1
|
Jeong DW, Lee DY, Kim SY, Jeoung SW, Zhao D, Knight J, Lam TT, Jin JH, Lee HS, Hochstrasser M, Ryu HY. Auto-sumoylation of the yeast Ubc9 E2 SUMO-conjugating enzyme extends cellular lifespan. Nat Commun 2025; 16:3735. [PMID: 40254622 PMCID: PMC12009981 DOI: 10.1038/s41467-025-58925-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/04/2025] [Indexed: 04/22/2025] Open
Abstract
Calorie restriction (CR) provides anti-aging benefits through diverse processes, such as reduced metabolism and growth and increased mitochondrial activity. Although controversy still exists regarding CR-mediated lifespan effects, many researchers are seeking interventions that mimic the effects of CR. Yeast has proven to be a useful model system for aging studies, including CR effects. We report here that yeast adapted through in vitro evolution to the severe cellular stress caused by loss of the Ulp2 SUMO-specific protease exhibit both enhanced growth rates and replicative lifespan, and they have altered gene expression profiles similar to those observed in CR. Notably, in certain evolved ulp2Δ lines, an increase in the auto-sumoylation of Ubc9 E2 SUMO-conjugating enzyme results in altered regulation of multiple targets involved in energy metabolism and translation at both transcriptional and post-translational levels. This increase is essential for the survival of aged cells and CR-mediated lifespan extension. Thus, we suggest that high Ubc9 auto-sumoylation exerts potent anti-aging effects by promoting efficient energy metabolism-driven improvements in cell replication abilities. This potential could be therapeutically explored for the development of promising CR-mimetic strategies.
Collapse
Affiliation(s)
- Dong-Won Jeong
- KNU G-LAMP Research Center, KNU Institute of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Do Yoon Lee
- KNU G-LAMP Research Center, KNU Institute of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Yeon Kim
- KNU G-LAMP Research Center, KNU Institute of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Seok-Won Jeoung
- KNU G-LAMP Research Center, KNU Institute of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Dejian Zhao
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - James Knight
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - TuKiet T Lam
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
| | - Jong Hwa Jin
- Osong Medical Innovation Foundation, New Drug Development Center, Cheongju, CT, Republic of Korea
| | - Hyun-Shik Lee
- KNU G-LAMP Research Center, KNU Institute of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA.
| | - Hong-Yeoul Ryu
- KNU G-LAMP Research Center, KNU Institute of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
2
|
Yang Y, Li Y, Sears RC, Sun XX, Dai MS. SUMOylation regulation of ribosome biogenesis: Emerging roles for USP36. FRONTIERS IN RNA RESEARCH 2024; 2:1389104. [PMID: 38764604 PMCID: PMC11101209 DOI: 10.3389/frnar.2024.1389104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Ribosome biogenesis is essential for cell growth, proliferation, and animal development. Its deregulation leads to various human disorders such as ribosomopathies and cancer. Thus, tight regulation of ribosome biogenesis is crucial for normal cell homeostasis. Emerging evidence suggests that posttranslational modifications such as ubiquitination and SUMOylation play a crucial role in regulating ribosome biogenesis. Our recent studies reveal that USP36, a nucleolar deubiquitinating enzyme (DUB), acts also as a SUMO ligase to regulate nucleolar protein group SUMOylation, thereby being essential for ribosome biogenesis. Here, we provide an overview of the current understanding of the SUMOylation regulation of ribosome biogenesis and discuss the role of USP36 in nucleolar SUMOylation.
Collapse
Affiliation(s)
- Yunhan Yang
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Yanping Li
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Rosalie C. Sears
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Xiao-Xin Sun
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Mu-Shui Dai
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
3
|
Suskiewicz MJ. The logic of protein post-translational modifications (PTMs): Chemistry, mechanisms and evolution of protein regulation through covalent attachments. Bioessays 2024; 46:e2300178. [PMID: 38247183 DOI: 10.1002/bies.202300178] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Protein post-translational modifications (PTMs) play a crucial role in all cellular functions by regulating protein activity, interactions and half-life. Despite the enormous diversity of modifications, various PTM systems show parallels in their chemical and catalytic underpinnings. Here, focussing on modifications that involve the addition of new elements to amino-acid sidechains, I describe historical milestones and fundamental concepts that support the current understanding of PTMs. The historical survey covers selected key research programmes, including the study of protein phosphorylation as a regulatory switch, protein ubiquitylation as a degradation signal and histone modifications as a functional code. The contribution of crucial techniques for studying PTMs is also discussed. The central part of the essay explores shared chemical principles and catalytic strategies observed across diverse PTM systems, together with mechanisms of substrate selection, the reversibility of PTMs by erasers and the recognition of PTMs by reader domains. Similarities in the basic chemical mechanism are highlighted and their implications are discussed. The final part is dedicated to the evolutionary trajectories of PTM systems, beginning with their possible emergence in the context of rivalry in the prokaryotic world. Together, the essay provides a unified perspective on the diverse world of major protein modifications.
Collapse
Affiliation(s)
- Marcin J Suskiewicz
- Centre de Biophysique Moléculaire, CNRS - Orléans, UPR 4301, affiliated with Université d'Orléans, Orléans, France
| |
Collapse
|
4
|
Müller J, Furlan M, Settele D, Grupp B, Johnsson N. Transient septin sumoylation steers a Fir1-Skt5 protein complex between the split septin ring. J Cell Biol 2024; 223:e202301027. [PMID: 37938157 PMCID: PMC10631487 DOI: 10.1083/jcb.202301027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
Ubiquitylation and phosphorylation control composition and architecture of the cell separation machinery in yeast and other eukaryotes. The significance of septin sumoylation on cell separation remained an enigma. Septins form an hourglass structure at the bud neck of yeast cells that transforms into a split septin double ring during mitosis. We discovered that sumoylated septins recruit the cytokinesis checkpoint protein Fir1 to the peripheral side of the septin hourglass just before its transformation into the double-ring configuration. As this transition occurs, Fir1 is released from the septins and seamlessly relocates between the split septin rings through synchronized binding to the scaffold Spa2. Fir1 binds and carries the membrane-bound Skt5 on its route to the division plane where the Fir1-Skt5 complex serves as receptor for chitin synthase III.
Collapse
Affiliation(s)
- Judith Müller
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Monique Furlan
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - David Settele
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Benjamin Grupp
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Nils Johnsson
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| |
Collapse
|
5
|
Ling T, Li S, Chen H, Wang Q, Shi J, Li Y, Bao W, Liang K, Piao HL. Lysine-372-dependent SUMOylation inhibits the enzymatic activity of glutamine synthases. FASEB J 2023; 37:e23319. [PMID: 38010918 DOI: 10.1096/fj.202301462rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Glutamine synthetase (GS) is a crucial enzyme involved in de novo synthesis of glutamine and participates in several biological processes, including nitrogen metabolism, nucleotide synthesis, and amino acid synthesis. Post-translational modification makes GS more adaptable to the needs of cells, and acetylation modification of GS at double sites has attracted considerable attention. Despite very intensive research, how SUMOylation affects GS activity at a molecular level remains unclear. Here, we report that previously undiscovered GS SUMOylation which is deficient mutant K372R of GS exhibits more bluntness under glutamine starvation. Mechanistically, glutamine deprivation triggers the GS SUMOylation, and this SUMOylation impaired the protein stability of GS, within a concomitant decrease in enzymatic activity. In addition, we identified SAE1, Ubc9, and PIAS1 as the assembly enzymes of GS SUMOylation respectively. Furthermore, Senp1/2 functions as a SUMO-specific protease to reverse the SUMOylation of GS. This study provides the first evidence that SUMOylation serves as a regulatory mechanism for determining the GS enzymatic activity, contributing to understanding the GS regulation roles in various cellular and pathophysiological processes.
Collapse
Affiliation(s)
- Ting Ling
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of analytical chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Siyi Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Cancer Research Institute, Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Huan Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qiuping Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jing Shi
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang, China
| | - Yirong Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of analytical chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjun Bao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of analytical chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Kunming Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang, China
| | - Hai-Long Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of analytical chemistry, University of Chinese Academy of Sciences, Beijing, China
- Cancer Research Institute, Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Cheng X, Yang W, Lin W, Mei F. Paradoxes of Cellular SUMOylation Regulation: A Role of Biomolecular Condensates? Pharmacol Rev 2023; 75:979-1006. [PMID: 37137717 PMCID: PMC10441629 DOI: 10.1124/pharmrev.122.000784] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
Protein SUMOylation is a major post-translational modification essential for maintaining cellular homeostasis. SUMOylation has long been associated with stress responses as a diverse array of cellular stress signals are known to trigger rapid alternations in global protein SUMOylation. In addition, while there are large families of ubiquitination enzymes, all small ubiquitin-like modifiers (SUMOs) are conjugated by a set of enzymatic machinery comprising one heterodimeric SUMO-activating enzyme, a single SUMO-conjugating enzyme, and a small number of SUMO protein ligases and SUMO-specific proteases. How a few SUMOylation enzymes specifically modify thousands of functional targets in response to diverse cellular stresses remains an enigma. Here we review recent progress toward understanding the mechanisms of SUMO regulation, particularly the potential roles of liquid-liquid phase separation/biomolecular condensates in regulating cellular SUMOylation during cellular stresses. In addition, we discuss the role of protein SUMOylation in pathogenesis and the development of novel therapeutics targeting SUMOylation. SIGNIFICANCE STATEMENT: Protein SUMOylation is one of the most prevalent post-translational modifications and plays a vital role in maintaining cellular homeostasis in response to stresses. Protein SUMOylation has been implicated in human pathogenesis, such as cancer, cardiovascular diseases, neurodegeneration, and infection. After more than a quarter century of extensive research, intriguing enigmas remain regarding the mechanism of cellular SUMOylation regulation and the therapeutic potential of targeting SUMOylation.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Wenli Yang
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Wei Lin
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Fang Mei
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
7
|
Wu XM, Zhang BS, Zhao YL, Wu HW, Gao F, Zhang J, Zhao JH, Guo HS. DeSUMOylation of a Verticillium dahliae enolase facilitates virulence by derepressing the expression of the effector VdSCP8. Nat Commun 2023; 14:4844. [PMID: 37563142 PMCID: PMC10415295 DOI: 10.1038/s41467-023-40384-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
The soil-borne fungus Verticillium dahliae, the most notorious plant pathogen of the Verticillium genus, causes vascular wilts in a wide variety of economically important crops. The molecular mechanism of V. dahliae pathogenesis remains largely elusive. Here, we identify a small ubiquitin-like modifier (SUMO)-specific protease (VdUlpB) from V. dahliae, and find that VdUlpB facilitates V. dahliae virulence by deconjugating SUMO from V. dahliae enolase (VdEno). We identify five lysine residues (K96, K254, K259, K313 and K434) that mediate VdEno SUMOylation, and SUMOylated VdEno preferentially localized in nucleus where it functions as a transcription repressor to inhibit the expression of an effector VdSCP8. Importantly, VdUlpB mediates deSUMOylation of VdEno facilitates its cytoplasmic distribution, which allows it to function as a glycolytic enzyme. Our study reveals a sophisticated pathogenic mechanism of VdUlpB-mediated enolase deSUMOylation, which fortifies glycolytic pathway for growth and contributes to V. dahliae virulence through derepressing the expression of an effector.
