1
|
Noji T, Saito K, Ishikita H. Absence of a link between stabilized charge-separated state and structural changes proposed from crystal structures of a photosynthetic reaction center. Commun Chem 2024; 7:192. [PMID: 39215069 PMCID: PMC11364808 DOI: 10.1038/s42004-024-01281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Structural differences between illuminated and unilluminated crystal structures led to the proposal that the charge-separated state was stabilized by structural changes in its membrane extrinsic protein subunit H in a bacterial photosynthetic reaction center [Katona, G. et al. Nat. Struct. Mol. Biol. 2005, 12, 630-631]. Here, we explored the proposal by titrating all titratable sites and calculating the redox potential (Em) values in these crystal structures. Contrary to the expected charge-separated states, Em for quinone, Em(QA/QA•-), is even lower in the proposed charge-separated structure than in the ground-state structure. The subunit-H residues, which were proposed to exhibit electron-density changes in the two crystal structures, contribute to an Em(QA/QA•-) difference of only <0.5 mV. Furthermore, the protonation states of the titratable residues in the entire reaction center are practically identical in the two structures. These findings indicate that the proposed structural differences are irrelevant to explaining the significant prolongation of the charge-separated-state lifetime.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 1, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 1, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 1, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
2
|
Nishikawa G, Saito K, Ishikita H. Modulation of Electron Transfer Branches by Atrazine and Triazine Herbicides in Photosynthetic Reaction Centers. Biochemistry 2024; 63:1206-1213. [PMID: 38587893 PMCID: PMC11080998 DOI: 10.1021/acs.biochem.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Quinone analogue molecules, functioning as herbicides, bind to the secondary quinone site, QB, in type-II photosynthetic reaction centers, including those from purple bacteria (PbRC). Here, we investigated the impact of herbicide binding on electron transfer branches, using herbicide-bound PbRC crystal structures and employing the linear Poisson-Boltzmann equation. In contrast to urea and phenolic herbicides [Fufezan, C. Biochemistry 2005, 44, 12780-12789], binding of atrazine and triazine did not cause significant changes in the redox-potential (Em) values of the primary quinone (QA) in these crystal structures. However, a slight Em difference at the bacteriopheophytin in the electron transfer inactive branch (HM) was observed between the S(-)- and R(+)-triazine-bound PbRC structures. This discrepancy is linked to variations in the protonation pattern of the tightly coupled Glu-L212 and Glu-H177 pairs, crucial components of the proton uptake pathway in native PbRC. These findings suggest the existence of a QB-mediated link between the electron transfer inactive HM and the proton uptake pathway in PbRCs.
Collapse
Affiliation(s)
- Gai Nishikawa
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguru-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguru-ku, Tokyo 153-8904, Japan
| |
Collapse
|
3
|
Liu LN, Bracun L, Li M. Structural diversity and modularity of photosynthetic RC-LH1 complexes. Trends Microbiol 2024; 32:38-52. [PMID: 37380557 DOI: 10.1016/j.tim.2023.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Bacterial photosynthesis is essential for sustaining life on Earth as it aids in carbon assimilation, atmospheric composition, and ecosystem maintenance. Many bacteria utilize anoxygenic photosynthesis to convert sunlight into chemical energy while producing organic matter. The core machinery of anoxygenic photosynthesis performed by purple photosynthetic bacteria and Chloroflexales is the reaction center-light-harvesting 1 (RC-LH1) pigment-protein supercomplex. In this review, we discuss recent structural studies of RC-LH1 core complexes based on the advancement in structural biology techniques. These studies have provided fundamental insights into the assembly mechanisms, structural variations, and modularity of RC-LH1 complexes across different bacterial species, highlighting their functional adaptability. Understanding the natural architectures of RC-LH1 complexes will facilitate the design and engineering of artificial photosynthetic systems, which can enhance photosynthetic efficiency and potentially find applications in sustainable energy production and carbon capture.
