1
|
Cui X, Yang Z, Wang L, Dong Y, Ke S, Zhan Z, Dai C, Mei Y. Histone acetyltransferase Sas3 in Phomopsis liquidambaris promotes spermidine biosynthesis against Fusarium graminearum in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:48. [PMID: 39921737 DOI: 10.1007/s00122-025-04833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/21/2025] [Indexed: 02/10/2025]
Abstract
KEY MESSAGE Spermidine production in the endophytic fungus Phomopsis liquidambaris is regulated by Sas3, and spermidine promotes resistance to Fusarium graminearum by increasing the expression of immune-related indicators in wheat. Fusarium head blight (FHB) is a common wheat disease caused mainly by Fusarium graminearum. The present study showed that overexpression of the histone acetyltransferase Sas3 in Phomopsis liquidambaris regulated the synthesis of spermidine and promoted resistance to F. graminearum in wheat. Sas3 localized in the nucleus plays a key role in acetylating lysines 9 and 14 of histone H3 (H3K9 and H3K14) and clearly promotes the development and growth of P. liquidambaris in the overexpression strain OE-Sas3 and knockout strain Ko-Sas3. The OE-Sas3 strain promoted the growth of wheat seedlings and increased the level of reactive oxygen species (ROS) pumps, which increased the activities of the catalase (CAT) and peroxidase (POD) and the expression levels of genes involved in the jasmonic acid, ethylene, and salicylic acid pathways. Furthermore, OE-Sas3 increased the level of resistance of wheat to F. graminearum through the positive regulation of spermidine biosynthesis, which reduced the incidence of wheat spike disease from 76 to 54% and that of grain disease from 52.35 to 32.68%. This study provides a new perspective for the application of P. liquidambaris as a biocontrol agent via rational design and improved FHB resistance.
Collapse
Affiliation(s)
- Xinru Cui
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Zhi Yang
- Wuhan Sunhy Biology Co., Ltd., Wuhan, 430000, Hubei, China
| | - Longshen Wang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Yuxin Dong
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Sitong Ke
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Zhichun Zhan
- Wuhan Sunhy Biology Co., Ltd., Wuhan, 430000, Hubei, China
| | - Chuanchao Dai
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Yanzhen Mei
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China.
| |
Collapse
|
2
|
Movilla Miangolarra A, Howard M. Theory of epigenetic switching due to stochastic histone mark loss during DNA replication. Phys Biol 2024; 22:016005. [PMID: 39556945 PMCID: PMC11605279 DOI: 10.1088/1478-3975/ad942c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/20/2024]
Abstract
How much information does a cell inherit from its ancestors beyond its genetic sequence? What are the epigenetic mechanisms that allow this? Despite the rise in available epigenetic data, how such information is inherited through the cell cycle is still not fully understood. Often, epigenetic marks can display bistable behaviour and their bistable state is transmitted to daughter cells through the cell cycle, providing the cell with a form of memory. However, loss-of-memory events also take place, where a daughter cell switches epigenetic state (with respect to the mother cell). Here, we develop a framework to compute these epigenetic switching rates, for the case when they are driven by DNA replication, i.e. the frequency of loss-of-memory events due to replication. We consider the dynamics of histone modifications during the cell cycle deterministically, except at DNA replication, where nucleosomes are randomly distributed between the two daughter DNA strands, which is therefore implemented stochastically. This hybrid stochastic-deterministic approach enables an analytic derivation of the replication-driven switching rate. While retaining great simplicity, this framework can explain experimental switching rate data, establishing its biological importance as a framework to quantitatively study epigenetic inheritance.
Collapse
Affiliation(s)
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
3
|
Movilla Miangolarra A, Saxton DS, Yan Z, Rine J, Howard M. Two-way feedback between chromatin compaction and histone modification state explains Saccharomyces cerevisiae heterochromatin bistability. Proc Natl Acad Sci U S A 2024; 121:e2403316121. [PMID: 38593082 PMCID: PMC11032488 DOI: 10.1073/pnas.2403316121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/02/2024] [Indexed: 04/11/2024] Open
Abstract
Compact chromatin is closely linked with gene silencing in part by sterically masking access to promoters, inhibiting transcription factor binding and preventing polymerase from efficiently transcribing a gene. However, a broader hypothesis suggests that chromatin compaction can be both a cause and a consequence of the locus histone modification state, with a tight bidirectional interaction underpinning bistable transcriptional states. To rigorously test this hypothesis, we developed a mathematical model for the dynamics of the HMR locus in Saccharomyces cerevisiae, that incorporates activating histone modifications, silencing proteins, and a dynamic, acetylation-dependent, three-dimensional locus size. Chromatin compaction enhances silencer protein binding, which in turn feeds back to remove activating histone modifications, leading to further compaction. The bistable output of the model was in good agreement with prior quantitative data, including switching rates from expressed to silent states (and vice versa), and protein binding/histone modification levels within the locus. We then tested the model by predicting changes in switching rates as the genetic length of the locus was increased, which were then experimentally verified. Such bidirectional feedback between chromatin compaction and the histone modification state may be a widespread and important regulatory mechanism given the hallmarks of many heterochromatic regions: physical chromatin compaction and dimerizing (or multivalent) silencing proteins.
