1
|
Kim IS, Jo EK. Inosine: A bioactive metabolite with multimodal actions in human diseases. Front Pharmacol 2022; 13:1043970. [PMID: 36467085 PMCID: PMC9708727 DOI: 10.3389/fphar.2022.1043970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 08/04/2023] Open
Abstract
The nucleoside inosine is an essential metabolite for purine biosynthesis and degradation; it also acts as a bioactive molecule that regulates RNA editing, metabolic enzyme activity, and signaling pathways. As a result, inosine is emerging as a highly versatile bioactive compound and second messenger of signal transduction in cells with diverse functional abilities in different pathological states. Gut microbiota remodeling is closely associated with human disease pathogenesis and responses to dietary and medical supplementation. Recent studies have revealed a critical link between inosine and gut microbiota impacting anti-tumor, anti-inflammatory, and antimicrobial responses in a context-dependent manner. In this review, we summarize the latest progress in our understanding of the mechanistic function of inosine, to unravel its immunomodulatory actions in pathological settings such as cancer, infection, inflammation, and cardiovascular and neurological diseases. We also highlight the role of gut microbiota in connection with inosine metabolism in different pathophysiological conditions. A more thorough understanding of the mechanistic roles of inosine and how it regulates disease pathologies will pave the way for future development of therapeutic and preventive modalities for various human diseases.
Collapse
Affiliation(s)
- In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Eun-Kyoung Jo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| |
Collapse
|
2
|
Zhao G, Newbury P, Ishi Y, Chekalin E, Zeng B, Glicksberg BS, Wen A, Paithankar S, Sasaki T, Suri A, Nazarian J, Pacold ME, Brat DJ, Nicolaides T, Chen B, Hashizume R. Reversal of cancer gene expression identifies repurposed drugs for diffuse intrinsic pontine glioma. Acta Neuropathol Commun 2022; 10:150. [PMID: 36274161 PMCID: PMC9590174 DOI: 10.1186/s40478-022-01463-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an aggressive incurable brainstem tumor that targets young children. Complete resection is not possible, and chemotherapy and radiotherapy are currently only palliative. This study aimed to identify potential therapeutic agents using a computational pipeline to perform an in silico screen for novel drugs. We then tested the identified drugs against a panel of patient-derived DIPG cell lines. Using a systematic computational approach with publicly available databases of gene signature in DIPG patients and cancer cell lines treated with a library of clinically available drugs, we identified drug hits with the ability to reverse a DIPG gene signature to one that matches normal tissue background. The biological and molecular effects of drug treatment was analyzed by cell viability assay and RNA sequence. In vivo DIPG mouse model survival studies were also conducted. As a result, two of three identified drugs showed potency against the DIPG cell lines Triptolide and mycophenolate mofetil (MMF) demonstrated significant inhibition of cell viability in DIPG cell lines. Guanosine rescued reduced cell viability induced by MMF. In vivo, MMF treatment significantly inhibited tumor growth in subcutaneous xenograft mice models. In conclusion, we identified clinically available drugs with the ability to reverse DIPG gene signatures and anti-DIPG activity in vitro and in vivo. This novel approach can repurpose drugs and significantly decrease the cost and time normally required in drug discovery.
