Identification and characterization of the novel Col10a1 regulatory mechanism during chondrocyte hypertrophic differentiation. Cell Death Dis 2014; 5:e1469. [PMID: 25321476 PMCID: PMC4649528 DOI: 10.1038/cddis.2014.444] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 02/03/2023]
Abstract
The majority of human skeleton develops through the endochondral pathway, in which cartilage-forming chondrocytes proliferate and enlarge into hypertrophic chondrocytes that eventually undergo apoptosis and are replaced by bone. Although at a terminal differentiation stage, hypertrophic chondrocytes have been implicated as the principal engine of bone growth. Abnormal chondrocyte hypertrophy has been seen in many skeletal dysplasia and osteoarthritis. Meanwhile, as a specific marker of hypertrophic chondrocytes, the type X collagen gene (COL10A1) is also critical for endochondral bone formation, as mutation and altered COL10A1 expression are often accompanied by abnormal chondrocyte hypertrophy in many skeletal diseases. However, how the type X collagen gene is regulated during chondrocyte hypertrophy has not been fully elucidated. We have recently demonstrated that Runx2 interaction with a 150-bp mouse Col10a1 cis-enhancer is required but not sufficient for its hypertrophic chondrocyte-specific reporter expression in transgenic mice, suggesting requirement of additional Col10a1 regulators. In this study, we report in silico sequence analysis of this 150-bp enhancer and identification of its multiple binding factors, including AP1, MEF2, NFAT, Runx1 and TBX5. Using this enhancer as bait, we performed yeast one-hybrid assay and identified multiple candidate Col10a1-interacting genes, including cyclooxygenase 1 (Cox-1) and Cox-2. We have also performed mass spectrometry analysis and detected EF1-alpha, Fus, GdF7 and Runx3 as components of the specific complex formed by the cis-enhancer and nuclear extracts from hypertrophic MCT (mouse chondrocytes immortalized with large T antigen) cells that express Col10a1 abundantly. Notably, some of the candidate genes are differentially expressed in hypertrophic MCT cells and have been associated with chondrocyte hypertrophy and Runx2, an indispensible Col10a1 regulator. Intriguingly, we detected high-level Cox-2 expression in hypertrophic MCT cells. Electrophoretic mobility shift assay and chromatin immunoprecipitation assays confirmed the interaction between Cox-2 and Col10a1 cis-enhancer, supporting its role as a candidate Col10a1 regulator. Together, our data support a Cox-2-containing, Runx2-centered Col10a1 regulatory mechanism, during chondrocyte hypertrophic differentiation.
Collapse
Affiliation(s)
- J Gu
- Department of Hematology and Hematological Laboratory Science, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Y Lu
- Department of Hematology and Hematological Laboratory Science, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - F Li
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - L Qiao
- Department of Hematology and Hematological Laboratory Science, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Q Wang
- Department of Hematology and Hematological Laboratory Science, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - N Li
- Department of Hematology and Hematological Laboratory Science, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - J A Borgia
- Department of Pathology and Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Y Deng
- Department of Internal Medicine and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - G Lei
- Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Q Zheng
- Department of Hematology and Hematological Laboratory Science, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
13
|
Lu Y, Qiao L, Lei G, Mira RR, Gu J, Zheng Q. Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11515-014-1310-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Transcriptional Regulation of cGMP-Dependent Protein Kinase II (cGK-II) in Chondrocytes. Biosci Biotechnol Biochem 2014; 74:44-9. [DOI: 10.1271/bbb.90529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Wu C, Tian B, Qu X, Liu F, Tang T, Qin A, Zhu Z, Dai K. MicroRNAs play a role in chondrogenesis and osteoarthritis (review). Int J Mol Med 2014; 34:13-23. [PMID: 24736803 DOI: 10.3892/ijmm.2014.1743] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/08/2014] [Indexed: 11/05/2022] Open
Abstract
Osteoarthritis (OA) is one of the most widespread degenerative joint diseases affecting the elderly. Research into the regulatory mechanisms underlying the pathogenesis of OA is therefore warranted, and over the past decade, there has been an increased focus on the functional role of microRNAs (miRNAs or miRs). In this systematic review, we aimed to review the evidence implicating miRNAs in the pathogenesis of chondrogenesis and OA. Systematic reviews of PubMed and Embase were performed to search for studies using strings of miRNAs, non-coding RNAs, cartilage, chondrocytes, chondrogenesis, chondrocytogenesis and OA. The identified studies were retrieved, and the references provided were searched. The selected studies were required to focus on the role of miRNAs in chondrogenesis and OA. The results of this review indicated that more than 25 miRNAs have been implicated in chondrogenesis and OA. In particular, chondrocytogenesis, chondrogenic differentiation, chondrocyte proliferation, chondrocyte hypertrophy, endochondral ossification, and proteolytic enzyme regulation are targeted or facilitated by more than 1 miRNA. To date, limited efforts have been performed to evaluate translational applications for this knowledge. Novel therapeutic strategies have been developed and are under investigation to selectively modulate miRNAs, which could potentially enable personalized OA therapy. miRNAs appear to be important modulators of chondrogenesis and OA. Their expression is frequently altered in OA, and many are functionally implicated in the pathogenesis of the disease. The translational roles and therapeutic potential of miRNAs remains to be evaluated.
