1
|
Lysenko E, Kusnetsov V. Changes of Cd content in chloroplasts are mirrored by the activity of photosystem I, but not by photosystem II. PHOTOSYNTHETICA 2024; 62:187-203. [PMID: 39651413 PMCID: PMC11613828 DOI: 10.32615/ps.2024.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/17/2024] [Indexed: 12/11/2024]
Abstract
We searched for a direct Cd action on the photosynthetic electron transport chain using induced chlorophyll fluorescence and P700 light absorption. Young barley and maize plants were treated with Cd in concentrations of toxic (80 μM) and nearly lethal (250 μM). The maximal and relative photochemical activities of PSI, its major limitation at the donor side, and partially acceptor-side limitation of PSII changed in agreement with Cd accumulation in the corresponding chloroplasts. Acceptor-side limitation of PSII increased with a direct Cd action at 80 μM that was overcome with an indirect Cd action at 250 μM. These alterations can be explained by Cd/Cu substitution in plastocyanin. The photochemical and nonphotochemical quenching by PSII varied diversely which cannot be explained unambiguously by any mechanism. The limitations of PSI [Y(ND), Y(NA)] and PSII (qC) were compared for the first time. They were ranged: Y(NA) < qC < Y(ND).
Collapse
Affiliation(s)
- E.A. Lysenko
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - V.V. Kusnetsov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| |
Collapse
|
2
|
Zhang S, Zou B, Cao P, Su X, Xie F, Pan X, Li M. Structural insights into photosynthetic cyclic electron transport. MOLECULAR PLANT 2023; 16:187-205. [PMID: 36540023 DOI: 10.1016/j.molp.2022.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
During photosynthesis, light energy is utilized to drive sophisticated biochemical chains of electron transfers, converting solar energy into chemical energy that feeds most life on earth. Cyclic electron transfer/flow (CET/CEF) plays an essential role in efficient photosynthesis, as it balances the ATP/NADPH ratio required in various regulatory and metabolic pathways. Photosystem I, cytochrome b6f, and NADH dehydrogenase (NDH) are large multisubunit protein complexes embedded in the thylakoid membrane of the chloroplast and key players in NDH-dependent CEF pathway. Furthermore, small mobile electron carriers serve as shuttles for electrons between these membrane protein complexes. Efficient electron transfer requires transient interactions between these electron donors and acceptors. Structural biology has been a powerful tool to advance our knowledge of this important biological process. A number of structures of the membrane-embedded complexes, soluble electron carrier proteins, and transient complexes composed of both have now been determined. These structural data reveal detailed interacting patterns of these electron donor-acceptor pairs, thus allowing us to visualize the different parts of the electron transfer process. This review summarizes the current state of structural knowledge of three membrane complexes and their interaction patterns with mobile electron carrier proteins.
Collapse
Affiliation(s)
- Shumeng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Baohua Zou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Peng Cao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Xiaodong Su
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fen Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Pan
- College of Life Science, Capital Normal University, Beijing, China
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
4
|
Müntener T, Joss D, Häussinger D, Hiller S. Pseudocontact Shifts in Biomolecular NMR Spectroscopy. Chem Rev 2022; 122:9422-9467. [PMID: 35005884 DOI: 10.1021/acs.chemrev.1c00796] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Paramagnetic centers in biomolecules, such as specific metal ions that are bound to a protein, affect the nuclei in their surrounding in various ways. One of these effects is the pseudocontact shift (PCS), which leads to strong chemical shift perturbations of nuclear spins, with a remarkably long range of 50 Å and beyond. The PCS in solution NMR is an effect originating from the anisotropic part of the dipole-dipole interaction between the magnetic momentum of unpaired electrons and nuclear spins. The PCS contains spatial information that can be exploited in multiple ways to characterize structure, function, and dynamics of biomacromolecules. It can be used to refine structures, magnify effects of dynamics, help resonance assignments, allows for an intermolecular positioning system, and gives structural information in sensitivity-limited situations where all other methods fail. Here, we review applications of the PCS in biomolecular solution NMR spectroscopy, starting from early works on natural metalloproteins, following the development of non-natural tags to chelate and attach lanthanoid ions to any biomolecular target to advanced applications on large biomolecular complexes and inside living cells. We thus hope to not only highlight past applications but also shed light on the tremendous potential the PCS has in structural biology.
Collapse
Affiliation(s)
- Thomas Müntener
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
5
|
Pérez-Mejías G, Díaz-Quintana A, Guerra-Castellano A, Díaz-Moreno I, De la Rosa MA. Novel insights into the mechanism of electron transfer in mitochondrial cytochrome c. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Mammoser CC, Agh RE, Garcia NM, Wang Y, Thielges M. Altered coordination in a blue copper protein upon association with redox partner revealed by carbon-deuterium vibrational probes. Phys Chem Chem Phys 2022; 24:21588-21592. [DOI: 10.1039/d2cp03314c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proteins tune the reactivity of metal sites; less understood is the impact of association with a redox partner. We demonstrate the utility of carbon-deuterium labels for selective analysis of delicate...
Collapse
|
7
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
8
|
Malone LA, Proctor MS, Hitchcock A, Hunter CN, Johnson MP. Cytochrome b 6f - Orchestrator of photosynthetic electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148380. [PMID: 33460588 DOI: 10.1016/j.bbabio.2021.148380] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 11/18/2022]
Abstract
Cytochrome b6f (cytb6f) lies at the heart of the light-dependent reactions of oxygenic photosynthesis, where it serves as a link between photosystem II (PSII) and photosystem I (PSI) through the oxidation and reduction of the electron carriers plastoquinol (PQH2) and plastocyanin (Pc). A mechanism of electron bifurcation, known as the Q-cycle, couples electron transfer to the generation of a transmembrane proton gradient for ATP synthesis. Cytb6f catalyses the rate-limiting step in linear electron transfer (LET), is pivotal for cyclic electron transfer (CET) and plays a key role as a redox-sensing hub involved in the regulation of light-harvesting, electron transfer and photosynthetic gene expression. Together, these characteristics make cytb6f a judicious target for genetic manipulation to enhance photosynthetic yield, a strategy which already shows promise. In this review we will outline the structure and function of cytb6f with a particular focus on new insights provided by the recent high-resolution map of the complex from Spinach.