Collapse
Affiliation(s)
- Xue-Ming Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo-Sen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun-Long Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hua-Wei Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Gao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Wu X, Li JH, Xu L, Li YX, Zhu XX, Wang XY, Wu X, Zhao W, Ni X, Yin XY. SUMO specific peptidase 3 halts pancreatic ductal adenocarcinoma metastasis via deSUMOylating DKC1. Cell Death Differ 2023:10.1038/s41418-023-01175-4. [PMID: 37188742 DOI: 10.1038/s41418-023-01175-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
In the past few decades, advances in the outcomes of patients suffering from pancreatic ductal adenocarcinoma (PDAC) have lagged behind these gained in the treatment of many other malignancies. Although the pivotal role of the SUMO pathway in PDAC has been illustrated, the underlying molecule drivers have yet to be fully elucidated. In the present study, we identified SENP3 as a potential suppressor of PDAC progression through an in vivo metastatic model. Further studies revealed that SENP3 inhibited PDAC invasion in a SUMO system dependent fashion. Mechanistically, SENP3 interacted with DKC1 and, as such, catalyzed the deSUMOylation of DKC1, which accepted SUMO3 modifiers at three lysine residues. SENP3-mediated deSUMOylation caused DKC1 instability and disruption of the interaction between snoRNP proteins, which contributed to the impaired migration ability of PDAC. Indeed, overexpression of DKC1 abated the anti-metastasis effect of SENP3, and DKC1 was elevated in PDAC specimens and associated with a poor prognosis in PDAC patients. Collectively, our findings shed light on the essential role of SENP3/DKC1 axis in the progression of PDAC.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jian-Hui Li
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Long Xu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ya-Xiong Li
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiao-Xu Zhu
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xi-Yu Wang
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xingmei Wu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Xuhao Ni
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Asimaki E, Petriukov K, Renz C, Meister C, Ulrich HD. Fast friends - Ubiquitin-like modifiers as engineered fusion partners. Semin Cell Dev Biol 2022; 132:132-145. [PMID: 34840080 PMCID: PMC9703124 DOI: 10.1016/j.semcdb.2021.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
Ubiquitin and its relatives are major players in many biological pathways, and a variety of experimental tools based on biological chemistry or protein engineering is available for their manipulation. One popular approach is the use of linear fusions between the modifier and a protein of interest. Such artificial constructs can facilitate the understanding of the role of ubiquitin in biological processes and can be exploited to control protein stability, interactions and degradation. Here we summarize the basic design considerations and discuss the advantages as well as limitations associated with their use. Finally, we will refer to several published case studies highlighting the principles of how they provide insight into pathways ranging from membrane protein trafficking to the control of epigenetic modifications.
Collapse
|
10
|
Ryu HY. SUMO pathway is required for ribosome biogenesis. BMB Rep 2022; 55:535-540. [PMID: 36195568 PMCID: PMC9712707 DOI: 10.5483/bmbrep.2022.55.11.130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2023] Open
Abstract
Ribosomes, acting as the cellular factories for protein production, are essential for all living organisms. Ribosomes are composed of both proteins and RNAs and are established through the coordination of several steps, including transcription, maturation of ribosomal RNA (rRNA), and assembly of ribosomal proteins. In particular, diverse factors required for ribosome biogenesis, such as transcription factors, small nucleolar RNA (snoRNA)-associated proteins, and assembly factors, are tightly regulated by various post-translational modifications. Among these modifications, small ubiquitin-related modifier (SUMO) targets lots of proteins required for gene expression of ribosomal proteins, rRNA, and snoRNAs, rRNA processing, and ribosome assembly. The tight control of SUMOylation affects functions and locations of substrates. This review summarizes current studies and recent progress of SUMOylation-mediated regulation of ribosome biogenesis. [BMB Reports 2022; 55(11): 535-540].
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
11
|
Ryu HY. SUMO pathway is required for ribosome biogenesis. BMB Rep 2022; 55:535-540. [PMID: 36195568 PMCID: PMC9712707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022] Open
Abstract
Ribosomes, acting as the cellular factories for protein production, are essential for all living organisms. Ribosomes are composed of both proteins and RNAs and are established through the coordination of several steps, including transcription, maturation of ribosomal RNA (rRNA), and assembly of ribosomal proteins. In particular, diverse factors required for ribosome biogenesis, such as transcription factors, small nucleolar RNA (snoRNA)-associated proteins, and assembly factors, are tightly regulated by various post-translational modifications. Among these modifications, small ubiquitin-related modifier (SUMO) targets lots of proteins required for gene expression of ribosomal proteins, rRNA, and snoRNAs, rRNA processing, and ribosome assembly. The tight control of SUMOylation affects functions and locations of substrates. This review summarizes current studies and recent progress of SUMOylation-mediated regulation of ribosome biogenesis. [BMB Reports 2022; 55(11): 535-540].
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
12
|
Brüninghoff K, Wulff S, Dörner W, Geiss-Friedlander R, Mootz HD. A Photo-Crosslinking Approach to Identify Class II SUMO-1 Binders. Front Chem 2022; 10:900989. [PMID: 35707458 PMCID: PMC9191277 DOI: 10.3389/fchem.2022.900989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The small ubiquitin-like modifier (SUMO) is involved in various cellular processes and mediates known non-covalent protein-protein interactions by three distinct binding surfaces, whose interactions are termed class I to class III. While interactors for the class I interaction, which involves binding of a SUMO-interacting motif (SIM) to a hydrophobic groove in SUMO-1 and SUMO-2/3, are widely abundant, only a couple of examples have been reported for the other two types of interactions. Class II binding is conveyed by the E67 loop region on SUMO-1. Many previous studies to identify SUMO binders using pull-down or microarray approaches did not strategize on the SUMO binding mode. Identification of SUMO binding partners is further complicated due to the typically transient and low affinity interactions with the modifier. Here we aimed to identify SUMO-1 binders selectively enriched for class II binding. Using a genetically encoded photo-crosslinker approach, we have designed SUMO-1 probes to covalently capture class II SUMO-1 interactors by strategically positioning the photo-crosslinking moiety on the SUMO-1 surface. The probes were validated using known class II and class I binding partners. We utilized the probe with p-benzoyl-phenylalanine (BzF, also termed BpF or Bpa) at the position of Gln69 to identify binding proteins from mammalian cell extracts using mass spectrometry. By comparison with results obtained with a similarly designed SUMO-1 probe to target SIM-mediated binders of the class I type, we identified 192 and 96 proteins specifically enriched by either probe, respectively. The implicated preferential class I or class II binding modes of these proteins will further contribute to unveiling the complex interplay of SUMO-1-mediated interactions.
Collapse
Affiliation(s)
- Kira Brüninghoff
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Stephanie Wulff
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Wolfgang Dörner
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Ruth Geiss-Friedlander
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Henning D. Mootz
- Institute of Biochemistry, University of Münster, Münster, Germany
- *Correspondence: Henning D. Mootz,
| |
Collapse
|
13
|
Cabello-Lobato MJ, Jenner M, Cisneros-Aguirre M, Brüninghoff K, Sandy Z, da Costa I, Jowitt T, Loch C, Jackson S, Wu Q, Mootz H, Stark J, Cliff M, Schmidt C. Microarray screening reveals two non-conventional SUMO-binding modules linked to DNA repair by non-homologous end-joining. Nucleic Acids Res 2022; 50:4732-4754. [PMID: 35420136 PMCID: PMC9071424 DOI: 10.1093/nar/gkac237] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/03/2022] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
SUMOylation is critical for numerous cellular signalling pathways, including the maintenance of genome integrity via the repair of DNA double-strand breaks (DSBs). If misrepaired, DSBs can lead to cancer, neurodegeneration, immunodeficiency and premature ageing. Using systematic human proteome microarray screening combined with widely applicable carbene footprinting, genetic code expansion and high-resolution structural profiling, we define two non-conventional and topology-selective SUMO2-binding regions on XRCC4, a DNA repair protein important for DSB repair by non-homologous end-joining (NHEJ). Mechanistically, the interaction of SUMO2 and XRCC4 is incompatible with XRCC4 binding to three other proteins important for NHEJ-mediated DSB repair. These findings are consistent with SUMO2 forming a redundant NHEJ layer with the potential to regulate different NHEJ complexes at distinct levels including, but not limited to, XRCC4 interactions with XLF, LIG4 and IFFO1. Regulation of NHEJ is not only relevant for carcinogenesis, but also for the design of precision anti-cancer medicines and the optimisation of CRISPR/Cas9-based gene editing. In addition to providing molecular insights into NHEJ, this work uncovers a conserved SUMO-binding module and provides a rich resource on direct SUMO binders exploitable towards uncovering SUMOylation pathways in a wide array of cellular processes.
Collapse
Affiliation(s)
- Maria Jose Cabello-Lobato
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Matthew Jenner
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- Warwick Integrative Synthetic Biology (WISB) Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Metztli Cisneros-Aguirre
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences Beckman Research Institute of the City of Hope, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Kira Brüninghoff
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, 48149 Muenster, Germany
| | - Zac Sandy
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Isabelle C da Costa
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Thomas A Jowitt
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | - Stephen P Jackson
- Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
| | - Qian Wu
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Henning D Mootz
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, 48149 Muenster, Germany
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences Beckman Research Institute of the City of Hope, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Matthew J Cliff
- Manchester Institute of Biotechnology (MIB) and School of Chemistry, University of Manchester, Manchester M1 7DN, UK
| | - Christine K Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
14
|
Varikkapulakkal A, Ghosh A, Mishra SK. Broader roles of the ubiquitin-like protein Hub1 indicated by its yeast two-hybrid interactors. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000519. [PMID: 35098049 PMCID: PMC8790634 DOI: 10.17912/micropub.biology.000519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/20/2021] [Accepted: 01/19/2022] [Indexed: 11/06/2022]
Abstract
The conserved ubiquitin-like protein Hub1/UBL5 functions in RNA splicing, DNA repair and mitochondrial unfolding responses. It binds proteins specific to these pathways and modifies their functional properties. However, the identities of other Hub1 substrates remain unknown. We have found unreported interactors of Saccharomyces cerevisiae Hub1 from a yeast two-hybrid (Y2H) screen. Proteins containing SIMs (small ubiquitin-like modifier SUMO-interaction motifs) and ferulic acid decarboxylase Fdc1 are identified as potential Hub1 interactors. Further experiments are required to establish these interactions and their physiological relevance, nevertheless, data presented here point towards larger and intriguing roles of Hub1.
Collapse
Affiliation(s)
- Amjadudheen Varikkapulakkal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Anuraag Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Shravan Kumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India,
Correspondence to: Shravan Kumar Mishra ()
| |
Collapse
|
15
|
Ptak C, Saik NO, Premashankar A, Lapetina DL, Aitchison JD, Montpetit B, Wozniak RW. Phosphorylation-dependent mitotic SUMOylation drives nuclear envelope-chromatin interactions. J Cell Biol 2021; 220:212843. [PMID: 34787675 PMCID: PMC8641411 DOI: 10.1083/jcb.202103036] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/30/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
In eukaryotes, chromatin binding to the inner nuclear membrane (INM) and nuclear pore complexes (NPCs) contributes to spatial organization of the genome and epigenetic programs important for gene expression. In mitosis, chromatin–nuclear envelope (NE) interactions are lost and then formed again as sister chromosomes segregate to postmitotic nuclei. Investigating these processes in S. cerevisiae, we identified temporally and spatially controlled phosphorylation-dependent SUMOylation events that positively regulate postmetaphase chromatin association with the NE. Our work establishes a phosphorylation-mediated targeting mechanism of the SUMO ligase Siz2 to the INM during mitosis, where Siz2 binds to and SUMOylates the VAP protein Scs2. The recruitment of Siz2 through Scs2 is further responsible for a wave of SUMOylation along the INM that supports the assembly and anchorage of subtelomeric chromatin at the INM and localization of an active gene (INO1) to NPCs during the later stages of mitosis and into G1-phase.
