1
|
Lee JK, Wang X, Wang J, Rosales JL, Lee KY. PKA inhibition kills L-asparaginase-resistant leukemic cells from relapsed acute lymphoblastic leukemia patients. Cell Death Discov 2024; 10:257. [PMID: 38802344 PMCID: PMC11130271 DOI: 10.1038/s41420-024-02028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Despite the success in treating newly diagnosed pediatric acute lymphoblastic leukemia (aLL), the long-term cure rate for the 20% of children who relapse is poor, making relapsed aLL the primary cause of cancer death in children. By unbiased genome-wide retroviral RNAi screening and knockdown studies, we previously discovered opioid receptor mu 1 (OPRM1) as a new aLL cell resistance biomarker for the aLL chemotherapeutic drug, L-asparaginase, i.e., OPRM1 loss triggers L-asparaginase resistance. Indeed, aLL cell OPRM1 level is inversely proportional to L-asparaginase IC50: the lower the OPRM1 level, the higher the L-asparaginase IC50, indicating that aLL cells expressing reduced OPRM1 levels show resistance to L-asparaginase. In the current study, we utilized OPRM1-expressing and -knockdown aLL cells as well as relapsed patient aLL cells to identify candidate targeted therapy for L-asparaginase-resistant aLL. In OPRM1-expressing cells, L-asparaginase induces apoptosis via a cascade of events that include OPRM1-mediated decline in [cAMP]i, downregulation of PKA-mediated BAD S118 phosphorylation that can be reversed by 8-CPT-cAMP, cyt C release from the mitochondria, and subsequent caspase activation and PARP1 cleavage. The critical role of PKA inhibition due to a decrease in [cAMP]i in this apoptotic process is evident in the killing of OPRM1-knockdown and low OPRM1-expressing relapsed patient aLL cells by the PKA inhibitors, H89 and 14-22 amide. These findings demonstrate for the first time that PKA can be targeted to kill aLL cells resistant to L-asparaginase due to OPRM1 loss, and that H89 and 14-22 amide may be utilized to destroy L-asparaginase-resistant patient aLL cells.
Collapse
Affiliation(s)
- Jung Kwon Lee
- Department of Cell Biology & Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, University of Calgary, Calgary, AB, Canada
| | - Xidi Wang
- Department of Pathogen Biology and Immunology, Health Science Center, Ningbo University, Ningbo, China
| | - Jinghua Wang
- Department of Hematology, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jesusa L Rosales
- Department of Cell Biology & Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, University of Calgary, Calgary, AB, Canada
| | - Ki-Young Lee
- Department of Cell Biology & Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Tan YQ, Sun B, Zhang X, Zhang S, Guo H, Basappa B, Zhu T, Sethi G, Lobie PE, Pandey V. Concurrent inhibition of pBADS99 synergistically improves MEK inhibitor efficacy in KRAS G12D-mutant pancreatic ductal adenocarcinoma. Cell Death Dis 2024; 15:173. [PMID: 38409090 PMCID: PMC10897366 DOI: 10.1038/s41419-024-06551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
Therapeutic targeting of KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) has remained a significant challenge in clinical oncology. Direct targeting of KRAS has proven difficult, and inhibition of the KRAS effectors have shown limited success due to compensatory activation of survival pathways. Being a core downstream effector of the KRAS-driven p44/42 MAPK and PI3K/AKT pathways governing intrinsic apoptosis, BAD phosphorylation emerges as a promising therapeutic target. Herein, a positive association of the pBADS99/BAD ratio with higher disease stage and worse overall survival of PDAC was observed. Homology-directed repair of BAD to BADS99A or small molecule inhibition of BADS99 phosphorylation by NCK significantly reduced PDAC cell viability by promoting cell cycle arrest and apoptosis. NCK also abrogated the growth of preformed colonies of PDAC cells in 3D culture. Furthermore, high-throughput screening with an oncology drug library to identify potential combinations revealed a strong synergistic effect between NCK and MEK inhibitors in PDAC cells harboring either wild-type or mutant-KRAS. Mechanistically, both mutant-KRAS and MEK inhibition increased the phosphorylation of BADS99 in PDAC cells, an effect abrogated by NCK. Combined pBADS99-MEK inhibition demonstrated strong synergy in reducing cell viability, enhancing apoptosis, and achieving xenograft stasis in KRAS-mutant PDAC. In conclusion, the inhibition of BADS99 phosphorylation enhances the efficacy of MEK inhibition, and their combined inhibition represents a mechanistically based and potentially effective therapeutic strategy for the treatment of KRAS-mutant PDAC.
Collapse
Affiliation(s)
- Yan Qin Tan
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, 519087, Guangdong, People's Republic of China
| | - Bowen Sun
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Xi Zhang
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Shuwei Zhang
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Hui Guo
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India
| | - Tao Zhu
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
- Hefei National Laboratory for Physical Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Peter E Lobie
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China.
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
3
|
He Z, Xu Y, Rao Z, Zhang Z, Zhou J, Zhou T, Wang H. The role of α7-nAChR-mediated PI3K/AKT pathway in lung cancer induced by nicotine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169604. [PMID: 38157907 DOI: 10.1016/j.scitotenv.2023.169604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Nicotine enters the environment mainly through human activity, as well as natural sources. This review article examines the increasing evidence implicating nicotine in the initiation and progression of lung cancer. Moreover, it primarily focuses on elucidating the activation mechanism of phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, also known as AKT) signaling pathway, regulated by α7 subtype nicotinic acetylcholine receptor (α7-nAChR), in relation to the proliferation, invasion, and metastasis of lung cancer cells induced by nicotine, as well as nicotine-mediated anti-apoptotic effects. This process involves PI3K/AKT phosphorylated-B-cell lymphoma-2 (Bcl-2) family proteins, PI3K/AKT/mammalian target of rapamycin (mTOR), PI3K/AKT/nuclear factor-κB (NF-κB), hepatocyte growth factor (HGF)/cellular-mesenchymal epithelial transition factor (c-Met)-induced PI3K/AKT and PI3K/AKT activated-hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathways. In addition, we also deliberated on the related challenges and upcoming prospects within this field. These lay the foundation for further study on nicotine, lung tumorigenesis, and PI3K/AKT related molecular mechanisms. This work has the potential to significantly contribute to the treatment and prognosis of gastric cancer in smokers. Besides, the crucial significance of PI3K/AKT signaling pathway in multiple molecular pathways also suggests that its target antagonists may inhibit the development and progression of lung cancer, providing a possible new perspective for solving the problem of nicotine-promoted lung cancer. The emerging knowledge about the carcinogenic mechanisms of nicotine action should be considered during the environmental assessment of tobacco and other nicotine-containing products.
Collapse
Affiliation(s)
- Zihan He
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Yuqin Xu
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zihan Rao
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zhongwei Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Jianming Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Tong Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Huai Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China.
| |
Collapse
|
4
|
Skalka GL, Tsakovska M, Murphy DJ. Kinase signalling adaptation supports dysfunctional mitochondria in disease. Front Mol Biosci 2024; 11:1354682. [PMID: 38434478 PMCID: PMC10906720 DOI: 10.3389/fmolb.2024.1354682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Mitochondria form a critical control nexus which are essential for maintaining correct tissue homeostasis. An increasing number of studies have identified dysregulation of mitochondria as a driver in cancer. However, which pathways support and promote this adapted mitochondrial function? A key hallmark of cancer is perturbation of kinase signalling pathways. These pathways include mitogen activated protein kinases (MAPK), lipid secondary messenger networks, cyclic-AMP-activated (cAMP)/AMP-activated kinases (AMPK), and Ca2+/calmodulin-dependent protein kinase (CaMK) networks. These signalling pathways have multiple substrates which support initiation and persistence of cancer. Many of these are involved in the regulation of mitochondrial morphology, mitochondrial apoptosis, mitochondrial calcium homeostasis, mitochondrial associated membranes (MAMs), and retrograde ROS signalling. This review will aim to both explore how kinase signalling integrates with these critical mitochondrial pathways and highlight how these systems can be usurped to support the development of disease. In addition, we will identify areas which require further investigation to fully understand the complexities of these regulatory interactions. Overall, this review will emphasize how studying the interaction between kinase signalling and mitochondria improves our understanding of mitochondrial homeostasis and can yield novel therapeutic targets to treat disease.