Collapse
Affiliation(s)
- Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China.
| | - Laura Bracun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Wei RJ, Zhang Y, Mao J, Kaur D, Khaniya U, Gunner MR. Comparison of proton transfer paths to the Q A and Q B sites of the Rb. sphaeroides photosynthetic reaction centers. PHOTOSYNTHESIS RESEARCH 2022; 152:153-165. [PMID: 35344134 DOI: 10.1007/s11120-022-00906-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The photosynthetic bacterial reaction centers from purple non-sulfur bacteria use light energy to drive the transfer of electrons from cytochrome c to ubiquinone. Ubiquinone bound in the QA site cycles between quinone, QA, and anionic semiquinone, QA·-, being reduced once and never binding protons. In the QB site, ubiquinone is reduced twice by QA·-, binds two protons and is released into the membrane as the quinol, QH2. The network of hydrogen bonds formed in a molecular dynamics trajectory was drawn to investigate proton transfer pathways from the cytoplasm to each quinone binding site. QA is isolated with no path for protons to enter from the surface. In contrast, there is a complex and tangled network requiring residues and waters that can bring protons to QB. There are three entries from clusters of surface residues centered around HisH126, GluH224, and HisH68. The network is in good agreement with earlier studies, Mutation of key nodes in the network, such as SerL223, were previously shown to slow proton delivery. Mutational studies had also shown that double mutations of residues such as AspM17 and AspL210 along multiple paths in the network presented here slow the reaction, while single mutations do not. Likewise, mutation of both HisH126 and HisH128, which are at the entry to two paths reduce the rate of proton uptake.
Collapse
Affiliation(s)
- Rongmei Judy Wei
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Yingying Zhang
- Department of Physics, City College of New York, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Junjun Mao
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Divya Kaur
- Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines, ON, L2S 3A1, Canada
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - M R Gunner
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA.
- Department of Physics, City College of New York, New York, NY, 10031, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
5
|
Mechanism of the formation of proton transfer pathways in photosynthetic reaction centers. Proc Natl Acad Sci U S A 2021; 118:2103203118. [PMID: 34301911 PMCID: PMC8325351 DOI: 10.1073/pnas.2103203118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The crystal structures of photosynthetic reaction centers from purple bacteria (PbRCs) and photosystem II show large structural similarity. However, the proposed mechanisms of proton transfer toward the terminal electron acceptor quinone (QB) are not consistent. In particular, not His-L190, which is an H-bond partner of QB, but rather Glu-L212, which is ∼6 Å away from QB, was assumed to be the direct proton donor for QB. We demonstrate that the H-bond between His-L190 and QB is a low-barrier H-bond, which facilitates proton transfer from singly protonated His-L190 to QB. Furthermore, Glu-L212 is not a direct H-bond donor for QB. However, it facilitates proton transfer toward deprotonated His-L190 via water molecules after QBH2 forms and leaves the PbRC. In photosynthetic reaction centers from purple bacteria (PbRCs) from Rhodobacter sphaeroides, the secondary quinone QB accepts two electrons and two protons via electron-coupled proton transfer (PT). Here, we identify PT pathways that proceed toward the QB binding site, using a quantum mechanical/molecular mechanical approach. As the first electron is transferred to QB, the formation of the Grotthuss-like pre-PT H-bond network is observed along Asp-L213, Ser-L223, and the distal QB carbonyl O site. As the second electron is transferred, the formation of a low-barrier H-bond is observed between His-L190 at Fe and the proximal QB carbonyl O site, which facilitates the second PT. As QBH2 leaves PbRC, a chain of water molecules connects protonated Glu-L212 and deprotonated His-L190 forms, which serves as a pathway for the His-L190 reprotonation. The findings of the second pathway, which does not involve Glu-L212, and the third pathway, which proceeds from Glu-L212 to His-L190, provide a mechanism for PT commonly used among PbRCs.