Collapse
Affiliation(s)
- Christopher Ptak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Natasha O Saik
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Diego L Lapetina
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Ben Montpetit
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.,Department of Viticulture and Enology, University of California Davis, Davis, CA
| | - Richard W Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Proteomic Profiling Identifies Kaposi's Sarcoma-Associated Herpesvirus (KSHV)-Encoded LANA SIM-Associated Proteins in Hypoxia. mSystems 2021; 6:e0110921. [PMID: 34726485 PMCID: PMC8562486 DOI: 10.1128/msystems.01109-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypoxia signaling is a key regulator in the development and progression of many types of human malignancies, including viral cancers. The latency-associated nuclear antigen (LANA), encoded by Kaposi's sarcoma-associated herpesvirus (KSHV) during latency, is a multifunctional protein that plays an essential role in viral episome maintenance and lytic gene silencing for inducing tumorigenesis. Although our previous studies have shown that LANA contains a SUMO-interacting motif (LANASIM), and hypoxia reduces SUMOylated KAP1 association with LANASIM, the physiological proteomic network of LANASIM-associated cellular proteins in response to hypoxia is still unclear. In this study, we individually established cell lines stably expressing wild-type LANA (LANAWT) and its SIM-deleted mutant (LANAdSIM) and treated them with or without hypoxia, followed by coimmunoprecipitation and mass spectrometry analysis to systemically identify the hypoxia-responsive profile of LANASIM-associated cellular proteins. We found that in hypoxia, the number of cellular proteins associated with LANAWT instead of LANAdSIM was dramatically increased. Functional network analysis revealed that two major pathways, which included cytoskeleton organization and DNA/RNA binding and processing pathways, were significantly enriched for 28 LANASIM-associated proteins in response to hypoxia. HNRNPU was one of the proteins consistently identified that interacted with LANASIM in different proteomic screening systems and responded to hypoxia. This study provides a proteomic profile of LANASIM-associated proteins in hypoxia and facilitates our understanding of the role of the collaboration between viral infection and the hypoxia response in inducing viral persistence and tumorigenesis. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) has been reported to be involved in the regulation of host proteins in response to hypoxic stress. LANA, one of the key latent proteins, contains a SUMO-interacting motif (LANASIM) and reduces the association with SUMOylated KAP1 upon hypoxic treatment. However, the physiological systematic network of LANASIM-associated cellular proteins in hypoxia is still unclear. Here, we revealed two major pathways, which included cytoskeleton organization and DNA/RNA binding and processing pathways, that were significantly enriched for 28 LANASIM-associated proteins in hypoxia. This discovery not only provides a proteomic profile of LANASIM-associated proteins in hypoxia but also facilitates our understanding of the collaboration between viral infection and hypoxic stress in inducing viral persistence and tumorigenesis.
Collapse
|
17
|
Kasera M, Ingole KD, Rampuria S, Walia Y, Gassmann W, Bhattacharjee S. Global SUMOylome Adjustments in Basal Defenses of Arabidopsis thaliana Involve Complex Interplay Between SMALL-UBIQUITIN LIKE MODIFIERs and the Negative Immune Regulator SUPPRESSOR OF rps4-RLD1. Front Cell Dev Biol 2021; 9:680760. [PMID: 34660568 PMCID: PMC8514785 DOI: 10.3389/fcell.2021.680760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022] Open
Abstract
Steady-state SUMOylome of a plant is adjusted locally during developmental transitions and more globally during stress exposures. We recently reported that basal immunity in Arabidopsis thaliana against Pseudomonas syringae pv tomato strain DC3000 (PstDC3000) is associated with strong enhancements in the net SUMOylome. Transcriptional upregulations of SUMO conjugases, suppression of protease, and increased SUMO translations accounted for this enhanced SUMOylation. Antagonistic roles of SUMO1/2 and SUMO3 isoforms further fine-tuned the SUMOylome adjustments, thus impacting defense amplitudes and immune outcomes. Loss of function of SUPPRESSOR OF rps4-RLD1 (SRFR1), a previously reported negative regulator of basal defenses, also caused constitutive increments in global SUMO-conjugates through similar modes. These suggest that SRFR1 plays a pivotal role in maintenance of SUMOylation homeostasis and its dynamic changes during immune elicitations. Here, we demonstrate that SRFR1 degradation kinetically precedes and likely provides the salicylic acid (SA) elevations necessary for the SUMOylome increments in basal defenses. We show that SRFR1 not only is a SUMOylation substrate but also interacts in planta with both SUMO1 and SUMO3. In sum1 or sum3 mutants, SRFR1 stabilities are reduced albeit by different modes. Whereas a srfr1 sum1 combination is lethal, the srfr1 sum3 plants retain developmental defects and enhanced immunity of the srfr1 parent. Together with increasing evidence of SUMOs self-regulating biochemical efficiencies of SUMOylation-machinery, we present their impositions on SRFR1 expression that in turn counter-modulates the SUMOylome. Overall, our investigations reveal multifaceted dynamics of regulated SUMOylome changes via SRFR1 in defense-developmental balance.
Collapse
Affiliation(s)
- Mritunjay Kasera
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, India
| | - Kishor D Ingole
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, India.,Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, India
| | - Sakshi Rampuria
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, India.,Division of Plant Sciences, C. S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Yashika Walia
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, India
| | - Walter Gassmann
- Division of Plant Sciences, C. S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Saikat Bhattacharjee
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
18
|
Baig MS, Dou Y, Bergey BG, Bahar R, Burgener JM, Moallem M, McNeil JB, Akhter A, Burke GL, Sri Theivakadadcham VS, Richard P, D’Amours D, Rosonina E. Dynamic sumoylation of promoter-bound general transcription factors facilitates transcription by RNA polymerase II. PLoS Genet 2021; 17:e1009828. [PMID: 34587155 PMCID: PMC8505008 DOI: 10.1371/journal.pgen.1009828] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/11/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022] Open
Abstract
Transcription-related proteins are frequently identified as targets of sumoylation, including multiple subunits of the RNA polymerase II (RNAPII) general transcription factors (GTFs). However, it is not known how sumoylation affects GTFs or whether they are sumoylated when they assemble at promoters to facilitate RNAPII recruitment and transcription initiation. To explore how sumoylation can regulate transcription genome-wide, we performed SUMO ChIP-seq in yeast and found, in agreement with others, that most chromatin-associated sumoylated proteins are detected at genes encoding tRNAs and ribosomal proteins (RPGs). However, we also detected 147 robust SUMO peaks at promoters of non-ribosomal protein-coding genes (non-RPGs), indicating that sumoylation also regulates this gene class. Importantly, SUMO peaks at non-RPGs align specifically with binding sites of GTFs, but not other promoter-associated proteins, indicating that it is GTFs specifically that are sumoylated there. Predominantly, non-RPGs with SUMO peaks are among the most highly transcribed, have high levels of TFIIF, and show reduced RNAPII levels when cellular sumoylation is impaired, linking sumoylation with elevated transcription. However, detection of promoter-associated SUMO by ChIP might be limited to sites with high levels of substrate GTFs, and promoter-associated sumoylation at non-RPGs may actually be far more widespread than we detected. Among GTFs, we found that TFIIF is a major target of sumoylation, specifically at lysines 60/61 of its Tfg1 subunit, and elevating Tfg1 sumoylation resulted in decreased interaction of TFIIF with RNAPII. Interestingly, both reducing promoter-associated sumoylation, in a sumoylation-deficient Tfg1-K60/61R mutant strain, and elevating promoter-associated SUMO levels, by constitutively tethering SUMO to Tfg1, resulted in reduced RNAPII occupancy at non-RPGs. This implies that dynamic GTF sumoylation at non-RPG promoters, not simply the presence or absence of SUMO, is important for maintaining elevated transcription. Together, our findings reveal a novel mechanism of regulating the basal transcription machinery through sumoylation of promoter-bound GTFs. Six general transcription factors (GTFs) assemble at promoters of protein-coding genes to enable recruitment of RNA polymerase II (RNAPII) and facilitate transcription initiation, but little is known about how they are regulated once promoter-bound. Here, we demonstrate that, in budding yeast, some components of GTFs are post-translationally modified by the SUMO peptide specifically when they are assembled at promoters. We determined that the large subunit of TFIIF, Tgf1, is the major target of sumoylation among GTFs and that increasing Tfg1 sumoylation reduces the interaction of TFIIF with RNAPII. Consistent with this, we found that increasing levels of SUMO at promoters of some protein-coding genes, by permanently attaching SUMO to Tfg1, resulted in reduced RNAPII levels associated with those genes. On the other hand, reducing promoter-associated sumoylation, by mutating SUMO-modified residues on Tfg1, also reduced RNAPII occupancy levels. Explaining these apparently contradictory findings, we propose that dynamic sumoylation of promoter-bound GTFs, not merely the presence or absence of SUMO, is important for facilitating rearrangements of promoter-bound GTF components that enhance transcription. Together, our data reveal a novel level of regulating the basal transcription machinery through SUMO modification at promoters of protein-coding genes.
Collapse
Affiliation(s)
- Mohammad S. Baig
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Yimo Dou
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | - Russell Bahar
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | - Marjan Moallem
- Department of Biology, York University, Toronto, Ontario, Canada
| | - James B. McNeil
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Akhi Akhter
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | - Patricia Richard
- Stellate Therapeutics, New York, New York, United States of America
| | - Damien D’Amours
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Emanuel Rosonina
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
Hu Y, Chen C, Tong X, Chen S, Hu X, Pan B, Sun X, Chen Z, Shi X, Hu Y, Shen X, Xue X, Lu M. NSUN2 modified by SUMO-2/3 promotes gastric cancer progression and regulates mRNA m5C methylation. Cell Death Dis 2021; 12:842. [PMID: 34504059 PMCID: PMC8429414 DOI: 10.1038/s41419-021-04127-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/08/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
The 5-methylcytosine (m5C) RNA methyltransferase NSUN2 is involved in the regulation of cell proliferation and metastasis formation and is upregulated in multiple cancers. However, the biological significance of NSUN2 in gastric cancer (GC) and the modification of NSUN2 itself have not been fully investigated. Here, we analyzed the expression level of NSUN2 in tissue microarrays containing 403 GC tissues by immunohistochemistry. NSUN2 was upregulated in GC, and that it was a predictor of poor prognosis. NSUN2 promotes the proliferation, migration, and invasion of GC cells in vitro. We also demonstrated that small ubiquitin-like modifier (SUMO)-2/3 interacts directly with NSUN2 by stabilizing it and mediating its nuclear transport. This facilitates the carcinogenic activity of NSUN2. Furthermore, m5C bisulfite sequencing (Bis-seq) in NSUN2-deficient GC cells showed that m5C-methylated genes are involved in multiple cancer-related signaling pathways. PIK3R1 and PCYT1A may be the target genes that participate in GC progression. Our findings revealed a novel mechanism by which NSUN2 functions in GC progression. This may provide new treatment options for GC patients.
Collapse
Affiliation(s)
- Yuanbo Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Chenbin Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Xinya Tong
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Sian Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Xianjing Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Bujian Pan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Xiangwei Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Zhiyuan Chen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Xinyu Shi
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Yingying Hu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiangyang Xue
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China.
| | - Mingdong Lu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
20
|
Yu Y, Li S, Ser Z, Sanyal T, Choi K, Wan B, Kuang H, Sali A, Kentsis A, Patel DJ, Zhao X. Integrative analysis reveals unique structural and functional features of the Smc5/6 complex. Proc Natl Acad Sci U S A 2021; 118:e2026844118. [PMID: 33941673 PMCID: PMC8126833 DOI: 10.1073/pnas.2026844118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes are critical chromatin modulators. In eukaryotes, the cohesin and condensin SMC complexes organize chromatin, while the Smc5/6 complex directly regulates DNA replication and repair. The molecular basis for the distinct functions of Smc5/6 is poorly understood. Here, we report an integrative structural study of the budding yeast Smc5/6 holo-complex using electron microscopy, cross-linking mass spectrometry, and computational modeling. We show that the Smc5/6 complex possesses several unique features, while sharing some architectural characteristics with other SMC complexes. In contrast to arm-folded structures of cohesin and condensin, Smc5 and Smc6 arm regions do not fold back on themselves. Instead, these long filamentous regions interact with subunits uniquely acquired by the Smc5/6 complex, namely the Nse2 SUMO ligase and the Nse5/Nse6 subcomplex, with the latter also serving as a linchpin connecting distal parts of the complex. Our 3.0-Å resolution cryoelectron microscopy structure of the Nse5/Nse6 core further reveals a clasped-hand topology and a dimeric interface important for cell growth. Finally, we provide evidence that Nse5/Nse6 uses its SUMO-binding motifs to contribute to Nse2-mediated sumoylation. Collectively, our integrative study identifies distinct structural features of the Smc5/6 complex and functional cooperation among its coevolved unique subunits.