Collapse
Affiliation(s)
- George L. Skalka
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mina Tsakovska
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel J. Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Scotland Institute, Glasgow, United Kingdom
| |
Collapse
|
5
|
Kawano T, Inokuchi J, Eto M, Murata M, Kang JH. Protein Kinase C (PKC) Isozymes as Diagnostic and Prognostic Biomarkers and Therapeutic Targets for Cancer. Cancers (Basel) 2022; 14:5425. [PMID: 36358843 PMCID: PMC9658272 DOI: 10.3390/cancers14215425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
Protein kinase C (PKC) is a large family of calcium- and phospholipid-dependent serine/threonine kinases that consists of at least 11 isozymes. Based on their structural characteristics and mode of activation, the PKC family is classified into three subfamilies: conventional or classic (cPKCs; α, βI, βII, and γ), novel or non-classic (nPKCs; δ, ε, η, and θ), and atypical (aPKCs; ζ, ι, and λ) (PKCλ is the mouse homolog of PKCι) PKC isozymes. PKC isozymes play important roles in proliferation, differentiation, survival, migration, invasion, apoptosis, and anticancer drug resistance in cancer cells. Several studies have shown a positive relationship between PKC isozymes and poor disease-free survival, poor survival following anticancer drug treatment, and increased recurrence. Furthermore, a higher level of PKC activation has been reported in cancer tissues compared to that in normal tissues. These data suggest that PKC isozymes represent potential diagnostic and prognostic biomarkers and therapeutic targets for cancer. This review summarizes the current knowledge and discusses the potential of PKC isozymes as biomarkers in the diagnosis, prognosis, and treatment of cancers.
Collapse
Affiliation(s)
- Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Eto
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan
| |
Collapse
|
6
|
Sun HN, Ren CX, Gong YX, Xie DP, Kwon T. Regulatory function of peroxiredoxin I on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung cancer development. Oncol Lett 2021; 21:465. [PMID: 33907575 PMCID: PMC8063228 DOI: 10.3892/ol.2021.12726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Smoking is a major cause of lung cancer, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is one of the most important carcinogens in cigarette smoke. NNK modulates the expression of peroxiredoxin (Prdx) I in lung cancer. Prdx1 is upregulated in lung squamous cell carcinoma and lung adenocarcinoma, and considered a potential biomarker for lung cancer. The current article reviewed the role and regulatory mechanisms of Prdx1 in NNK-induced lung cancer cells. Prdx1 protects erythrocytes and DNA from NNK-induced oxidative damage, prevents malignant transformation of cells and promotes cytotoxicity of natural killer cells, hence suppressing tumor formation. In addition, Prdx1 has the ability to prevent NNK-induced lung tumor metabolic activity and generation of large amount of reactive oxygen species (ROS) and ROS-induced apoptosis, thus promoting tumor cell survival. In contrast to this, Prdx1, together with NNK, can promote the epithelial-mesenchymal transition and migration of lung tumor cells. The signaling pathways associated with NNK and Prdx1 in lung cancer cells have been discussed in present review; however, numerous potential pathways are yet to be studied. To develop novel methods for treating NNK-induced lung cancer, and improve the survival rate of patients with lung cancer, further research is needed to understand the complete mechanism associated with NNK.
Collapse
Affiliation(s)
- Hu-Nan Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Chen-Xi Ren
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yi-Xi Gong
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Dan-Ping Xie
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Jeonbuk 56216, Republic of Korea
| |
Collapse
|
7
|
Reina-Campos M, Diaz-Meco MT, Moscat J. The Dual Roles of the Atypical Protein Kinase Cs in Cancer. Cancer Cell 2019; 36:218-235. [PMID: 31474570 PMCID: PMC6751000 DOI: 10.1016/j.ccell.2019.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 07/30/2019] [Indexed: 02/08/2023]
Abstract
Atypical protein kinase C (aPKC) isozymes, PKCλ/ι and PKCζ, are now considered fundamental regulators of tumorigenesis. However, the specific separation of functions that determine their different roles in cancer is still being unraveled. Both aPKCs have pleiotropic context-dependent functions that can translate into tumor-promoter or -suppressive functions. Here, we review early and more recent literature to discuss how the different tumor types, and their microenvironments, might account for the selective signaling of each aPKC isotype. This is of clinical relevance because a better understanding of the roles of these kinases is essential for the design of new anti-cancer treatments.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
Bad phosphorylation as a target of inhibition in oncology. Cancer Lett 2017; 415:177-186. [PMID: 29175460 DOI: 10.1016/j.canlet.2017.11.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
Bcl-2 agonist of cell death (BAD) is a BH3-only member of the Bcl-2 family which possesses important regulatory function in apoptosis. BAD has also been shown to possess many non-apoptotic functions closely linked to cancer including regulation of glycolysis, autophagy, cell cycle progression and immune system development. Interestingly, BAD can be either pro-apoptotic or pro-survival depending on the phosphorylation state of three specific serine residues (human S75, S99 and S118). Expression of BAD and BAD phosphorylation patterns have been shown to influence tumor initiation and progression and play a predictive role in disease prognosis, drug response and chemosensitivity in various cancers. This review aims to summarize the current evidence on the functional role of BAD phosphorylation in human cancer and evaluate the potential utility of modulating BAD phosphorylation in cancer.
Collapse
|
9
|
Nicotine enhances the malignant potential of human pancreatic cancer cells via activation of atypical protein kinase C. Biochim Biophys Acta Gen Subj 2016; 1860:2404-2415. [DOI: 10.1016/j.bbagen.2016.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/22/2016] [Accepted: 07/13/2016] [Indexed: 01/04/2023]
|
10
|
Ge GZ, Xu TR, Chen C. Tobacco carcinogen NNK-induced lung cancer animal models and associated carcinogenic mechanisms. Acta Biochim Biophys Sin (Shanghai) 2015; 47:477-87. [PMID: 26040315 DOI: 10.1093/abbs/gmv041] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/11/2015] [Indexed: 12/18/2022] Open
Abstract
Tobacco usage is a major risk factor in the development, progression, and outcomes for lung cancer. Of the carcinogens associated with lung cancer, tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is among the most potent ones. The oncogenic mechanisms of NNK are not entirely understood, hindering the development of effective strategies for preventing and treating smoking-associated lung cancers. Here, we introduce the NNK-induced lung cancer animal models in different species and its potential mechanisms. Finally, we summarize several chemopreventive agents developed from these animal models.
Collapse
Affiliation(s)
- Guang-Zhe Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
11
|
Deng X. Bcl2 Family Functions as Signaling Target in Nicotine-/NNK-Induced Survival of Human Lung Cancer Cells. SCIENTIFICA 2014; 2014:215426. [PMID: 24967145 PMCID: PMC4054617 DOI: 10.1155/2014/215426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/07/2014] [Indexed: 06/03/2023]
Abstract
Lung cancer is the leading cause of cancer death and has a strong etiological association with cigarette smoking. Nicotine and nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are two major components in cigarette smoke that significantly contribute to the development of human lung cancer. Nicotine is able to stimulate survival of both normal human lung epithelial and lung cancer cells. In contrast to nicotine, NNK is a more potent carcinogen that not only induces single-strand DNA breaks and oxidative DNA damage but also stimulates survival and proliferation of normal lung epithelial and lung cancer cells. However, the molecular mechanism(s) by which nicotine and NNK promote cell survival, proliferation, and lung tumor development remains elusive. The fate of cells (i.e., survival or death) is largely decided by the Bcl2 family members. In the past several years, multiple signaling links between nicotine/NNK and Bcl2 family members have been identified that regulate survival and proliferation. This review provides a concise, systematic overview of the current understanding of the role of the pro- or antiapoptotic proteins in cigarette smoking, lung cancer development, and treatment resistance.
Collapse
Affiliation(s)
- Xingming Deng
- Division of Cancer Biology, Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Parker PJ, Justilien V, Riou P, Linch M, Fields AP. Atypical protein kinase Cι as a human oncogene and therapeutic target. Biochem Pharmacol 2014; 88:1-11. [PMID: 24231509 PMCID: PMC3944347 DOI: 10.1016/j.bcp.2013.10.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 10/30/2013] [Indexed: 11/16/2022]
Abstract
Protein kinase inhibitors represent a major class of targeted therapeutics that has made a positive impact on treatment of cancer and other disease indications. Among the promising kinase targets for further therapeutic development are members of the Protein Kinase C (PKC) family. The PKCs are central components of many signaling pathways that regulate diverse cellular functions including proliferation, cell cycle, differentiation, survival, cell migration, and polarity. Genetic manipulation of individual PKC isozymes has demonstrated that they often fulfill distinct, nonredundant cellular functions. Participation of PKC members in different intracellular signaling pathways reflects responses to varying extracellular stimuli, intracellular localization, tissue distribution, phosphorylation status, and intermolecular interactions. PKC activity, localization, phosphorylation, and/or expression are often altered in human tumors, and PKC isozymes have been implicated in various aspects of transformation, including uncontrolled proliferation, migration, invasion, metastasis, angiogenesis, and resistance to apoptosis. Despite the strong relationship between PKC isozymes and cancer, to date only atypical PKCiota has been shown to function as a bona fide oncogene, and as such is a particularly attractive therapeutic target for cancer treatment. In this review, we discuss the role of PKCiota in transformation and describe mechanism-based approaches to therapeutically target oncogenic PKCiota signaling in cancer.