Collapse
Affiliation(s)
- Lorna A Malone
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew S Proctor
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
9
|
Pérez-Mejías G, Olloqui-Sariego JL, Guerra-Castellano A, Díaz-Quintana A, Calvente JJ, Andreu R, De la Rosa MA, Díaz-Moreno I. Physical contact between cytochrome c1 and cytochrome c increases the driving force for electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148277. [DOI: 10.1016/j.bbabio.2020.148277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023]
|
10
|
Gideon DA, Nirusimhan V, Manoj KM. Are plastocyanin and ferredoxin specific electron carriers or generic redox capacitors? Classical and murburn perspectives on two photosynthetic proteins. J Biomol Struct Dyn 2020; 40:1995-2009. [PMID: 33073701 DOI: 10.1080/07391102.2020.1835715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the light reaction of oxygenic photosynthesis, plastocyanin (PC) and ferredoxins (Fd) are small/diffusible redox-active proteins playing key roles in electron transfer/transport phenomena. In the Z-scheme mechanistic purview, they are considered as specific affinity binding-based electron-relay agents, linking the functions of Cytochrome b6f (Cyt. b6f), Photosystem I (PS I) and Fd:NADPH oxidoreductase (FNR). The murburn explanation for photolytic photophosphorylation deems PC/Fd as generic 'redox capacitors', temporally accepting and releasing one-electron equivalents in reaction milieu. Herein, we explore the two theories with respect to structural, distributional and functional aspects of PC/Fd. Amino acid residues located on the surface loci of key patches of PC/Fd vary in electrostatic/contour (topography) signatures. Crystal structures of four different complexes each of Cyt.f-PC and Fd-FNR show little conservation in the contact-surfaces, thereby discrediting 'affinity binding-based electron transfers (ET)' as an evolutionary logic. Further, thermodynamic and kinetic data of wildtype and mutant proteins interactions do not align with Z-scheme. Furthermore, micromolar physiological concentrations of PC and the non-conducive architecture of chloroplasts render the classical model untenable. In the murburn model, as PC is optional, the observation that plants lacking PC survive and grow is justified. Further, the low physiological concentration/distribution of PC in chloroplast lumen/stroma is supported by murburn equilibriums, as higher concentrations would limit electron transfers. Thus, structural evidence, interactive dynamics with redox partners and physiological distribution/role of PC/Fd support the murburn perspective that these proteins serve as generic redox-capacitors in chloroplasts.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Daniel Andrew Gideon
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, India.,Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, India
| | - Vijay Nirusimhan
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, India
| | - Kelath Murali Manoj
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, India
| |
Collapse
|
11
|
van Son M, Schilder JT, Di Savino A, Blok A, Ubbink M, Huber M. The Transient Complex of Cytochrome c and Cytochrome c Peroxidase: Insights into the Encounter Complex from Multifrequency EPR and NMR Spectroscopy. Chemphyschem 2020; 21:1060-1069. [PMID: 32301564 PMCID: PMC7317791 DOI: 10.1002/cphc.201901160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/03/2020] [Indexed: 12/31/2022]
Abstract
We present a novel approach to study transient protein-protein complexes with standard, 9 GHz, and high-field, 95 GHz, electron paramagnetic resonance (EPR) and paramagnetic NMR at ambient temperatures and in solution. We apply it to the complex of yeast mitochondrial iso-1-cytochrome c (Cc) with cytochrome c peroxidase (CcP) with the spin label [1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl)-methanethiosulfonate] attached at position 81 of Cc (SL-Cc). A dissociation constant KD of 20±4×10-6 M (EPR and NMR) and an equal amount of stereo-specific and encounter complex (NMR) are found. The EPR spectrum of the fully bound complex reveals that the encounter complex has a significant population (60 %) that shares important features, such as the Cc-interaction surface, with the stereo-specific complex.
Collapse
Affiliation(s)
- Martin van Son
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes LaboratoryLeiden UniversityNiels Bohrweg 22333 CALeiden (TheNetherlands
| | - Jesika T. Schilder
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Antonella Di Savino
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Anneloes Blok
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Marcellus Ubbink
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Martina Huber
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes LaboratoryLeiden UniversityNiels Bohrweg 22333 CALeiden (TheNetherlands
| |
Collapse
|
12
|
Carlon A, Ravera E, Parigi G, Murshudov GN, Luchinat C. Joint X-ray/NMR structure refinement of multidomain/multisubunit systems. JOURNAL OF BIOMOLECULAR NMR 2019; 73:265-278. [PMID: 30311122 PMCID: PMC6692505 DOI: 10.1007/s10858-018-0212-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Data integration in structural biology has become a paradigm for the characterization of biomolecular systems, and it is now accepted that combining different techniques can fill the gaps in each other's blind spots. In this frame, one of the combinations, which we have implemented in REFMAC-NMR, is residual dipolar couplings from NMR together with experimental data from X-ray diffraction. The first are exquisitely sensitive to the local details but does not give any information about overall shape, whereas the latter encodes more the information about the overall shape but at the same time tends to miss the local details even at the highest resolutions. Once crystals are obtained, it is often rather easy to obtain a complete X-ray dataset, however it is time-consuming to obtain an exhaustive NMR dataset. Here, we discuss the effect of including a-priori knowledge on the properties of the system to reduce the number of experimental data needed to obtain a more complete picture. We thus introduce a set of new features of REFMAC-NMR that allow for improved handling of RDC data for multidomain proteins and multisubunit biomolecular complexes, and encompasses the use of pseudo-contact shifts as an additional source of NMR-based information. The new feature may either help in improving the refinement, or assist in spotting differences between the crystal and the solution data. We show three different examples where NMR and X-ray data can be reconciled to a unique structural model without invoking mobility.
Collapse
Affiliation(s)
- Azzurra Carlon
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Garib N. Murshudov
- MRC Laboratory for Molecular Biology, Francis Crick Ave, CB2 0QH Cambridge, UK
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
13
|
Pérez-Mejías G, Guerra-Castellano A, Díaz-Quintana A, De la Rosa MA, Díaz-Moreno I. Cytochrome c: Surfing Off of the Mitochondrial Membrane on the Tops of Complexes III and IV. Comput Struct Biotechnol J 2019; 17:654-660. [PMID: 31193759 PMCID: PMC6542325 DOI: 10.1016/j.csbj.2019.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 11/30/2022] Open
Abstract
The proper arrangement of protein components within the respiratory electron transport chain is nowadays a matter of intense debate, since altering it leads to cell aging and other related pathologies. Here, we discuss three current views—the so-called solid, fluid and plasticity models—which describe the organization of the main membrane-embedded mitochondrial protein complexes and the key elements that regulate and/or facilitate supercomplex assembly. The soluble electron carrier cytochrome c has recently emerged as an essential factor in the assembly and function of respiratory supercomplexes. In fact, a ‘restricted diffusion pathway’ mechanism for electron transfer between complexes III and IV has been proposed based on the secondary, distal binding sites for cytochrome c at its two membrane partners recently discovered. This channeling pathway facilitates the surfing of cytochrome c on both respiratory complexes, thereby tuning the efficiency of oxidative phosphorylation and diminishing the production of reactive oxygen species. The well-documented post-translational modifications of cytochrome c could further contribute to the rapid adjustment of electron flow in response to changing cellular conditions.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mejías
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Alejandra Guerra-Castellano
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Miguel A De la Rosa
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| |
Collapse
|
14
|
Fedorov VA, Kovalenko IB, Khruschev SS, Ustinin DM, Antal TK, Riznichenko GY, Rubin AB. Comparative analysis of plastocyanin-cytochrome f complex formation in higher plants, green algae and cyanobacteria. PHYSIOLOGIA PLANTARUM 2019; 166:320-335. [PMID: 30740703 DOI: 10.1111/ppl.12940] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Mechanisms of the complex formation between plastocyanin and cytochrome f in higher plants (Spinacia oleracea and Brassica rapa), green microalgae Chlamydomonas reinhardtii and two species of cyanobacteria (Phormidium laminosum and Nostoc sp.) were investigated using combined Brownian and molecular dynamics simulations and hierarchical cluster analysis. In higher plants and green algae, electrostatic interactions force plastocyanin molecule close to the heme of cytochrome f. In the subsequent rotation of plastocyanin molecule around the point of electrostatic contact in the vicinity of cytochrome f, copper (Cu) atom approaches cytochrome heme forming a stable configuration where cytochrome f molecule behaves as a rather rigid body without conformational changes. In Nostoc plastocyanin molecule approaches cytochrome f in a different orientation (head-on) where the stabilization of the plastocyanin-cytochrome f complex is accompanied by the conformational changes of the G188E189D190 loop that stabilizes the whole complex. In cyanobacterium P. laminosum, electrostatic preorientation of the approaching molecules was not detected, thus indicating that random motions rather than long-range electrostatic interactions are responsible for the proper mutual orientation. We demonstrated that despite the structural similarity of the investigated electron transport proteins in different photosynthetic organisms, the complexity of molecular mechanisms of the complex formation increases in the following sequence: non-heterocystous cyanobacteria - heterocystous cyanobacteria - green algae - flowering plants.