Collapse
|
6
|
Kuroda H, Kawashima K, Ueda K, Ikeda T, Saito K, Ninomiya R, Hida C, Takahashi Y, Ishikita H. Proton transfer pathway from the oxygen-evolving complex in photosystem II substantiated by extensive mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148329. [PMID: 33069681 DOI: 10.1016/j.bbabio.2020.148329] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
We report a structure-based biological approach to identify the proton-transfer pathway in photosystem II. First, molecular dynamics (MD) simulations were conducted to analyze the H-bond network that may serve as a Grotthuss-like proton conduit. MD simulations show that D1-Asp61, the H-bond acceptor of H2O at the Mn4CaO5 cluster (W1), forms an H-bond via one water molecule with D1-Glu65 but not with D2-Glu312. Then, D1-Asp61, D1-Glu65, D2-Glu312, and the adjacent residues, D1-Arg334, D2-Glu302, and D2-Glu323, were thoroughly mutated to the other 19 residues, i.e., 114 Chlamydomonas chloroplast mutant cells were generated. Mutation of D1-Asp61 was most crucial. Only the D61E and D61C cells grew photoautotrophically and exhibit O2-evolving activity. Mutations of D2-Glu312 were less crucial to photosynthetic growth than mutations of D1-Glu65. Quantum mechanical/molecular mechanical calculations indicated that in the PSII crystal structure, the proton is predominantly localized at D1-Glu65 along the H-bond with D2-Glu312, i.e., pKa(D1-Glu65) > pKa(D2-Glu312). The potential-energy profile shows that the release of the proton from D1-Glu65 leads to the formation of the two short H-bonds between D1-Asp61 and D1-Glu65, which facilitates downhill proton transfer along the Grotthuss-like proton conduit in the S2 to S3 transition. It seems possible that D1-Glu65 is involved in the dominant pathway that proceeds from W1 via D1-Asp61 toward the thylakoid lumen, whereas D2-Glu312 and D1-Arg334 may be involved in alternative pathways in some mutants.
Collapse
Affiliation(s)
- Hiroshi Kuroda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Keisuke Kawashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan
| | - Kazuyo Ueda
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takuya Ikeda
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Ryo Ninomiya
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Chisato Hida
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Hiroshi Ishikita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| |
Collapse
|
7
|
Ishikita H, Eger BT, Okamoto K, Nishino T, Pai EF. Protein conformational gating of enzymatic activity in xanthine oxidoreductase. J Am Chem Soc 2012; 134:999-1009. [PMID: 22145797 PMCID: PMC3264664 DOI: 10.1021/ja207173p] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In mammals, xanthine oxidoreductase can exist as xanthine dehydrogenase (XDH) and xanthine oxidase (XO). The two enzymes possess common redox active cofactors, which form an electron transfer (ET) pathway terminated by a flavin cofactor. In spite of identical protein primary structures, the redox potential difference between XDH and XO for the flavin semiquinone/hydroquinone pair (E(sq/hq)) is ~170 mV, a striking difference. The former greatly prefers NAD(+) as ultimate substrate for ET from the iron-sulfur cluster FeS-II via flavin while the latter only accepts dioxygen. In XDH (without NAD(+)), however, the redox potential of the electron donor FeS-II is 180 mV higher than that for the acceptor flavin, yielding an energetically uphill ET. On the basis of new 1.65, 2.3, 1.9, and 2.2 Å resolution crystal structures for XDH, XO, the NAD(+)- and NADH-complexed XDH, E(sq/hq) were calculated to better understand how the enzyme activates an ET from FeS-II to flavin. The majority of the E(sq/hq) difference between XDH and XO originates from a conformational change in the loop at positions 423-433 near the flavin binding site, causing the differences in stability of the semiquinone state. There was no large conformational change observed in response to NAD(+) binding at XDH. Instead, the positive charge of the NAD(+) ring, deprotonation of Asp429, and capping of the bulk surface of the flavin by the NAD(+) molecule all contribute to altering E(sq/hq) upon NAD(+) binding to XDH.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, 202 Building E, Graduate School of Medicine, Kyoto 606-8501, Japan.