Collapse
Affiliation(s)
| | - Daniel S. Saxton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Zhi Yan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| |
Collapse
|
4
|
Chen Y, Guo P, Dong Z. The role of histone acetylation in transcriptional regulation and seed development. PLANT PHYSIOLOGY 2024; 194:1962-1979. [PMID: 37979164 DOI: 10.1093/plphys/kiad614] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/20/2023]
Abstract
Histone acetylation is highly conserved across eukaryotes and has been linked to gene activation since its discovery nearly 60 years ago. Over the past decades, histone acetylation has been evidenced to play crucial roles in plant development and response to various environmental cues. Emerging data indicate that histone acetylation is one of the defining features of "open chromatin," while the role of histone acetylation in transcription remains controversial. In this review, we briefly describe the discovery of histone acetylation, the mechanism of histone acetylation regulating transcription in yeast and mammals, and summarize the research progress of plant histone acetylation. Furthermore, we also emphasize the effect of histone acetylation on seed development and its potential use in plant breeding. A comprehensive knowledge of histone acetylation might provide new and more flexible research perspectives to enhance crop yield and stress resistance.
Collapse
Affiliation(s)
- Yan Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Peiguo Guo
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
5
|
Miangolarra AM, Saxton DS, Yan Z, Rine J, Howard M. Two-way feedback between chromatin compaction and histone modification state explains S. cerevisiae heterochromatin bistability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.12.552948. [PMID: 37645983 PMCID: PMC10461966 DOI: 10.1101/2023.08.12.552948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Compact chromatin is closely linked with gene silencing in part by sterically masking access to promoters, inhibiting transcription factor binding and preventing polymerase from efficiently transcribing a gene. Here, we propose a broader view: chromatin compaction can be both a cause and a consequence of the histone modification state, and this tight bidirectional interaction can underpin bistable transcriptional states. To test this theory, we developed a mathematical model for the dynamics of the HMR locus in S. cerevisiae, that incorporates activating histone modifications, silencing proteins and a dynamic, acetylation-dependent, three-dimensional locus size. Chromatin compaction enhances silencer protein binding, which in turn feeds back to remove activating histone modifications, leading to further compaction. The bistable output of the model was in good agreement with prior quantitative data, including switching rates from expressed to silent states, and vice versa, and protein binding levels within the locus. We then tested the model by predicting changes in switching rates as the genetic length of the locus was increased, which were then experimentally verified. This bidirectional feedback between chromatin compaction and the histone modification state may be an important regulatory mechanism at many loci.
Collapse
Affiliation(s)
- Ander Movilla Miangolarra
- Dept. of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Daniel S Saxton
- Dept. of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zhi Yan
- Dept. of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jasper Rine
- Dept. of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Martin Howard
- Dept. of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
6
|
Shirra MK, Kocik RA, Ellison MA, Arndt KM. Opposing functions of the Hda1 complex and histone H2B mono-ubiquitylation in regulating cryptic transcription in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2021; 11:6360461. [PMID: 34499735 PMCID: PMC8527469 DOI: 10.1093/g3journal/jkab298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022]
Abstract
Maintenance of chromatin structure under the disruptive force of transcription requires cooperation among numerous regulatory factors. Histone post-translational modifications can regulate nucleosome stability and influence the disassembly and reassembly of nucleosomes during transcription elongation. The Paf1 transcription elongation complex, Paf1C, is required for several transcription-coupled histone modifications, including the mono-ubiquitylation of H2B. In Saccharomyces cerevisiae, amino acid substitutions in the Rtf1 subunit of Paf1C greatly diminish H2B ubiquitylation and cause transcription to initiate at a cryptic promoter within the coding region of the FLO8 gene, an indicator of chromatin disruption. In a genetic screen to identify factors that functionally interact with Paf1C, we identified mutations in HDA3, a gene encoding a subunit of the Hda1C histone deacetylase (HDAC), as suppressors of an rtf1 mutation. Absence of Hda1C also suppresses the cryptic initiation phenotype of other mutants defective in H2B ubiquitylation. The genetic interactions between Hda1C and the H2B ubiquitylation pathway appear specific: loss of Hda1C does not suppress the cryptic initiation phenotypes of other chromatin mutants and absence of other HDACs does not suppress the absence of H2B ubiquitylation. Providing further support for an appropriate balance of histone acetylation in regulating cryptic initiation, absence of the Sas3 histone acetyltransferase elevates cryptic initiation in rtf1 mutants. Our data suggest that the H2B ubiquitylation pathway and Hda1C coordinately regulate chromatin structure during transcription elongation and point to a potential role for a HDAC in supporting chromatin accessibility.