Collapse
Affiliation(s)
- Chuanlong Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Bo Tian
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Xinhua Qu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Fengxiang Liu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - An Qin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhenan Zhu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
16
|
Sox9/Sox6 and Sp1 are involved in the insulin-like growth factor-I-mediated upregulation of human type II collagen gene expression in articular chondrocytes. J Mol Med (Berl) 2012; 90:649-66. [DOI: 10.1007/s00109-011-0842-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 11/20/2011] [Accepted: 11/22/2011] [Indexed: 11/29/2022]
|
17
|
Milagre I, Nunes MJ, Castro-Caldas M, Moutinho M, Gama MJ, Rodrigues E. Neuronal differentiation alters the ratio of Sp transcription factors recruited to the CYP46A1 promoter. J Neurochem 2011; 120:220-9. [PMID: 22060190 DOI: 10.1111/j.1471-4159.2011.07577.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CYP46A1 is a neuron-specific cytochrome P450 that plays a pivotal role in maintaining cholesterol homeostasis in the CNS. However, the molecular mechanisms underlying human CYP46A1 expression are still poorly understood, partly because of the lack of a cellular model that expresses high levels of CYP46A1. Our previous studies demonstrated that specificity protein (Sp) transcription factors control CYP46A1 expression, and are probably responsible for cell-type specificity. Herein, we have differentiated Ntera2/cloneD1 cells into post-mitotic neurons and identified for the first time a human cell model that expresses high levels of CYP46A1 mRNA. Our results show a decrease in Sp1 protein levels, concomitant with the increase in CYP46A1 mRNA levels. This decrease was correlated with changes in the ratio of Sp proteins associated to the CYP46A1 proximal promoter. To examine if the increase in (Sp3+Sp4)/Sp1 ratio was observed in other Sp-regulated promoters, we have selected four genes--reelin, glutamate receptor subunit zeta-1, glutamate receptor subunit epsilon-1 and μ-opioid receptor--known to be expressed in the human brain and analyzed the Sp proteins binding pattern to the promoter of these genes, in undifferentiated and differentiated Ntera2/cloneD1. Our data indicate that the dissociation of Sp1 from promoter regions is a common feature amongst Sp-regulated genes that are up-regulated after neuronal differentiation.
Collapse
Affiliation(s)
- Inês Milagre
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
18
|
Leung VYL, Gao B, Leung KKH, Melhado IG, Wynn SL, Au TYK, Dung NWF, Lau JYB, Mak ACY, Chan D, Cheah KSE. SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression. PLoS Genet 2011; 7:e1002356. [PMID: 22072985 PMCID: PMC3207907 DOI: 10.1371/journal.pgen.1002356] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 09/10/2011] [Indexed: 01/18/2023] Open
Abstract
Cartilage and endochondral bone development require SOX9 activity to regulate chondrogenesis, chondrocyte proliferation, and transition to a non-mitotic hypertrophic state. The restricted and reciprocal expression of the collagen X gene, Col10a1, in hypertrophic chondrocytes and Sox9 in immature chondrocytes epitomise the precise spatiotemporal control of gene expression as chondrocytes progress through phases of differentiation, but how this is achieved is not clear. Here, we have identified a regulatory element upstream of Col10a1 that enhances its expression in hypertrophic chondrocytes in vivo. In immature chondrocytes, where Col10a1 is not expressed, SOX9 interacts with a conserved sequence within this element that is analogous to that within the intronic enhancer of the collagen II gene Col2a1, the known transactivation target of SOX9. By analysing a series of Col10a1 reporter genes in transgenic mice, we show that the SOX9 binding consensus in this element is required to repress expression of the transgene in non-hypertrophic chondrocytes. Forced ectopic Sox9 expression in hypertrophic chondrocytes in vitro and in mice resulted in down-regulation of Col10a1. Mutation of a binding consensus motif for GLI transcription factors, which are the effectors of Indian hedgehog signaling, close to the SOX9 site in the Col10a1 regulatory element, also derepressed transgene expression in non-hypertrophic chondrocytes. GLI2 and GLI3 bound to the Col10a1 regulatory element but not to the enhancer of Col2a1. In addition to Col10a1, paired SOX9-GLI binding motifs are present in the conserved non-coding regions of several genes that are preferentially expressed in hypertrophic chondrocytes and the occurrence of pairing is unlikely to be by chance. We propose a regulatory paradigm whereby direct concomitant positive and negative transcriptional control by SOX9 ensures differentiation phase-specific gene expression in chondrocytes. Discrimination between these opposing modes of transcriptional control by SOX9 may be mediated by cooperation with different partners such as GLI factors.