Collapse
Affiliation(s)
- Guisheng Zhao
- grid.137628.90000 0004 1936 8753Department of Pediatrics, New York University Langone Health, 160 East 32nd St., New York, NY 10016 USA
| | - Patrick Newbury
- grid.17088.360000 0001 2150 1785Department of Pediatrics and Human Development, Michigan State University, Secchia Center, Room 732, 15 Michigan St. NE, Grand Rapids, MI 49503 USA
| | - Yukitomo Ishi
- grid.16753.360000 0001 2299 3507Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 East Superior St., Simpson Querrey 4-514, Chicago, IL 60611 USA ,grid.413808.60000 0004 0388 2248Division of Hematology, Oncology, Neuro-Oncology & Stem Cell Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Box 205, Chicago, IL 60611 USA
| | - Eugene Chekalin
- grid.17088.360000 0001 2150 1785Department of Pediatrics and Human Development, Michigan State University, Secchia Center, Room 732, 15 Michigan St. NE, Grand Rapids, MI 49503 USA
| | - Billy Zeng
- grid.17088.360000 0001 2150 1785Department of Pediatrics and Human Development, Michigan State University, Secchia Center, Room 732, 15 Michigan St. NE, Grand Rapids, MI 49503 USA
| | - Benjamin S. Glicksberg
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029 USA ,grid.416167.30000 0004 0442 1996Icahn School of Medicine at Mount Sinai, Hasso Plattner Institute for Digital Health at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029 USA
| | - Anita Wen
- grid.17088.360000 0001 2150 1785Department of Pediatrics and Human Development, Michigan State University, Secchia Center, Room 732, 15 Michigan St. NE, Grand Rapids, MI 49503 USA
| | - Shreya Paithankar
- grid.17088.360000 0001 2150 1785Department of Pediatrics and Human Development, Michigan State University, Secchia Center, Room 732, 15 Michigan St. NE, Grand Rapids, MI 49503 USA
| | - Takahiro Sasaki
- grid.16753.360000 0001 2299 3507Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 303 East Superior St., Chicago, IL 60611 USA ,grid.412857.d0000 0004 1763 1087Department of Neurological Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Japan
| | - Amreena Suri
- grid.16753.360000 0001 2299 3507Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 East Superior St., Simpson Querrey 4-514, Chicago, IL 60611 USA ,grid.413808.60000 0004 0388 2248Division of Hematology, Oncology, Neuro-Oncology & Stem Cell Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Box 205, Chicago, IL 60611 USA
| | - Javad Nazarian
- grid.239560.b0000 0004 0482 1586Children’s National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 USA ,grid.412341.10000 0001 0726 4330University Children’s Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Michael E. Pacold
- grid.137628.90000 0004 1936 8753Department of Radiation Oncology, New York University Langone Health, 550 First Avenue, New York, NY 10016 USA
| | - Daniel J. Brat
- grid.16753.360000 0001 2299 3507Department of Pathology, Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611 USA
| | - Theodore Nicolaides
- grid.137628.90000 0004 1936 8753Department of Pediatrics, New York University Langone Health, 160 East 32nd St., New York, NY 10016 USA
| | - Bin Chen
- Department of Pediatrics and Human Development, Michigan State University, Secchia Center, Room 732, 15 Michigan St. NE, Grand Rapids, MI, 49503, USA. .,Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue St, East Lansing, MI, 48824, USA. .,Department of Computer Science and Engineering, Michigan State University, 428 S. Shaw Lane, East Lansing, MI, 48824, USA.
| | - Rintaro Hashizume
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 East Superior St., Simpson Querrey 4-514, Chicago, IL, 60611, USA. .,Division of Hematology, Oncology, Neuro-Oncology & Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box 205, Chicago, IL, 60611, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 East Superior St., Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Zhang H, Xiang Y, He N, Liu X, Liu H, Fang L, Zhang F, Sun X, Zhang D, Li X, Terzaghi W, Yan J, Dai M. Enhanced Vitamin C Production Mediated by an ABA-Induced PTP-like Nucleotidase Improves Plant Drought Tolerance in Arabidopsis and Maize. MOLECULAR PLANT 2020; 13:760-776. [PMID: 32068157 DOI: 10.1016/j.molp.2020.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 05/26/2023]
Abstract
Abscisic acid (ABA) is a key phytohormone that mediates environmental stress responses. Vitamin C, or L-ascorbic acid (AsA), is the most abundant antioxidant protecting against stress damage in plants. How the ABA and AsA signaling pathways interact in stress responses remains elusive. In this study, we characterized the role of a previously unidentified gene, PTPN (PTP-like Nucleotidase) in plant drought tolerance. In Arabidopsis, (AtPTPN was expressed in multiple tissues and upregulated by ABA and drought treatments. Loss-of-function mutants of AtPTPN were hyposensitive to ABA but hypersensitive to drought stresses, whereas plants with enhanced expression of AtPTPN showed opposite phenotypes to . Overexpression of maize PTPN (ZmPTPN) promoted, while knockdown of ZmPTPN inhibited plant drought tolerance, indicating conserved and positive roles of PTPN in plant drought tolerance. We found that both AtPTPN and ZmPTPN release Pi by hydrolyzing GDP/GMP/dGMP/IMP/dIMP, and that AtPTPN positively regulated AsA production via endogenous Pi content control. Consistently, overexpression of VTC2, the rate-limiting synthetic enzyme in AsA biosynthesis, promoted AsA production and plant drought tolerance, and these effects were largely dependent on AtPTPN activity. Furthermore, we demonstrated that the heat shock transcription factor HSFA6a directly binds the AtPTPN promoter and activates AtPTPN expression. Genetic analyses showed that AtPTPN is required for HSFA6a to regulate ABA and drought responses. Taken together, our data indicate that PTPN-mediated crosstalk between the ABA signaling and AsA biosynthesis pathways positively controls plant drought tolerance.