Collapse
Affiliation(s)
- Margaret K Shirra
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Rachel A Kocik
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mitchell A Ellison
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
7
|
Boltengagen M, Samel-Pommerencke A, Fechtig D, Ehrenhofer-Murray AE. Dynamics of SAS-I mediated H4 K16 acetylation during DNA replication in yeast. PLoS One 2021; 16:e0251660. [PMID: 34014972 PMCID: PMC8136709 DOI: 10.1371/journal.pone.0251660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/29/2021] [Indexed: 11/19/2022] Open
Abstract
The acetylation of H4 lysine 16 (H4 K16Ac) in Saccharomyces cerevisiae counteracts the binding of the heterochromatin complex SIR to chromatin and inhibits gene silencing. Contrary to other histone acetylation marks, the H4 K16Ac level is high on genes with low transcription, whereas highly transcribed genes show low H4 K16Ac. Approximately 60% of cellular H4 K16Ac in S. cerevisiae is provided by the SAS-I complex, which consists of the MYST-family acetyltransferase Sas2, Sas4 and Sas5. The absence of SAS-I causes inappropriate spreading of the SIR complex and gene silencing in subtelomeric regions. Here, we investigated the genome-wide dynamics of SAS-I dependent H4 K16Ac during DNA replication. Replication is highly disruptive to chromatin and histone marks, since histones are removed to allow progression of the replication fork, and chromatin is reformed with old and new histones after fork passage. We found that H4 K16Ac appears in chromatin immediately upon replication. Importantly, this increase depends on the presence of functional SAS-I complex. Moreover, the appearance of H4 K16Ac is delayed in genes that are strongly transcribed. This indicates that transcription counteracts SAS-I-mediated H4 K16 acetylation, thus “sculpting” histone modification marks at the time of replication. We furthermore investigated which acetyltransferase acts redundantly with SAS-I to acetylate H4 K16Ac. esa1Δ sds3Δ cells, which were also sas2Δ sir3Δ in order to maintain viability, contained no detectable H4 K16Ac, showing that Esa1 and Sas2 are redundant for cellular H4 K16 acetylation. Furthermore, esa1Δ sds3Δ sas2Δ sir3Δ showed a more pronounced growth defect compared to the already defective esa1Δ sds3Δ sir3Δ. This indicates that SAS-I has cellular functions beyond preventing the spreading of heterochromatin.
Collapse
Affiliation(s)
- Mark Boltengagen
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - David Fechtig
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
8
|
Dahiya R, Mohammad T, Alajmi MF, Rehman MT, Hasan GM, Hussain A, Hassan MI. Insights into the Conserved Regulatory Mechanisms of Human and Yeast Aging. Biomolecules 2020; 10:E882. [PMID: 32526825 PMCID: PMC7355435 DOI: 10.3390/biom10060882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Aging represents a significant biological process having strong associations with cancer, diabetes, and neurodegenerative and cardiovascular disorders, which leads to progressive loss of cellular functions and viability. Astonishingly, age-related disorders share several genetic and molecular mechanisms with the normal aging process. Over the last three decades, budding yeast Saccharomyces cerevisiae has emerged as a powerful yet simple model organism for aging research. Genetic approaches using yeast RLS have led to the identification of hundreds of genes impacting lifespan in higher eukaryotes. Numerous interventions to extend yeast lifespan showed an analogous outcome in multi-cellular eukaryotes like fruit flies, nematodes, rodents, and humans. We collected and analyzed a multitude of observations from published literature and provide the contribution of yeast in the understanding of aging hallmarks most applicable to humans. Here, we discuss key pathways and molecular mechanisms that underpin the evolutionarily conserved aging process and summarize the current understanding and clinical applicability of its trajectories. Gathering critical information on aging biology would pave the way for future investigation targeted at the discovery of aging interventions.
Collapse
Affiliation(s)
- Rashmi Dahiya
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (M.T.R.); (A.H.)
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (M.T.R.); (A.H.)
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (M.T.R.); (A.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| |
Collapse
|
9
|
Sharma S, Ahmed M, Akhter Y. Fungal acetyltransferases structures, mechanisms and inhibitors: A review. Int J Biol Macromol 2019; 157:626-640. [PMID: 31786301 DOI: 10.1016/j.ijbiomac.2019.11.214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022]
Abstract
Acetylation of proteins is vital and mediate many processes within the cells like protein interactions, intercellular localization, protein stability, transcriptional regulation, enzyme activity and many more. Acetylation, an evolutionarily conserved process, attracted more attention due to its key regulatory role in many cellular processes and its effect on proteome and metabolome. In eukaryotes, protein acetylation also contribute to the epigenetic regulation of gene expression. Acetylation involves the transfer of acetyl group from donor acetyl coenzyme A to a suitable acceptor molecule and the reaction is catalyzed by acetyltransferase enzymes. The review focuses on current understanding of different acetyltransferase families: their discovery, structure and catalytic mechanism in fungal species. Fungal acetyltransferases use divergent catalytic mechanisms and carry out catalysis in a substrate-specific manner. The studies have explored different fungal acetyltransferases in relation to secondary metabolite production and the fungal pathogenesis. Although, the functions and catalytic mechanism of acetyltransferases are well known, however further enhanced knowledge may improve their utilization in various applications of biotechnology.