Collapse
Affiliation(s)
- Vladimir A Fedorov
- Biology Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Ilya B Kovalenko
- Biology Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia
- Institute of Physics and Mathematics, Astrakhan State University, Astrakhan, 414056, Russia
- Scientific and Technological Center of Unique Instrumentation of the Russian Academy of Sciences, Moscow, 117342, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Sergei S Khruschev
- Biology Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Dmitry M Ustinin
- Keldysh Institute of Applied Mathematics RAS, Moscow, 125047, Russia
| | - Taras K Antal
- Biology Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia
| | | | - Andrei B Rubin
- Biology Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
15
|
Ramos S, Le Sueur AL, Horness RE, Specker JT, Collins JA, Thibodeau KE, Thielges MC. Heterogeneous and Highly Dynamic Interface in Plastocyanin-Cytochrome f Complex Revealed by Site-Specific 2D-IR Spectroscopy. J Phys Chem B 2019; 123:2114-2122. [PMID: 30742428 DOI: 10.1021/acs.jpcb.8b12157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transient protein complexes are crucial for sustaining dynamic cellular processes. The complexes of electron-transfer proteins are a notable example, such as those formed by plastocyanin (Pc) and cytochrome f (cyt f) in the photosynthetic apparatus. The dynamic and heterogeneous nature of these complexes, however, makes their study challenging. To better elucidate the complex of Nostoc Pc and cyt f, 2D-IR spectroscopy coupled to site-specific labeling with cyanophenylalanine infrared (IR) probes was employed to characterize how the local environments at sites along the surface of Pc were impacted by cyt f binding. The results indicate that Pc most substantially engages with cyt f via the hydrophobic patch around the copper redox site. Complexation with cyt f led to an increase in inhomogeneous broadening of the probe absorptions, reflective of increased heterogeneity of interactions with their environment. Notably, most of the underlying states interconverted very rapidly (1 to 2 ps), suggesting a complex with a highly mobile interface. The data support a model of the complex consisting of a large population of an encounter complex. Additionally, the study demonstrates the application of 2D-IR spectroscopy with site-specifically introduced probes to reveal new quantitative insight about dynamic biochemical systems.
Collapse
Affiliation(s)
- Sashary Ramos
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| | - Amanda L Le Sueur
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| | - Rachel E Horness
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| | - Jonathan T Specker
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| | - Jessica A Collins
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| | - Katherine E Thibodeau
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| | - Megan C Thielges
- Indiana University , Department of Chemistry , Bloomington , Indiana 47405 , United States
| |
Collapse
|
16
|
Nakagawa S, Kurniawan I, Kodama K, Arwansyah MS, Kawaguchi K, Nagao H. Theoretical study on interaction of cytochrome f and plastocyanin complex by a simple coarse-grained model with molecular crowding effect. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1406160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Satoshi Nakagawa
- Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Isman Kurniawan
- Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Koichi Kodama
- Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Muhammad Saleh Arwansyah
- Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Kazutomo Kawaguchi
- Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Hidemi Nagao
- Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
17
|
Comparison of metal-binding strength between methionine and cysteine residues: Implications for the design of metal-binding motifs in proteins. Biophys Chem 2017; 224:32-39. [DOI: 10.1016/j.bpc.2017.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/01/2017] [Accepted: 02/15/2017] [Indexed: 11/18/2022]
|
18
|
Electron transfer and docking between cytochrome cd 1 nitrite reductase and different redox partners — A comparative study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1412-1421. [DOI: 10.1016/j.bbabio.2016.04.279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/30/2016] [Accepted: 04/27/2016] [Indexed: 11/21/2022]
|
19
|
Le Sueur AL, Schaugaard RN, Baik MH, Thielges MC. Methionine Ligand Interaction in a Blue Copper Protein Characterized by Site-Selective Infrared Spectroscopy. J Am Chem Soc 2016; 138:7187-93. [PMID: 27164303 DOI: 10.1021/jacs.6b03916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The reactivity of metal sites in proteins is tuned by protein-based ligands. For example, in blue copper proteins such as plastocyanin (Pc), the structure imparts a highly elongated bond between the Cu and a methionine (Met) axial ligand to modulate its redox properties. Despite extensive study, a complete understanding of the contribution of the protein to redox activity is challenged by experimentally accessing both redox states of metalloproteins. Using infrared (IR) spectroscopy in combination with site-selective labeling with carbon-deuterium (C-D) vibrational probes, we characterized the localized changes at the Cu ligand Met97 in the oxidized and reduced states, as well as the Zn(II) or Co(II)-substituted, the pH-induced low-coordinate, the apoprotein, and the unfolded states. The IR absorptions of (d3-methyl)Met97 are highly sensitive to interaction of the sulfur-based orbitals with the metal center and are demonstrated to be useful reporters of its modulation in the different states. Unrestricted Kohn-Sham density functional theory calculations performed on a model of the Cu site of Pc confirm the observed dependence. IR spectroscopy was then applied to characterize the impact of binding to the physiological redox partner cytochrome (cyt) f. The spectral changes suggest a slightly stronger Cu-S(Met97) interaction in the complex with cyt f that has potential to modulate the electron transfer properties. Besides providing direct, molecular-level comparison of the oxidized and reduced states of Pc from the perspective of the axial Met ligand and evidence for perturbation of the Cu site properties by redox partner binding, this study demonstrates the localized spatial information afforded by IR spectroscopy of selectively incorporated C-D probes.
Collapse
Affiliation(s)
- Amanda L Le Sueur
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Richard N Schaugaard
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Megan C Thielges
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
20
|
Silveira JAG, Carvalho FEL. Proteomics, photosynthesis and salt resistance in crops: An integrative view. J Proteomics 2016; 143:24-35. [PMID: 26957143 DOI: 10.1016/j.jprot.2016.03.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/12/2016] [Accepted: 03/05/2016] [Indexed: 12/31/2022]
Abstract
Salinity is a stressful condition that causes a significant decrease in crop production worldwide. Salt stress affects several photosynthetic reactions, including the modulation of several important proteins. Despite these effects, few molecular-biochemical markers have been identified and evaluated for their importance in improving plant salt resistance. Proteomics is a powerful tool that allows the analysis of multigenic events at the post-translational level that has been widely used to evaluate protein modulation changes in plants exposed to salt stress. However, these studies are frequently fragmented and the results regarding photosynthesis proteins in response to salinity are limited. These constraints could be related to the low number of important photosynthetic proteins differently modulated in response to salinity, as has been commonly revealed by conventional proteomics. In this review, we present an evaluation and perspective on the integrated application of proteomics for the identification of photosynthesis proteins to improve salt resistance. We propose the use of phospho-, thiol- and redox-proteomics, associated with the utilization of isolated chloroplasts or photosynthetic sub-organellar components. This strategy may allow the characterization of essential proteins, providing a better understanding of photosynthesis regulation. Furthermore, this may contribute to the selection of molecular markers to improve salt resistance in crops.