Collapse
Affiliation(s)
- Peter J Parker
- London Research Institute, Lincoln's Inn Fields, London WC2A 3LY, UK; King's College London, Guy's Campus, London, UK
| | - Verline Justilien
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, 45400 San Pablo Road, Jacksonville, FL 32224, USA
| | - Philippe Riou
- London Research Institute, Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Mark Linch
- London Research Institute, Lincoln's Inn Fields, London WC2A 3LY, UK; Royal Marsden Hospital, Fulham Road, London, UK
| | - Alan P Fields
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, 45400 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
13
|
Rimessi A, Patergnani S, Ioannidi E, Pinton P. Chemoresistance and Cancer-Related Inflammation: Two Hallmarks of Cancer Connected by an Atypical Link, PKCζ. Front Oncol 2013; 3:232. [PMID: 24062985 PMCID: PMC3770915 DOI: 10.3389/fonc.2013.00232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/24/2013] [Indexed: 12/25/2022] Open
Abstract
Atypical protein kinase C isoforms are serine threonine kinases involved in various pathological conditions. In recent years, the PKCζ isoform has emerged as an important regulator of multiple cellular processes operating in cancer. In this review, we will focus on the PKCζ isoform as an oxidative-sensing kinase involved in cancer-related inflammation and chemoresistance. We will discuss its nuclear localization and its possible pivotal role in connecting inflammation with drug resistance.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara , Ferrara , Italy
| | | | | | | |
Collapse
|
14
|
Luo Q, Tang L, Lin H, Huang J, Zhang T, Liu Y, Wang J, Zhan P, Yin X, Su X, Ji Q, Yu D, Xu L. The oncogenic role of PKCiota gene amplification and overexpression in Chinese non-small cell lung cancer. Lung Cancer 2013; 84:190-5. [PMID: 24636699 DOI: 10.1016/j.lungcan.2013.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/26/2013] [Accepted: 08/31/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND The atypical protein kinase C isozyme iota (PKCiota) has been proposed as an oncogene based on its transformation property and amplification identified in Caucasian non-small cell lung cancer (NSCLC) patients. Because the geography difference of some genetic aberrance such as EGFR mutations between Caucasian and Asian NSCLC patients has been identified previously, it is important to know whether the PKCiota amplification also occurs in Asian NSCLC patients. METHODS The PKCiota gene copy number changes and protein expression in Chinese patients samples were detected by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC), respectively. Logistic regression was used to assess the association of PKCiota expression with clinicopathological parameters. siRNA-mediated gene silencing was applied to demonstrate the role of PKCiota in promoting cell growth in PKCiota gene amplified and protein overexpressed cancer cells. RESULTS The result showed that PKCiota gene was amplified in 20.2% (24/119) of the tested primary tumor samples from Chinese NSCLC patients. Interestingly this gene amplification was highly enriched in squamous NSCLC patients (37.1%, 23/62). Further IHC analysis indicated that PKCiota protein was highly expressed (IHC score 2+ and 3+) in 91.6% (109/119) of Chinese NSCLC tumors. Moreover, the PKCiota gene amplification was also correlated with gender, subtype and distant metastasis. Knockdown of PKCiota gene in the PKCiota gene amplified and protein overexpressed cells led to significant growth inhibition. CONCLUSION Taken together, our data demonstrate that PKCiota is a potential oncogene and therapeutic target in Chinese NSCLC.
Collapse
Affiliation(s)
- Qingquan Luo
- Shanghai Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lili Tang
- Innovation Center China, AstraZeneca, Shanghai, 201203, China
| | - Hao Lin
- Shanghai Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jia Huang
- Shanghai Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Tianwei Zhang
- Innovation Center China, AstraZeneca, Shanghai, 201203, China
| | - Yuanjie Liu
- Innovation Center China, AstraZeneca, Shanghai, 201203, China
| | - Jia Wang
- Innovation Center China, AstraZeneca, Shanghai, 201203, China
| | - Ping Zhan
- Innovation Center China, AstraZeneca, Shanghai, 201203, China
| | - Xiaolu Yin
- Innovation Center China, AstraZeneca, Shanghai, 201203, China
| | - Xinying Su
- Innovation Center China, AstraZeneca, Shanghai, 201203, China
| | - Qunsheng Ji
- Innovation Center China, AstraZeneca, Shanghai, 201203, China
| | - Dehua Yu
- Innovation Center China, AstraZeneca, Shanghai, 201203, China.
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University affiliated Cancer Hospital, Nanjing 210009, China.
| |
Collapse
|
15
|
Fernald K, Kurokawa M. Evading apoptosis in cancer. Trends Cell Biol 2013; 23:620-33. [PMID: 23958396 DOI: 10.1016/j.tcb.2013.07.006] [Citation(s) in RCA: 400] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 12/12/2022]
Abstract
Carcinogenesis is a mechanistically complex and variable process with a plethora of underlying genetic causes. Cancer development comprises a multitude of steps that occur progressively starting with initial driver mutations leading to tumorigenesis and, ultimately, metastasis. During these transitions, cancer cells accumulate a series of genetic alterations that confer on the cells an unwarranted survival and proliferative advantage. During the course of development, however, cancer cells also encounter a physiologically ubiquitous cellular program that aims to eliminate damaged or abnormal cells: apoptosis. Thus, it is essential that cancer cells acquire instruments to circumvent programmed cell death. Here we discuss emerging evidence indicating how cancer cells adopt various strategies to override apoptosis, including amplifying the antiapoptotic machinery, downregulating the proapoptotic program, or both.
Collapse
Affiliation(s)
- Kaleigh Fernald
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | |
Collapse
|
16
|
APS8, a polymeric alkylpyridinium salt blocks α7 nAChR and induces apoptosis in non-small cell lung carcinoma. Mar Drugs 2013; 11:2574-94. [PMID: 23880932 PMCID: PMC3736439 DOI: 10.3390/md11072574] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/17/2013] [Accepted: 06/25/2013] [Indexed: 11/16/2022] Open
Abstract
Naturally occurring 3-alkylpyridinium polymers (poly-APS) from the marine sponge Reniera sarai, consisting of monomers containing polar pyridinium and nonpolar alkyl chain moieties, have been demonstrated to exert a wide range of biological activities, including a selective cytotoxicity against non-small cell lung cancer (NSCLC) cells. APS8, an analog of poly-APS with defined alkyl chain length and molecular size, non-competitively inhibits α7 nicotinic acetylcholine receptors (nAChRs) at nanomolar concentrations that are too low to be acetylcholinesterase (AChE) inhibitory or generally cytotoxic. In the present study we show that APS8 inhibits NSCLC tumor cell growth and activates apoptotic pathways. APS8 was not toxic for normal lung fibroblasts. Furthermore, in NSCLC cells, APS8 reduced the adverse anti-apoptotic, proliferative effects of nicotine. Our results suggest that APS8 or similar compounds might be considered as lead compounds to develop antitumor therapeutic agents for at least certain types of lung cancer.
Collapse
|
17
|
Abstract
Tobacco use in cancer patients is associated with increased cancer treatment failure and decreased survival. Nicotine is one of over 7,000 compounds in tobacco smoke and nicotine is the principal chemical associated with addiction. The purpose of this article is to review the tumor promoting activities of nicotine. Nicotine and its metabolites can promote tumor growth through increased proliferation, angiogenesis, migration, invasion, epithelial to mesenchymal transition, and stimulation of autocrine loops associated with tumor growth. Furthermore, nicotine can decrease the biologic effectiveness of conventional cancer treatments such as chemotherapy and radiotherapy. Common mechanisms appear to involve activation of nicotinic acetylcholine receptors and beta-adrenergic receptors leading to downstream activation of parallel signal transduction pathways that facilitate tumor progression and resistance to treatment. Data suggest that nicotine may be an important mechanism by which tobacco promotes tumor development, progression, and resistance to cancer treatment.