| | | | | | | | | |
Collapse
|
8
|
Ishikita H. Tyrosine deprotonation and associated hydrogen bond rearrangements in a photosynthetic reaction center. PLoS One 2011; 6:e26808. [PMID: 22039551 PMCID: PMC3200362 DOI: 10.1371/journal.pone.0026808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 10/04/2011] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic reaction centers from Blastochloris viridis possess Tyr-L162 located mid-way between the special pair chlorophyll (P) and the heme (heme3). While mutation of the tyrosine does not affect the kinetics of electron transfer from heme3 to P, recent time-resolved Laue diffraction studies reported displacement of Tyr-L162 in response to the formation of the photo-oxidized P(+•), implying a possible tyrosine deprotonation event. pK(a) values for Tyr-L162 were calculated using the corresponding crystal structures. Movement of deprotonated Tyr-L162 toward Thr-M185 was observed in P(+•) formation. It was associated with rearrangement of the H-bond network that proceeds to P via Thr-M185 and His-L168.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
9
|
Saito K, Ishida T, Sugiura M, Kawakami K, Umena Y, Kamiya N, Shen JR, Ishikita H. Distribution of the Cationic State over the Chlorophyll Pair of the Photosystem II Reaction Center. J Am Chem Soc 2011; 133:14379-88. [DOI: 10.1021/ja203947k] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Keisuke Saito
- 202 Building E, Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toyokazu Ishida
- Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Miwa Sugiura
- Cell-Free Science and Technology Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Keisuke Kawakami
- Department of Chemistry, Graduate School of Science, and The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| | - Yasufumi Umena
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuo Kamiya
- Department of Chemistry, Graduate School of Science, and The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| | - Jian-Ren Shen
- Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Hiroshi Ishikita
- 202 Building E, Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
10
|
Lipids in photosystem II: Multifunctional cofactors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:19-34. [DOI: 10.1016/j.jphotobiol.2011.02.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 11/21/2022]
|
11
|
Siegbahn PEM, Blomberg MRA. Quantum Chemical Studies of Proton-Coupled Electron Transfer in Metalloenzymes. Chem Rev 2010; 110:7040-61. [DOI: 10.1021/cr100070p] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Per E. M. Siegbahn
- Department of Physics, AlbaNova University Center and Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Margareta R. A. Blomberg
- Department of Physics, AlbaNova University Center and Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
12
|
Nabedryk E, Breton J. Coupling of electron transfer to proton uptake at the QB site of the bacterial reaction center: A perspective from FTIR difference spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1229-48. [DOI: 10.1016/j.bbabio.2008.06.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/26/2008] [Accepted: 06/27/2008] [Indexed: 01/09/2023]
|
13
|
Simonson T. Dielectric relaxation in proteins: the computational perspective. PHOTOSYNTHESIS RESEARCH 2008; 97:21-32. [PMID: 18443919 DOI: 10.1007/s11120-008-9293-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 02/18/2008] [Indexed: 05/26/2023]
Abstract
In photoexcitation and electron transfer, a new dipole or charge is introduced, and the structure is adjusted. This adjustment represents dielectric relaxation, which is the focus of this review. We concentrate on a few selected topics. We discuss linear response theory, as a unifying framework and a tool to describe non-equilibrium states. We review recent, molecular dynamics simulation studies that illustrate the calculation of dynamic and thermodynamic properties, such as Stokes shifts or reorganization free energies. We then turn to the macroscopic, continuum electrostatic view. We recall the physical definition of a dielectric constant and revisit the decomposition of the free energy into a reorganization and a static term. We review some illustrative continuum studies and discuss some difficulties that can arise with the continuum approach. In conclusion, we consider recent developments that will increase the accuracy and broaden the scope of all these methods.
Collapse
Affiliation(s)
- Thomas Simonson
- Laboratoire de Biochimie (UMR CNRS 7654), Department of Biology, Ecole Polytechnique, 91128 Palaiseau, France.
| |
Collapse
|
14
|
Ullmann GM, Kloppmann E, Essigke T, Krammer EM, Klingen AR, Becker T, Bombarda E. Investigating the mechanisms of photosynthetic proteins using continuum electrostatics. PHOTOSYNTHESIS RESEARCH 2008; 97:33-53. [PMID: 18478354 DOI: 10.1007/s11120-008-9306-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 04/10/2008] [Indexed: 05/26/2023]
Abstract
Computational methods based on continuum electrostatics are widely used in theoretical biochemistry to analyze the function of proteins. Continuum electrostatic methods in combination with quantum chemical and molecular mechanical methods can help to analyze even very complex biochemical systems. In this article, applications of these methods to proteins involved in photosynthesis are reviewed. After giving a short introduction to the basic concepts of the continuum electrostatic model based on the Poisson-Boltzmann equation, we describe the application of this approach to the docking of electron transfer proteins, to the comparison of isofunctional proteins, to the tuning of absorption spectra, to the analysis of the coupling of electron and proton transfer, to the analysis of the effect of membrane potentials on the energetics of membrane proteins, and to the kinetics of charge transfer reactions. Simulations as those reviewed in this article help to analyze molecular mechanisms on the basis of the structure of the protein, guide new experiments, and provide a better and deeper understanding of protein functions.