Collapse
Affiliation(s)
- Shikha Sharma
- School of Earth and Environmental Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh 176206, India
| | - Mushtaq Ahmed
- School of Earth and Environmental Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh 176206, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India.
| |
Collapse
|
10
|
Pérez-Martínez ME, Benet M, Alepuz P, Tordera V. Nut1/Hos1 and Sas2/Rpd3 control the H3 acetylation of two different sets of osmotic stress-induced genes. Epigenetics 2019; 15:251-271. [PMID: 31512982 DOI: 10.1080/15592294.2019.1664229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Epigenetic information is able to interact with the cellular environment and could be especially useful for reprograming gene expression in response to a physiological perturbation. In fact the genes induced or repressed by osmotic stress undergo significant changes in terms of the levels of various histone modifications, especially in the acetylation levels of histone H3. Exposing yeast to high osmolarity results in the activation of stress-activated protein kinase Hog1, which plays a central role in gene expression control. We evaluated the connection between the presence of Hog1 and changes in histone H3 acetylation in stress-regulated genes. We found a parallel increase in the acetylation of lysines 9 and 14 of H3 in induced genes during stress, which was largely dependent on Hog1 at the genome-wide level. Conversely, we observed that acetylation decreased in repressed genes and was not dependent on Hog1. However, lack of Hog1 sometimes produced different, and even opposite, effects on the induction and acetylation of H3 of each gene. We also found that the acetylation state of lysine 9 of H3 was altered in the strains deficient in Nut1 HAT and Hos1 HDAC in the genes up-regulated during osmotic stress in an Msn2/Msn4-independent manner, while lysine 9 acetylation of H3 varied in the strains deficient in Sas2 HAT and Rpd3 HDAC for the Msn2/Msn4-dependent induced genes. The results presented here show new, unexpected participants in gene regulation processes in response to environmental perturbations.
Collapse
Affiliation(s)
- María E Pérez-Martínez
- Departament de Bioquímica i Biologia Molecular and ERI Biotecmed, Universitat de València, Burjassot, Spain
| | - Marta Benet
- Departament de Bioquímica i Biologia Molecular and ERI Biotecmed, Universitat de València, Burjassot, Spain
| | - Paula Alepuz
- Departament de Bioquímica i Biologia Molecular and ERI Biotecmed, Universitat de València, Burjassot, Spain
| | - Vicente Tordera
- Departament de Bioquímica i Biologia Molecular and ERI Biotecmed, Universitat de València, Burjassot, Spain
| |
Collapse
|
11
|
de Bruyn Kops A, Burke JE, Guthrie C. Brr6 plays a role in gene recruitment and transcriptional regulation at the nuclear envelope. Mol Biol Cell 2018; 29:2578-2590. [PMID: 30133335 PMCID: PMC6254580 DOI: 10.1091/mbc.e18-04-0258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Correlation between transcriptional regulation and positioning of genes at the nuclear envelope is well established in eukaryotes, but the mechanisms involved are not well understood. We show that brr6-1, a mutant of the essential yeast envelope transmembrane protein Brr6p, impairs normal positioning and expression of the PAB1 and FUR4-GAL1,10,7 loci. Similarly, expression of a dominant negative nucleoplasmic Brr6 fragment in wild-type cells reproduced many of the brr6-1 effects. Histone chromatin immunoprecipitation (ChIP) experiments showed decreased acetylation at the key histone H4K16 residue in the FUR4-GAL1,10,7 region in brr6-1. Importantly, blocking deacetylation significantly suppressed selected brr6-1 phenotypes. ChIPseq with FLAG-tagged Brr6 fragments showed enrichment at FUR4 and several other genes that showed striking changes in brr6-1 RNAseq data. These associations depended on a Brr6 putative zinc finger domain. Importantly, artificially tethering the GAL1 locus to the envelope suppressed the brr6-1 effects on GAL1 and FUR4 expression and increased H4K16 acetylation between GAL1 and FUR4 in the mutant. Together these results argue that Brr6 interacts with chromatin, helping to maintain normal chromatin architecture and transcriptional regulation of certain loci at the nuclear envelope.
Collapse
Affiliation(s)
- Anne de Bruyn Kops
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| | - Jordan E Burke
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
12
|
Huang TH, Shen ZJ, Sleckman BP, Tyler JK. The histone chaperone ASF1 regulates the activation of ATM and DNA-PKcs in response to DNA double-strand breaks. Cell Cycle 2018; 17:1413-1424. [PMID: 29954236 PMCID: PMC6132960 DOI: 10.1080/15384101.2018.1486165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/29/2018] [Indexed: 10/28/2022] Open
Abstract
The Ataxia-telangiectasia mutated (ATM) kinase and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are activated by DNA double-strand breaks (DSBs). These DSBs occur in the context of chromatin but how chromatin influences the activation of these kinases is not known. Here we show that loss of the replication-dependent chromatin assembly factors ASF1A/B or CAF-1 compromises ATM activation, while augmenting DNA-PKcs activation, in response to DNA DSBs. Cells deficient in ASF1A/B or CAF-1 exhibit reduced histone H4 lysine 16 acetylation (H4K16ac), a histone mark known to promote ATM activation. ASF1A interacts with the histone acetyl transferase, hMOF that mediates H4K16ac. ASF1A depletion leads to increased recruitment of DNA-PKcs to DSBs. We propose normal chromatin assembly and H4K16ac during DNA replication is required to regulate ATM and DNA-PKcs activity in response to the subsequent induction of DNA DSBs.