Collapse
Affiliation(s)
- Graham W. Warren
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA and Roswell Park Cancer Institute, Buffalo, NY, USA
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA and Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Anurag K. Singh
- Department of Radiation Medicine, Medical University of South Carolina, Charleston, SC, USA and Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
18
|
Pham H, Chen M, Takahashi H, King J, Reber HA, Hines OJ, Pandol S, Eibl G. Apigenin inhibits NNK-induced focal adhesion kinase activation in pancreatic cancer cells. Pancreas 2012; 41:1306-15. [PMID: 22889981 PMCID: PMC3479318 DOI: 10.1097/mpa.0b013e31824d64d9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Tobacco-derived carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) activates β-adrenergic receptor (β-AR) signaling through Src/focal adhesion kinases (FAKs)/mitogen-activated protein kinase to modulate proliferation, migration, and survival. Apigenin (4', 5, 7-trihydroxyflavone) is reported to attenuate proliferation and migration of cancer cells. This study was designed to determine the effects of apigenin on NNK-induced procarcinogenesis using human pancreatic cancer cells BxPC-3 and MIA PaCa-2, which express β-AR. METHODS Proliferation and migration were assessed by standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and scratch assays. β-AR, FAK/mitogen-activated protein kinase and extracellular signal-regulated kinase (ERK) expression and activation were assessed by Western blotting and real-time polymerase chain reaction. RESULTS 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone caused a dose- and time-dependent increase in BxPC-3 and MIA PaCa-2 cell proliferation that was inhibited by propranolol or apigenin. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone also stimulated a time-dependent increase in FAK and ERK activation that was suppressed by propranolol or apigenin. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone-enhanced gap closure at 24 hours was prevented by either propranolol or apigenin. CONCLUSION Apigenin suppressed the effects of NNK on pancreatic cancer cell proliferation and migration that are mediated through the β-AR and its downstream signals FAK and ERK activation. These findings suggest a therapeutic role for this natural phytochemical in attenuating the procarcinogenic effects of NNK on pancreatic cancer proliferation and migration.
Collapse
Affiliation(s)
- Hung Pham
- Department of Medicine, Veterans Affair Greater Los Angeles Healthcare System, Los Angeles, CA 90073
| | - Monica Chen
- Department of Surgery, Hirshberg Translational Pancreatic Cancer Research Laboratory, UCLA Center of Excellence in Pancreatic Diseases, David Geffen School of Medicine, University of California – Los Angeles, Los Angeles, CA 90095
| | - Hiroki Takahashi
- Department of Surgery, Hirshberg Translational Pancreatic Cancer Research Laboratory, UCLA Center of Excellence in Pancreatic Diseases, David Geffen School of Medicine, University of California – Los Angeles, Los Angeles, CA 90095
| | - Jonathan King
- Department of Surgery, Hirshberg Translational Pancreatic Cancer Research Laboratory, UCLA Center of Excellence in Pancreatic Diseases, David Geffen School of Medicine, University of California – Los Angeles, Los Angeles, CA 90095
| | - Howard A. Reber
- Department of Surgery, Hirshberg Translational Pancreatic Cancer Research Laboratory, UCLA Center of Excellence in Pancreatic Diseases, David Geffen School of Medicine, University of California – Los Angeles, Los Angeles, CA 90095
| | - Oscar Joe Hines
- Department of Surgery, Hirshberg Translational Pancreatic Cancer Research Laboratory, UCLA Center of Excellence in Pancreatic Diseases, David Geffen School of Medicine, University of California – Los Angeles, Los Angeles, CA 90095
| | - Stephen Pandol
- Department of Medicine, Veterans Affair Greater Los Angeles Healthcare System, Los Angeles, CA 90073
| | - Guido Eibl
- Department of Surgery, Hirshberg Translational Pancreatic Cancer Research Laboratory, UCLA Center of Excellence in Pancreatic Diseases, David Geffen School of Medicine, University of California – Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
19
|
Schuller HM, Al-Wadei HAN. Beta-adrenergic signaling in the development and progression of pulmonary and pancreatic adenocarcinoma. CURRENT CANCER THERAPY REVIEWS 2012; 8:116-127. [PMID: 23807873 PMCID: PMC3691862 DOI: 10.2174/157339412800675351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Small airway epithelial cells from, which most pulmonary adenocarcinomas (PACs) derive, and pancreatic duct epithelia, from which pancreatic ductal adenocarcinomas (PDACs) originate, share the ability to synthesize and release bicarbonate. This activity is stimulated in both cell types by the α7nicotinic acetylcholine receptor (α7nAChR)-mediated release of noradrenaline and adrenaline, which in turn activate β-adrenergic receptor (β-AR) signaling, leading to the cAMP-dependent release of bicarbonate. The same signaling pathway also stimulates a complex network of intracellular signaling cascades which regulate the proliferation, migration, angiogenesis and apoptosis of PAC and PDAC cells. The amino acid neurotransmitter γ-aminobutyric acid (GABA) serves as the physiological inhibitor of this cancer stimulating network by blocking the activation of adenylyl cyclase. This review summarizes experimental, epidemiological and clinical data that have identified risk factors for PAC and PDAC such as smoking, alcoholism, chronic non neoplastic diseases and their treatments as well as psychological stress and analyzes how these factors increase the cancer-stimulating effects of this regulatory cascade in PAC and PDAC. This analysis identifies the careful maintenance of balanced levels in stimulatory stress neurotransmitters and inhibitory GABA as a key factor for the prevention of PDAC and suggests the marker-guided use of beta-blockers, GABA or GABA-B receptor agonists as well as psychotherapeutic or pharmacological stress reduction as important tools that may render currently ineffective cancer intervention of PAC and PDAC more successful.
Collapse
Affiliation(s)
- Hildegard M. Schuller
- Experimental Oncology Laboratory, Department of Biomedical & Diagnostic Sciences, College of Veterinary Medicine, University of Tennesse, Knoxville, TN, USA
| | - Hussein A. N. Al-Wadei
- Experimental Oncology Laboratory, Department of Biomedical & Diagnostic Sciences, College of Veterinary Medicine, University of Tennesse, Knoxville, TN, USA
- Sana'a University, Sana'a, Yemen
| |
Collapse
|
20
|
Shen J, Xu L, Owonikoko TK, Sun SY, Khuri FR, Curran WJ, Deng X. NNK promotes migration and invasion of lung cancer cells through activation of c-Src/PKCι/FAK loop. Cancer Lett 2011; 318:106-13. [PMID: 22178655 DOI: 10.1016/j.canlet.2011.12.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 12/16/2022]
Abstract
Cigarette smoking, either active or passive, is the most important risk factor in the development of human lung cancer. Mounting evidence indicates that cigarette smoke constituents not only contribute to tumorigenesis but also may increase the spread of cancer in the body. Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is formed by nitrosation of nicotine and has been identified as the most potent carcinogen. NNK, an important component in cigarette smoke, may also promote tumor metastasis by regulating cell motility. Here we found that NNK can induce activation of a functionally interdependent protein kinase cascade, including c-Src, PKCι and FAK, in association with increased migration and invasion of human lung cancer cells. c-Src, PKCι and FAK are extensively co-localized in the cytoplasm. Treatment of cells with α(7) nAChR specific inhibitor α-bungarotoxin (α-BTX) blocks NNK-stimulated activation of c-Src, PKCι and FAK and suppresses cell migration and invasion. Intriguingly, NNK enhances c-Src/PKCι and PKCι/FAK bindings, indicating a potential mechanism by which these kinases activate each other. Specific disruption of c-Src, PKCι or FAK expression by RNA interference significantly reduces NNK-induced cell migration and invasion. These findings suggest that NNK-induced migration and invasion may occur in a mechanism through activation of a c-Src/PKCι/FAK loop, which can contribute to metastasis and/or development of human lung cancer.
Collapse
Affiliation(s)
- Jie Shen
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA 30322, United States
| | | | | | | | | | | | | |
Collapse
|
21
|
Huang Y, Liu D, Chen B, Zeng J, Wang L, Zhang S, Mo X, Li W. Loss of Bad expression confers poor prognosis in non-small cell lung cancer. Med Oncol 2011; 29:1648-55. [DOI: 10.1007/s12032-011-0060-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 08/25/2011] [Indexed: 12/16/2022]
|
22
|
Desai S, Pillai P, Win-Piazza H, Acevedo-Duncan M. PKC-ι promotes glioblastoma cell survival by phosphorylating and inhibiting BAD through a phosphatidylinositol 3-kinase pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1190-7. [PMID: 21419810 DOI: 10.1016/j.bbamcr.2011.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 03/08/2011] [Accepted: 03/10/2011] [Indexed: 11/15/2022]
Abstract
The focus of this research was to investigate the role of protein kinase C-iota (PKC-ι) in regulation of Bad, a pro-apoptotic BH3-only molecule of the Bcl-2 family in glioblastoma. Robust expression of PKC-ι is a hallmark of human glioma and benign and malignant meningiomas. The results were obtained from the two human glial tumor derived cell lines, T98G and U87MG. In these cells, PKC-ι co-localized and directly associated with Bad, as shown by immunofluorescence, immunoprecipitation, and Western blotting. Furthermore, in-vitro kinase activity assay showed that PKC-ι directly phosphorylated Bad at phospho specific residues, Ser-112, Ser-136 and Ser-155 which in turn induced inactivation of Bad and disruption of Bad/Bcl-XL dimer. Knockdown of PKC-ι by siRNA exhibited a corresponding reduction in Bad phosphorylation suggesting that PKC-ι may be a Bad kinase. PKC-ι knockdown also induced apoptosis in both the cell lines. Since, PKC-ι is an essential downstream mediator of the PI (3)-kinase, we hypothesize that glioma cell survival is mediated via a PI (3)-kinase/PDK1/PKC-ι/Bad pathway. Treatment with PI (3)-kinase inhibitors Wortmannin and LY294002, as well as PDK1 siRNA, inhibited PKC-ι activity and subsequent phosphorylation of Bad suggesting that PKC-ι regulates the activity of Bad in a PI (3)-kinase dependent manner. Thus, our data suggest that glioma cell survival occurs through a novel PI (3)-kinase/PDK1/PKC-ι/BAD mediated pathway.