Collapse
Affiliation(s)
- G Matthias Ullmann
- Structural Biology/Bioinformatics, University of Bayreuth, Universitätsstr. 30, BGI, Bayreuth 95447, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Ishikita H. Redox potential difference between Desulfovibrio vulgaris and Clostridium beijerinckii flavodoxins. Biochemistry 2008; 47:4394-402. [PMID: 18355044 DOI: 10.1021/bi702151k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The redox potential of the flavin mononucleotide (FMN) hydroquinones for one-electron reduction in the Desulfovibrio vulgaris ( D. vulgaris) flavodoxin ( E sq/hq for FMNH (*)/FMNH (-)) was calculated using the crystal structure of the relevant hydroquinone form and compared to the results of the Clostridium beijerinckii ( C. beijerinckii) flavodoxin. In D. vulgaris and C. beijerinckii flavodoxins, the protein side chain causes significant downshifts of 170 and 240 mV in E sq/hq, respectively. In the C. beijerinckii flavodoxin, the E sq/hq downshift because of the protein side chain is essentially compensated by the counter influence of the protein backbone ( E sq/hq upshift of 260 mV). However, in the D. vulgaris flavodoxin, the corresponding protein backbone influence on E sq/hq is significantly small, i.e., less than half of that in the C. beijerinckii flavodoxin. In particular, there is a significant difference in the influence of the protein backbone of the so-called 60s loop region between the two flavodoxins. The E sq/hq difference can be best explained by the lower compensation of the side chain influence by the backbone influence in the D. vulgaris flavodoxin than in the C. beijerinckii flavodoxin.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA.
| |
Collapse
|
16
|
Ishikita H. Influence of the protein environment on the redox potentials of flavodoxins from Clostridium beijerinckii. J Biol Chem 2007; 282:25240-6. [PMID: 17602164 DOI: 10.1074/jbc.m702788200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flavin mononucleotide (FMN) quinones in flavodoxin have two characteristic redox potentials, namely, Em(FMNH./FMNH-) for the one-electron reduction of the protonated FMN (E1) and Em(FMN/FMNH.) for the proton-coupled one-electron reduction (E2). These redox potentials in native and mutant flavodoxins obtained from Clostridium beijerinckii were calculated by considering the protonation states of all titratable sites as well as the energy contributed at the pKa value of FMN during protonation at the N5 nitrogen (pKa(N5)). E1 is sensitive to the subtle differences in the protein environments in the proximity of FMN. The protein dielectric volume that prevents the solvation of charged FMN quinones is responsible for the downshift of 130-160 mV of the E1 values with respect to that in an aqueous solution. The influence of the negatively charged 5'-phosphate group of FMN quinone on E1 could result in a maximum shift of 90 mV. A dramatic difference of 130 mV in the calculated E2 values of FMN quinone of the native and G57T mutant flavodoxins is due to the difference in the pKa(N5) values. This is due to the difference in the influence exerted by the carbonyl group of the protein backbone at residue 57.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA.