Collapse
Affiliation(s)
- Ting-Hsiang Huang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Zih-Jie Shen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Barry P. Sleckman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jessica K. Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
13
|
Kong X, van Diepeningen AD, van der Lee TAJ, Waalwijk C, Xu J, Xu J, Zhang H, Chen W, Feng J. The Fusarium graminearum Histone Acetyltransferases Are Important for Morphogenesis, DON Biosynthesis, and Pathogenicity. Front Microbiol 2018; 9:654. [PMID: 29755419 PMCID: PMC5932188 DOI: 10.3389/fmicb.2018.00654] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Abstract
Post-translational modifications of chromatin structure by histone acetyltransferase (HATs) play a central role in the regulation of gene expression and various biological processes in eukaryotes. Although HAT genes have been studied in many fungi, few of them have been functionally characterized. In this study, we identified and characterized four putative HATs (FgGCN5, FgRTT109, FgSAS2, FgSAS3) in the plant pathogenic ascomycete Fusarium graminearum, the causal agent of Fusarium head blight of wheat and barley. We replaced the genes and all mutant strains showed reduced growth of F. graminearum. The ΔFgSAS3 and ΔFgGCN5 mutant increased sensitivity to oxidative and osmotic stresses. Additionally, ΔFgSAS3 showed reduced conidia sporulation and perithecium formation. Mutant ΔFgGCN5 was unable to generate any conidia and lost its ability to form perithecia. Our data showed also that FgSAS3 and FgGCN5 are pathogenicity factors required for infecting wheat heads as well as tomato fruits. Importantly, almost no Deoxynivalenol (DON) was produced either in ΔFgSAS3 or ΔFgGCN5 mutants, which was consistent with a significant downregulation of TRI genes expression. Furthermore, we discovered for the first time that FgSAS3 is indispensable for the acetylation of histone site H3K4, while FgGCN5 is essential for the acetylation of H3K9, H3K18, and H3K27. H3K14 can be completely acetylated when FgSAS3 and FgGCN5 were both present. The RNA-seq analyses of the two mutant strains provide insight into their functions in development and metabolism. Results from this study clarify the functional divergence of HATs in F. graminearum, and may provide novel targeted strategies to control secondary metabolite expression and infections of F. graminearum.
Collapse
Affiliation(s)
- Xiangjiu Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Theo A J van der Lee
- Biointeractions & Plant Health, Wageningen Plant Research, Wageningen, Netherlands
| | - Cees Waalwijk
- Biointeractions & Plant Health, Wageningen Plant Research, Wageningen, Netherlands
| | - Jingsheng Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Lee S, Oh S, Jeong K, Jo H, Choi Y, Seo HD, Kim M, Choe J, Kwon CS, Lee D. Dot1 regulates nucleosome dynamics by its inherent histone chaperone activity in yeast. Nat Commun 2018; 9:240. [PMID: 29339748 PMCID: PMC5770421 DOI: 10.1038/s41467-017-02759-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/21/2017] [Indexed: 11/09/2022] Open
Abstract
Dot1 (disruptor of telomeric silencing-1, DOT1L in humans) is the only known enzyme responsible for histone H3 lysine 79 methylation (H3K79me) and is evolutionarily conserved in most eukaryotes. Yeast Dot1p lacks a SET domain and does not methylate free histones and thus may have different actions with respect to other histone methyltransferases. Here we show that Dot1p displays histone chaperone activity and regulates nucleosome dynamics via histone exchange in yeast. We show that a methylation-independent function of Dot1p is required for the cryptic transcription within transcribed regions seen following disruption of the Set2-Rpd3S pathway. Dot1p can assemble core histones to nucleosomes and facilitate ATP-dependent chromatin-remodeling activity through its nucleosome-binding domain, in vitro. Global analysis indicates that Dot1p appears to be particularly important for histone exchange and chromatin accessibility on the transcribed regions of long-length genes. Our findings collectively suggest that Dot1p-mediated histone chaperone activity controls nucleosome dynamics in transcribed regions.