Collapse
Affiliation(s)
- S Desai
- James A. Haley Veteran's Hospital, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
23
|
Murray NR, Kalari KR, Fields AP. Protein kinase Cι expression and oncogenic signaling mechanisms in cancer. J Cell Physiol 2011; 226:879-87. [PMID: 20945390 DOI: 10.1002/jcp.22463] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulating evidence demonstrates that PKCι is an oncogene and prognostic marker that is frequently targeted for genetic alteration in many major forms of human cancer. Functional data demonstrate that PKCι is required for the transformed phenotype of lung, pancreatic, ovarian, prostate, colon, and brain cancer cells. Future studies will be required to determine whether PKCι is also an oncogene in the many other cancer types that also overexpress PKCι. Studies of PKCι using genetically defined models of tumorigenesis have revealed a critical role for PKCι in multiple stages of tumorigenesis, including tumor initiation, progression, and metastasis. Recent studies in a genetic model of lung adenocarcinoma suggest a role for PKCι in transformation of lung cancer stem cells. These studies have important implications for the therapeutic use of aurothiomalate (ATM), a highly selective PKCι signaling inhibitor currently undergoing clinical evaluation. Significant progress has been made in determining the molecular mechanisms by which PKCι drives the transformed phenotype, particularly the central role played by the oncogenic PKCι-Par6 complex in transformed growth and invasion, and of several PKCι-dependent survival pathways in chemo-resistance. Future studies will be required to determine the composition and dynamics of the PKCι-Par6 complex, and the mechanisms by which oncogenic signaling through this complex is regulated. Likewise, a better understanding of the critical downstream effectors of PKCι in various human tumor types holds promise for identifying novel prognostic and surrogate markers of oncogenic PKCι activity that may be clinically useful in ongoing clinical trials of ATM.
Collapse
Affiliation(s)
- Nicole R Murray
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, USA
| | | | | |
Collapse
|
24
|
A novel PKC-ι inhibitor abrogates cell proliferation and induces apoptosis in neuroblastoma. Int J Biochem Cell Biol 2011; 43:784-94. [PMID: 21315177 DOI: 10.1016/j.biocel.2011.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/07/2011] [Accepted: 02/01/2011] [Indexed: 11/21/2022]
Abstract
Protein Kinase C-iota (PKC-ι), an atypical protein kinase C isoform manifests its potential as an oncogene by targeting various aspects of cancer cells such as growth, invasion and survival. PKC-ι confers resistance to drug-induced apoptosis in cancer cells. The acquisition of drug resistance is a major obstacle to good prognosis in neuroblastoma. The focus of this research was to identify the efficacy of [4-(5-amino-4-carbamoylimidazol-1-yl)-2,3-dihydroxycyclopentyl] methyl dihydrogen phosphate (ICA-1) as a novel PKC-ι inhibitor in neuroblastoma cell proliferation and apoptosis. ICA-1 specifically inhibits the activity of PKC-ι but not that of PKC-zeta (PKC-ζ), the closely related atypical PKC family member. The IC(50) for the kinase activity assay was approximately 0.1μM which is 1000 times less than that of aurothiomalate, a known PKC-ι inhibitor. Cyclin dependent kinase 7 (Cdk7) phosphorylates cyclin dependent kinases (cdks) and promotes cell proliferation. Our data shows that PKC-ι is an in vitro Cdk7 kinase and the phosphorylation of Cdk7 by PKC-ι was potently inhibited by ICA-1. Furthermore, our data shows that neuroblastoma cells proliferate via a PKC-ι/Cdk7/cdk2 cell signaling pathway and ICA-1 mediates its antiproliferative effects by inhibiting this pathway. ICA-1 (0.1μM) inhibited the in vitro proliferation of BE(2)-C neuroblastoma cells by 58% (P=0.01). Additionally, ICA-1 also induced apoptosis in neuroblastoma cells. Interestingly, ICA-1 did not affect the proliferation of normal neuronal cells suggesting its potential as chemotherapeutic with low toxicity. Hence, our results emphasize the potential of ICA-1 as a novel PKC-ι inhibitor and chemotherapeutic agent for neuroblastoma.
Collapse
|
25
|
Liu SG, Wang BS, Jiang YY, Zhang TT, Shi ZZ, Yang Y, Yang YL, Wang XC, Lin DC, Zhang Y, Yang H, Cai Y, Zhan QM, Wang MR. Atypical protein kinase Cι (PKCι) promotes metastasis of esophageal squamous cell carcinoma by enhancing resistance to Anoikis via PKCι-SKP2-AKT pathway. Mol Cancer Res 2011; 9:390-402. [PMID: 21310827 DOI: 10.1158/1541-7786.mcr-10-0359] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein kinase Cι (PKCι) is an atypical PKC isoform and participates in multiple aspects of the transformed phenotype in human cancer cells. We previously reported that frequent amplification and overexpression of PKCι were correlated with lymph node metastasis in primary esophageal squamous cell carcinomas (ESCC). In the present study, short interfering RNA-mediated silencing of PKCι revealed that this enzyme was required for cell migration, invasion, and resistance to anoikis. In vivo experiments showed that PKCι suppression decreased tumor growth in esophageal cancer xenografts and lung metastases in nude mice. At the molecular level, knockdown of PKCι in suspended ESCC cells caused a decrease in S-phase kinase-associated protein 2 (SKP2) that had been reported to promote resistance to anoikis via the PI3K/AKT pathway. AKT phosphorylation was abolished after PKCι suppression, but AKT activation could be refreshed by PKCι upregulation, suggesting that PKCι enhanced cell resistance to anoikis via the PKCι-SKP2-PI3K/AKT pathway. Addition of the proteasome inhibitor MG132 prevented the decrease of SKP2 in PKCι silenced cells, and polyubiquitin-SKP2 was elevated after PKCι depletion, showing that PKCι might regulate the expression of SKP2 through the ubiquitin-proteasome pathway in suspended cells. Furthermore, overexpression of SKP2 in PKCι-downregulated cells restored cell resistance to anoikis. Most importantly, PKCι expression significantly correlated with SKP2 in 133 ESCC tissues (P = 0.031). Taken together, our data show that PKCι promotes tumorigenicity and metastasis of human esophageal cancer and that SKP2 is a candidate downstream effector of PKCι signaling in ESCC.
Collapse
Affiliation(s)
- Shu-Guang Liu
- State Key Laboratory of Molecular Oncology, Cancer Institute Hospital, Chinese Academy of Medical Sciences, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Thimmaiah KN, Easton JB, Houghton PJ. Protection from rapamycin-induced apoptosis by insulin-like growth factor-I is partially dependent on protein kinase C signaling. Cancer Res 2010; 70:2000-9. [PMID: 20179209 DOI: 10.1158/0008-5472.can-09-3693] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rapamycin-induced apoptosis in sarcoma cells is inhibited by insulin-like growth factor-I (IGF-I) through a signaling pathway independent of Ras-extracellular signal-regulated kinase 1/2 and Akt. IGF-I induces Bad phosphorylation (Ser112, Ser136, and Ser155) in a pathway involving phosphoinositide 3' kinase (PI3K) and protein kinase C (PKC; mu, epsilon, or theta) resulting in sequestering Bad from mitochondria and subsequently interacting with 14-3-3gamma in the cytosol. Gene knockdown of Bad, Bid, Akt1, Akt2, PKC-mu, PKC-epsilon, or PKC-theta was achieved by transient transfection using small interfering RNAs. Results indicate that IGF-I signaling to Bad requires activation of PI3K and PKC (mu, theta, epsilon) but not mTOR, Ras-extracellular signal-regulated kinase 1/2, protein kinase A, or p90(RSK). Wortmannin blocked the phosphorylation of PKC-mu (Ser744/Ser748), suggesting that PI3K is required for the activation of PKCs. PKCs phosphorylate Bad under in vitro conditions, and the association of phosphorylated Bad with PKC-mu or PKC-epsilon, as shown by immunoprecipitation, indicated direct involvement of PKCs in Bad phosphorylation. To confirm these results, cells overexpressing pEGFP-N1, wt-Bad, or Bad with a single site mutated (Ser112Ala; Ser136Ala; Ser155Ala), two sites mutated (Ser(112/136)Ala; Ser(112/155)Ala; Ser(136/155)Ala), or the triple mutant were tested. IGF-I protected completely against rapamycin-induced apoptosis in cells overexpressing wt-Bad and mutants having either one or two sites of phosphorylation mutated. Knockdown of Bid using small interfering RNA showed that Bid is not required for rapamycin-induced cell death. Collectively, these data suggest that IGF-I-induced phosphorylation of Bad at multiple sites via a pathway involving PI3K and PKCs is important for protecting sarcoma cells from rapamycin-induced apoptosis.