Collapse
Affiliation(s)
- Joaquim A G Silveira
- Department of Biochemistry and Molecular Biology, Laboratory of Plant Metabolism, Federal University of Ceara, Fortaleza CEP 60451-970, Brazil.
| | - Fabricio E L Carvalho
- Department of Biochemistry and Molecular Biology, Laboratory of Plant Metabolism, Federal University of Ceara, Fortaleza CEP 60451-970, Brazil.
| |
Collapse
|
21
|
Carlon A, Ravera E, Andrałojć W, Parigi G, Murshudov GN, Luchinat C. How to tackle protein structural data from solution and solid state: An integrated approach. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 92-93:54-70. [PMID: 26952192 DOI: 10.1016/j.pnmrs.2016.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 05/17/2023]
Abstract
Long-range NMR restraints, such as diamagnetic residual dipolar couplings and paramagnetic data, can be used to determine 3D structures of macromolecules. They are also used to monitor, and potentially to improve, the accuracy of a macromolecular structure in solution by validating or "correcting" a crystal model. Since crystal structures suffer from crystal packing forces they may not be accurate models for the macromolecular structures in solution. However, the presence of real differences should be tested for by simultaneous refinement of the structure using both crystal and solution NMR data. To achieve this, the program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic and paramagnetic NMR data and/or diamagnetic residual dipolar couplings. Inconsistencies between crystal structures and solution NMR data, if any, may be due either to structural rearrangements occurring on passing from the solution to solid state, or to a greater degree of conformational heterogeneity in solution with respect to the crystal. In the case of multidomain proteins, paramagnetic restraints can provide the correct mutual orientations and positions of domains in solution, as well as information on the conformational variability experienced by the macromolecule.
Collapse
Affiliation(s)
- Azzurra Carlon
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Italy(1).
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Italy(1).
| | - Witold Andrałojć
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Italy(1).
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Italy(1).
| | - Garib N Murshudov
- MRC Laboratory for Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, UK.
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Italy(1).
| |
Collapse
|
22
|
Pérez-Henarejos SA, Alcaraz LA, Donaire A. Blue Copper Proteins: A rigid machine for efficient electron transfer, a flexible device for metal uptake. Arch Biochem Biophys 2015; 584:134-48. [DOI: 10.1016/j.abb.2015.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/24/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
|
23
|
Andrałojć W, Berlin K, Fushman D, Luchinat C, Parigi G, Ravera E, Sgheri L. Information content of long-range NMR data for the characterization of conformational heterogeneity. JOURNAL OF BIOMOLECULAR NMR 2015; 62:353-71. [PMID: 26044033 PMCID: PMC4782772 DOI: 10.1007/s10858-015-9951-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/25/2015] [Indexed: 05/16/2023]
Abstract
Long-range NMR data, namely residual dipolar couplings (RDCs) from external alignment and paramagnetic data, are becoming increasingly popular for the characterization of conformational heterogeneity of multidomain biomacromolecules and protein complexes. The question addressed here is how much information is contained in these averaged data. We have analyzed and compared the information content of conformationally averaged RDCs caused by steric alignment and of both RDCs and pseudocontact shifts caused by paramagnetic alignment, and found that, despite the substantial differences, they contain a similar amount of information. Furthermore, using several synthetic tests we find that both sets of data are equally good towards recovering the major state(s) in conformational distributions.
Collapse
Affiliation(s)
- Witold Andrałojć
- Center for Magnetic Resonance (CERM), University of Florence, Via
L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Konstantin Berlin
- Department of Chemistry and Biochemistry, Center for Biomolecular
Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular
Structure and Organization, University of Maryland, College Park, MD 20742, USA
- Corresponding authors: David Fushman, ,
Claudio Luchinat,
| | - Claudio Luchinat
- Center for Magnetic Resonance (CERM), University of Florence, Via
L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University
of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
- Corresponding authors: David Fushman, ,
Claudio Luchinat,
| | - Giacomo Parigi
- Center for Magnetic Resonance (CERM), University of Florence, Via
L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University
of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Enrico Ravera
- Center for Magnetic Resonance (CERM), University of Florence, Via
L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University
of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Luca Sgheri
- Istituto per le Applicazioni del Calcolo, Sezione di Firenze,
CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
24
|
Khruschev SS, Abaturova AM, Diakonova AN, Fedorov VA, Ustinin DM, Kovalenko IB, Riznichenko GY, Rubin AB. Brownian-dynamics simulations of protein–protein interactions in the photosynthetic electron transport chain. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915020086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
Moreno-Beltrán B, Díaz-Moreno I, González-Arzola K, Guerra-Castellano A, Velázquez-Campoy A, De la Rosa MA, Díaz-Quintana A. Respiratory complexes III and IV can each bind two molecules of cytochrome c at low ionic strength. FEBS Lett 2015; 589:476-83. [PMID: 25595453 DOI: 10.1016/j.febslet.2015.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/26/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022]
Abstract
The transient interactions of respiratory cytochrome c with complexes III and IV is herein investigated by using heterologous proteins, namely human cytochrome c, the soluble domain of plant cytochrome c1 and bovine cytochrome c oxidase. The binding molecular mechanisms of the resulting cross-complexes have been analyzed by Nuclear Magnetic Resonance and Isothermal Titration Calorimetry. Our data reveal that the two cytochrome c-involving adducts possess a 2:1 stoichiometry - that is, two cytochrome c molecules per adduct - at low ionic strength. We conclude that such extra binding sites at the surfaces of complexes III and IV can facilitate the turnover and sliding of cytochrome c molecules and, therefore, the electron transfer within respiratory supercomplexes.
Collapse
Affiliation(s)
- Blas Moreno-Beltrán
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Irene Díaz-Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain.
| | - Katiuska González-Arzola
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Alejandra Guerra-Castellano
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Adrián Velázquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI) - Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Mariano Esquillor s/n, 50018 Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain; Fundacion ARAID, Government of Aragon, Maria de Luna 11, 50018 Zaragoza, Spain
| | - Miguel A De la Rosa
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Antonio Díaz-Quintana
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| |
Collapse
|
26
|
Rinaldelli M, Carlon A, Ravera E, Parigi G, Luchinat C. FANTEN: a new web-based interface for the analysis of magnetic anisotropy-induced NMR data. JOURNAL OF BIOMOLECULAR NMR 2015; 61:21-34. [PMID: 25416616 DOI: 10.1007/s10858-014-9877-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/15/2014] [Indexed: 05/17/2023]
Abstract
Pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs) arising from the presence of paramagnetic metal ions in proteins as well as RDCs due to partial orientation induced by external orienting media are nowadays routinely measured as a part of the NMR characterization of biologically relevant systems. PCSs and RDCs are becoming more and more popular as restraints (1) to determine and/or refine protein structures in solution, (2) to monitor the extent of conformational heterogeneity in systems composed of rigid domains which can reorient with respect to one another, and (3) to obtain structural information in protein-protein complexes. The use of both PCSs and RDCs proceeds through the determination of the anisotropy tensors which are at the origin of these NMR observables. A new user-friendly web tool, called FANTEN (Finding ANisotropy TENsors), has been developed for the determination of the anisotropy tensors related to PCSs and RDCs and has been made freely available through the WeNMR ( http://fanten-enmr.cerm.unifi.it:8080 ) gateway. The program has many new features not available in other existing programs, among which the possibility of a joint analysis of several sets of PCS and RDC data and the possibility to perform rigid body minimizations.