Collapse
Affiliation(s)
- Hui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanli Xiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Neng He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangguo Liu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun 130124, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Fang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaopeng Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Cividini F, Filoni DN, Pesi R, Allegrini S, Camici M, Tozzi MG. IMP-GMP specific cytosolic 5'-nucleotidase regulates nucleotide pool and prodrug metabolism. Biochim Biophys Acta Gen Subj 2015; 1850:1354-61. [PMID: 25857773 DOI: 10.1016/j.bbagen.2015.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Type II cytosolic 5'-nucleotidase (cN-II) catalyzes the hydrolysis of purine and, to some extent, of pyrimidine monophosphates. Recently, a number of papers demonstrated the involvement of cN-II in the mechanisms of resistance to antitumor drugs such as cytarabine, gemcitabine and fludarabine. Furthermore, cN-II is involved in drug resistance in patients affected by hematological malignancies influencing the clinical outcome. Although the implication of cN-II expression and/or activity appears to be correlated with drug resistance and poor prognosis, the molecular mechanism by which cN-II mediates drug resistance is still unknown. METHODS HEK 293 cells carrying an expression vector coding for cN-II linked to green fluorescent protein (GFP) and a control vector without cN-II were utilized. A highly sensitive capillary electrophoresis method was applied for nucleotide pool determination and cytotoxicity exerted by drugs was determined with 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. RESULTS Over-expression of cN-II causes a drop of nucleoside triphosphate concentration and a general disturbance of nucleotide pool. Over-expressing cells were resistant to fludarabine, gemcitabine and cytarabine independently of cN-II ability to hydrolyze their monophosphates. CONCLUSIONS An increase of cN-II expression is sufficient to cause both a general disturbance of nucleotide pool and an increase of half maximal inhibitory concentration (IC50) of the drugs. Since the monophosphates of cytarabine and gemcitabine are not substrates of cN-II, the protection observed cannot be directly ascribed to drug inactivation. GENERAL SIGNIFICANCE Our results indicate that cN-II exerts a relevant role in nucleotide and drug metabolism through not only enzyme activity but also a mechanism involving a protein-protein interaction, thus playing a general regulatory role in cell survival. SENTENCE Resistance to fludarabine, gemcitabine and cytarabine can be determined by an increase of cN-II both through dephosphorylation of active drugs and perturbation of nucleotide pool.