Collapse
|
27
|
Li MY, Hsin MKY, Yip J, Mok TSK, Underwood MJ, Chen GG. PPARγ Activation Extinguishes Smoking Carcinogen by Inhibiting NNK-Mediated Proliferation. Am J Respir Cell Mol Biol 2010; 42:113-22. [DOI: 10.1165/rcmb.2008-0463oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
28
|
Paleari L, Sessa F, Catassi A, Servent D, Mourier G, Doria-Miglietta G, Ognio E, Cilli M, Dominioni L, Paolucci M, Calcaterra A, Cesario A, Margaritora S, Granone P, Russo P. Inhibition of non-neuronal alpha7-nicotinic receptor reduces tumorigenicity in A549 NSCLC xenografts. Int J Cancer 2009; 125:199-211. [PMID: 19326440 DOI: 10.1002/ijc.24299] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nicotinic acetylcholine receptors (nAChR) are expressed on bronchial epithelial and non-small cell lung cancer cells and are involved in cell growth regulation. Nicotine (classical nAChR agonist) induced cell proliferation, whereas nAChR antagonists, d- tubocurarine or alpha-cobratoxin (alpha-CbT), induced cell death. In the current study, we further explored the antitumor potential mechanisms and activities of alpha-CbT. NOD/SCID mice were grafted intraperitoneally or orthotopically and treated with alpha-CbT. alpha-CbT treatment [0.04 ng/kg or 0.12 ng/kg] induced a strong reduction in tumor size ( approximately 90%) in comparison with mice treated with the vehicle alone. Tumor inhibition was related to severe induction of apoptosis. Moreover, neoangiogenesis was strongly inhibited (reduction of cells positive to vascular endothelial growth factor and CD31). Biochemical analyses of the cells, isolated by the primary lung tumor in alpha-CbT-treated mice, showed apoptosis features characterized by: (i) inhibition of BAD phosphorylation at Ser(112) and Ser(136); (ii) BAD dissociation from 14-3-3; (iii) BAD association with BCL-XL; and (iv) cleavage of caspase-9. Moreover, these cells were unable to grow in soft agar and develop tumor, when reinjected into mice. The small interfering RNA-mediated silencing of the alpha7-nAChR gene confirmed that alpha-CbT specifically inhibited the alpha7-nAChR-mediated survival pathway in A549 cells. Furthermore, the specificity of alpha-CbT is reinforced by the lack of effect of short chain toxin (Erabutoxin-a). Once more, the no effect of the low-affinity R33E-modified alpha-CbT strengthened the specificity of this inhibition. Although alpha7-nAChR antagonists, such as alpha-CbT, are unlikely to be a primary therapy, it may provide lead compounds for the design of clinically useful drugs.
Collapse
Affiliation(s)
- Laura Paleari
- Lung Cancer Unit, National Cancer Research Institute, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Win HY, Acevedo-Duncan M. Role of protein kinase C-iota in transformed non-malignant RWPE-1 cells and androgen-independent prostate carcinoma DU-145 cells. Cell Prolif 2009; 42:182-94. [PMID: 19243387 DOI: 10.1111/j.1365-2184.2009.00582.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Prostate cancer is one of the leading causes of death among men in the USA. OBJECTIVE In this study, we investigated the role of atypical protein kinase C-iota (PKC-iota) in androgen independent prostate DU-145 carcinoma cellscompared to transformed non-malignant prostate RWPE-1 cells. MATERIALS AND METHODS Western blotting and immunoprecipitations demonstrated that PKC-iotaisassociated with cyclin-dependent kinase activating kinase (CAK/Cdk7) in RWPE-1 cells, but not in DU-145 cells. RESULTS Treatment of prostate RWPE-1 cells with PKC-iota silencing RNA (siRNA) decreased cell viability,cell-cycle accumulation at G2/M phase, and phosphorylation of Cdk7 and Cdk2. In addition, PKC-iota siRNA treatment caused less phosphorylation ofBad at ser-155, ser-136, and greater Bad/Bcl-xL heterodimerization, leading to apoptosis. In DU-145 cells, PKC-iota was anti-apoptotic and was required for cell survival. Treatment with PKC-iota siRNA blocked increase in cell number, and inhibited G1/S transition by accumulation of cells in G0/G1phase. In addition to cell-cycle arrest, both RWPE-1 and DU-145 cells underwent apoptosis due to mitochondrial dysfunction and apoptosis cascades, such as release of cytochrome c,activation of caspase-7, and poly (ADP-ribose)polymerase (PARP) cleavage. CONCLUSION Our results suggest that PKC-iota is required for cell survival in both transformed non-malignant prostate RWPE-1 cells and androgen-independent malignant prostate DU-145 cells, whereas suppressing PKC-iota lead to apoptosis in DU-145 prostate cells.
Collapse
Affiliation(s)
- H Y Win
- Department of Chemistry, University of South Florida, Tampa, Florida, USA
| | | |
Collapse
|
30
|
Schuller HM, Al-Wadei HAN, Majidi M. Gamma-aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma. Carcinogenesis 2008; 29:1979-1985. [PMID: 18310090 PMCID: PMC2556972 DOI: 10.1093/carcin/bgn041] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 01/29/2008] [Accepted: 01/29/2008] [Indexed: 12/15/2022] Open
Abstract
Pulmonary adenocarcinoma (PAC) is the leading type of lung cancer in smokers and non-smokers that arises in most cases from small airway epithelial cells. PAC has a high mortality due to its aggressive behavior and resistance to cancer therapeutics. We have shown previously that the proliferation of human PAC cells NCI-H322 and immortalized human small airway epithelial cells HPL1D is stimulated by cyclic adenosine monophosphate (cAMP)/protein kinase A-dependent phosphorylation of cyclic adenosine monophosphate response element-binding (CREB) protein and transactivation of the epidermal growth factor receptor and that this pathway is activated by beta-1-adrenoreceptors (beta(1)-ARs) and the non-genomic estrogen receptor beta. Our current in vitro studies with HPL1D and NCI-H322 cells showed that signaling via the gamma-amino butyric acid receptor (GABA(B)R) strongly inhibited base level and isoproterenol-induced cAMP, p-CREB, cyclic adenosine monophosphate response element-luciferase activity and p-extracellular regulated kinase-1 (ERK1)/2 and effectively blocked DNA synthesis and cell migration. The inhibitory effects of gamma-amino butyric acid (GABA) were disinhibited by the GABA(B)R antagonist CGP-35348 or GABA(B)R knockdown. Immunohistochemical investigation of hamster lungs showed significant underexpression of GABA in animals with small airway-derived PACs induced by the nicotine-derived carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). These findings suggest that GABA may have tumor suppressor function in small airway epithelia and the PACs derived from them and that downregulation of GABA by NNK may contribute to the development of this cancer in smokers. Our findings suggest that marker-guided treatment with GABA or a GABA(B)R agonist of individuals with downregulated pulmonary GABA may provide a novel targeted approach for the prevention of PAC in smokers.
Collapse
Affiliation(s)
- Hildegard M Schuller
- Experimental Oncology Laboratory, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA.
| | | | | |
Collapse
|
31
|
Patel R, Win H, Desai S, Patel K, Matthews JA, Acevedo-Duncan M. Involvement of PKC-iota in glioma proliferation. Cell Prolif 2008; 41:122-35. [PMID: 18211289 DOI: 10.1111/j.1365-2184.2007.00506.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
UNLABELLED Atypical protein kinase C-iota (PKC-iota) protects cells against apoptosis and may play a role in cell proliferation. However, in vivo, the status and function of PKC-iota in human normal brain tissue, gliomas, benign and malignant meningiomas as well as its in vitro status in proliferating and confluent glioma cells, remains unknown. OBJECTIVES The objectives of our research were to determine whether expression of PKC-iota is altered either in gliomas or in benign and malignant meningiomas, compared to normal brain. In addition, we wished to establish the expression of PKC-iota in proliferating plus in cell cycle-arrested glioma cell lines, as well as the relationship between PKC-iota siRNA on PKC-iota protein content and cell proliferation. MATERIALS AND METHODS Western blot analyses for PKC-iota were performed on 12 normal brain biopsies, 15 benign meningiomas, three malignant meningiomas and three gliomas. RESULTS Results demonstrated no (n = 9) or very weak (n = 3) detection of PKC-iota in normal brain tissue. In comparison, PKC-iota was robustly present in the majority of the benign meningiomas. Similarly, PKC-iota was abundant in all malignant meningiomas and gliomas. Western blotting for PKC-iota in confluent or proliferating glioma cell lines depicted substantial quantities of PKC-iota in proliferating T98G and U-138MG glioma cells. In contrast, confluent cells had either 71% (T98G) or 21% (U-138MG) less PKC-iota than proliferating cells. T98 and U-138 MG glioma cells treated with 100 nm PKC-iota siRNA had lower levels of cell proliferation compared to control siRNA-A and complete down-regulation of PKC-iota protein content. CONCLUSION These results support the concept that presence of PKC-iota may be required for cell proliferation to take place.