Collapse
Affiliation(s)
- Mauro Rinaldelli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, Sesto Fiorentino, Florence, Italy
| | | | | | | | | |
Collapse
|
27
|
Moreno-Beltrán B, Díaz-Quintana A, González-Arzola K, Velázquez-Campoy A, De la Rosa MA, Díaz-Moreno I. Cytochrome c1 exhibits two binding sites for cytochrome c in plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1717-29. [PMID: 25091281 DOI: 10.1016/j.bbabio.2014.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/23/2014] [Accepted: 07/26/2014] [Indexed: 11/27/2022]
Abstract
In plants, channeling of cytochrome c molecules between complexes III and IV has been purported to shuttle electrons within the supercomplexes instead of carrying electrons by random diffusion across the intermembrane bulk phase. However, the mode plant cytochrome c behaves inside a supercomplex such as the respirasome, formed by complexes I, III and IV, remains obscure from a structural point of view. Here, we report ab-initio Brownian dynamics calculations and nuclear magnetic resonance-driven docking computations showing two binding sites for plant cytochrome c at the head soluble domain of plant cytochrome c1, namely a non-productive (or distal) site with a long heme-to-heme distance and a functional (or proximal) site with the two heme groups close enough as to allow electron transfer. As inferred from isothermal titration calorimetry experiments, the two binding sites exhibit different equilibrium dissociation constants, for both reduced and oxidized species, that are all within the micromolar range, thus revealing the transient nature of such a respiratory complex. Although the docking of cytochrome c at the distal site occurs at the interface between cytochrome c1 and the Rieske subunit, it is fully compatible with the complex III structure. In our model, the extra distal site in complex III could indeed facilitate the functional cytochrome c channeling towards complex IV by building a "floating boat bridge" of cytochrome c molecules (between complexes III and IV) in plant respirasome.
Collapse
Affiliation(s)
- Blas Moreno-Beltrán
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Antonio Díaz-Quintana
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Katiuska González-Arzola
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Adrián Velázquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain; Fundacion ARAID, Government of Aragon, Maria de Luna 11, 50018, Zaragoza, Spain
| | - Miguel A De la Rosa
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Irene Díaz-Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain.
| |
Collapse
|
28
|
Johnson MP, Vasilev C, Olsen JD, Hunter CN. Nanodomains of cytochrome b6f and photosystem II complexes in spinach grana thylakoid membranes. THE PLANT CELL 2014; 26:3051-61. [PMID: 25035407 PMCID: PMC4145131 DOI: 10.1105/tpc.114.127233] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/06/2014] [Accepted: 06/24/2014] [Indexed: 05/18/2023]
Abstract
The cytochrome b6f (cytb6f) complex plays a central role in photosynthesis, coupling electron transport between photosystem II (PSII) and photosystem I to the generation of a transmembrane proton gradient used for the biosynthesis of ATP. Photosynthesis relies on rapid shuttling of electrons by plastoquinone (PQ) molecules between PSII and cytb6f complexes in the lipid phase of the thylakoid membrane. Thus, the relative membrane location of these complexes is crucial, yet remains unknown. Here, we exploit the selective binding of the electron transfer protein plastocyanin (Pc) to the lumenal membrane surface of the cytb6f complex using a Pc-functionalized atomic force microscope (AFM) probe to identify the position of cytb6f complexes in grana thylakoid membranes from spinach (Spinacia oleracea). This affinity-mapping AFM method directly correlates membrane surface topography with Pc-cytb6f interactions, allowing us to construct a map of the grana thylakoid membrane that reveals nanodomains of colocalized PSII and cytb6f complexes. We suggest that the close proximity between PSII and cytb6f complexes integrates solar energy conversion and electron transfer by fostering short-range diffusion of PQ in the protein-crowded thylakoid membrane, thereby optimizing photosynthetic efficiency.
Collapse
Affiliation(s)
- Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Cvetelin Vasilev
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - John D Olsen
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
29
|
Rinaldelli M, Ravera E, Calderone V, Parigi G, Murshudov GN, Luchinat C. Simultaneous use of solution NMR and X-ray data in REFMAC5 for joint refinement/detection of structural differences. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:958-67. [PMID: 24699641 PMCID: PMC4306559 DOI: 10.1107/s1399004713034160] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/18/2013] [Indexed: 11/12/2022]
Abstract
The program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic data and paramagnetic NMR data (pseudocontact shifts and self-orientation residual dipolar couplings) and/or diamagnetic residual dipolar couplings. Incorporation of these long-range NMR restraints in REFMAC5 can reveal differences between solid-state and solution conformations of molecules or, in their absence, can be used together with X-ray crystallographic data for structural refinement. Since NMR and X-ray data are complementary, when a single structure is consistent with both sets of data and still maintains reasonably `ideal' geometries, the reliability of the derived atomic model is expected to increase. The program was tested on five different proteins: the catalytic domain of matrix metalloproteinase 1, GB3, ubiquitin, free calmodulin and calmodulin complexed with a peptide. In some cases the joint refinement produced a single model consistent with both sets of observations, while in other cases it indicated, outside the experimental uncertainty, the presence of different protein conformations in solution and in the solid state.
Collapse
Affiliation(s)
- Mauro Rinaldelli
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Enrico Ravera
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Vito Calderone
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Giacomo Parigi
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Garib N. Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, England
| | - Claudio Luchinat
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
30
|
Guan JY, Foerster JM, Drijfhout JW, Timmer M, Blok A, Ullmann GM, Ubbink M. An Ensemble of Rapidly Interconverting Orientations in Electrostatic Protein-Peptide Complexes Characterized by NMR Spectroscopy. Chembiochem 2014; 15:556-66. [DOI: 10.1002/cbic.201300623] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Indexed: 12/21/2022]
|
31
|
Schilder J, Ubbink M. Formation of transient protein complexes. Curr Opin Struct Biol 2013; 23:911-8. [PMID: 23932200 DOI: 10.1016/j.sbi.2013.07.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 01/16/2023]
Abstract
The encounter complex of two proteins is a dynamic intermediate state that guides proteins to their binding site, thus enhancing the rate of complex formation. It is particularly useful for complexes that must balance a biological requirement for high turnover with the need for specific binding, such as electron transfer complexes. Here, we describe the current methods for studying and visualizing encounter complexes. We discuss recent developments in mapping the energy landscapes, the role of hydrophobic interactions during encounter complex formation and the discovery of futile encounter complexes. These studies have not only provided insight into encounter complexes of electron transfer proteins, but also opened up new questions and approaches for studying encounter complexes in other weakly associated proteins.