Collapse
Affiliation(s)
- Soyun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seunghee Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Kwiwan Jeong
- Biocenter, Gyeonggi Business & Science Accelerator, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Hyelim Jo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yoonjung Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hogyu David Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Minhoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Chang Seob Kwon
- Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan, 47162, Republic of Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
15
|
Bonnaud EM, Suberbielle E, Malnou CE. Histone acetylation in neuronal (dys)function. Biomol Concepts 2017; 7:103-16. [PMID: 27101554 DOI: 10.1515/bmc-2016-0002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/25/2016] [Indexed: 02/05/2023] Open
Abstract
Cognitive functions require the expression of an appropriate pattern of genes in response to environmental stimuli. Over the last years, many studies have accumulated knowledge towards the understanding of molecular mechanisms that regulate neuronal gene expression. Epigenetic modifications have been shown to play an important role in numerous neuronal functions, from synaptic plasticity to learning and memory. In particular, histone acetylation is a central player in these processes. In this review, we present the molecular mechanisms of histone acetylation and summarize the data underlying the relevance of histone acetylation in cognitive functions in normal and pathological conditions. In the last part, we discuss the different mechanisms underlying the dysregulation of histone acetylation associated with neurological disorders, with a particular focus on environmental causes (stress, drugs, or infectious agents) that are linked to impaired histone acetylation.
Collapse
|
16
|
Cavero S, Herruzo E, Ontoso D, San-Segundo PA. Impact of histone H4K16 acetylation on the meiotic recombination checkpoint in Saccharomyces cerevisiae. MICROBIAL CELL 2016; 3:606-620. [PMID: 28357333 PMCID: PMC5348980 DOI: 10.15698/mic2016.12.548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In meiotic cells, the pachytene checkpoint or meiotic recombination checkpoint is
a surveillance mechanism that monitors critical processes, such as recombination
and chromosome synapsis, which are essential for proper distribution of
chromosomes to the meiotic progeny. Failures in these processes lead to the
formation of aneuploid gametes. Meiotic recombination occurs in the context of
chromatin; in fact, the histone methyltransferase Dot1 and the histone
deacetylase Sir2 are known regulators of the pachytene checkpoint in
Saccharomyces cerevisiae. We report here that Sas2-mediated
acetylation of histone H4 at lysine 16 (H4K16ac), one of the Sir2 targets,
modulates meiotic checkpoint activity in response to synaptonemal complex
defects. We show that, like sir2, the H4-K16Q
mutation, mimicking constitutive acetylation of H4K16, eliminates the delay in
meiotic cell cycle progression imposed by the checkpoint in the
synapsis-defective zip1 mutant. We also demonstrate that, like
in dot1, zip1-induced phosphorylation of the
Hop1 checkpoint adaptor at threonine 318 and the ensuing Mek1 activation are
impaired in H4-K16 mutants. However, in contrast to
sir2 and dot1, the
H4-K16R and H4-K16Q mutations have only a
minor effect in checkpoint activation and localization of the nucleolar Pch2
checkpoint factor in ndt80-prophase-arrested cells. We also
provide evidence for a cross-talk between Dot1-dependent H3K79 methylation and
H4K16ac and show that Sir2 excludes H4K16ac from the rDNA region on meiotic
chromosomes. Our results reveal that proper levels of H4K16ac orchestrate this
meiotic quality control mechanism and that Sir2 impinges on additional targets
to fully activate the checkpoint.
Collapse
Affiliation(s)
- Santiago Cavero
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain. ; Present address: Department of Experimental and Health Sciences, Pompeu Fabra University, 08003-Barcelona, Spain
| | - Esther Herruzo
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - David Ontoso
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain. ; Present address: Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Pedro A San-Segundo
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
17
|
Dodson AE, Rine J. Donor Preference Meets Heterochromatin: Moonlighting Activities of a Recombinational Enhancer in Saccharomyces cerevisiae. Genetics 2016; 204:1065-1074. [PMID: 27655944 PMCID: PMC5105842 DOI: 10.1534/genetics.116.194696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/16/2016] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae, a small, intergenic region known as the recombination enhancer regulates donor selection during mating-type switching and also helps shape the conformation of chromosome III. Using an assay that detects transient losses of heterochromatic repression, we found that the recombination enhancer also acts at a distance in cis to modify the stability of gene silencing. In a mating-type-specific manner, the recombination enhancer destabilized the heterochromatic repression of a gene located ∼17 kbp away. This effect depended on a subregion of the recombination enhancer that is largely sufficient to determine donor preference. Therefore, this subregion affects both recombination and transcription from a distance. These observations identify a rare example of long-range transcriptional regulation in yeast and raise the question of whether other cis elements also mediate dual effects on recombination and gene expression.
Collapse
Affiliation(s)
- Anne E Dodson
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720-3220
| | - Jasper Rine
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720-3220
| |
Collapse
|
18
|
Choose Your Own Adventure: The Role of Histone Modifications in Yeast Cell Fate. J Mol Biol 2016; 429:1946-1957. [PMID: 27769718 DOI: 10.1016/j.jmb.2016.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022]
Abstract
When yeast cells are challenged by a fluctuating environment, signaling networks activate differentiation programs that promote their individual or collective survival. These programs include the initiation of meiotic sporulation, the formation of filamentous growth structures, and the activation of programmed cell death pathways. The establishment and maintenance of these distinct cell fates are driven by massive gene expression programs that promote the necessary changes in morphology and physiology. While these genomic reprogramming events depend on a specialized network of transcription factors, a diverse set of chromatin regulators, including histone-modifying enzymes, chromatin remodelers, and histone variants, also play essential roles. Here, we review the broad functions of histone modifications in initiating cell fate transitions, with particular focus on their contribution to the control of expression of key genes required for the differentiation programs and chromatin reorganization that accompanies these cell fates.