Collapse
Affiliation(s)
- You Yu
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Shibai Li
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Zheng Ser
- Molecular Pharmacology Program, Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Koyi Choi
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Bingbing Wan
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Huihui Kuang
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Alex Kentsis
- Molecular Pharmacology Program, Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| |
Collapse
|
21
|
Ryu HY, Zhao D, Li J, Su D, Hochstrasser M. Histone sumoylation promotes Set3 histone-deacetylase complex-mediated transcriptional regulation. Nucleic Acids Res 2020; 48:12151-12168. [PMID: 33231641 PMCID: PMC7708062 DOI: 10.1093/nar/gkaa1093] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 12/02/2022] Open
Abstract
Histones are substrates of the SUMO (small ubiquitin-like modifier) conjugation pathway. Several reports suggest histone sumoylation affects transcription negatively, but paradoxically, our genome-wide analysis shows the modification concentrated at many active genes. We find that trans-tail regulation of histone-H2B ubiquitylation and H3K4 di-methylation potentiates subsequent histone sumoylation. Consistent with the known control of the Set3 histone deacetylase complex (HDAC) by H3K4 di-methylation, histone sumoylation directly recruits the Set3 complex to both protein-coding and noncoding RNA (ncRNA) genes via a SUMO-interacting motif in the HDAC Cpr1 subunit. The altered gene expression profile caused by reducing histone sumoylation matches well to the profile in cells lacking Set3. Histone H2B sumoylation and the Set3 HDAC coordinately suppress cryptic ncRNA transcription initiation internal to mRNA genes. Our results reveal an elaborate co-transcriptional histone crosstalk pathway involving the consecutive ubiquitylation, methylation, sumoylation and deacetylation of histones, which maintains transcriptional fidelity by suppressing spurious transcription.
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- Correspondence may also be addressed to Hong-Yeoul Ryu. Tel: +82 53 950 6352;
| | - Dejian Zhao
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06520, USA
| | - Jianhui Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Dan Su
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
22
|
Brüninghoff K, Aust A, Taupitz KF, Wulff S, Dörner W, Mootz HD. Identification of SUMO Binding Proteins Enriched after Covalent Photo-Cross-Linking. ACS Chem Biol 2020; 15:2406-2414. [PMID: 32786267 DOI: 10.1021/acschembio.0c00609] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Post-translational modification with the small ubiquitin-like modifier (SUMO) affects thousands of proteins in the human proteome and is implicated in numerous cellular processes. The main outcome of SUMO conjugation is a rewiring of protein-protein interactions through recognition of the modifier's surface by SUMO binding proteins. The SUMO-interacting motif (SIM) mediates binding to a groove on SUMO; however, the low affinity of this interaction and the poor conservation of SIM sequences complicates the isolation and identification of SIM proteins. To address these challenges, we have designed and biochemically characterized monomeric and multimeric SUMO-2 probes with a genetically encoded photo-cross-linker positioned next to the SIM binding groove. Following photoinduced covalent capture, even weak SUMO binders are not washed away during the enrichment procedure, and very stringent washing conditions can be applied to remove nonspecifically binding proteins. A total of 329 proteins were isolated from nuclear HeLa cell extracts and identified using mass spectrometry. We found the molecular design of our probes was corroborated by the presence of many established SUMO interacting proteins and the high percentage (>90%) of hits containing a potential SIM sequence, as predicted by bioinformatic analyses. Notably, 266 of the 329 proteins have not been previously reported as SUMO binders using traditional noncovalent enrichment procedures. We confirmed SUMO binding with purified proteins and mapped the position of the covalent cross-links for selected cases. We postulate a new SIM in MRE11, involved in DNA repair. The identified SUMO binding candidates will help to reveal the complex SUMO-mediated protein network.
Collapse
|
23
|
Sapir A. Not So Slim Anymore-Evidence for the Role of SUMO in the Regulation of Lipid Metabolism. Biomolecules 2020; 10:E1154. [PMID: 32781719 PMCID: PMC7466032 DOI: 10.3390/biom10081154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
One of the basic building blocks of all life forms are lipids-biomolecules that dissolve in nonpolar organic solvents but not in water. Lipids have numerous structural, metabolic, and regulative functions in health and disease; thus, complex networks of enzymes coordinate the different compositions and functions of lipids with the physiology of the organism. One type of control on the activity of those enzymes is the conjugation of the Small Ubiquitin-like Modifier (SUMO) that in recent years has been identified as a critical regulator of many biological processes. In this review, I summarize the current knowledge about the role of SUMO in the regulation of lipid metabolism. In particular, I discuss (i) the role of SUMO in lipid metabolism of fungi and invertebrates; (ii) the function of SUMO as a regulator of lipid metabolism in mammals with emphasis on the two most well-characterized cases of SUMO regulation of lipid homeostasis. These include the effect of SUMO on the activity of two groups of master regulators of lipid metabolism-the Sterol Regulatory Element Binding Protein (SERBP) proteins and the family of nuclear receptors-and (iii) the role of SUMO as a regulator of lipid metabolism in arteriosclerosis, nonalcoholic fatty liver, cholestasis, and other lipid-related human diseases.
Collapse
Affiliation(s)
- Amir Sapir
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon 36006, Israel
| |
Collapse
|
24
|
Santonico E. Old and New Concepts in Ubiquitin and NEDD8 Recognition. Biomolecules 2020; 10:biom10040566. [PMID: 32272761 PMCID: PMC7226360 DOI: 10.3390/biom10040566] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Post-translational modifications by ubiquitin and ubiquitin-like proteins (Ubls) have known roles in a myriad of cellular processes. Ubiquitin- and Ubl-binding domains transmit the information conferred by these post-translational modifications by recognizing functional surfaces and, when present, different chain structures. Numerous domains binding to ubiquitin have been characterized and their structures solved. Analogously, motifs selectively interacting with SUMO (small ubiquitin-like modifier) have been identified in several proteins and their role in SUMO-dependent processes investigated. On the other hand, proteins that specifically recognize other Ubl modifications are known only in a few cases. The high sequence identity between NEDD8 and ubiquitin has made the identification of specific NEDD8-binding domains further complicated due to the promiscuity in the recognition by several ubiquitin-binding domains. Two evolutionarily related domains, called CUBAN (cullin-binding domain associating with NEDD8) and CoCUN (cousin of CUBAN), have been recently described. The CUBAN binds monomeric NEDD8 and neddylated cullins, but it also interacts with di-ubiquitin chains. Conversely, the CoCUN domain only binds ubiquitin. CUBAN and CoCUN provide an intriguing example of how nature solved the issue of promiscuity versus selectivity in the recognition of these two highly related molecules. The structural information available to date suggests that the ancestor of CUBAN and CoCUN was a three-helix bundle domain that diversified in KHNYN (KH and NYN domain-containing) and N4BP1 (NEDD4-binding protein-1) by acquiring different features. Indeed, these domains diverged towards two recognition modes, that recall respectively the electrostatic interaction utilized by the E3-ligase RBX1/2 in the interaction with NEDD8, and the hydrophobic features described in the recognition of ubiquitin by CUE (coupling ubiquitin conjugation to ER degradation) domains. Intriguingly, CUBAN and CoCUN domains are only found in KHNYN and N4BP1, respectively, both proteins belonging to the PRORP family whose members are characterized by the combination of protein modules involved in RNA metabolism with domains mediating ubiquitin/NEDD8 recognition. This review recapitulates the current knowledge and recent findings of CUBAN and CoCUN domains and the proteins containing them.
Collapse
Affiliation(s)
- Elena Santonico
- Department of Biology, University of Rome Tor Vergata, Via della ricerca scientifica, 00133 Rome, Italy
| |
Collapse
|
25
|
STUB1 is targeted by the SUMO-interacting motif of EBNA1 to maintain Epstein-Barr Virus latency. PLoS Pathog 2020; 16:e1008447. [PMID: 32176739 PMCID: PMC7105294 DOI: 10.1371/journal.ppat.1008447] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/30/2020] [Accepted: 03/01/2020] [Indexed: 12/31/2022] Open
Abstract
Latent Epstein-Barr virus (EBV) infection is strongly associated with several malignancies, including B-cell lymphomas and epithelial tumors. EBNA1 is a key antigen expressed in all EBV-associated tumors during latency that is required for maintenance of the EBV episome DNA and the regulation of viral gene transcription. However, the mechanism utilized by EBV to maintain latent infection at the levels of posttranslational regulation remains largely unclear. Here, we report that EBNA1 contains two SUMO-interacting motifs (SIM2 and SIM3), and mutation of SIM2, but not SIM3, dramatically disrupts the EBNA1 dimerization, while SIM3 contributes to the polySUMO2 modification of EBNA1 at lysine 477 in vitro. Proteomic and immunoprecipitation analyses further reveal that the SIM3 motif is required for the EBNA1-mediated inhibitory effects on SUMO2-modified STUB1, SUMO2-mediated degradation of USP7, and SUMO1-modified KAP1. Deletion of the EBNASIM motif leads to functional loss of both EBNA1-mediated viral episome maintenance and lytic gene silencing. Importantly, hypoxic stress induces the SUMO2 modification of EBNA1, and in turn the dissociation of EBNA1 with STUB1, KAP1 and USP7 to increase the SUMO1 modification of both STUB1 and KAP1 for reactivation of lytic replication. Therefore, the EBNA1SIM motif plays an essential role in EBV latency and is a potential therapeutic target against EBV-associated cancers. The Small Ubiquitin-related modifier (SUMO) modification of proteins is a reversible post-translational regulation involved in control of gene transcription, among other functions. Epstein-Barr virus (EBV) infects most people worldwide and contributes to the development of several types of cancers due to its ability to induce cell proliferation and survival. EBNA1 is expressed in all forms of EBV-associated tumors. In this study, we found that EBNA1 contains a SUMO-interacting motif (SIM) named EBNA1SIM, which is required for EBNA1 to exert inhibitory effects on a SUMO2-modified complex (SC2) including STUB1, KAP1 and USP7. Disruption of EBNA1SIM leads to loss of both EBNA1-mediated viral episome maintenance and lytic gene silencing. Importantly, hypoxia-mediated reactivation of viral lytic replication induces the EBNA1 dissociation from STUB1 in the SC2 complex. This discovery not only opens a new insight on the interplay between host and virus, but it also provides a therapeutic target specific against EBV-associated cancers.