Collapse
Affiliation(s)
- Jesika Schilder
- Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | |
Collapse
|
32
|
Cruz-Gallardo I, Díaz-Moreno I, Díaz-Quintana A, Donaire A, Velázquez-Campoy A, Curd RD, Rangachari K, Birdsall B, Ramos A, Holder AA, De la Rosa MA. Antimalarial activity of cupredoxins: the interaction of Plasmodium merozoite surface protein 119 (MSP119) and rusticyanin. J Biol Chem 2013; 288:20896-20907. [PMID: 23749994 PMCID: PMC3774360 DOI: 10.1074/jbc.m113.460162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 06/07/2013] [Indexed: 11/06/2022] Open
Abstract
The discovery of effective new antimalarial agents is urgently needed. One of the most frequently studied molecules anchored to the parasite surface is the merozoite surface protein-1 (MSP1). At red blood cell invasion MSP1 is proteolytically processed, and the 19-kDa C-terminal fragment (MSP119) remains on the surface and is taken into the red blood cell, where it is transferred to the food vacuole and persists until the end of the intracellular cycle. Because a number of specific antibodies inhibit erythrocyte invasion and parasite growth, MSP119 is therefore a promising target against malaria. Given the structural homology of cupredoxins with the Fab domain of monoclonal antibodies, an approach combining NMR and isothermal titration calorimetry (ITC) measurements with docking calculations based on BiGGER is employed on MSP119-cupredoxin complexes. Among the cupredoxins tested, rusticyanin forms a well defined complex with MSP119 at a site that overlaps with the surface recognized by the inhibitory antibodies. The addition of holo-rusticyanin to infected cells results in parasitemia inhibition, but negligible effects on parasite growth can be observed for apo-rusticyanin and other proteins of the cupredoxin family. These findings point to rusticyanin as an excellent therapeutic tool for malaria treatment and provide valuable information for drug design.
Collapse
Affiliation(s)
- Isabel Cruz-Gallardo
- From the Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), cicCartuja, Universidad de Sevilla-CSIC, Avenida Américo Vespucio 49, Sevilla 41092, Spain
| | - Irene Díaz-Moreno
- From the Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), cicCartuja, Universidad de Sevilla-CSIC, Avenida Américo Vespucio 49, Sevilla 41092, Spain
| | - Antonio Díaz-Quintana
- From the Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), cicCartuja, Universidad de Sevilla-CSIC, Avenida Américo Vespucio 49, Sevilla 41092, Spain
| | - Antonio Donaire
- the Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus Universitario de Espinardo, Murcia 30100, Spain
| | - Adrián Velázquez-Campoy
- the Instituto de Biocomputación y Física de Sistemas complejos (BIFI), Universidad de Zaragoza, c/Mariano Esquillor, Zaragoza 50018, Spain
| | | | | | - Berry Birdsall
- Molecular Structure Division, Medical Research Council (MRC) National Institute for Medical Research, The Ridgeway, Mill Hill, London W7 1AA, United Kingdom
| | - Andres Ramos
- Molecular Structure Division, Medical Research Council (MRC) National Institute for Medical Research, The Ridgeway, Mill Hill, London W7 1AA, United Kingdom
| | | | - Miguel A De la Rosa
- From the Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), cicCartuja, Universidad de Sevilla-CSIC, Avenida Américo Vespucio 49, Sevilla 41092, Spain,.
| |
Collapse
|
33
|
Lian LY. NMR studies of weak protein-protein interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 71:59-72. [PMID: 23611315 DOI: 10.1016/j.pnmrs.2012.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 11/22/2012] [Indexed: 06/02/2023]
Affiliation(s)
- Lu-Yun Lian
- NMR Centre for Structural Biology, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
34
|
Majumder ELW, King JD, Blankenship RE. Alternative Complex III from phototrophic bacteria and its electron acceptor auracyanin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1383-91. [PMID: 23357331 DOI: 10.1016/j.bbabio.2013.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 01/12/2013] [Accepted: 01/15/2013] [Indexed: 12/30/2022]
Abstract
Alternative Complex III (ACIII) is a multisubunit integral membrane protein electron transfer complex that is proposed to be an energy-conserving functional replacement for the bacterial cytochrome bc1 or b6f complexes. Clues to the structure and function of this novel complex come from its relation to other bacterial enzyme families. The ACIII complex has menaquinone: electron acceptor oxidoreductase activity and contains protein subunits with multiple Fe-S centers and c-type hemes. ACIII is found in a diverse group of bacteria, including both phototrophic and nonphototrophic taxa. In the phototrophic filamentous anoxygenic phototrophs, the electron acceptor is the small blue copper protein auracyanin instead of a soluble cytochrome. Recent work on ACIII and the copper protein auracyanin is reviewed with focus on the photosynthetic systems and potential electron transfer pathways and mechanisms. Taken together, the ACIII complexes constitute a unique system for photosynthetic electron transfer and energy conservation. This article is part of a Special Issue entitled: Respiratory Complex III and related bc complexes.
Collapse
Affiliation(s)
- Erica L W Majumder
- Washington University in St. Louis, Departments of Biology and Chemistry, Campus Box 1137, One Brookings Dr, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
35
|
Scanu S, Förster J, Finiguerra MG, Shabestari MH, Huber M, Ubbink M. The complex of cytochrome f and plastocyanin from Nostoc sp. PCC 7119 is highly dynamic. Chembiochem 2012; 13:1312-8. [PMID: 22619165 PMCID: PMC3569876 DOI: 10.1002/cbic.201200073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Indexed: 01/23/2023]
Abstract
Cytochrome f (Cyt f) and plastocyanin (Pc) form a highly transient complex as part of the photosynthetic redox chain. The complex from Nostoc sp. PCC 7119 was studied by NMR relaxation spectroscopy with the aim of determining the orientation of Pc relative to Cyt f. Chemical-shift-perturbation analysis showed that the presence of spin labels on the surface of Cyt f does not significantly affect the binding of Pc. The paramagnetic relaxation enhancement results are not consistent with a single orientation of Pc, thus indicating that multiple orientations must occur and suggesting that an encounter state represents a large fraction of the complex.
Collapse
Affiliation(s)
- Sandra Scanu
- Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Cruz-Gallardo I, Díaz-Moreno I, Díaz-Quintana A, De la Rosa MA. The cytochrome f
-plastocyanin complex as a model to study transient interactions between redox proteins. FEBS Lett 2011; 586:646-52. [DOI: 10.1016/j.febslet.2011.08.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 08/08/2011] [Accepted: 08/24/2011] [Indexed: 01/23/2023]
|
37
|
Swarbrick JD, Ung P, Chhabra S, Graham B. An Iminodiacetic Acid Based Lanthanide Binding Tag for Paramagnetic Exchange NMR Spectroscopy. Angew Chem Int Ed Engl 2011; 50:4403-6. [DOI: 10.1002/anie.201007221] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/31/2011] [Indexed: 11/09/2022]
|
38
|
Swarbrick JD, Ung P, Chhabra S, Graham B. An Iminodiacetic Acid Based Lanthanide Binding Tag for Paramagnetic Exchange NMR Spectroscopy. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
|
40
|
Martínez-Fábregas J, Rubio S, Díaz-Quintana A, Díaz-Moreno I, De la Rosa MÁ. Proteomic tools for the analysis of transient interactions between metalloproteins. FEBS J 2011; 278:1401-10. [PMID: 21352492 DOI: 10.1111/j.1742-4658.2011.08061.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Metalloproteins play major roles in cell metabolism and signalling pathways. In many cases, they show moonlighting behaviour, acting in different processes, depending on the physiological state of the cell. To understand these multitasking proteins, we need to discover the partners with which they carry out such novel functions. Although many technological and methodological tools have recently been reported for the detection of protein interactions, specific approaches to studying the interactions involving metalloproteins are not yet well developed. The task is even more challenging for metalloproteins, because they often form short-lived complexes that are difficult to detect. In this review, we gather the different proteomic techniques and biointeractomic tools reported in the literature. All of them have shown their applicability to the study of transient and weak protein-protein interactions, and are therefore suitable for metalloprotein interactions.