Collapse
|
19
|
Yuan H, Marmorstein R. Histone acetyltransferases: Rising ancient counterparts to protein kinases. Biopolymers 2016; 99:98-111. [PMID: 23175385 DOI: 10.1002/bip.22128] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/01/2012] [Accepted: 07/06/2012] [Indexed: 01/19/2023]
Abstract
Protein kinases catalyze phosphorylation, a posttranslational modification widely utilized in cell signaling. Histone acetyltransferases (HATs) catalyze a counterpart posttranslational modification of acetylation which marks histones for epigenetic signaling but in some cases modifies non-histone proteins to mediate other cellular activities. In addition, recent proteomic studies have revealed that thousands of proteins are acetylated throughout the cell to regulate diverse biological processes, thus placing acetyltransferases on the same playing field as kinases. Emerging biochemical and structural data further supports mechanistic and biological links between the two enzyme families. In this article, we will review what is known to date about the structure, catalysis and mode of regulation of HAT enzymes and draw analogies, where relevant, to protein kinases. This comparison reveals that HATs may be rising ancient counterparts to protein kinases.
Collapse
Affiliation(s)
- Hua Yuan
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA 19104
| | | |
Collapse
|
20
|
Lakshminarasimhan M, Boanca G, Banks CAS, Hattem GL, Gabriel AE, Groppe BD, Smoyer C, Malanowski KE, Peak A, Florens L, Washburn MP. Proteomic and Genomic Analyses of the Rvb1 and Rvb2 Interaction Network upon Deletion of R2TP Complex Components. Mol Cell Proteomics 2016; 15:960-74. [PMID: 26831523 DOI: 10.1074/mcp.m115.053165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 11/06/2022] Open
Abstract
The highly conserved yeast R2TP complex, consisting of Rvb1, Rvb2, Pih1, and Tah1, participates in diverse cellular processes ranging from assembly of protein complexes to apoptosis. Rvb1 and Rvb2 are closely related proteins belonging to the AAA+ superfamily and are essential for cell survival. Although Rvbs have been shown to be associated with various protein complexes including the Ino80 and Swr1chromatin remodeling complexes, we performed a systematic quantitative proteomic analysis of their associated proteins and identified two additional complexes that associate with Rvb1 and Rvb2: the chaperonin-containing T-complex and the 19S regulatory particle of the proteasome complex. We also analyzed Rvb1 and Rvb2 purified from yeast strains devoid of PIH1 and TAH1. These analyses revealed that both Rvb1 and Rvb2 still associated with Hsp90 and were highly enriched with RNA polymerase II complex components. Our analyses also revealed that both Rvb1 and Rvb2 were recruited to the Ino80 and Swr1 chromatin remodeling complexes even in the absence of Pih1 and Tah1 proteins. Using further biochemical analysis, we showed that Rvb1 and Rvb2 directly interacted with Hsp90 as well as with the RNA polymerase II complex. RNA-Seq analysis of the deletion strains compared with the wild-type strains revealed an up-regulation of ribosome biogenesis and ribonucleoprotein complex biogenesis genes, down-regulation of response to abiotic stimulus genes, and down-regulation of response to temperature stimulus genes. A Gene Ontology analysis of the 80 proteins whose protein associations were altered in the PIH1 or TAH1 deletion strains found ribonucleoprotein complex proteins to be the most enriched category. This suggests an important function of the R2TP complex in ribonucleoprotein complex biogenesis at both the proteomic and genomic levels. Finally, these results demonstrate that deletion network analyses can provide novel insights into cellular systems.
Collapse
Affiliation(s)
| | - Gina Boanca
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Charles A S Banks
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Gaye L Hattem
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Ana E Gabriel
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Brad D Groppe
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Christine Smoyer
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Kate E Malanowski
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Allison Peak
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Laurence Florens
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Michael P Washburn
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and §Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
21
|
Sneppen K, Dodd IB. Cooperative stabilization of the SIR complex provides robust epigenetic memory in a model of SIR silencing in Saccharomyces cerevisiae. Epigenetics 2015; 10:293-302. [PMID: 25830651 PMCID: PMC4622568 DOI: 10.1080/15592294.2015.1017200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
How alternative chromatin-based regulatory states can be made stable and heritable in order to provide robust epigenetic memory is poorly understood. Here, we develop a stochastic model of the silencing system in Saccharomyces cerevisiae that incorporates cooperative binding of the repressive SIR complex and antisilencing histone modifications, in addition to positive feedback in Sir2 recruitment. The model was able to reproduce key features of SIR regulation of an HM locus, including heritable bistability, dependence on the silencer elements, and sensitivity to SIR dosage. We found that antisilencing methylation of H3K79 by Dot1 was not needed to generate these features, but acted to reduce spreading of SIR binding, consistent with its proposed role in containment of silencing. In contrast, cooperative inter-nucleosome interactions mediated by the SIR complex were critical for concentrating SIR binding around the silencers in the absence of barriers, and for providing bistability in SIR binding. SIR-SIR interactions magnify the cooperativity in the Sir2-histone deacetylation positive feedback reaction and complete a double-negative feedback circuit involving antisilencing modifications. Thus, our modeling underscores the potential importance of cooperative interactions between nucleosome-bound complexes both in the SIR system and in other chromatin-based complexes in epigenetic regulation.