Collapse
Affiliation(s)
- Federico Cividini
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via San Zeno 51, 56127, Pisa, Italy
| | - Daniela Nicole Filoni
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via San Zeno 51, 56127, Pisa, Italy; Dipartimento di Chimica e Farmacia, Università di Sassari, Via Muroni 23A, 07100, Sassari, Italy
| | - Rossana Pesi
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via San Zeno 51, 56127, Pisa, Italy
| | - Simone Allegrini
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Muroni 23A, 07100, Sassari, Italy.
| | - Marcella Camici
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via San Zeno 51, 56127, Pisa, Italy
| | - Maria Grazia Tozzi
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via San Zeno 51, 56127, Pisa, Italy
| |
Collapse
|
5
|
Kuzaj P, Kuhn J, Michalek RD, Karoly ED, Faust I, Dabisch-Ruthe M, Knabbe C, Hendig D. Large-scaled metabolic profiling of human dermal fibroblasts derived from pseudoxanthoma elasticum patients and healthy controls. PLoS One 2014; 9:e108336. [PMID: 25265166 PMCID: PMC4181624 DOI: 10.1371/journal.pone.0108336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/29/2014] [Indexed: 12/18/2022] Open
Abstract
Mutations in the ABC transporter ABCC6 were recently identified as cause of Pseudoxanthoma elasticum (PXE), a rare genetic disorder characterized by progressive mineralization of elastic fibers. We used an untargeted metabolic approach to identify biochemical differences between human dermal fibroblasts from healthy controls and PXE patients in an attempt to find a link between ABCC6 deficiency, cellular metabolic alterations and disease pathogenesis. 358 compounds were identified by mass spectrometry covering lipids, amino acids, peptides, carbohydrates, nucleotides, vitamins and cofactors, xenobiotics and energy metabolites. We found substantial differences in glycerophospholipid composition, leucine dipeptides, and polypeptides as well as alterations in pantothenate and guanine metabolism to be significantly associated with PXE pathogenesis. These findings can be linked to extracellular matrix remodeling and increased oxidative stress, which reflect characteristic hallmarks of PXE. Our study could facilitate a better understanding of biochemical pathways involved in soft tissue mineralization.
Collapse
Affiliation(s)
- Patricia Kuzaj
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Joachim Kuhn
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Ryan D. Michalek
- Metabolon, Inc., Durham, North Carolina, United States of America
| | - Edward D. Karoly
- Metabolon, Inc., Durham, North Carolina, United States of America
| | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Mareike Dabisch-Ruthe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
6
|
The role of inosine-5'-monophosphate dehydrogenase in thiopurine metabolism in patients with inflammatory bowel disease. Ther Drug Monit 2011; 33:200-8. [PMID: 21311411 DOI: 10.1097/ftd.0b013e31820b42bb] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND There is a large interindividual variability in thiopurine metabolism. High concentrations of methylthioinosine-5'-monophosphate (meTIMP) and low concentrations of 6-thioguanine nucleotides (6-TGNs) have been associated with a lower response rate and an increased risk of adverse events. In this study, the role of inosine-5'-monophosphate dehydrogenase (IMPDH) for differences in metabolite patterns of thiopurines was investigated. METHODS IMPDH activity and thiopurine metabolite concentrations were determined in patients with inflammatory bowel disease and a normal thiopurine methyltransferase (TPMT) phenotype and meTIMP/6-TGN concentration ratio > 20 (n = 26), in patients with a metabolite ratio ≤ 20 (n = 21), in a subgroup with a metabolite ratio <4 (n = 6), and in 10 patients with reduced TPMT activity. In vitro studies were conducted on human embryonic kidney cells (HEK293) with genetically engineered IMPDH and TPMT activities. RESULTS Patients with metabolite ratios >20 had lower IMPDH activity than those with ratios ≤ 20 (P < 0.001). Metabolite ratios >20 were only observed in patients with normal TPMT activity. Downregulation of IMPDH activity in HEK293 cells was associated with an increase in the concentration of meTIMP (fold change: 17 up to 93, P < 0.001) but, unexpectedly, also of 6-thioguanosine monophosphate (fold change: 2.6 up to 5.0, P < 0.001). CONCLUSIONS These data question the general view of IMPDH as the rate-limiting enzyme in the phosphorylation of thiopurines. Investigations of other mechanisms are needed to more fully explain the various metabolite patterns and outcomes in patients under treatment.