Collapse
|
26
|
Saik NO, Park N, Ptak C, Adames N, Aitchison JD, Wozniak RW. Recruitment of an Activated Gene to the Yeast Nuclear Pore Complex Requires Sumoylation. Front Genet 2020; 11:174. [PMID: 32211027 PMCID: PMC7067905 DOI: 10.3389/fgene.2020.00174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/13/2020] [Indexed: 01/10/2023] Open
Abstract
In addition to their role in regulating transport across the nuclear envelope, increasing evidence suggests nuclear pore complexes (NPCs) function in regulating gene expression. For example, the induction of certain genes (e.g., yeast INO1) is accompanied by their movement from the nuclear interior to NPCs. As sumoylation has been linked to the regulation of chromatin spatial organization and transcriptional activity, we investigated the role of sumoylation in the expression and NPC recruitment of the INO1 gene. We observed that induction of INO1 is accompanied by both increased and decreased sumoylation of proteins associated with specific regions along the INO1 locus. Furthermore, we show that the E3 ligase Siz2/Nfi1 is required for targeting the INO1 locus to the NPC where it interacts with the SUMO isopeptidase Ulp1. Our data suggest that this interaction is required for both the association of INO1 with the NPC and for its normal expression. These results imply that sumoylation is a key regulator of INO1 targeting to the NPC, and a cycle of sumoylation and NPC-associated desumoylation events contribute to the regulation of INO1 expression.
Collapse
Affiliation(s)
- Natasha O Saik
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Nogi Park
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada.,Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Christopher Ptak
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Neil Adames
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada.,New Culture, San Francisco, CA, United States
| | - John D Aitchison
- Seattle Children's Research Institute, Seattle, WA, United States
| | - Richard W Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
27
|
Sahu MS, Patra S, Kumar K, Kaur R. SUMOylation in Human Pathogenic Fungi: Role in Physiology and Virulence. J Fungi (Basel) 2020; 6:E32. [PMID: 32143470 PMCID: PMC7096222 DOI: 10.3390/jof6010032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
The small ubiquitin-related modifier (SUMO) protein is an important component of the post-translational protein modification systems in eukaryotic cells. It is known to modify hundreds of proteins involved in diverse cellular processes, ranging from nuclear pore dynamics to signal transduction pathways. Owing to its reversible nature, the SUMO-conjugation of proteins (SUMOylation) holds a prominent place among mechanisms that regulate the functions of a wide array of cellular proteins. The dysfunctional SUMOylation system has been associated with many human diseases, including neurodegenerative and autoimmune disorders. Furthermore, the non-pathogenic yeast Saccharomyces cerevisiae has served as an excellent model to advance our understanding of enzymes involved in SUMOylation and proteins modified by SUMOylation. Taking advantage of the tools and knowledge obtained from the S. cerevisiae SUMOylation system, research on fungal SUMOylation is beginning to gather pace, and new insights into the role of SUMOylation in the pathobiology of medically important fungi are emerging. Here, we summarize the known information on components of the SUMOylation machinery, and consequences of overexpression or deletion of these components in the human pathogenic fungi, with major focus on two prevalent Candida bloodstream pathogens, C. albicans and C. glabrata. Additionally, we have identified SUMOylation components, through in silico analysis, in four medically relevant fungi, and compared their sequence similarity with S. cerevisiae counterparts. SUMOylation modulates the virulence of C. albicans and C. glabrata, while it is required for conidia production in Aspergillus nidulans and A. flavus. In addition to highlighting these recent developments, we discuss how SUMOylation fine tunes the expression of virulence factors, and influences survival of fungal cells under diverse stresses in vitro and in the mammalian host.
Collapse
Affiliation(s)
- Mahima Sagar Sahu
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, Telangana, India; (M.S.S.); (S.P.); (K.K.)
- Graduate studies, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Sandip Patra
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, Telangana, India; (M.S.S.); (S.P.); (K.K.)
- Graduate studies, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Kundan Kumar
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, Telangana, India; (M.S.S.); (S.P.); (K.K.)
- Graduate studies, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, Telangana, India; (M.S.S.); (S.P.); (K.K.)
| |
Collapse
|
28
|
Wolmarans A, Kwantes A, LaPointe P. A novel method for site-specific chemical SUMOylation: SUMOylation of Hsp90 modulates co-chaperone binding in vitro. Biol Chem 2019; 400:487-500. [PMID: 30265648 DOI: 10.1515/hsz-2018-0251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/14/2018] [Indexed: 12/27/2022]
Abstract
SUMO is covalently attached to lysine side chains in target proteins by the action of a cascade of E1, E2, and E3 ligases. Unlike ubiquitin, SUMO does not target proteins for degradation but rather plays a regulatory role in activating target proteins or directing them to multiprotein complexes. Isolating SUMOylated proteins from native sources is challenging because of the low stoichiometry of SUMOylation that occurs for any given target protein in cells. Here we report a novel strategy to couple SUMO to the site of a target lysine for the purpose of in vitro study. Introduction of a single cysteine after the C terminal diglycine motif and a cysteine in place of a target lysine in a substrate protein allows for efficient and specific crosslinking of SUMO using a homo-bifunctional maleimide crosslinker. We demonstrate that SUMO can be crosslinked in this manner to amino acid position 178 in the dimeric molecular chaperone, Hsp90. Chemically SUMOylated Hsp90 has very similar ATPase activity compared to unmodified Hsp90 but displays preferential co-chaperone binding in vivo. Our novel strategy can easily be applied to other SUMOylated or ubiquitinated target protein in vitro.
Collapse
Affiliation(s)
- Annemarie Wolmarans
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - Allison Kwantes
- Department of Biology, The King's University, Edmonton T6B 2H3, Alberta, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| |
Collapse
|
29
|
Kumar R, Sabapathy K. RNF4—A Paradigm for SUMOylation‐Mediated Ubiquitination. Proteomics 2019; 19:e1900185. [DOI: 10.1002/pmic.201900185] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/13/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Ramesh Kumar
- Cancer & Stem Cell Biology Program Duke–NUS Medical School 8 College Road Singapore 169857 Singapore
| | - Kanaga Sabapathy
- Cancer & Stem Cell Biology Program Duke–NUS Medical School 8 College Road Singapore 169857 Singapore
- Laboratory of Molecular Carcinogenesis Division of Cellular & Molecular Research Humphrey Oei Institute of Cancer Research National Cancer Centre Singapore 11 Hospital Drive Singapore 169610 Singapore
- Department of Biochemistry National University of Singapore 8 Medical Drive Singapore 117597 Singapore
- Institute of Molecular and Cellular Biology 61 Biopolis Drive Singapore 138673 Singapore
| |
Collapse
|
30
|
Ryu H, Su D, Wilson‐Eisele NR, Zhao D, López‐Giráldez F, Hochstrasser M. The Ulp2 SUMO protease promotes transcription elongation through regulation of histone sumoylation. EMBO J 2019; 38:e102003. [PMID: 31313851 PMCID: PMC6694223 DOI: 10.15252/embj.2019102003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 01/07/2023] Open
Abstract
Many eukaryotic proteins are regulated by modification with the ubiquitin-like protein small ubiquitin-like modifier (SUMO). This linkage is reversed by SUMO proteases, of which there are two in Saccharomyces cerevisiae, Ulp1 and Ulp2. SUMO-protein conjugation regulates transcription, but the roles of SUMO proteases in transcription remain unclear. We report that Ulp2 is recruited to transcriptionally active genes to control local polysumoylation. Mutant ulp2 cells show impaired association of RNA polymerase II (RNAPII) with, and diminished expression of, constitutively active genes and the inducible CUP1 gene. Ulp2 loss sensitizes cells to 6-azauracil, a hallmark of transcriptional elongation defects. We also describe a novel chromatin regulatory mechanism whereby histone-H2B ubiquitylation stimulates histone sumoylation, which in turn appears to inhibit nucleosome association of the Ctk1 kinase. Ctk1 phosphorylates serine-2 (S2) in the RNAPII C-terminal domain (CTD) and promotes transcript elongation. Removal of both ubiquitin and SUMO from histones is needed to overcome the impediment to S2 phosphorylation. These results suggest sequential ubiquitin-histone and SUMO-histone modifications recruit Ulp2, which removes polySUMO chains and promotes RNAPII transcription elongation.
Collapse
Affiliation(s)
- Hong‐Yeoul Ryu
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenCTUSA
| | - Dan Su
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenCTUSA
- Present address:
Protein Science Corp.MeridenCTUSA
| | - Nicole R Wilson‐Eisele
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenCTUSA
- Present address:
Max Planck Institute of BiochemistryMartinsriedGermany
| | - Dejian Zhao
- Yale Center for Genome AnalysisYale UniversityNew HavenCTUSA
| | | | - Mark Hochstrasser
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenCTUSA
| |
Collapse
|
31
|
Yang F, Zhang R, Ni D, Luo X, Chen S, Luo C, Xiao W. Discovery of betulinaldehyde as a natural RORγt agonist. Fitoterapia 2019; 137:104200. [PMID: 31195082 DOI: 10.1016/j.fitote.2019.104200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
Retinoic Acid Receptor-Related Orphan Receptor γt (RORγt) is a dual-functional therapeutic target. The agonists and inhibitors of RORγt are potential agents for tumor immunotherapy and autoimmune diseases, respectively, and sometimes share similar scaffolds. Although the widely distributed triterpenoid ursolic acid (UA) has been identified as a RORγt inhibitor, the report of a triterpenoid RORγt agonist is still absent. By screening an in-house triterpenoid library, we uncovered a novel RORγt agonist, betulinaldehyde (1), together with an inhibitor (2, 3β, 28-Dihydroxy-lupan-29-oic acid). Compound 1 showed a good RORγt activating effect with the EC50 of 11.4 μM in Alpha Screen assay, and altered the thermal stability of RORγt by directly binding to the protein in vitro. Combined with the SPR assay, the Kd value of compound 1 was examined as 2.99 μM. The modulation mechanism of triterpenoid agonists and inhibitors were discussed by molecular docking. Herein, we firstly discovered compound 1 as a triterpenoid agonist of RORγt. The co-distribution of triterpenoid RORγt agonist and inhibitors in the same plant, might be related to the anti-inflammatory and anti-cancerous bioactivity of the plant extract.
Collapse
Affiliation(s)
- Feng Yang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong, Shanghai 201203, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chongzhi Road, Shanghai 201203, China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2 Rd. Cuihubei, 650091 Kunming, China
| | - Dongxuan Ni
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2 Rd. Cuihubei, 650091 Kunming, China
| | - Xiaomin Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chongzhi Road, Shanghai 201203, China
| | - Shijie Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chongzhi Road, Shanghai 201203, China.
| | - Cheng Luo
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong, Shanghai 201203, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chongzhi Road, Shanghai 201203, China; Department of Pharmacy, Fujian Medical University, Fuzhou 350001, China; Department of Pharmacy, Guiyang University of Traditional Chinese Medicine, South Dong Qing Road, Guizhou 550025, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2 Rd. Cuihubei, 650091 Kunming, China.
| |
Collapse
|
32
|
Höpfler M, Kern MJ, Straub T, Prytuliak R, Habermann BH, Pfander B, Jentsch S. Slx5/Slx8-dependent ubiquitin hotspots on chromatin contribute to stress tolerance. EMBO J 2019; 38:embj.2018100368. [PMID: 31015336 PMCID: PMC6545562 DOI: 10.15252/embj.2018100368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022] Open
Abstract
Chromatin is a highly regulated environment, and protein association with chromatin is often controlled by post‐translational modifications and the corresponding enzymatic machinery. Specifically, SUMO‐targeted ubiquitin ligases (STUbLs) have emerged as key players in nuclear quality control, genome maintenance, and transcription. However, how STUbLs select specific substrates among myriads of SUMOylated proteins on chromatin remains unclear. Here, we reveal a remarkable co‐localization of the budding yeast STUbL Slx5/Slx8 and ubiquitin at seven genomic loci that we term “ubiquitin hotspots”. Ubiquitylation at these sites depends on Slx5/Slx8 and protein turnover on the Cdc48 segregase. We identify the transcription factor‐like Ymr111c/Euc1 to associate with these sites and to be a critical determinant of ubiquitylation. Euc1 specifically targets Slx5/Slx8 to ubiquitin hotspots via bipartite binding of Slx5 that involves the Slx5 SUMO‐interacting motifs and an additional, novel substrate recognition domain. Interestingly, the Euc1‐ubiquitin hotspot pathway acts redundantly with chromatin modifiers of the H2A.Z and Rpd3L pathways in specific stress responses. Thus, our data suggest that STUbL‐dependent ubiquitin hotspots shape chromatin during stress adaptation.