Collapse
Affiliation(s)
- R Patel
- Department of Chemistry, University of South Florida, and James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | | | | | | | | | | |
Collapse
|
32
|
Baldwin RM, Parolin DAE, Lorimer IAJ. Regulation of glioblastoma cell invasion by PKC iota and RhoB. Oncogene 2008; 27:3587-95. [PMID: 18212741 DOI: 10.1038/sj.onc.1211027] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glioblastoma multiforme is the most aggressive form of primary brain tumor and remains largely incurable, in large part, due to its highly invasive nature. The phosphoinositide (PI) 3-kinase pathway is often constitutively active in these tumors due to activating mutations in the epidermal growth factor receptor, or deletion/loss of function of the tumor suppressor PTEN. Protein kinase C type iota (PKC iota), a member of the atypical protein kinase C family, is activated by the PI 3-kinase pathway and is an important downstream mediator. Here, we have assessed the role of PKC iota in glioblastoma cell invasion. Depletion of PKC iota with RNA interference caused an increase in actin stress fibers and a decrease in cell motility and invasion. Gene expression microarray analysis of U87MG cells showed that PKC iota repressed expression of mRNA for RhoB, which has previously been shown to have a role in actin stress fiber formation. Western blot analysis showed that both PKC iota depletion and pharmacological inhibition of PKC iota caused an increase in the protein levels of RhoB, as did inhibition of PI 3-kinase. Expression of RhoB from a constitutive promoter caused changes in actin stress fibers and cell invasion that were similar to those seen with PKC iota depletion. These data show that PKC iota, activated as a consequence of aberrant upstream PI 3-kinase signaling, mediates glioblastoma cell motility and invasion, and that repression of RhoB is key downstream event in PKC iota signaling leading to enhanced cell motility. In addition, constitutive expression of RhoB repressed PKC iota activity, as assessed by its phosphorylation status on Thr555. PKC iota and RhoB are, therefore, mutually antagonistic, potentially creating a sensitive switch between invasive and non-invasive phenotypes.
Collapse
Affiliation(s)
- R M Baldwin
- Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
33
|
Bae KM, Wang H, Jiang G, Chen MG, Lu L, Xiao L. Protein kinase C epsilon is overexpressed in primary human non-small cell lung cancers and functionally required for proliferation of non-small cell lung cancer cells in a p21/Cip1-dependent manner. Cancer Res 2007; 67:6053-63. [PMID: 17616661 DOI: 10.1158/0008-5472.can-06-4037] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The protein kinase C (PKC) family of proteins plays important roles in growth regulation and is implicated in tumorigenesis. It has become clear that the role of PKC in tumorigenesis is cell context dependent and/or isoform specific. In this study, we showed for the first time by immunohistochemistry that overexpression of PKC epsilon was detected in the vast majority (>90%) of primary human non-small cell lung cancers (NSCLC) compared with normal lung epithelium. Inhibition of the PKC epsilon pathway using a kinase-inactive, dominant-negative PKC epsilon, PKC epsilon(KR), led to a significant inhibition of proliferation and anchorage-independent growth of human NSCLC cells in a p53-independent manner. This was accompanied by a specific induction of the cyclin-dependent kinase (cdk) inhibitor p21/Cip1 but not p27/Kip1. In response to serum stimulation, PKC epsilon(KR)-expressing cells showed a prolonged G(1)-S transition and delayed and reduced activation of cdk2 complexes, which was likely attributed to the increased binding of p21/Cip1 to cdk2. Furthermore, inhibition of PKC epsilon function either by expressing PKC epsilon(KR) or by small interfering RNA (siRNA)-mediated gene knockdown resulted in c-Myc down-regulation, which, in turn, regulated p21/Cip1 expression. Knockdown of PKC epsilon or c-Myc expression using siRNA led to induction of p21/Cip1 and attenuation of G(1)-S transition in NSCLC cells. Using p21(+/+) and p21(-/-) HCT116 isogenic cell lines, we further showed that growth inhibition by PKC epsilon(KR) required the function of p21/Cip1. Collectively, these results reveal an important role for PKC epsilon signaling in lung cancer and suggest that one potential mechanism by which PKC epsilon exerts its oncogenic activity is through deregulation of the cell cycle via a p21/Cip1-dependent mechanism.
Collapse
Affiliation(s)
- Kyung-Mi Bae
- University of Florida Shands Cancer Center, University of Florida College of Medicine, Gainesville, Florida 32610-3633, USA
| | | | | | | | | | | |
Collapse
|
34
|
Majidi M, Al-Wadei HA, Takahashi T, Schuller HM. Nongenomic beta estrogen receptors enhance beta1 adrenergic signaling induced by the nicotine-derived carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in human small airway epithelial cells. Cancer Res 2007; 67:6863-6871. [PMID: 17638897 DOI: 10.1158/0008-5472.can-07-0483] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Women are at higher risk for the development of lung adenocarcinoma than men; however, the mechanisms responsible for this are poorly understood. In lung adenocarcinoma cells, the estrogen receptor beta (ERbeta) is the predominating form. We found that 17beta-estradiol enhanced proliferation of the putative cells of origin of lung adenocarcinoma, small airway epithelial cells (HPLD1), in response to the nicotine-derived nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Reverse-phase protein microarrays combined with Western blotting revealed that NNK induced phosphorylation of ERbeta, an effect that involved stimulation of the adrenergic receptors beta1 (beta1AR). In transiently transfected cells, beta1AR coprecipitated with ERbeta, which increased with NNK treatment. ERbeta enhanced NNK-induced cyclic AMP accumulation as well as Galphai-mediated mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) 1/2 activation. Coexpression of beta1AR and ERbeta activated NNK-mediated ERK1/2 cooperatively. ERbeta gene knockdown, as well as coexpression of the dominant negative Ras and Raf, reduced stimulation of ERK1/2 by NNK. Whereas NNK phosphorylated Akt at Thr(308) and Ser(473), ERbeta had no effect on this activity. Luciferase reporter assays showed that, in response to NNK, ERbeta stimulated transcription of serum responsive element (SRE) but had a very small effect on the activity of estrogen responsive element (ERE). Together, the phosphorylation of ERbeta, the dependence on Galphai proteins, the activation of ERK1/2, and the preferential targeting of SRE over the classic ERE pathway support a role for nongenomic ERbeta in the development of smoking-associated lung cancer. This novel cooperation between beta1AR and ERbeta signaling may contribute to the prominence of lung adenocarcinoma in women.
Collapse
Affiliation(s)
- Mourad Majidi
- Experimental Oncology Laboratory, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
35
|
Xin M, Gao F, May WS, Flagg T, Deng X. Protein Kinase Cζ Abrogates the Proapoptotic Function of Bax through Phosphorylation. J Biol Chem 2007; 282:21268-77. [PMID: 17525161 DOI: 10.1074/jbc.m701613200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase Czeta (PKCzeta) is an atypical PKC isoform that plays an important role in supporting cell survival but the mechanism(s) involved is not fully understood. Bax is a major member of the Bcl-2 family that is required for apoptotic cell death. Because Bax is extensively co-expressed with PKCzeta in both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) cells, it is possible that Bax may act as the downstream target of PKCzeta in regulating survival and chemosensitivity of lung cancer cells. Here we discovered that treatment of cells with nicotine not only enhances PKCzeta activity but also results in Bax phosphorylation and prolonged cell survival, which is suppressed by a PKCzeta specific inhibitor (a myristoylated PKCzeta pseudosubstrate peptide). Purified, active PKCzeta directly phosphorylates Bax in vitro. Overexpression of wild type or the constitutively active A119D but not the dominant negative K281W PKCzeta mutant results in Bax phosphorylation at serine 184. PKCzeta co-localizes and interacts with Bax at the BH3 domain. Specific depletion of PKCzeta by RNA interference blocks nicotine-stimulated Bax phosphorylation and enhances apoptotic cell death. Intriguingly, forced expression of wild type or A119D but not K281W PKCzeta mutant results in accumulation of Bax in cytoplasm and prevents Bax from undergoing a conformational change with prolonged cell survival. Purified PKCzeta can directly dissociate Bax from isolated mitochondria of C2-ceramide-treated cells. Thus, PKCzeta may function as a physiological Bax kinase to directly phosphorylate and interact with Bax, which leads to sequestration of Bax in cytoplasm and abrogation of the proapoptotic function of Bax.