Collapse
|
7
|
Gender- and age-dependent changes in nucleoside levels in the cerebral cortex and white matter of the human brain. Brain Res Bull 2010; 81:579-84. [DOI: 10.1016/j.brainresbull.2009.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 10/12/2009] [Indexed: 12/13/2022]
|
8
|
Zhao M, Qu H. Human liver rate-limiting enzymes influence metabolic flux via branch points and inhibitors. BMC Genomics 2009; 10 Suppl 3:S31. [PMID: 19958496 PMCID: PMC2788385 DOI: 10.1186/1471-2164-10-s3-s31] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Rate-limiting enzymes, because of their relatively low velocity, are believed to influence metabolic flux in pathways. To investigate their regulatory role in metabolic networks, we look at the global organization and interactions between rate-limiting enzymes and compounds such as branch point metabolites and enzyme inhibitors in human liver. Results Based on 96 rate-limiting enzymes and 132 branch point compounds from human liver, we found that rate-limiting enzymes surrounded 76.5% of branch points. In a compound conversion network from human liver, the 128 branch points involved showed a dramatically higher average degree, betweenness centrality and closeness centrality as a whole. Nearly half of the in vivo inhibitors were products of rate-limiting enzymes, and covered 75.34% of the inhibited targets in metabolic inhibitory networks. Conclusion From global topological organization, rate-limiting enzymes as a whole surround most of the branch points; so they can influence the flux through branch points. Since nearly half of the in vivo enzyme inhibitors are produced by rate-limiting enzymes in human liver, these enzymes can initiate inhibitory regulation and then influence metabolic flux through their natural products.
Collapse
Affiliation(s)
- Min Zhao
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, 100871, PR China.
| | | |
Collapse
|
9
|
Mannelli P, Patkar A, Rozen S, Matson W, Krishnan R, Kaddurah- Daouk R. Opioid use affects antioxidant activity and purine metabolism: preliminary results. Hum Psychopharmacol 2009; 24:666-75. [PMID: 19760630 PMCID: PMC3183957 DOI: 10.1002/hup.1068] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE More must be learned about metabolic and biochemical alterations that contribute to the development and expression of drug dependence. Experimental opioid administration influences mechanisms and indices of oxidative stress, such as antioxidant compounds and purine metabolism. We examined perturbations of neurotransmitter-related pathways in opioid dependence (OD). METHODS In this preliminary study, we used a targeted metabolomics platform to explore whether biochemical changes were associated with OD by comparing OD individuals (n = 14) and non-drug users (n = 10). RESULTS OD patients undergoing short-term methadone detoxification showed altered oxidation-reduction activity, as confirmed by higher plasma levels of alpha- and gamma-tocopherol and increased GSH/GSSG ratio. OD individuals had also altered purine metabolism, showing increased concentration of guanine and xanthosine, with decreased guanosine, hypoxanthine and hypoxanthine/xanthine and xanthine/xanthosine ratios. Other drug use in addition to opioids was associated with partly different biochemical changes. CONCLUSIONS This is a preliminary investigation using metabolomics and showing multiple peripheral alterations of metabolic pathways in OD. Further studies should explore the metabolic profile of conditions of opioid abuse, withdrawal and long-term abstinence in relation to agonist and antagonist treatment and investigate biochemical signatures of opioid substances and medications.
Collapse
Affiliation(s)
- Paolo Mannelli
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2218 Elder Street, Durham, NC 27705, USA.
| | - Ashwin Patkar
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
| | - Steve Rozen
- Duke-NUS Graduate Medical School Singapore, Singapore
| | - Wayne Matson
- Bedford Veterans Administration Medical Center, Bedford, Massachusetts, USA
| | - Ranga Krishnan
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA,Duke-NUS Graduate Medical School Singapore, Singapore
| | - Rima Kaddurah- Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA,Correspondence to: R. K. Daouk, Center for Pharmacometabolomics, Duke University Medical Center, Durham, NC 27705, USA. Tel: 919-684-2611. Fax: (919) 681-7668.