Collapse
Affiliation(s)
- Markus Höpfler
- Max Planck Institute of Biochemistry, Molecular Cell Biology, Martinsried, Germany
| | - Maximilian J Kern
- Max Planck Institute of Biochemistry, Molecular Cell Biology, Martinsried, Germany
| | - Tobias Straub
- Biomedizinisches Centrum, Core Facility Bioinformatics, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Roman Prytuliak
- Max Planck Institute of Biochemistry, Computational Biology Group, Martinsried, Germany
| | - Bianca H Habermann
- Max Planck Institute of Biochemistry, Computational Biology Group, Martinsried, Germany.,Aix-Marseille Univ, CNRS, IBDM UMR 7288, Marseille Cedex 9, France
| | - Boris Pfander
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| | - Stefan Jentsch
- Max Planck Institute of Biochemistry, Molecular Cell Biology, Martinsried, Germany
| |
Collapse
|
33
|
Kaur A, Gourav, Kumar S, Jaiswal N, Vashisht A, Kumar D, Gahlay GK, Mithu VS. NMR characterization of conformational fluctuations and noncovalent interactions of SUMO protein from Drosophila melanogaster (dSmt3). Proteins 2019; 87:658-667. [PMID: 30958586 DOI: 10.1002/prot.25690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/15/2019] [Accepted: 04/04/2019] [Indexed: 11/09/2022]
Abstract
Structural heterogeneity in the native-state ensemble of dSmt3, the only small ubiquitin-like modifier (SUMO) in Drosophila melanogaster, was investigated and compared with its human homologue SUMO1. Temperature dependence of amide proton's chemical shift was studied to identify amino acids possessing alternative structural conformations in the native state. Effect of small concentration of denaturant (1M urea) on this population was also monitored to assess the ruggedness of near-native energy landscape. Owing to presence of many such amino acids, especially in the β2 -loop-α region, the native state of dSmt3 seems more flexible in comparison to SUMO1. Information about backbone dynamics in ns-ps timescale was quantified from the measurement of 15 N-relaxation experiments. Furthermore, the noncovalent interaction of dSmt3 and SUMO1 with Daxx12 (Daxx729 DPEEIIVLSDSD740 ), a [V/I]-X-[V/I]-[V/I]-based SUMO interaction motif, was characterized using Bio-layer Interferometery and NMR spectroscopy. Daxx12 fits itself in the groove formed by β2 -loop-α structural region in both dSmt3 and SUMO1, but the binding is stronger with the former. Flexibility of β2 -loop-α region in dSmt3 is suspected to assist its interaction with Daxx12. Our results highlight the role of native-state flexibility in assisting noncovalent interactions of SUMO proteins especially in organisms where a single SUMO isoform has to tackle multiple substrates single handedly.
Collapse
Affiliation(s)
- Anupreet Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Gourav
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sandeep Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nancy Jaiswal
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - Ashutosh Vashisht
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dinesh Kumar
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - Gagandeep K Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Venus S Mithu
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
34
|
Bauer SL, Chen J, Åström SU. Helicase/SUMO-targeted ubiquitin ligase Uls1 interacts with the Holliday junction resolvase Yen1. PLoS One 2019; 14:e0214102. [PMID: 30897139 PMCID: PMC6428284 DOI: 10.1371/journal.pone.0214102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/06/2019] [Indexed: 11/30/2022] Open
Abstract
Resolution of branched DNA structures is pivotal for repair of stalled replication forks and meiotic recombination intermediates. The Yen1 nuclease cleaves both Holliday junctions and replication forks. We show that Yen1 interacts physically with Uls1, a suggested SUMO-targeted ubiquitin ligase that also contains a SWI/SNF-family ATPase-domain. Yen1 is SUMO-modified in its noncatalytic carboxyl terminus and DNA damage induces SUMOylation. SUMO-modification of Yen1 strengthens the interaction to Uls1, and mutations in SUMO interaction motifs in Uls1 weakens the interaction. However, Uls1 does not regulate the steady-state level of SUMO-modified Yen1 or chromatin-associated Yen1. In addition, SUMO-modification of Yen1 does not affect the catalytic activity in vitro. Consistent with a shared function for Uls1 and Yen1, mutations in both genes display similar phenotypes. Both uls1 and yen1 display negative genetic interactions with the alternative HJ-cleaving nuclease Mus81, manifested both in hypersensitivity to DNA damaging agents and in meiotic defects. Point mutations in ULS1 (uls1K975R and uls1C1330S, C1333S) predicted to inactivate the ATPase and ubiquitin ligase activities, respectively, are as defective as the null allele, indicating that both functions of Uls1 are essential. A micrococcal nuclease sequencing experiment showed that Uls1 had minimal effects on global nucleosome positioning/occupancy. Moreover, increased gene dosage of YEN1 partially alleviates the mus81 uls1 sensitivity to DNA damage. We suggest a preliminary model in which Uls1 acts in the same pathway as Yen1 to resolve branched DNA structures.
Collapse
Affiliation(s)
- Stefanie L. Bauer
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jiang Chen
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Stefan U. Åström
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
35
|
Horio T, Szewczyk E, Oakley CE, Osmani AH, Osmani SA, Oakley BR. SUMOlock reveals a more complete Aspergillus nidulans SUMOylome. Fungal Genet Biol 2019; 127:50-59. [PMID: 30849444 DOI: 10.1016/j.fgb.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022]
Abstract
SUMOylation, covalent attachment of the small ubiquitin-like modifier protein SUMO to proteins, regulates protein interactions and activity and plays a crucial role in the regulation of many key cellular processes. Understanding the roles of SUMO in these processes ultimately requires identification of the proteins that are SUMOylated in the organism under study. The filamentous fungus Aspergillus nidulans serves as an excellent model for many aspects of fungal biology, and it would be of great value to determine the proteins that are SUMOylated in this organism (i.e. its SUMOylome). We have developed a new and effective approach for identifying SUMOylated proteins in this organism in which we lock proteins in their SUMOylated state, affinity purify SUMOylated proteins using the high affinity S-tag, and identify them using sensitive Orbitrap mass spectroscopy. This approach allows us to distinguish proteins that are SUMOylated from proteins that are binding partners of SUMOylated proteins or are bound non-covalently to SUMO. This approach has allowed us to identify 149 proteins that are SUMOylated in A. nidulans. Of these, 67 are predicted to be involved in transcription and particularly in the regulation of transcription, 21 are predicted to be involved in RNA processing and 16 are predicted to function in DNA replication or repair.
Collapse
Affiliation(s)
- Tetsuya Horio
- Department of Natural Sciences, Nippon Sport Science University, 1221-1 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan.
| | - Edyta Szewczyk
- Department of Molecular Genetics, The Ohio State University, 484 W. 12(th) Ave., Columbus, OH 43210, USA
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Aysha H Osmani
- Department of Molecular Genetics, The Ohio State University, 484 W. 12(th) Ave., Columbus, OH 43210, USA
| | - Stephen A Osmani
- Department of Molecular Genetics, The Ohio State University, 484 W. 12(th) Ave., Columbus, OH 43210, USA
| | - Berl R Oakley
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| |
Collapse
|
36
|
Patir-Nebioglu MG, Andrés Z, Krebs M, Fink F, Drzewicka K, Stankovic-Valentin N, Segami S, Schuck S, Büttner M, Hell R, Maeshima M, Melchior F, Schumacher K. Pyrophosphate modulates plant stress responses via SUMOylation. eLife 2019; 8:44213. [PMID: 30785397 PMCID: PMC6382351 DOI: 10.7554/elife.44213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/05/2019] [Indexed: 01/11/2023] Open
Abstract
Pyrophosphate (PPi), a byproduct of macromolecule biosynthesis is maintained at low levels by soluble inorganic pyrophosphatases (sPPase) found in all eukaryotes. In plants, H+-pumping pyrophosphatases (H+-PPase) convert the substantial energy present in PPi into an electrochemical gradient. We show here, that both cold- and heat stress sensitivity of fugu5 mutants lacking the major H+-PPase isoform AVP1 is correlated with reduced SUMOylation. In addition, we show that increased PPi concentrations interfere with SUMOylation in yeast and we provide evidence that SUMO activating E1-enzymes are inhibited by micromolar concentrations of PPi in a non-competitive manner. Taken together, our results do not only provide a mechanistic explanation for the beneficial effects of AVP1 overexpression in plants but they also highlight PPi as an important integrator of metabolism and stress tolerance.
Collapse
Affiliation(s)
- M Görkem Patir-Nebioglu
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Zaida Andrés
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Melanie Krebs
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Fabian Fink
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Katarzyna Drzewicka
- Center for Molecular Biology of Heidelberg University (ZMBH) and DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Nicolas Stankovic-Valentin
- Center for Molecular Biology of Heidelberg University (ZMBH) and DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sebastian Schuck
- Center for Molecular Biology of Heidelberg University (ZMBH) and DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Michael Büttner
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Rüdiger Hell
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Frauke Melchior
- Center for Molecular Biology of Heidelberg University (ZMBH) and DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Karin Schumacher
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
37
|
Sri Theivakadadcham VS, Bergey BG, Rosonina E. Sumoylation of DNA-bound transcription factor Sko1 prevents its association with nontarget promoters. PLoS Genet 2019; 15:e1007991. [PMID: 30763307 PMCID: PMC6392331 DOI: 10.1371/journal.pgen.1007991] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/27/2019] [Accepted: 01/28/2019] [Indexed: 12/30/2022] Open
Abstract
Sequence-specific transcription factors (TFs) represent one of the largest groups of proteins that is targeted for SUMO post-translational modification, in both yeast and humans. SUMO modification can have diverse effects, but recent studies showed that sumoylation reduces the interaction of multiple TFs with DNA in living cells. Whether this relates to a general role for sumoylation in TF binding site selection, however, has not been fully explored because few genome-wide studies aimed at studying such a role have been reported. To address this, we used genome-wide analysis to examine how sumoylation regulates Sko1, a yeast bZIP TF with hundreds of known binding sites. We find that Sko1 is sumoylated at Lys 567 and, although many of its targets are osmoresponse genes, the level of Sko1 sumoylation is not stress-regulated and the modification does not depend or impinge on its phosphorylation by the osmostress kinase Hog1. We show that Sko1 mutants that cannot bind DNA are not sumoylated, but attaching a heterologous DNA binding domain restores the modification, implicating DNA binding as a major determinant for Sko1 sumoylation. Genome-wide chromatin immunoprecipitation (ChIP-seq) analysis shows that a sumoylation-deficient Sko1 mutant displays increased occupancy levels at its numerous binding sites, which inhibits the recruitment of the Hog1 kinase to some induced osmostress genes. This strongly supports a general role for sumoylation in reducing the association of TFs with chromatin. Extending this result, remarkably, sumoylation-deficient Sko1 binds numerous additional promoters that are not normally regulated by Sko1 but contain sequences that resemble the Sko1 binding motif. Our study points to an important role for sumoylation in modulating the interaction of a DNA-bound TF with chromatin to increase the specificity of TF-DNA interactions.