Collapse
Affiliation(s)
- Victor Y. L. Leung
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bo Gao
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Keith K. H. Leung
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ian G. Melhado
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sarah L. Wynn
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tiffany Y. K. Au
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nelson W. F. Dung
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - James Y. B. Lau
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Angel C. Y. Mak
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Danny Chan
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kathryn S. E. Cheah
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
19
|
MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation. FEBS Lett 2011; 585:2992-7. [PMID: 21872590 DOI: 10.1016/j.febslet.2011.08.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 12/21/2022]
Abstract
MiR-140 is a microRNA specially involved in chondrogenesis and osteoarthritis pathogenesis. However, its transcriptional regulation and target genes in cartilage development are not fully understood. Here we detected that miR-140 was uniquely expressed in chondrocyte and suppressed by Wnt/β-catenin signalling. The miR-140 primary transcript was an intron-retained RNA co-expressed with Wwp2-C isoform, which was directly induced by Sox9 through binding to the intron 10 of Wwp2 gene. Knockdown of miR-140 in limb bud micromass cultures resulted in arrest of chondrogenic proliferation. Sp1, the activator of the cell cycle regulator p15(INK4b), was identified as a target of miR-140 in maintaining the chondrocyte proliferation. Collectively, our findings expand our understanding of the transcriptional regulation and the chondrogenic role of miR-140 in chondrogenesis.
Collapse
|
20
|
The effects of Sp7/Osterix gene silencing in the chondroprogenitor cell line, ATDC5. Biochem Biophys Res Commun 2010; 403:242-6. [PMID: 21075078 DOI: 10.1016/j.bbrc.2010.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 11/09/2010] [Indexed: 11/21/2022]
Abstract
Chondrocytes are known to express Sp7/Osterix (Osx) to varying degrees, but the role of Osx in chondrocytes is still unknown. In the current study, we investigated the role of the Osx gene using the clonal mouse embryonic cell line ATDC5, which retains the properties of the chondroprogenitor. ATDC5 cells express Osx; therefore, the effects of Osx gene silencing with shRNA lentiviral particles on chondrocyte marker gene expression and alkaline phosphatase (ALP) activity were investigated. At confluency, gene silencing down-regulated expression of the Sox trio (Sox5, 6, 9), Dlx5 and Alp mRNA, as well as ALP enzyme activity. Bone morphogenetic protein 2 (BMP2) is known to induce Osx gene expression in chondrocytes, and stimulation with BMP2 rescued Osx expression accompanied by up-regulation of Alp expression and ALP enzyme activity in a dose-dependent manner. To clarify the role of Osx in chondrocyte differentiation, cells induced to differentiate by 10μg/ml insulin for 21days were examined. Gene silencing inhibited the expression of the hypertrophic chondrocyte marker gene, type X collagen (Col X), and attenuated up-regulation of Dlx5 and Alp mRNA, as well as ALP enzyme activity. Taken together, these results suggest that Osx is involved in chondrogenic gene activation and is a positive regulator of the chondrocyte differentiation.
Collapse
|
21
|
Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development. Nat Med 2010; 16:678-86. [PMID: 20495570 DOI: 10.1038/nm.2146] [Citation(s) in RCA: 422] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/08/2010] [Indexed: 12/12/2022]
Abstract
Chondrocyte hypertrophy followed by cartilage matrix degradation and vascular invasion, characterized by expression of type X collagen (COL10A1), matrix metalloproteinase-13 (MMP-13) and vascular endothelial growth factor (VEGF), respectively, are central steps of endochondral ossification during normal skeletal growth and osteoarthritis development. A COL10A1 promoter assay identified hypoxia-inducible factor-2alpha (HIF-2alpha, encoded by EPAS1) as the most potent transactivator of COL10A1. HIF-2alpha enhanced promoter activities of COL10A1, MMP13 and VEGFA through specific binding to the respective hypoxia-responsive elements. HIF-2alpha, independently of oxygen-dependent hydroxylation, was essential for endochondral ossification of cultured chondrocytes and embryonic skeletal growth in mice. HIF-2alpha expression was higher in osteoarthritic cartilages versus nondiseased cartilages of mice and humans. Epas1-heterozygous deficient mice showed resistance to osteoarthritis development, and a functional single nucleotide polymorphism (SNP) in the human EPAS1 gene was associated with knee osteoarthritis in a Japanese population. The EPAS1 promoter assay identified RELA, a nuclear factor-kappaB (NF-kappaB) family member, as a potent inducer of HIF-2alpha expression. Hence, HIF-2alpha is a central transactivator that targets several crucial genes for endochondral ossification and may represent a therapeutic target for osteoarthritis.