| |
Collapse
|
17
|
Ishikita H, Knapp EW. Protonation States of Ammonia/Ammonium in the Hydrophobic Pore of Ammonia Transporter Protein AmtB. J Am Chem Soc 2007; 129:1210-5. [PMID: 17263403 DOI: 10.1021/ja066208n] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of the ammonia transport (Amt) protein AmtB at 1.4 Angstrom resolution revealed four ammonia/ammonium (NH(3)/NH(4)(+)) binding sites along the approximately 20 Angstrom narrow pore. It is an open question whether the bound NH(3)/NH(4)(+) are neutral (NH(3)) or cationic (NH(4)(+)). On the basis of the AmtB crystal structure, we calculated the pK(a) of these four NH(3)/NH(4)(+) by solving the Poisson-Boltzmann equation. Except for one NH(3)/NH(4)(+) binding site (Am1) at the entry point of the Amt pore, binding sites are occupied by NH(3) due to lack of energy contributions from solvation, eliminating an existence of charged form NH(4)(+) and, inevitably, its potential cation-pi interaction. The only two titratable residues in the pore, His168 and His318, are in the neutral charge state. The NH(4)(+) charge state at the Am1 site is stabilized by Ser219 functioning as an H-bond acceptor. However, when involving explicit crystal water nearby, the NH(3) charge state is stabilized by the reorientation of Ser219-OH group. This H-bond donor Ser219 significantly decreases the pK(a) of NH(3)/ NH(4)(+) at the Am1 site to approximately 1. The flip/flop H-bond of Ser219 may play a dual role first in binding and subsequently in deprotonating NH(4)(+), which is a prerequisite to conduct NH(3) through the Amt pore across the membrane.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
18
|
Nabedryk E, Paddock ML, Okamura MY, Breton J. Monitoring the pH Dependence of IR Carboxylic Acid Signals upon QB- Formation in the Glu-L212 → Asp/Asp-L213 → Glu Swap Mutant Reaction Center from Rhodobacter sphaeroides. Biochemistry 2007; 46:1176-82. [PMID: 17260947 DOI: 10.1021/bi0619627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the photosynthetic reaction center (RC) from the purple bacterium Rhodobacter sphaeroides, proton-coupled electron-transfer reactions occur at the secondary quinone (QB) site. Involved in the proton uptake steps are carboxylic acids, which have characteristic infrared vibrations in the 1770-1700 cm-1 spectral range that are sensitive to 1H/2H isotopic exchange. With respect to the native RC, a novel protonation pattern for carboxylic acids upon QB photoreduction has been identified in the Glu-L212 --> Asp/Asp-L213 --> Glu mutant RC using light-induced FTIR difference spectroscopy (Nabedryk, E., Breton, J., Okamura, M. Y., and Paddock, M. L. (2004) Biochemistry 43, 7236-7243). These carboxylic acids are structurally close and have been implicated in proton transfer to reduced QB. In this work, we extend previous studies by measuring the pH dependence of the QB-/QB FTIR difference spectra of the mutant in 1H2O and 2H2O. Large pH dependent changes were observed in the 1770-1700 cm-1 spectral range between pH 8 and pH 4. The IR fingerprints of the protonating carboxylic acids upon QB- formation were obtained from the calculated double-difference spectra 1H2O minus 2H2O. These IR fingerprints are specific for each pH, indicative of the contribution of different titrating groups. In particular, the 1752 cm-1 signal indicates that Glu-L213 protonates upon QB- formation at pH >or= 5, whereas the 1746 cm-1 signal indicates protonation of Asp-L212 even at pH 4. An unidentified carboxylic acid absorbing at approximately 1765 cm-1 could be the proton donor between pH 8 and 5. The observation that in the swap mutant there are several uniquely behaving carboxylic acids shows that electrostatic interactions occurring between them are sufficiently modified from the native RC to reveal their IR signatures.
Collapse
Affiliation(s)
- Eliane Nabedryk
- Service de Bioénergetique, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | | | | | |
Collapse
|
19
|
Hermes S, Stachnik JM, Onidas D, Remy A, Hofmann E, Gerwert K. Proton Uptake in the Reaction Center Mutant L210DN from Rhodobacter sphaeroides via Protonated Water Molecules,. Biochemistry 2006; 45:13741-9. [PMID: 17105193 DOI: 10.1021/bi060742q] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction center (RC) of Rhodobacter sphaeroides uses light energy to reduce and protonate a quinone molecule, QB (the secondary quinone electron acceptor), to form quinol, QBH2. Asp210 in the L-subunit has been shown to be a catalytic residue in this process. Mutation of Asp210 to Asn leads to a deceleration of reoxidation of QA- in the QA-QB --> QAQB- transition. Here we determined the structure of the Asp210 to Asn mutant to 2.5 A and show that there are no major structural differences as compared to the wild-type protein. We found QB in the distal position and a chain of water molecules between Asn210 and QB. Using time-resolved Fourier transform infrared (trFTIR) spectroscopy, we characterized the molecular reaction mechanism of this mutant. We found that QB- formation precedes QA- oxidation even more pronounced than in the wild-type reaction center. Continuum absorbance changes indicate deprotonation of a protonated water cluster, most likely of the water chain between Asn210 and QB. A detailed analysis of wild-type structures revealed a highly conserved water chain between Asp210 or Glu210 and QB in Rb. sphaeroides and Rhodopseudomonas viridis, respectively.