Collapse
Affiliation(s)
| | | | - Emanuel Rosonina
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
38
|
Abstract
Covalent modification of proteins with the small ubiquitin-related modifier (SUMO) is found in all eukaryotes and is involved in many important processes. SUMO attachment may change interaction properties, subcellular localization, or stability of a modified protein. Usually, only a small fraction of a protein is modified at a given time because sumoylation is a highly dynamic process. The sumoylated state of a protein is controlled by the activity of the sumoylation enzymes that promote either their mono- or poly-sumoylation (SUMO chain formation), by SUMO proteases that reverse these modifications, and by SUMO-targeted ubiquitin ligases (STUbL, ULS) that mediate their degradation by the proteasome. While some organisms, such as humans, express multiple isoforms, budding yeast SUMO is encoded by a single and essential gene termed SMT3. The analysis of the simpler SUMO system in budding yeast has been instrumental in the identification of enzymes acting on this modification and controlling its dynamics. Sumoylation of proteins changes dramatically during the cell division cycle and under various stress conditions. Here we summarize various approaches that employ Saccharomyces cerevisiae as a model system to study the dynamics of sumoylation and how it is controlled.
Collapse
|
39
|
Umbaugh CS, Figueiredo ML. Lysines residing in putative Small Ubiquitin-like MOdifier (SUMO) motifs regulate fate and function of 37 KDa laminin receptor. Biochimie 2019; 156:92-99. [DOI: 10.1016/j.biochi.2018.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 10/06/2018] [Indexed: 01/17/2023]
|
40
|
Bibi N, Rashid S, Nicholson J, Malloy M, O'Neill R, Blake D, Hupp T. An Integrative "Omics" Approach, for Identification of Bona Fides PLK1 Associated Biomarker in Esophageal Adenocarcinoma. Curr Cancer Drug Targets 2019; 19:742-755. [PMID: 30747067 DOI: 10.2174/1568009619666190211113722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/30/2018] [Accepted: 01/20/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The rapid expansion of genome-wide profiling techniques offers the opportunity to utilize various types of information collected in the study of human health and disease. Overexpression of Polo like kinase 1 (PLK1) is associated with esophageal adenocarcinoma (OAC), however biological functions and molecular targets of PLK1 in OAC are still unknown. OBJECTIVES Here we performed integrative analysis of two "omics" data sources to reveal high-level interactions of PLK1 associated with OAC. METHODS Initially, quantitative gene expression (RPKM) was measured from transcriptomics data set of four OAC patients. In parallel, alteration in phosphorylation levels was evaluated in the proteomics data set (mass spectrometry) in OAC cell line (PLK1 inhibited). Next, two "omics" data sets were integrated and through comprehensive analysis possible true PLK1 targets that may serve as OAC biomarkers were assembled. RESULTS Through experimental validation, small ubiquitin-related modifier 1 (SUMO1) and heat shock protein beta-1 (HSPB1) were identified as novel phosphorylation targets of PLK1. Consequently in vivo, in situ and in silico experiments clearly demonstrated the interaction of PLK1 with putative novel targets (SUMO1 and HSPB1). CONCLUSION Identification of a PLK1 dependent biosignature in OAC with high confidence in two omics levels proven the robustness and efficacy of our integrative approach.
Collapse
Affiliation(s)
- Nousheen Bibi
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawer, Pakistan
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Mark Malloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Rob O'Neill
- Edinburgh Cancer Research Center, University of Edinburgh, United Kingdom
| | | | - Ted Hupp
- Edinburgh Cancer Research Center, University of Edinburgh, United Kingdom
| |
Collapse
|
41
|
Perez AM, Thorner J. Septin-associated proteins Aim44 and Nis1 traffic between the bud neck and the nucleus in the yeast Saccharomyces cerevisiae. Cytoskeleton (Hoboken) 2019; 76:15-32. [PMID: 30341817 PMCID: PMC6474838 DOI: 10.1002/cm.21500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
Abstract
In budding yeast, a collar of septin filaments at the neck between a mother cell and its bud marks the incipient site for cell division and serves as a scaffold that recruits proteins required for proper spatial and temporal execution of cytokinesis. A set of interacting proteins that localize at or near the bud neck, including Aim44/Gps1, Nba1 and Nis1, also has been implicated in preventing Cdc42-dependent bud site re-establishment at the division site. We found that, at their endogenous level, Aim44 and Nis1 robustly localize sequentially at the septin collar. Strikingly, however, when overproduced, both proteins shift their subcellular distribution predominantly to the nucleus. Aim44 localizes with the inner nuclear envelope, as well as at the plasma membrane, whereas Nis1 accumulates within the nucleus, indicating that these proteins normally undergo nucleocytoplasmic shuttling. Of the 14 yeast karyopherins, Kap123/Yrb4 is the primary importin for Aim44, whereas several importins mediate Nis1 nuclear entry. Conversely, Kap124/Xpo1/Crm1 is the primary exportin for Nis1, whereas both Xpo1 and Cse1/Kap109 likely contribute to Aim44 nuclear export. Even when endogenously expressed, Nis1 accumulates in the nucleus when Nba1 is absent. When either Aim44 or Nis1 are overexpressed, Nba1 is displaced from the bud neck, further consistent with the mutual interactions of these proteins. Collectively, our results indicate that a previously unappreciated level at which localization of septin-associated proteins is controlled is via regulation of their nucleocytoplasmic shuttling, which places constraints on their availability for complex formation with other partners at the bud neck.
Collapse
Affiliation(s)
- Adam M. Perez
- Division of Biochemistry, Biophysics and Structural BiologyDepartment of Molecular and Cell Biology, University of CaliforniaBerkeleyCalifornia
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural BiologyDepartment of Molecular and Cell Biology, University of CaliforniaBerkeleyCalifornia
| |
Collapse
|
42
|
Molecular interaction between human SUMO-I and histone like DNA binding protein of Helicobacter pylori (Hup) investigated by NMR and other biophysical tools. Int J Biol Macromol 2018; 123:446-456. [PMID: 30439429 DOI: 10.1016/j.ijbiomac.2018.11.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/29/2018] [Accepted: 11/11/2018] [Indexed: 02/07/2023]
Abstract
The proteins secreted by bacteria contribute to immune mediated gastric inflammation and epithelial damage; thus aid bacterial invasion in host tissue, and may also interact with host proteins, conspirating a mechanism against host-immune system. The Histone-like DNA binding protein is one of the most abundant nucleoid-associated proteins in Helicobacter pylori (H. pylori). The protein -referred here as Hup- is also secreted in vitro by H. pylori, thus it may have its role in disease pathogenesis. This is possible only if Hup interact with some human proteins including Small-Ubiquitin-like-Modifier (SUMO) proteins. Studies have established that SUMO-proteins participate in various innate-immune pathways and thus promote an efficient immune response to combat pathogenic infections. Sequence analysis revealed the presence of two SUMO interacting motifs (SIMs) and several positively charged lysine residues on the protein surface of Hup. Additionally, SUMO-proteins epitomize negatively charged surface which confers them the ability to bind to DNA/RNA binding proteins. Based on the presence of SIMs as well as charge complementarity between the proteins, it is legitimate to consider that Hup protein would bind to SUMO-proteins. The present study has been undertaken to establish this interaction for the first time using NMR in combination with ITC and other biophysical techniques.
Collapse
|
43
|
Gong W, Hu W, Xu L, Wu H, Wu S, Zhang H, Wang J, Jones GW, Perrett S. The C-terminal GGAP motif of Hsp70 mediates substrate recognition and stress response in yeast. J Biol Chem 2018; 293:17663-17675. [PMID: 30228181 DOI: 10.1074/jbc.ra118.002691] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/30/2018] [Indexed: 01/16/2023] Open
Abstract
The allosteric coupling of the highly conserved nucleotide- and substrate-binding domains of Hsp70 has been studied intensively. In contrast, the role of the disordered, highly variable C-terminal region of Hsp70 remains unclear. In many eukaryotic Hsp70s, the extreme C-terminal EEVD motif binds to the tetratricopeptide-repeat domains of Hsp70 co-chaperones. Here, we discovered that the TVEEVD sequence of Saccharomyces cerevisiae cytoplasmic Hsp70 (Ssa1) functions as a SUMO-interacting motif. A second C-terminal motif of ∼15 amino acids between the α-helical lid and the extreme C terminus, previously identified in bacterial and eukaryotic organellar Hsp70s, is known to enhance chaperone function by transiently interacting with folding clients. Using structural analysis, interaction studies, fibril formation assays, and in vivo functional assays, we investigated the individual contributions of the α-helical bundle and the C-terminal disordered region of Ssa1 in the inhibition of fibril formation of the prion protein Ure2. Our results revealed that although the α-helical bundle of the Ssa1 substrate-binding domain (SBDα) does not directly bind to Ure2, the SBDα enhances the ability of Hsp70 to inhibit fibril formation. We found that a 20-residue C-terminal motif in Ssa1, containing GGAP and GGAP-like tetrapeptide repeats, can directly bind to Ure2, the Hsp40 co-chaperone Ydj1, and α-synuclein, but not to the SUMO-like protein SMT3 or BSA. Deletion or substitution of the Ssa1 GGAP motif impaired yeast cell tolerance to temperature and cell-wall damage stress. This study highlights that the C-terminal GGAP motif of Hsp70 is important for substrate recognition and mediation of the heat shock response.
Collapse
Affiliation(s)
- Weibin Gong
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanhui Hu
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Linan Xu
- Department of Biology, Maynooth University, Maynooth, W23 W6R7, Kildare, Ireland
| | - Huiwen Wu
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wu
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhang
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Wang
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Gary W Jones
- Department of Biology, Maynooth University, Maynooth, W23 W6R7, Kildare, Ireland.
| | - Sarah Perrett
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
44
|
Castro PH, Santos MÂ, Freitas S, Cana-Quijada P, Lourenço T, Rodrigues MAA, Fonseca F, Ruiz-Albert J, Azevedo JE, Tavares RM, Castillo AG, Bejarano ER, Azevedo H. Arabidopsis thaliana SPF1 and SPF2 are nuclear-located ULP2-like SUMO proteases that act downstream of SIZ1 in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4633-4649. [PMID: 30053161 PMCID: PMC6117582 DOI: 10.1093/jxb/ery265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Post-translational modifiers such as the small ubiquitin-like modifier (SUMO) peptide act as fast and reversible protein regulators. Functional characterization of the sumoylation machinery has determined the key regulatory role that SUMO plays in plant development. Unlike components of the SUMO conjugation pathway, SUMO proteases (ULPs) are encoded by a relatively large gene family and are potential sources of specificity within the pathway. This study reports a thorough comparative genomics and phylogenetic characterization of plant ULPs, revealing the presence of one ULP1-like and three ULP2-like SUMO protease subgroups within plant genomes. As representatives of an under-studied subgroup, Arabidopsis SPF1 and SPF2 were subjected to functional characterization. Loss-of-function mutants implicated both proteins with vegetative growth, flowering time, and seed size and yield. Mutants constitutively accumulated SUMO conjugates, and yeast complementation assays associated these proteins with the function of ScUlp2 but not ScUlp1. Fluorescence imaging placed both proteins in the plant cell nucleoplasm. Transcriptomics analysis indicated strong regulatory involvement in secondary metabolism, cell wall remodelling, and nitrate assimilation. Furthermore, developmental defects of the spf1-1 spf2-2 (spf1/2) double-mutant opposed those of the major E3 ligase siz1 mutant and, most significantly, developmental and transcriptomic characterization of the siz1 spf1/2 triple-mutant placed SIZ1 as epistatic to SPF1 and SPF2.