Collapse
|
22
|
Zheng Q, Keller B, Zhou G, Napierala D, Chen Y, Zabel B, Parker AE, Lee B. Localization of the cis-enhancer element for mouse type X collagen expression in hypertrophic chondrocytes in vivo. J Bone Miner Res 2009; 24:1022-32. [PMID: 19113928 PMCID: PMC2683646 DOI: 10.1359/jbmr.081249] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/23/2008] [Accepted: 12/22/2008] [Indexed: 01/19/2023]
Abstract
The type X collagen gene (Col10a1) is a specific molecular marker of hypertrophic chondrocytes during endochondral bone formation. Mutations in human COL10A1 and altered chondrocyte hypertrophy have been associated with multiple skeletal disorders. However, until recently, the cis-enhancer element that specifies Col10a1 expression in hypertrophic chondrocytes in vivo has remained unidentified. Previously, we and others have shown that the Col10a1 distal promoter (-4.4 to -3.8 kb) may harbor a critical enhancer that mediates its tissue specificity in transgenic mice studies. Here, we report further localization of the cis-enhancer element within this Col10a1 distal promoter by using a similar transgenic mouse approach. We identify a 150-bp Col10a1 promoter element (-4296 to -4147 bp) that is sufficient to direct its tissue-specific expression in vivo. In silico analysis identified several putative transcription factor binding sites including two potential activator protein-1 (AP-1) sites within its 5'- and 3'-ends (-4276 to -4243 and -4166 to -4152 bp), respectively. Interestingly, transgenic mice using a reporter construct deleted for these two AP-1 elements still showed tissue-specific reporter activity. EMSAs using oligonucleotide probes derived from this region and MCT cell nuclear extracts identified DNA/protein complexes that were enriched from cells stimulated to hypertrophy. Moreover, these elements mediated increased reporter activity on transfection into MCT cells. These data define a 90-bp cis-enhancer required for tissue-specific Col10a1 expression in vivo and putative DNA/protein complexes that contribute to the regulation of chondrocyte hypertrophy. This work will enable us to identify candidate transcription factors essential both for skeletal development and for the pathogenesis of skeletal disorders.
Collapse
Affiliation(s)
- Qiping Zheng
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wealthall RJ. In vitro regulation of proliferation and differentiation within a postnatal growth plate of the cranial base by parathyroid hormone-related peptide (PTHrP). J Cell Physiol 2009; 219:688-97. [PMID: 19229881 DOI: 10.1002/jcp.21716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Parathyroid hormone-related peptide (PTHrP) is known to be an important regulator of chondrocyte differentiation in embryonic growth plates, but little is known of its role in postnatal growth plates. The present study explores the role of PTHrP in regulating postnatal chondrocyte differentiation using a novel in vitro organ culture model based on the ethmoidal growth plate of the cranial base taken from the postnatal day 10 mouse. In vitro the ethmoidal growth plate continued to mineralize and the chondrocytes progressed to hypertrophy, as observed in vivo, but the proliferative zone was not maintained. Treatment with PTHrP inhibited mineralization and reduced alkaline phosphatase (ALP) activity in the hypertrophic zone in the ethmoidal growth plates grown ex vivo, and also increased the proliferation of non-hypertrophic chondrocytes. In addition, exogenous PTHrP reduced the expression of genes associated with terminal differentiation: type X collagen, Runx2, and ALP, as well as the PTH/PTHrP receptor (PPR). Activation of the protein kinase A pathway using 8-Br-cAMP mimicked some of these pro-proliferative/anti-differentiative effects of PTHrP. PTHrP and PPR were found to be expressed within the ethmoidal growth plate using semi-quantitative PCR, and in other cranial growth plates such as the spheno-occipital and pre-sphenoidal synchondroses. These results provide the first functional evidence that PTHrP regulates proliferation and differentiation within the postnatal, cranial growth plate. J. Cell. Physiol. 219: 688-697, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
|
24
|
Prieto C, Risueño A, Fontanillo C, De Las Rivas J. Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles. PLoS One 2008; 3:e3911. [PMID: 19081792 PMCID: PMC2597745 DOI: 10.1371/journal.pone.0003911] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 11/05/2008] [Indexed: 12/12/2022] Open
Abstract
Background Analysis of gene expression data using genome-wide microarrays is a technique often used in genomic studies to find coexpression patterns and locate groups of co-transcribed genes. However, most studies done at global “omic” scale are not focused on human samples and when they correspond to human very often include heterogeneous datasets, mixing normal with disease-altered samples. Moreover, the technical noise present in genome-wide expression microarrays is another well reported problem that many times is not addressed with robust statistical methods, and the estimation of errors in the data is not provided. Methodology/Principal Findings Human genome-wide expression data from a controlled set of normal-healthy tissues is used to build a confident human gene coexpression network avoiding both pathological and technical noise. To achieve this we describe a new method that combines several statistical and computational strategies: robust normalization and expression signal calculation; correlation coefficients obtained by parametric and non-parametric methods; random cross-validations; and estimation of the statistical accuracy and coverage of the data. All these methods provide a series of coexpression datasets where the level of error is measured and can be tuned. To define the errors, the rates of true positives are calculated by assignment to biological pathways. The results provide a confident human gene coexpression network that includes 3327 gene-nodes and 15841 coexpression-links and a comparative analysis shows good improvement over previously published datasets. Further functional analysis of a subset core network, validated by two independent methods, shows coherent biological modules that share common transcription factors. The network reveals a map of coexpression clusters organized in well defined functional constellations. Two major regions in this network correspond to genes involved in nuclear and mitochondrial metabolism and investigations on their functional assignment indicate that more than 60% are house-keeping and essential genes. The network displays new non-described gene associations and it allows the placement in a functional context of some unknown non-assigned genes based on their interactions with known gene families. Conclusions/Significance The identification of stable and reliable human gene to gene coexpression networks is essential to unravel the interactions and functional correlations between human genes at an omic scale. This work contributes to this aim, and we are making available for the scientific community the validated human gene coexpression networks obtained, to allow further analyses on the network or on some specific gene associations. The data are available free online at http://bioinfow.dep.usal.es/coexpression/.