Collapse
Affiliation(s)
- Meiguo Xin
- University of Florida Shands Cancer Center, Department of Medicine and Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida 32610-3633, USA
| | | | | | | | | |
Collapse
|
36
|
Fields AP, Regala RP. Protein kinase C iota: human oncogene, prognostic marker and therapeutic target. Pharmacol Res 2007; 55:487-97. [PMID: 17570678 PMCID: PMC2705893 DOI: 10.1016/j.phrs.2007.04.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 01/29/2007] [Accepted: 04/16/2007] [Indexed: 01/12/2023]
Abstract
The protein kinase C (PKC) family of serine/threonine kinases has been the subject of intensive study in the field of cancer since their initial discovery as major cellular receptors for the tumor promoting phorbol esters nearly 30 years ago. However, despite these efforts, the search for a direct genetic link between members of the PKC family and human cancer has yielded only circumstantial evidence that any PKC isozyme is a true cancer gene. This situation changed in the past year with the discovery that atypical protein kinase C iota (PKC iota) is a bonafide human oncogene. PKC iota is required for the transformed growth of human cancer cells and the PKC iota gene is the target of tumor-specific gene amplification in multiple forms of human cancer. PKC iota participates in multiple aspects of the transformed phenotype of human cancer cells including transformed growth, invasion and survival. Herein, we review pertinent aspects of atypical PKC structure, function and regulation that relate to the role of these enzymes in oncogenesis. We discuss the evidence that PKC iota is a human oncogene, review mechanisms controlling PKC iota expression in human cancers, and describe the molecular details of PKC iota-mediated oncogenic signaling. We conclude with a discussion of how oncogenic PKC iota signaling has been successfully targeted to identify a novel, mechanism-based therapeutic drug currently entering clinical trials for treatment of human lung cancer. Throughout, we identify key unanswered questions and exciting future avenues of investigation regarding this important oncogenic molecule.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/physiology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/enzymology
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Female
- Gene Amplification
- Gold Sodium Thiomalate/pharmacology
- Gold Sodium Thiomalate/therapeutic use
- Humans
- Isoenzymes/biosynthesis
- Isoenzymes/genetics
- Isoenzymes/physiology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/enzymology
- Lung Neoplasms/pathology
- Oncogenes
- Ovarian Neoplasms/enzymology
- Protein Kinase C/biosynthesis
- Protein Kinase C/genetics
- Protein Kinase C/physiology
- Protein Structure, Tertiary
Collapse
Affiliation(s)
- Alan P Fields
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA.
| | | |
Collapse
|
37
|
|
38
|
Xin M, Deng X. Protein Phosphatase 2A Enhances the Proapoptotic Function of Bax through Dephosphorylation. J Biol Chem 2006; 281:18859-67. [PMID: 16679323 DOI: 10.1074/jbc.m512543200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bax is a major proapoptotic member of the Bcl2 family that is required for apoptotic cell death. We have recently discovered that Bax phosphorylation at serine 184 induced by nicotine through activation of protein kinase AKT abolishes its proapoptotic function in human lung cancer cells. Here we found that either treatment of cells with the protein phosphatase 2A (PP2A) inhibitor okadaic acid or specific disruption of PP2A activity by expression of SV40 small tumor antigen enhanced Bax phosphorylation, whereas C(2)-ceramide, a potent PP2A activator, reduced nicotine-induced Bax phosphorylation, suggesting that PP2A may function as a physiological Bax phosphatase. PP2A co-localized and interacted with Bax. Purified, active PP2A directly dephosphorylated Bax in vitro. Overexpression of the PP2A catalytic subunit (PP2A/C) suppressed nicotine-stimulated Bax phosphorylation in association with increased apoptotic cell death. By contrast, depletion of PP2A/C by RNA interference enhanced Bax phosphorylation and prolonged cell survival. Mechanistically C(2)-ceramide-induced Bax dephosphorylation caused a conformational change by exposure of the 6A7 epitope (amino acids 13-19) that is normally hidden at its N terminus that promoted the insertion of Bax into mitochondrial membranes and formation of Bax oligomers leading to cytochrome c release and apoptosis. In addition, PP2A directly disrupted the Bcl2/Bax association to liberate Bax from the heterodimer complex. Thus, PP2A may function as a physiological Bax regulatory phosphatase that not only dephosphorylates Bax but also activates its proapoptotic function.
Collapse
Affiliation(s)
- Meiguo Xin
- University of Florida Shands Cancer Center, Gainesville, Florida 32610-0232, USA
| | | |
Collapse
|
39
|
Baldwin RM, Garratt-Lalonde M, Parolin DAE, Krzyzanowski PM, Andrade MA, Lorimer IAJ. Protection of glioblastoma cells from cisplatin cytotoxicity via protein kinase Ciota-mediated attenuation of p38 MAP kinase signaling. Oncogene 2006; 25:2909-19. [PMID: 16331246 DOI: 10.1038/sj.onc.1209312] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glioblastoma multiforme is an aggressive form of brain cancer that responds poorly to chemotherapy and is generally incurable. The basis for the poor response of this cancer to chemotherapy is not well understood. The atypical protein kinases C (PKCiota and PKCzeta) have previously been implicated in leukaemia cell chemoresistance. To assess the role of atypical PKC in glioblastoma cell chemoresistance, RNA interference was used to deplete human glioblastoma cells of PKCiota. Transfection of cells with either of two different RNA duplexes specific for PKCiota caused a partial sensitisation to cell death induced by the chemotherapy agent cisplatin. To screen for possible mechanisms for PKCiota-mediated chemoresistance, microarray analysis of gene expression was performed on RNA from glioblastoma cells that were either untreated or depleted of PKCiota. This identified sets of genes that were regulated either positively or negatively by PKCiota. Within the set of genes that were negatively regulated by PKCiota, the function of the gene coding for GMFbeta, an enhancer of p38 mitogen-activated protein kinase (MAP kinase) signaling, was investigated further, as the p38 MAP kinase pathway has been previously identified as a key mediator of cisplatin cytotoxicity. The expression of both GMFbeta mRNA and protein increased upon PKCiota depletion, and this was accompanied by an increase in cisplatin-activated p38 MAP kinase signaling. Transient overexpression of GMFbeta increased cisplatin-activated p38 MAP kinase signaling and also sensitised cells to cisplatin cytotoxicity. The increase in cisplatin cytotoxicity seen with PKCiota depletion was blocked by the p38 MAP kinase inhibitor SKF86002. These data show that PKCiota can confer partial resistance to cisplatin in glioblastoma cells by suppressing GMFbeta-mediated enhancement of p38 MAP kinase signaling.
Collapse
Affiliation(s)
- R M Baldwin
- Ottawa Health Research Institute, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Xu L, Deng X. Protein Kinase Cι Promotes Nicotine-induced Migration and Invasion of Cancer Cells via Phosphorylation of μ- and m-Calpains. J Biol Chem 2006; 281:4457-66. [PMID: 16361262 DOI: 10.1074/jbc.m510721200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotine is a major component in cigarette smoke that activates the growth-promoting pathways to facilitate the development of lung cancer. However, it is not clear whether nicotine affects cell motility to facilitate tumor metastasis. Here we discovered that nicotine potently induces phosphorylation of both mu- and m-calpains via activation of protein kinase Ciota (PKCiota), which is associated with accelerated migration and invasion of human lung cancer cells. Purified PKCiota directly phosphorylates mu- and m-calpains in vitro. Overexpression of PKCiota results in increased phosphorylation of both mu- and m-calpains in vivo. Nicotine also induces activation of c-Src, which is a known PKCiota upstream kinase. Treatment of cells with the alpha(7) nicotinic acetylcholine receptor inhibitor alpha-bungarotoxin can block nicotine-induced calpain phosphorylation with suppression of calpain activity, wound healing, cell migration, and invasion, indicating that nicotine-induced calpain phosphorylation occurs, at least in part, through a signaling pathway involving the upstream alpha(7) nicotinic acetylcholine receptor. Intriguingly, depletion of PKCiota by RNA interference suppresses nicotine-induced calpain phosphorylation, calpain activity, cell migration, and invasion, indicating that PKCiota is a necessary component in nicotine-mediated cell motility signaling. Importantly, nicotine potently induces secretion of mu- and m-calpains from lung cancer cells into culture medium, which may have potential to cleave substrates in the extracellular matrix. These findings reveal a novel role for PKCiota as a nicotine-activated, physiological calpain kinase that directly phosphorylates and activates calpains, leading to enhanced migration and invasion of human lung cancer cells.
Collapse
Affiliation(s)
- Lijun Xu
- University of Florida Shands Cancer Center, Department of Medicine, University of Florida, Gainesville, 32610-0232, USA
| | | |
Collapse
|