Collapse
Affiliation(s)
- Sabine Hermes
- Lehrstuhl für Biophysik, ND 04/596, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Ishikita H, Stehlik D, Golbeck JH, Knapp EW. Electrostatic influence of PsaC protein binding to the PsaA/PsaB heterodimer in photosystem I. Biophys J 2005; 90:1081-9. [PMID: 16258043 PMCID: PMC1367094 DOI: 10.1529/biophysj.105.069781] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The absence of the PsaC subunit in the photosystem I (PSI) complex (native PSI complex) by mutagenesis or chemical manipulation yields a PSI core (P700-F(X) core) that also lacks subunits PsaD and PsaE and the two iron-sulfur clusters F(A) and F(B), which constitute an integral part of PsaC. In this P700-F(X) core, the redox potentials (E(m)) of the two quinones A(1A/B) and the iron-sulfur cluster F(X) as well as the corresponding protonation patterns are investigated by evaluating the electrostatic energies from the solution of the linearized Poisson-Boltzmann equation. The B-side specific Asp-B558 changes its protonation state significantly upon isolating the P700-F(X) core, being mainly protonated in the native PSI complex but ionized in the P700-F(X) core. In the P700-F(X) core, E(m)(A(1A/B)) remains practically unchanged, whereas E(m)(F(X)) is upshifted by 42 mV. With these calculated E(m) values, the electron transfer rate from A(1) to F(X) in the P700-F(X) core is estimated to be slightly faster on the A(1A) side than that of the wild type, which is consistent with kinetic measurements.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Institute of Chemistry and Biochemistry, Department of Biology, Free University of Berlin, D-14195 Berlin, Germany
| | | | | | | |
Collapse
|
21
|
Ishikita H, Knapp EW. Induced conformational changes upon Cd2+ binding at photosynthetic reaction centers. Proc Natl Acad Sci U S A 2005; 102:16215-20. [PMID: 16254054 PMCID: PMC1283420 DOI: 10.1073/pnas.0503826102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cd(2+) binding at the bacterial photosynthetic reaction center (bRC) from Rhodobacter sphaeroides is known to inhibit proton transfer (PT) from bulk solvent to the secondary quinone Q(B). To elucidate this mechanism, we calculated the pK(a) for residues along the water channels connecting Q(B) with the stromal side based on the crystal structures of WT-bRC and Cd(2+)-bound bRC. Upon Cd(2+) binding, we observed the release of two protons from His-H126/128 at the Cd(2+) binding site and significant pK(a) shifts for residues along the PT pathways. Remarkably, Asp-L213 near Q(B), which is proposed to play a significant role in PT, resulted in a decrease in pK(a) upon Cd(2+) binding. The direct electrostatic influence of the Cd(2+)-positive charge on these pK(a) shifts was small. Instead, conformational changes of amino acid side chains induced electrostatically by Cd(2+) binding were the main mechanism for these pK(a) shifts. The long-range electrostatic influence over approximately 12 A between Cd(2+) and Asp-L213 is likely to originate from a set of Cd(2+)-induced successive reorientations of side chains (Asp-H124, His-H126, His-H128, Asp-H170, Glu-H173, Asp-M17, and Asp-L210), which propagate along the PT pathways as a "domino" effect.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Institute of Chemistry and Biochemistry, Free University of Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | | |
Collapse
|
22
|
Abstract