Collapse
Affiliation(s)
- Carlos Prieto
- Bioinformatics and Functional Genomics Research Group, Cancer Research Center (CIC-IBMCC, CSIC/USAL), Salamanca, Spain
| | - Alberto Risueño
- Bioinformatics and Functional Genomics Research Group, Cancer Research Center (CIC-IBMCC, CSIC/USAL), Salamanca, Spain
| | - Celia Fontanillo
- Bioinformatics and Functional Genomics Research Group, Cancer Research Center (CIC-IBMCC, CSIC/USAL), Salamanca, Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Research Group, Cancer Research Center (CIC-IBMCC, CSIC/USAL), Salamanca, Spain
- * E-mail:
| |
Collapse
|
25
|
Su HW, Wang SW, Ghishan FK, Kiela PR, Tang MJ. Cell confluency-induced Stat3 activation regulates NHE3 expression by recruiting Sp1 and Sp3 to the proximal NHE3 promoter region during epithelial dome formation. Am J Physiol Cell Physiol 2008; 296:C13-24. [PMID: 19064501 DOI: 10.1152/ajpcell.00263.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Activation of signal transducer and activator of transcription-3 (Stat3) during cell confluency is related to its regulatory roles in cell growth arrest- or survival-related physiological or developmental processes. We previously demonstrated that this signaling event triggers epithelial dome formation by transcriptional augmentation of sodium hydrogen exchanger-3 (NHE3) expression. However, the detailed molecular mechanism remained unclear. By using serial deletions, site-directed mutagenesis, and EMSA analysis, we now demonstrate Stat3 binding to an atypical Stat3-response element in the rat proximal NHE3 promoter, located adjacent to a cluster of Sp cis-elements (SpA/B/C), within -77/-36 nt of the gene. SpB (-58/-55 nt) site was more effective than SpA (-72/-69 nt) site for cooperative binding of Sp1/Sp3. Increasing cell density had no effect on Sp1/Sp3 expression but resulted in their increased binding to the SpA/B/C probe along with Stat3 and concurrently with enhanced nuclear pTyr705-Stat3 level. Immunoprecipitation performed with the nuclear extracts demonstrated physical interaction of Stat3 and Sp1/Sp3 triggered by cell confluency. Stat3 inhibition by overexpression of dominant-negative Stat3-D mutant in MDCK cells or by small interfering RNA-mediated knockdown in Caco-2 cells resulted in inhibition of the cell density-induced NHE3 expression, Sp1/Sp3 binding, and NHE3 promoter activity and in decreased dome formation. Thus, during confluency, ligand-independent Stat3 activation leads to its interaction with Sp1/Sp3, their recruitment to the SpA/B/C cluster in a Stat3 DNA-binding domain-dependent fashion, increased transcription, and expression of NHE3, to coordinate cell density-mediated epithelial dome formation.