| |
Collapse
|
10
|
|
11
|
López JM. Is ZMP the toxic metabolite in Lesch-Nyhan disease? Med Hypotheses 2008; 71:657-63. [PMID: 18710792 DOI: 10.1016/j.mehy.2008.06.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 06/23/2008] [Accepted: 06/26/2008] [Indexed: 11/17/2022]
Abstract
The genetic deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT), located on the X chromosome, causes a severe neurological disorder in man, known as Lesch-Nyhan disease (LND). The enzyme HPRT is part of the savage pathway of purine biosynthesis and catalyzes the conversion of hypoxanthine and guanine to their respective nucleotides, IMP and GMP. HPRT deficiency is associated with a relatively selective dysfunction of brain dopamine systems. Several metabolites that accumulate in the patients (phosphoribosylpyrophosphate (PRPP), hypoxanthine, guanine, xanthine, and Z-nucleotides) have been proposed as toxic agents in LND. Some authors have pointed that Z-riboside, derived from the accumulation of ZMP, could be the toxic metabolite in LND. However, the available experimental data support a better hypothesis. I suggest that ZMP (and not Z-riboside) is the key toxic metabolite in LND. ZMP is an inhibitor of the bifunctional enzyme adenylosuccinate lyase, and a deficiency of this enzyme causes psychomotor and mental retardation in humans. Moreover, it has been reported that ZMP inhibits mitochondrial oxidative phosphorylation and induces apoptosis in certain cell types. ZMP is also an activator of the AMP-activated protein kinase (AMPK), a homeostatic regulator of energy levels in the cell. The AMPK has been implicated in the regulation of cell viability, catecholamine biosynthesis and cell structure. I propose that accumulation of ZMP will induce a pleiotropic effect in the brain by (1) a direct inhibition of mitochondrial respiration and the bifunctional enzyme adenylosuccinate lyase, and (2) a sustained activation of the AMPK which in turns would reduce cell viability, decrease dopamine synthesis, and alters cell morphology. In addition, a mechanism to explain the accumulation of ZMP in LND is presented. The knowledge of the toxic metabolite, and the way it acts, would help to design a better therapy.
Collapse
Affiliation(s)
- José M López
- Institut de Neurociencies, Departament de Bioquímica i Biología Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autónoma de Barcelona, 08193 Cerdanyola del Vallès. Barcelona, Spain.
| |
Collapse
|
12
|
Katahira R, Ashihara H. Profiles of purine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers. PLANTA 2006; 225:115-26. [PMID: 16845529 DOI: 10.1007/s00425-006-0334-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 05/25/2006] [Indexed: 05/10/2023]
Abstract
To find general metabolic profiles of purine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, we looked at the in situ metabolic fate of various (14)C-labelled precursors in disks from growing potato tubers. The activities of key enzymes in potato tuber extracts were also studied. Of the precursors for the intermediates in de novo purine biosynthesis, [(14)C]formate, [2-(14)C]glycine and [2-(14)C]5-aminoimidazole-4-carboxyamide ribonucleoside were metabolised to purine nucleotides and were incorporated into nucleic acids. The rates of uptake of purine ribo- and deoxyribonucleosides by the disks were in the following order: deoxyadenosine > adenosine > adenine > guanine > guanosine > deoxyguanosine > inosine > hypoxanthine > xanthine > xanthosine. The purine ribonucleosides, adenosine and guanosine, were salvaged exclusively to nucleotides, by adenosine kinase (EC 2.7.1.20) and inosine/guanosine kinase (EC 2.7.1.73) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Inosine was also salvaged by inosine/guanosine kinase, but to a lesser extent. In contrast, no xanthosine was salvaged. Deoxyadenosine and deoxyguanosine, was efficiently salvaged by deoxyadenosine kinase (EC 2.7.1.76) and deoxyguanosine kinase (EC 2.7.1.113) and/or non-specific nucleoside phosphotransferase (EC 2.7.1.77). Of the purine bases, adenine, guanine and hypoxanthine but not xanthine were salvaged for nucleotide synthesis. Since purine nucleoside phosphorylase (EC 2.4.2.1) activity was not detected, adenine phosphoribosyltransferase (EC 2.4.2.7) and hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) seem to play the major role in salvage of adenine, guanine and hypoxanthine. Xanthine was catabolised by the oxidative purine degradation pathway via allantoin. Activity of the purine-metabolising enzymes observed in other organisms, such as purine nucleoside phosphorylase (EC 2.4.2.1), xanthine phosphoribosyltransferase (EC 2.4.2.22), adenine deaminase (EC 3.5.4.2), adenosine deaminase (EC 3.5.4.4) and guanine deaminase (EC 3.5.4.3), were not detected in potato tuber extracts. These results suggest that the major catabolic pathways of adenine and guanine nucleotides are AMP --> IMP --> inosine --> hypoxanthine --> xanthine and GMP --> guanosine --> xanthosine --> xanthine pathways, respectively. Catabolites before xanthosine and xanthine can be utilised in salvage pathways for nucleotide biosynthesis.