In photosystem II (PSII), the redox properties of the non-heme iron complex (Fe complex) are sensitive to the redox state of quinones (Q(A/)(B)), which may relate to the electron/proton transfer. We calculated the redox potentials for one-electron oxidation of the Fe complex in PSII [E(m)(Fe)] based on the reference value E(m)(Fe) = +400 mV at pH 7 in the Q(A)(0)Q(B)(0) state, considering the protein environment in atomic detail and the associated changes in protonation pattern. Our model yields the pH dependence of E(m)(Fe) with -60 mV/pH as observed in experimental redox titration. We observed significant deprotonation at D1-Glu244 in the hydrophilic loop region upon Fe complex oxidation. The calculated pK(a) value for D1-Glu244 depends on the Fe complex redox state, yielding a pK(a) of 7.5 and 5.5 for Fe(2+) and Fe(3+), respectively. To account for the pH dependence of E(m)(Fe), a model involving not only D1-Glu244 but also the other titratable residues (five Glu in the D-de loops and six basic residues near the Fe complex) seems to be needed, implying the existence of a network of residues serving as an internal proton reservoir. Reduction of Q(A/B) yields +302 mV and +268 mV for E(m)(Fe) in the Q(A)(-)Q(B)(0) and Q(A)(0)Q(B)(-) states, respectively. Upon formation of the Q(A)(0)Q(B)(-) state, D1-His252 becomes protonated. Forming Fe(3+)Q(B)H(2) by a proton-coupled electron transfer process from the initial state Fe(2+)Q(B)(-) results in deprotonation of D1-His252. The two EPR signals observed at g = 1.82 and g = 1.9 in the Fe(2+)Q(A)(-) state of PSII may be attributed to D1-His252 with variable and fixed protonation, respectively.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry, and Pharmacy, Free University of Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | | |
Collapse
|
23
|
Ishikita H, Knapp EW. Control of Quinone Redox Potentials in Photosystem II: Electron Transfer and Photoprotection. J Am Chem Soc 2005; 127:14714-20. [PMID: 16231925 DOI: 10.1021/ja052567r] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In O(2)-evolving complex Photosystem II (PSII), an unimpeded transfer of electrons from the primary quinone (Q(A)) to the secondary quinone (Q(B)) is essential for the efficiency of photosynthesis. Recent PSII crystal structures revealed the protein environment of the Q(A/B) binding sites. We calculated the plastoquinone (Q(A/B)) redox potentials (E(m)) for one-electron reduction with a full account of the PSII protein environment. We found two different H-bond patterns involving Q(A) and D2-Thr217, resulting in an upshift of E(m)(Q(A)) by 100 mV if the H bond between Q(A) and Thr is present. The formation of this H bond to Q(A) may be the origin of a photoprotection mechanism, which is under debate. At the Q(B) side, the formation of a H bond between D2-Ser264 and Q(B) depends on the protonation state of D1-His252. Q(B) adopts the high-potential form if the H bond to Ser is present. Conservation of this residue and H-bond pattern for Q(B) sites among bacterial photosynthetic reaction centers (bRC) and PSII strongly indicates their essential requirement for electron transfer function.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Institute of Chemistry and Biochemistry, Crystallography, Free University of Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | | |
Collapse
|
24
|
Ishikita H, Knapp EW. Redox potential of cytochrome c550 in the cyanobacterium Thermosynechococcus elongates. FEBS Lett 2005; 579:3190-4. [PMID: 15919077 DOI: 10.1016/j.febslet.2005.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 05/03/2005] [Indexed: 11/18/2022]
Abstract
Cytochrome c550 (cyt c550) from photosystem II (PSII) exists in the PSII-bound form but can be released from PSII by treatment with divalent cations or Tris, yielding the isolated form. We calculated heme redox potentials (Em) based on the crystal structures of cyt c550 by solving the Poisson-Boltzmann equation. In the isolated form, the calculated Em are -240 mV at pH 6.0 and -352 mV at pH 9.0. This pH-dependence is predominantly due to deprotonation of the heme-propionic group near Asn-49. In the PSII-bound form, the calculated E(m) was up-shifted by 160 mV versus the isolated form due to a conformational change of protein backbone, yielding Em=-84 mV.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Institute of Chemistry, Department of Biology, Chemistry, and Pharmacy, Free University of Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | | |
Collapse
|