Collapse
Affiliation(s)
- Hsiao-Wen Su
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 Univ. Road, Tainan 70101, Taiwan
| | | | | | | | | |
Collapse
|
26
|
Garvican ER, Vaughan-Thomas A, Redmond C, Clegg PD. Chondrocytes harvested from osteochondritis dissecans cartilage are able to undergo limited in vitro chondrogenesis despite having perturbations of cell phenotype in vivo. J Orthop Res 2008; 26:1133-40. [PMID: 18327793 DOI: 10.1002/jor.20602] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Our objective was to characterize the variation in gene expression for key genes associated with chondrogenic phenotype of osteochondrosis (OC)-affected and normal chondrocytes, and to identify whether OC chondrocytes can redifferentiate and regain a phenotype similar to normal chondrocytes if appropriate chondrogenic signals are given. Equine articular cartilage removed at surgery to treat clinically significant OC lesions was collected (n = 10), and the gene expression evaluated and compared to aged-matched normal samples (n = 10). Cartilage was harvested from normal (n = 4) and OC (n = 3) joints from horses at necropsy. Chondrogenic pellet cultures were established following monolayer proliferation. After 14 days in culture, the pellets were assessed by histochemical and pellet weight analysis, assay of glycosaminoglycan (GAG) content, and gene expression. Chondrocytes from OC cartilage expressed significantly more Coll-I, -II, -III, and -X than chondrocytes from normal cartilage (all p < 0.0001). Furthermore, OC chondrocytes expressed significantly more MMP-13, ADAMTS-4 (both p < 0.0001), and TIMP-1 (p < 0.001) and significantly less TIMP-2 and TIMP-3. Pellets created from OC chondrocytes contained significantly less GAG (p = 0.0069) and expressed significantly less Sox9 and significantly more superficial zone protein (SZP) (p = 0.0105) than pellets created from normal cartilage. The results suggest that chondrocytes from OC cartilage at the time of surgical treatment have perturbations in phenotype compared to cells from normal cartilage. Despite these differences, following monolayer expansion and pellet culture under chondrogenic conditions, chondrocytes derived from OC cartilage retain some ability to undergo chondrogenic differentiation and synthesize an appropriate cartilage-like matrix. However, this chondrogenic differentiation potential is inferior to that seen in aged-matched normal chondrocytes.
Collapse
Affiliation(s)
- E R Garvican
- Musculoskeletal Research Group, The University of Liverpool Veterinary Teaching Hospital, Leahurst, Neston, Wirral, United Kingdom.
| | | | | | | |
Collapse
|
27
|
Porée B, Kypriotou M, Chadjichristos C, Beauchef G, Renard E, Legendre F, Melin M, Gueret S, Hartmann DJ, Malléin-Gerin F, Pujol JP, Boumediene K, Galéra P. Interleukin-6 (IL-6) and/or soluble IL-6 receptor down-regulation of human type II collagen gene expression in articular chondrocytes requires a decrease of Sp1.Sp3 ratio and of the binding activity of both factors to the COL2A1 promoter. J Biol Chem 2007; 283:4850-65. [PMID: 18065760 DOI: 10.1074/jbc.m706387200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Type II collagen is composed of alpha1(II) chains encoded by the COL2A1 gene. Alteration of this cartilage marker is a common feature of osteoarthritis. Interleukin-6 (IL-6) is a pro-inflammatory cytokine that needs a soluble form of receptor called sIL-6R to exert its effects in some cellular models. In that case, sIL-6R exerts agonistic action. This mechanism can make up for the partial or total absence of membrane-anchored IL-6 receptors in some cell types, such as chondrocytes. Our study shows that IL-6, sIL-6R, or both inhibit type II collagen production by rabbit articular chondrocytes through a transcriptional control. The cytokine and/or sIL-6R repress COL2A1 transcription by a -63/-35 sequence that binds Sp1.Sp3. Indeed, IL-6 and/or sIL-6R inhibit Sp1 and Sp3 expression and their binding activity to the 63-bp promoter. In chromatin immunoprecipitation experiments, IL-6.sIL-6R induced an increase in Sp3 recruitment to the detriment of Sp1. Knockdown of Sp1.Sp3 by small interference RNA and decoy strategies were found to prevent the IL-6- and/or sIL-6R-induced inhibition of COL2A1 transcription, indicating that each of these Sp proteins is required for down-regulation of the target gene and that a heterotypic Sp1.Sp3 complex is involved. Additionally, Sp1 was shown to interact with Sp3 and HDAC1. Indeed, overexpression of a full-length Sp3 cDNA blocked the Sp1 up-regulation of the 63-bp COL2A1 promoter activity, and by itself, inhibits COL2A1 transcription. We can conclude that IL-6, sIL-6R, or both in combination decrease both the Sp1.Sp3 ratio and DNA-binding activities, thus inhibiting COL2A1 transcription.