Collapse
Affiliation(s)
- Jonathan Martínez-Fábregas
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Centro de Investigaciones Científicas Isla de la Cartuja, Sevilla, Spain
| | | | | | | | | |
Collapse
|
41
|
Saio T, Yokochi M, Kumeta H, Inagaki F. PCS-based structure determination of protein-protein complexes. JOURNAL OF BIOMOLECULAR NMR 2010; 46:271-80. [PMID: 20300805 PMCID: PMC2844537 DOI: 10.1007/s10858-010-9401-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 02/17/2010] [Indexed: 05/03/2023]
Abstract
A simple and fast nuclear magnetic resonance method for docking proteins using pseudo-contact shift (PCS) and (1)H(N)/(15)N chemical shift perturbation is presented. PCS is induced by a paramagnetic lanthanide ion that is attached to a target protein using a lanthanide binding peptide tag anchored at two points. PCS provides long-range (approximately 40 A) distance and angular restraints between the lanthanide ion and the observed nuclei, while the (1)H(N)/(15)N chemical shift perturbation data provide loose contact-surface information. The usefulness of this method was demonstrated through the structure determination of the p62 PB1-PB1 complex, which forms a front-to-back 20 kDa homo-oligomer. As p62 PB1 does not intrinsically bind metal ions, the lanthanide binding peptide tag was attached to one subunit of the dimer at two anchoring points. Each monomer was treated as a rigid body and was docked based on the backbone PCS and backbone chemical shift perturbation data. Unlike NOE-based structural determination, this method only requires resonance assignments of the backbone (1)H(N)/(15)N signals and the PCS data obtained from several sets of two-dimensional (15)N-heteronuclear single quantum coherence spectra, thus facilitating rapid structure determination of the protein-protein complex.
Collapse
Affiliation(s)
- Tomohide Saio
- Graduate School of Life Science, Hokkaido University, Sapporo, 001-0021 Japan
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 001-0021 Japan
| | - Masashi Yokochi
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 001-0021 Japan
| | - Hiroyuki Kumeta
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 001-0021 Japan
| | - Fuyuhiko Inagaki
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 001-0021 Japan
| |
Collapse
|
42
|
Gabdoulline RR, Wade RC. On the contributions of diffusion and thermal activation to electron transfer between Phormidium laminosum plastocyanin and cytochrome f: Brownian dynamics simulations with explicit modeling of nonpolar desolvation interactions and electron transfer events. J Am Chem Soc 2009; 131:9230-8. [PMID: 19518050 DOI: 10.1021/ja809567k] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The factors that determine the extent to which diffusion and thermal activation processes govern electron transfer (ET) between proteins are debated. The process of ET between plastocyanin (PC) and cytochrome f (CytF) from the cyanobacterium Phormidium laminosum was initially thought to be diffusion-controlled but later was found to be under activation control (Schlarb-Ridley, B. G.; et al. Biochemistry 2005, 44, 6232). Here we describe Brownian dynamics simulations of the diffusional association of PC and CytF, from which ET rates were computed using a detailed model of ET events that was applied to all of the generated protein configurations. The proteins were modeled as rigid bodies represented in atomic detail. In addition to electrostatic forces, which were modeled as in our previous simulations of protein-protein association, the proteins interacted by a nonpolar desolvation (hydrophobic) force whose derivation is described here. The simulations yielded close to realistic residence times of transient protein-protein encounter complexes of up to tens of microseconds. The activation barrier for individual ET events derived from the simulations was positive. Whereas the electrostatic interactions between P. laminosum PC and CytF are weak, simulations for a second cyanobacterial PC-CytF pair, that from Nostoc sp. PCC 7119, revealed ET rates influenced by stronger electrostatic interactions. In both cases, the simulations imply significant contributions to ET from both diffusion and thermal activation processes.
Collapse
Affiliation(s)
- Razif R Gabdoulline
- Molecular and Cellular Modeling Group, EML Research gGmbH, Schloss-Wolfsbrunnenweg 33, D-69118 Heidelberg, Germany.
| | | |
Collapse
|
43
|
Díaz-Moreno I, Muñoz-López FJ, Frutos-Beltrán E, De la Rosa MA, Díaz-Quintana A. Electrostatic strain and concerted motions in the transient complex between plastocyanin and cytochrome f from the cyanobacterium Phormidium laminosum. Bioelectrochemistry 2009; 77:43-52. [PMID: 19616485 DOI: 10.1016/j.bioelechem.2009.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 06/04/2009] [Accepted: 06/04/2009] [Indexed: 11/15/2022]
Abstract
Many fleeting macromolecular interactions, like those being involved in electron transport, are essential in biology. However, little is known about the behaviour of the partners and their dynamics within their short-lived complex. To tackle such issue, we have performed molecular dynamics simulations on an electron transfer complex formed by plastocyanin and cytochrome f from the cyanobacterium Phormidium laminosum. Besides simulations of the isolated partners, two independent trajectories of the complex were calculated, starting from the two different conformations in the NMR ensemble. The first one leads to a more stable ensemble with a shorter distance between the metal sites of the two partners. The second experiences a significant drift of the complex conformation. Analyses of the distinct calculations show that the conformation of cytochrome f is strained upon binding of its partner, and relaxes upon its release. Interestingly, the principal component analysis of the trajectories indicates that plastocyanin displays a concerted motion with the small domain of cytochrome f that can be attributed to electrostatic interactions between the two proteins.