Collapse
Affiliation(s)
- Pedro Humberto Castro
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), University of Minho, Campus de Gualtar, Braga, Portugal
- Area de Genética, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos, Málaga, Spain
- CIBIO, InBIO—Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Miguel Ângelo Santos
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Sara Freitas
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), University of Minho, Campus de Gualtar, Braga, Portugal
- CIBIO, InBIO—Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Pepe Cana-Quijada
- Area de Genética, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos, Málaga, Spain
| | - Tiago Lourenço
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Mafalda A A Rodrigues
- PRPlants Lab, GPlantS Unit, Instituto de Tecnologia Química e Biológica—Universidade Nova de Lisboa, Estação Agronómica Nacional, Oeiras, Portugal
| | - Fátima Fonseca
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Javier Ruiz-Albert
- Area de Genética, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos, Málaga, Spain
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Rui Manuel Tavares
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Araceli G Castillo
- Area de Genética, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos, Málaga, Spain
| | - Eduardo R Bejarano
- Area de Genética, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos, Málaga, Spain
| | - Herlander Azevedo
- CIBIO, InBIO—Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
45
|
de Albuquerque CP, Suhandynata RT, Carlson CR, Yuan WT, Zhou H. Binding to small ubiquitin-like modifier and the nucleolar protein Csm1 regulates substrate specificity of the Ulp2 protease. J Biol Chem 2018; 293:12105-12119. [PMID: 29903909 DOI: 10.1074/jbc.ra118.003022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/06/2018] [Indexed: 11/06/2022] Open
Abstract
Ulp1 and Ulp2, in the yeast Saccharomyces cerevisiae, are the founding members of deSUMOylating enzymes. These enzymes remove small ubiquitin-like modifier (SUMO) from proteins and are conserved in all eukaryotes. Previous studies have shown that Ulp1 deSUMOylates the bulk of intracellular SUMOylated proteins, whereas Ulp2 is a highly specific enzyme. However, the mechanism for Ulp2's substrate specificity has been insufficiently understood. Here we show that the C-terminal regulatory domain of Ulp2 contains three distinct, yet conserved, motifs that control its in vivo substrate specificity and cell growth. Among them, a SUMO-interacting motif (SIM) was found to coordinate with the domain of Ulp2 that binds to the nucleolar protein Csm1 to ensure maximal deSUMOylation of Ulp2's nucleolar substrates. We found that whereas the Csm1-binding domain of Ulp2 recruits this enzyme to the nucleolus, Ulp2's C-terminal SIM promotes its SUMO protease activity and plays a key role in mediating the in vivo specificity of Ulp2. Thus, the substrate specificity of Ulp2 is controlled by both its subcellular localization and the SUMOylation status of its substrates. These findings illustrate the highly coordinated and dynamic nature of the SUMO pathways in maintaining homeostasis of intracellular SUMOylation.
Collapse
Affiliation(s)
- Claudio Ponte de Albuquerque
- Ludwig Institute for Cancer Research, San Diego Branch, University of California, San Diego, La Jolla, California 92093
| | - Raymond T Suhandynata
- Ludwig Institute for Cancer Research, San Diego Branch, University of California, San Diego, La Jolla, California 92093
| | - Christopher R Carlson
- Ludwig Institute for Cancer Research, San Diego Branch, University of California, San Diego, La Jolla, California 92093
| | - Wei-Tsung Yuan
- Ludwig Institute for Cancer Research, San Diego Branch, University of California, San Diego, La Jolla, California 92093; Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | - Huilin Zhou
- Ludwig Institute for Cancer Research, San Diego Branch, University of California, San Diego, La Jolla, California 92093; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093; Moores Cancer Center, University of California, San Diego, La Jolla, California 92093.
| |
Collapse
|
46
|
Matmati S, Vaurs M, Escandell JM, Maestroni L, Nakamura TM, Ferreira MG, Géli V, Coulon S. The fission yeast Stn1-Ten1 complex limits telomerase activity via its SUMO-interacting motif and promotes telomeres replication. SCIENCE ADVANCES 2018; 4:eaar2740. [PMID: 29774234 PMCID: PMC5955624 DOI: 10.1126/sciadv.aar2740] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/29/2018] [Indexed: 06/01/2023]
Abstract
Mammalian CST (CTC1-STN1-TEN1) complex fulfills numerous functions including rescue of the stalled replication forks and termination of telomerase action. In fission yeast lacking the CTC1 ortholog, the Stn1-Ten1 complex restricts telomerase action via its sumoylation-mediated interaction with Tpz1TPP1. We identify a small ubiquitin-like modifier (SUMO)-interacting motif (SIM) in the carboxyl-terminal part of Stn1 and show that this domain is crucial for SUMO and Tpz1-SUMO interactions. Point mutations in the SIM (Stn1-226) lead to telomere elongation, impair Stn1-Ten1 recruitment to telomeres, and enhance telomerase binding, revealing that Stn1 SIM domain contributes to the inhibition of telomerase activity at chromosome ends. Our results suggest that Stn1-Ten1 promotes DNA synthesis at telomeres to limit single-strand DNA accumulation. We further demonstrate that Stn1 functions in the replication of telomeric and subtelomeric regions in a Taz1-independent manner. Genetic analysis reveals that misregulation of origin firing and/or telomerase inhibition circumvents the replication defects of the stn1-226 mutant. Together, our results show that the Stn1-Ten1 complex has a dual function at telomeres by limiting telomerase action and promoting chromosome end replication.
Collapse
Affiliation(s)
- Samah Matmati
- CRCM, CNRS, INSERM, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, 27 Boulevard Lei Roure, Marseille, France
| | - Mélina Vaurs
- CRCM, CNRS, INSERM, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, 27 Boulevard Lei Roure, Marseille, France
| | - José M. Escandell
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Laetitia Maestroni
- CRCM, CNRS, INSERM, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, 27 Boulevard Lei Roure, Marseille, France
| | - Toru M. Nakamura
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Miguel G. Ferreira
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Institute for Research on Cancer and Aging, Nice, Faculty of Medicine, CNRS UMR7284, INSERM U1081, University of Nice Sophia Antipolis, Nice, France
| | - Vincent Géli
- CRCM, CNRS, INSERM, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, 27 Boulevard Lei Roure, Marseille, France
| | - Stéphane Coulon
- CRCM, CNRS, INSERM, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, 27 Boulevard Lei Roure, Marseille, France
| |
Collapse
|
47
|
Willis IM, Moir RD. Signaling to and from the RNA Polymerase III Transcription and Processing Machinery. Annu Rev Biochem 2018; 87:75-100. [PMID: 29328783 DOI: 10.1146/annurev-biochem-062917-012624] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA polymerase (Pol) III has a specialized role in transcribing the most abundant RNAs in eukaryotic cells, transfer RNAs (tRNAs), along with other ubiquitous small noncoding RNAs, many of which have functions related to the ribosome and protein synthesis. The high energetic cost of producing these RNAs and their central role in protein synthesis underlie the robust regulation of Pol III transcription in response to nutrients and stress by growth regulatory pathways. Downstream of Pol III, signaling impacts posttranscriptional processes affecting tRNA function in translation and tRNA cleavage into smaller fragments that are increasingly attributed with novel cellular activities. In this review, we consider how nutrients and stress control Pol III transcription via its factors and its negative regulator, Maf1. We highlight recent work showing that the composition of the tRNA population and the function of individual tRNAs is dynamically controlled and that unrestrained Pol III transcription can reprogram central metabolic pathways.
Collapse
Affiliation(s)
- Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA; , .,Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA; ,
| |
Collapse
|
48
|
Matunis MJ, Rodriguez MS. Concepts and Methodologies to Study Protein SUMOylation: An Overview. Methods Mol Biol 2018; 1475:3-22. [PMID: 27631794 DOI: 10.1007/978-1-4939-6358-4_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein modification by the small ubiquitin-related modifier (SUMO) was simultaneously discovered by several groups at the middle of the 1990s. Although distinct names were proposed including Sentrin, GMP1, PIC1, or SMT3, SUMO became the most popular. Early studies on the functions of SUMOylation focused on activities in the nucleus, including transcription activation, chromatin structure, and DNA repair. However, it is now recognized that SUMOylation affects a large diversity of cellular processes both in the nucleus and the cytoplasm and functions of SUMOylation appear to have undefined limits. SUMO-conjugating enzymes and specific proteases actively regulate the modification status of target proteins. The recent discoveries of ubiquitin-SUMO hybrid chains, multiple SUMO-interacting motifs, and macromolecular complexes regulated by SUMOylation underscore the high complexity of this dynamic reversible system. New conceptual frameworks suggested by these findings have motivated the development of new methodologies to study pre- and post-SUMOylation events in vitro and in vivo, using distinct model organisms. Here we summarize some of the new developments and methodologies in the field, particularly those that will be further elaborated on in the chapters integrating this book.
Collapse
Affiliation(s)
- Michael J Matunis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe St., Room W8118, Baltimore, MD, 21205, USA.
| | | |
Collapse
|
49
|
Komiya M, Ito A, Endo M, Hiruma D, Hattori M, Saitoh H, Yoshida M, Ozawa T. A genetic screen to discover SUMOylated proteins in living mammalian cells. Sci Rep 2017; 7:17443. [PMID: 29234079 PMCID: PMC5727073 DOI: 10.1038/s41598-017-17450-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023] Open
Abstract
Post-translational modification by the Small Ubiquitin-related Modifier (SUMO) is indispensable for diverse biological mechanisms. Although various attempts have been made to discover novel SUMO substrate proteins to unveil the roles of SUMOylation, the reversibility of SUMOylation, and the differences in the SUMOylation level still makes it difficult to explore infrequently-SUMOylated proteins in mammalian cells. Here, we developed a method to screen for mammalian SUMOylated proteins using the reconstitution of split fluorescent protein fragments in living mammalian cells. Briefly, the cells harboring cDNAs of SUMOylated proteins were identified by the reconstituted fluorescence emission and separated by cell sorting. The method successfully identified 36 unreported SUMO2-substrate candidates with distinct intracellular localizations and functions. Of the candidates, we found Atac2, a histone acetyltransferase, was SUMOylated at a lysine 408, and further modified by multiple SUMOs without isoform specificity. Because the present method is applicable to other SUMO isoforms and mammalian cell-types, it could contribute to a deeper understanding of the role of SUMOylation in various biological contexts.
Collapse
Affiliation(s)
- Maki Komiya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akihiro Ito
- Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mizuki Endo
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Daisuke Hiruma
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsuru Hattori
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Biomolecular Science and Engineering, The Institute of Scientific & Industrial Research, Osaka University, Osaka, Japan
| | - Hisato Saitoh
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takeaki Ozawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
50
|
Paasch F, den Brave F, Psakhye I, Pfander B, Jentsch S. Failed mitochondrial import and impaired proteostasis trigger SUMOylation of mitochondrial proteins. J Biol Chem 2017; 293:599-609. [PMID: 29183993 PMCID: PMC5767865 DOI: 10.1074/jbc.m117.817833] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/16/2017] [Indexed: 11/23/2022] Open
Abstract
Modification by the ubiquitin-like protein SUMO affects hundreds of cellular substrate proteins and regulates a wide variety of physiological processes. While the SUMO system appears to predominantly target nuclear proteins and, to a lesser extent, cytosolic proteins, hardly anything is known about the SUMOylation of proteins targeted to membrane-enclosed organelles. Here, we identify a large set of structurally and functionally unrelated mitochondrial proteins as substrates of the SUMO pathway in yeast. We show that SUMO modification of mitochondrial proteins does not rely on mitochondrial targeting and, in fact, is strongly enhanced upon import failure, consistent with the modification occurring in the cytosol. Moreover, SUMOylated forms of mitochondrial proteins particularly accumulate in HSP70- and proteasome-deficient cells, suggesting that SUMOylation participates in cellular protein quality control. We therefore propose that SUMO serves as a mark for nonfunctional mitochondrial proteins, which only sporadically arise in unstressed cells but strongly accumulate upon defective mitochondrial import and impaired proteostasis. Overall, our findings provide support for a role of SUMO in the cytosolic response to aberrant proteins.
Collapse
Affiliation(s)
| | | | - Ivan Psakhye
- From the Department of Molecular Cell Biology and
| | - Boris Pfander
- the Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | |
Collapse
|