Collapse
Affiliation(s)
- Benoît Porée
- Laboratoire de Biochimie du Tissu Conjonctif, Université de Caen/Basse-Normandie, IFR ICORE 146, Faculté de Médecine, CHU niveau 3, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mehlhorn AT, Niemeyer P, Kaschte K, Muller L, Finkenzeller G, Hartl D, Sudkamp NP, Schmal H. Differential effects of BMP-2 and TGF-beta1 on chondrogenic differentiation of adipose derived stem cells. Cell Prolif 2007; 40:809-23. [PMID: 18021172 DOI: 10.1111/j.1365-2184.2007.00473.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES This article addresses the interaction of transforming growth factor beta1 (TGF-beta1) and bone morphogenic protein 2 (BMP-2) during osteo-chondrogenic differentiation of adipose-derived adult stem cells (ASC). TGF-beta1 was expected to modulate the BMP-2-induced effects through transcriptional regulation of Dlx-5, Msx-2 and Runx-2. MATERIALS AND METHODS Encapsulated ASC were cultured for 14 days in medium containing TGF-beta1 and/or BMP-2. mRNA expression of the extracellular matrix molecules col2a1, cartilage oligomeric matrix protein, col10a1, alkaline phosphatase (AP) and transcription factors Msx-2, Dlx-5 and Runx-2 was analysed. Release of glycosaminoglycans, collagen types II and X into the extracellular matrix was demonstrated. RESULTS BMP-2 and TGF-beta1 induced a chondrogenic phenotype in ASC. Combined growth factor treatment had a synergistic effect on col10a1 and an additive effect on col2a1 mRNA expression. Synthesis of glycosaminoglycans was enhanced by combined growth factor treatment. Addition of TGF-beta1 inhibited BMP-2 induced AP expression and activity and both proteins promoted chondrogenic maturation. CONCLUSIONS Prevention of BMP-2-induced osteogenic transdifferentiation by TGF-beta1 seemed not to be mediated by transcriptional regulation of Dlx-5. Due to these findings, simultaneous stimulation of ASC with BMP-2 and TGF-beta1 seemed to be beneficial for complete differentiation of ASC into chondrocytes.
Collapse
Affiliation(s)
- A T Mehlhorn
- Department of Orthopaedic and Trauma Surgery, University Medical Center Freiberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Li D, Mitchell D, Luo J, Yi Z, Cho SG, Guo J, Li X, Ning G, Wu X, Liu M. Estrogen regulates KiSS1 gene expression through estrogen receptor alpha and SP protein complexes. Endocrinology 2007; 148:4821-8. [PMID: 17656465 DOI: 10.1210/en.2007-0154] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kisspeptins are natural ligands of G protein-coupled receptor-54. Activation of KiSS1/G protein-coupled receptor-54 signaling pathways results in potent activation of the hypothalamus-pituitary-gonadal axis and initiates puberty. Recent data have shown that in female mice, KiSS1 is positively regulated by estradiol (E(2)) in the anteroventral periventricular nucleus, an important reproductive neuroendocrine brain region, but negatively regulated in the arcuate nucleus. However, little is known about the molecular mechanisms governing E(2)-modulated KiSS1 expression. Here, we demonstrate that the expression level of the KiSS1 gene was up-regulated with the administration of E(2) in estrogen receptor alpha (ERalpha)-positive hypothalamic GT1-7 cells. Using transient transfection of human KiSS1 gene promoter coupled to a luciferase reporter, E(2) increases promoter activity in the presence of ERalpha. Deletion analysis of KiSS1 promoter indicates that the E(2)-regulated increase in promoter activity depends on the Sp1 sites of the proximal promoter region. Using both EMSAs and chromatin immunoprecipitation analysis, we determined that both Sp1 and Sp3 proteins constitutively associate with the four putative Sp1 sites in vitro, whereas the association of ERalpha with the KiSS1 promoter is dependent on E(2) exposure. Sp1 and ERalpha form a complex in vivo to mediate the E(2)-induced activation of KiSS1 promoter. Interestingly, Sp1 transactivates KiSS1 promoter activity, whereas Sp3 functions as a transcriptional repressor. Together, these results demonstrate that E(2)-dependent transcriptional activation of KiSS1 gene is mediated by ERalpha through the interaction of Sp1/Sp3 proteins with the GC-rich motifs of KiSS1 promoter, providing a molecular mechanism of how steroid hormone feedback regulates KiSS1 expression.
Collapse
Affiliation(s)
- Dali Li
- Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Driller K, Pagenstecher A, Uhl M, Omran H, Berlis A, Gründer A, Sippel AE. Nuclear factor I X deficiency causes brain malformation and severe skeletal defects. Mol Cell Biol 2007; 27:3855-3867. [PMID: 17353270 PMCID: PMC1899988 DOI: 10.1128/mcb.02293-06] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor family of nuclear factor I (NFI) proteins is encoded by four closely related genes: Nfia, Nfib, Nfic, and Nfix. A potential role for NFI proteins in regulating developmental processes has been implicated by their specific expression pattern during embryonic development and by analysis of NFI-deficient mice. It was shown that loss of NFIA results in hydrocephalus and agenesis of the corpus callosum and that NFIB deficiency leads to neurological defects and to severe lung hypoplasia, whereas Nfic knockout mice exhibit specific tooth defects. Here we report the knockout analysis of the fourth and last member of this gene family, Nfix. Loss of NFIX is postnatally lethal and leads to hydrocephalus and to a partial agenesis of the corpus callosum. Furthermore, NFIX-deficient mice develop a deformation of the spine, which is due to a delay in ossification of vertebral bodies and a progressive degeneration of intervertebral disks. Impaired endochondral ossification and decreased mineralization were also observed in femoral sections of Nfix-/- mice. Consistent with the defects in bone ossification we could show that the expression level of tetranectin, a plasminogen-binding protein involved in mineralization, is specifically downregulated in bones of NFIX-deficient mice.