Collapse
Affiliation(s)
- Irene Díaz-Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla and C.S.I.C.), Spain
| | | | | | | | | |
Collapse
|
44
|
Electron transfer from cytochrome c to cupredoxins. J Biol Inorg Chem 2009; 14:821-8. [DOI: 10.1007/s00775-009-0494-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 02/28/2009] [Indexed: 10/21/2022]
|
45
|
Vlasie MD, Fernández-Busnadiego R, Prudêncio M, Ubbink M. Conformation of Pseudoazurin in the 152 kDa Electron Transfer Complex with Nitrite Reductase Determined by Paramagnetic NMR. J Mol Biol 2008; 375:1405-15. [DOI: 10.1016/j.jmb.2007.11.056] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/18/2007] [Accepted: 11/16/2007] [Indexed: 10/22/2022]
|
46
|
Rumpel S, Becker S, Zweckstetter M. High-resolution structure determination of the CylR2 homodimer using paramagnetic relaxation enhancement and structure-based prediction of molecular alignment. JOURNAL OF BIOMOLECULAR NMR 2008; 40:1-13. [PMID: 18026911 PMCID: PMC2758389 DOI: 10.1007/s10858-007-9204-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 09/14/2007] [Indexed: 05/25/2023]
Abstract
Structure determination of homooligomeric proteins by NMR spectroscopy is difficult due to the lack of chemical shift perturbation data, which is very effective in restricting the binding interface in heterooligomeric systems, and the difficulty of obtaining a sufficient number of intermonomer distance restraints. Here we solved the high-resolution solution structure of the 15.4 kDa homodimer CylR2, the regulator of cytolysin production from Enterococcus faecalis, which deviates by 1.1 angstroms from the previously determined X-ray structure. We studied the influence of different experimental information such as long-range distances derived from paramagnetic relaxation enhancement, residual dipolar couplings, symmetry restraints and intermonomer Nuclear Overhauser Effect restraints on the accuracy of the derived structure. In addition, we show that it is useful to combine experimental information with methods of ab initio docking when the available experimental data are not sufficient to obtain convergence to the correct homodimeric structure. In particular, intermonomer distances may not be required when residual dipolar couplings are compared to values predicted on the basis of the charge distribution and the shape of ab initio docking solutions.
Collapse
Affiliation(s)
- Sigrun Rumpel
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany
| | - Markus Zweckstetter
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany
| |
Collapse
|
47
|
John M, Otting G. Strategies for measurements of pseudocontact shifts in protein NMR spectroscopy. Chemphyschem 2007; 8:2309-13. [PMID: 17910025 DOI: 10.1002/cphc.200700510] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Paramagnetic metal ions bound to proteins generate a dipolar field that can be accurately probed by pseudocontact shifts (PCS) displayed by the protein's nuclear spins. PCS are highly useful for determining the coordinates of individual spins in the molecule and for rapid structure determinations of entire protein-protein and protein-ligand complexes. However, PCS measurements require reliable resonance assignments for the molecule in its paramagnetic state and in a diamagnetic reference state. This article discusses different approaches for pairwise resonance assignments, with emphasis on a strategy which exploits chemical exchange between the two states.
Collapse
Affiliation(s)
- Michael John
- Institut für Anorganische Chemie, Georg August Universität, Tammannstrasse 4, 37073 Göttingen, Germany
| | | |
Collapse
|
48
|
Vlasie MD, Comuzzi C, van den Nieuwendijk AMCH, Prudêncio M, Overhand M, Ubbink M. Long-Range-Distance NMR Effects in a Protein Labeled with a Lanthanide–DOTA Chelate. Chemistry 2007; 13:1715-23. [PMID: 17115462 DOI: 10.1002/chem.200600916] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A two-thiol reactive lanthanide-DOTA (1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) chelate, CLaNP-3 (CLaNP=caged lanthanide NMR probe), was synthesized for the rigid attachment to cysteine groups on a protein surface, and used to obtain long-range-distance information from the {15N,1H} HSQC spectra of the protein-lanthanide complex. The DOTA ring exhibits several isomers that are in exchange; however, single resonances were observed for most amide groups in the protein, allowing determination of a single, apparent magnetic-susceptibility tensor. Pseudocontact shifts caused by Yb-containing CLaNP-3 were observed for atoms at 15-35 A from the metal. By using Gd-containing CLaNP-3, relaxation effects were observed, allowing distances up to 30 A from the paramagnetic center to be determined accurately. Similar results were obtained with a Gd-DTPA (diethylene-triaminepentaacetic acid) chelate, CLaNP-1, bound in the same bidentate manner to the protein. This study demonstrates that bidentate attachment of a paramagnetic probe enables determination of long-range distances.
Collapse
Affiliation(s)
- Monica D Vlasie
- Leiden Institute of Chemistry, Gorlaeus Laboratories Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Díaz-Moreno I, Díaz-Moreno S, Subías G, De la Rosa MA, Díaz-Quintana A. The atypical iron-coordination geometry of cytochrome f remains unchanged upon binding to plastocyanin, as inferred by XAS. PHOTOSYNTHESIS RESEARCH 2006; 90:23-8. [PMID: 17111237 PMCID: PMC1769345 DOI: 10.1007/s11120-006-9102-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Accepted: 08/25/2006] [Indexed: 05/12/2023]
Abstract
The transient complex between cytochrome f and plastocyanin from the cyanobacterium Nostoc sp. PCC 7119 has been analysed by X-ray Absorption Spectroscopy in solution, using both proteins in their oxidized and reduced states. Fe K-edge data mainly shows that the atypical metal coordination geometry of cytochrome f, in which the N-terminal amino acid acts as an axial ligand of the heme group, remains unaltered upon binding to its redox partner, plastocyanin. This fact suggests that cytochrome f provides a stable binding site for plastocyanin and minimizes the reorganization energy required in the transient complex formation, which could facilitate the electron transfer between the two redox partners.
Collapse
Affiliation(s)
- Irene Díaz-Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla y Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, 41092, Sevilla, Spain.
| | | | | | | | | |
Collapse
|
50
|
Reduction of plastocyanin by tyrosine-containing oligopeptides. J Inorg Biochem 2006; 100:1871-8. [PMID: 16963123 DOI: 10.1016/j.jinorgbio.2006.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 06/09/2006] [Accepted: 07/23/2006] [Indexed: 11/22/2022]
Abstract
Oxidized plastocyanin (PC) was reduced with TyrTyrTyr and LysLysLysLysTyrTyrTyr (KKKKYYY) oligopeptides at neutral pH. The TyrTyrTyr site of the peptides provided an electron to the copper active site of PC, whereas the tetralysine site of KKKKYYY functioned as the recognition site for the negative patch of PC. The reciprocal initial rate constant (1/k(int)) increased linearly with the reciprocal TyrTyrTyr concentration and proton concentration, although the electron transfer rate decreased gradually with time. The results showed that PC was reduced by the deprotonated species of TyrTyrTyr. A linear increase of log k(int) with increase in the ionic strength was observed due to decrease in the electrostatic repulsion between negatively charged PC and deprotonated (TyrTyrTyr)(-). PC was reduced faster by an addition of KKKKYYY to the PC-TyrTyrTyr solution, although KKKKYYY could not reduce PC without TyrTyrTyr. The ESI-LCMS spectrum of the products from the reaction between PC and TyrTyrTyr showed molecular ion peaks at m/z 1015.7 and 1037.7, which suggested formation of a dimerized peptide that may be produced from the reaction of a tyrosyl radical. The results indicate that PC and the tyrosine-containing oligopeptides form an equilibrium, PC(ox)/(oligopeptide)(-)-->/<--PC(red)/(oligopeptide)(*). The equilibrium is usually shifted to the left, but could shift to the right when the produced oligopeptide radical reacts with unreacted peptides. For the reaction of PC with KKKKYYY in the absence of TyrTyrTyr, the produced KKKK(YYY)(*) radical peptide could not react with other KKKKYYY peptides, since they were positively charged. In the presence of both KKKKYYY and TyrTyrTyr, PC may interact effectively with KKKKYYY through its tetralysine site and receive an electron from its TyrTyrTyr site, where the produced KKKK(YYY)(*) may interact with TyrTyrTyr peptides.
Collapse
|