Collapse
Affiliation(s)
- Riko Katahira
- Department of Advanced Bioscience, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, 112-8610, Japan
| | | |
Collapse
|
13
|
Recent advances in structure and function of cytosolic IMP-GMP specific 5'-nucleotidase II (cN-II). Purinergic Signal 2006; 2:669-75. [PMID: 18404470 PMCID: PMC2096664 DOI: 10.1007/s11302-006-9009-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 03/27/2006] [Indexed: 02/03/2023] Open
Abstract
Cytosolic 5′nucleotidase II (cN-II) catalyses both the hydrolysis of a number of nucleoside monophosphates (e.g., IMP + H2O→inosine + Pi), and the phosphate transfer from a nucleoside monophosphate donor to the 5′position of a nucleoside acceptor (e.g., IMP + guanosine →inosine + GMP). The enzyme protein functions through the formation of a covalent phosphoenzyme intermediate, followed by the phosphate transfer either to water (phosphatase activity) or to a nucleoside (phosphotransferase activity). It has been proposed that cN-II regulates the intracellular concentration of IMP and GMP and the production of uric acid. The enzyme might also have a potential therapeutic importance, since it can phosphorylate some anti-tumoral and antiviral nucleoside analogues that are not substrates of known kinases. In this review we summarise our recent studies on the structure, regulation and function of cN-II. Via a site-directed mutagenesis approach, we have identified the amino acids involved in the catalytic mechanism and proposed a structural model of the active site. A series of in vitro studies suggests that cN-II might contribute to the regulation of 5-phosphoribosyl-1-pyrophosphate (PRPP) level, through the so-called oxypurine cycle, and in the production of intracellular adenosine, formed by ATP degradation.
Collapse
|
14
|
Bretonnet AS, Jordheim LP, Dumontet C, Lancelin JM. Regulation and activity of cytosolic 5′-nucleotidase II. FEBS Lett 2005; 579:3363-8. [PMID: 15946667 DOI: 10.1016/j.febslet.2005.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 05/17/2005] [Accepted: 05/18/2005] [Indexed: 11/20/2022]
Abstract
In many vertebrate tissues, cytosolic 5'-nucleotidase II (cN-II) either hydrolyses or phosphorylates a number of purine (monophosphorylated) nucleosides through a scheme common to the Haloacid Dehalogenase superfamily members. It possesses a pivotal role in purine cellular metabolism and it acts on anti-tumoural and antiviral nucleoside analogues, thus being of potential therapeutic importance. cN-II is Mg2+-dependent, regulated and stabilised by several factors such as allosteric effectors ATP and 2,3-DPG, although these are not directly involved in the reaction stoichiometry. We review herein the experimental knowledge currently available about this remarkable enzymatic activity.
Collapse
Affiliation(s)
- A S Bretonnet
- Laboratoire de RMN Biomoléculaire, Université Claude Bernard--Lyon I, UMR CNRS 5180 Sciences Analytiques, ESCPE Lyon, 69622 Villeurbanne, France
| | | | | | | |
Collapse
|