Collapse
Affiliation(s)
- Katrin Driller
- Institut für Biologie III, Fakultät für Biologie, Albert-Ludwigs Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Simões B, Conceição N, Viegas CSB, Pinto JP, Gavaia PJ, Hurst LD, Kelsh RN, Cancela ML. Identification of a promoter element within the zebrafish colXalpha1 gene responsive to runx2 isoforms Osf2/Cbfa1 and til-1 but not to pebp2alphaA2. Calcif Tissue Int 2006; 79:230-44. [PMID: 17033725 DOI: 10.1007/s00223-006-0111-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 06/21/2006] [Indexed: 10/24/2022]
Abstract
Type X collagen is a short chain collagen specifically expressed by hypertrophic chondrocytes during endochondral ossification. We report here the functional analysis of the zebrafish (Danio rerio) collagen Xalpha1 gene (colXalpha1) promoter with the identification of a region responsive to two isoforms of the runt domain transcription factor runx2. Furthermore, we provide evidence for the presence of dual promoter usage in zebrafish, a finding that should be important to further understanding of the regulation of its restricted tissue distribution and spatial-temporal expression during early development. The zebrafish colXalpha1 gene structure is comparable to that recently identified by comparative genomics in takifugu and shows homology with corresponding mammalian genes, indicating that its general architecture has been maintained throughout vertebrate evolution. Our data suggest that, as in mammals, runx2 plays a role in the development of the osteogenic lineage, supporting zebrafish as a model for studies of bone and cartilage development.
Collapse
Affiliation(s)
- B Simões
- Centro de Ciências do Mar do Algarve, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Nishio Y, Dong Y, Paris M, O'Keefe RJ, Schwarz EM, Drissi H. Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene 2006; 372:62-70. [PMID: 16574347 DOI: 10.1016/j.gene.2005.12.022] [Citation(s) in RCA: 256] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/08/2005] [Accepted: 12/09/2005] [Indexed: 01/10/2023]
Abstract
The zinc finger transcription factor Osterix (Osx) regulates bone formation and osteoblast differentiation in vitro and in vivo. We investigated the transcriptional mechanisms underlying the mouse Osx expression by isolating and characterizing its 5' upstream region. We performed 5' RACE on mRNA isolated from murine chondroprogenitor cells and determined a cap site of Osx approximately -99 nucleotides upstream of the initiation codon. Sequence analysis of this TATA-less promoter shows several putative response elements for Sox9, VDRE, Runx and Sp1. Transfection of the Osx promoter driving the luciferase reporter gene into C3H10T1/2 and ATDC5 cells shows a strong basal promoter activity between 565 bp and 2 kb. Deletion mutant analyses show that the most proximal 852 kb of the Osx promoter contains the highest activating domains, while strong repressive domains were identified between 1.8 and 2 kb. Over-expression experiments indicate that Runx2 significantly transactivates the Osx promoter by at least 2 fold indicating that Osx is downstream of Runx2 in mesenchymal cells. This up-regulation was abrogated when the Runx2 responsive element on the Osx promoter was mutated. Finally, we show that Runx2 specifically binds to this DNA element in the Osx promoter. Thus our results show for the first time Osx transcriptional regulation through the bone and cartilage related transcription factor Runx2.
Collapse
Affiliation(s)
- Yasuhiko Nishio
- Center for Musculoskeletal Research, Department of Orthopaedics, Box 665, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Chondrogenesis is an essential process in vertebrates. It leads to the formation of cartilage growth plates, which drive body growth and have primary roles in endochondral ossification. It also leads to the formation of permanent cartilaginous tissues that provide major structural support in the articular joints and respiratory and auditory tracts throughout life. Defects in chondrogenesis cause chondrodysostoses and chondrodysplasias. These skeletal malformation diseases account for a significant proportion of birth defects in humans and can dramatically affect a person's expectancy and quality of life. Chondrogenesis occurs when pluripotent mesenchymal cells commit to the chondrocyte lineage, and through a series of differentiation steps build and eventually remodel cartilage. This review summarizes and discusses our current knowledge and lack of knowledge about the chondrocyte differentiation pathway, from mesenchymal cells to growth plate and articular chondrocytes, with a main focus on how it is controlled by tissue patterning and cell differentiation transcription factors, such as, but not limited to, Pax1 and Pax9, Nkx3.1 and Nkx3.2, Sox9, Sox5 and Sox6, Runx2 and Runx3, and c-Maf.
Collapse
Affiliation(s)
- Véronique Lefebvre
- Department of Biomedical Engineering and Orthopaedic Research Center, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|