Collapse
Affiliation(s)
- Kim Sneppen
- a Centre for Models of Life; Niels Bohr Institute; University of Copenhagen; Copenhagen , Denmark
| | | |
Collapse
|
22
|
Marmorstein R, Zhou MM. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol 2014; 6:a018762. [PMID: 24984779 DOI: 10.1101/cshperspect.a018762] [Citation(s) in RCA: 420] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone acetylation marks are written by histone acetyltransferases (HATs) and read by bromodomains (BrDs), and less commonly by other protein modules. These proteins regulate many transcription-mediated biological processes, and their aberrant activities are correlated with several human diseases. Consequently, small molecule HAT and BrD inhibitors with therapeutic potential have been developed. Structural and biochemical studies of HATs and BrDs have revealed that HATs fall into distinct subfamilies containing a structurally related core for cofactor binding, but divergent flanking regions for substrate-specific binding, catalysis, and autoregulation. BrDs adopt a conserved left-handed four-helix bundle to recognize acetyllysine; divergent loop residues contribute to substrate-specific acetyllysine recognition.
Collapse
Affiliation(s)
- Ronen Marmorstein
- Program in Gene Expression and Regulation, Wistar Institute, and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10065
| |
Collapse
|
23
|
Wierman MB, Smith JS. Yeast sirtuins and the regulation of aging. FEMS Yeast Res 2014; 14:73-88. [PMID: 24164855 PMCID: PMC4365911 DOI: 10.1111/1567-1364.12115] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/09/2013] [Accepted: 10/13/2013] [Indexed: 11/29/2022] Open
Abstract
The sirtuins are a phylogenetically conserved family of NAD(+) -dependent protein deacetylases that consume one molecule of NAD(+) for every deacetylated lysine side chain. Their requirement for NAD(+) potentially makes them prone to regulation by fluctuations in NAD(+) or biosynthesis intermediates, thus linking them to cellular metabolism. The Sir2 protein from Saccharomyces cerevisiae is the founding sirtuin family member and has been well characterized as a histone deacetylase that functions in transcriptional silencing of heterochromatin domains and as a pro-longevity factor for replicative life span (RLS), defined as the number of times a mother cell divides (buds) before senescing. Deleting SIR2 shortens RLS, while increased gene dosage causes extension. Furthermore, Sir2 has been implicated in mediating the beneficial effects of caloric restriction (CR) on life span, not only in yeast, but also in higher eukaryotes. While this paradigm has had its share of disagreements and debate, it has also helped rapidly drive the aging research field forward. S. cerevisiae has four additional sirtuins, Hst1, Hst2, Hst3, and Hst4. This review discusses the function of Sir2 and the Hst homologs in replicative aging and chronological aging, and also addresses how the sirtuins are regulated in response to environmental stresses such as CR.
Collapse
Affiliation(s)
- Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | |
Collapse
|
24
|
Distinct and redundant roles of the two MYST histone acetyltransferases Esa1 and Sas2 in cell growth and morphogenesis of Candida albicans. EUKARYOTIC CELL 2013; 12:438-49. [PMID: 23355007 DOI: 10.1128/ec.00275-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Candida albicans is associated with humans, as both a harmless commensal organism and a pathogen. Adaption to human body temperature is extremely important for its growth and morphogenesis. Saccharomyces cerevisiae Esa1, a member of the MYST family HATs (histone acetyltransferases) and the catalytic subunit of the NuA4 complex, and its homologues in other eukaryotes have been shown to be essential for cell growth. To investigate the functional roles of two MYST family HATs, Esa1 and Sas2 in C. albicans, we deleted ESA1 and SAS2 in the C. albicans genome and performed cell growth analyses. Our results demonstrated that C. albicans Esa1 is not essential for general growth but is essential for filamentous growth. The esa1/esa1 mutant cells exhibited sensitivity to thermal, genotoxic, and oxidative stresses but tolerance to cold, osmotic, and cell wall stresses. In contrast, the sas2/sas2 mutant adapted to growth at higher temperatures and promoted filament formation at lower temperatures, resembling the phenotype of a C. albicans strain overexpressing ESA1. Cells with deletions of both ESA1 and SAS2 were inviable, reflecting the functional redundancy in cell growth. C. albicans Esa1 and Sas2 have distinct and synergistic effects on histone acetylation at H4K5, H4K12, and H4K16. Esa1 contributes mainly to acetylation of H4K5 and H4K12, whereas Sas2 contributes to acetylation of H4K16. Our findings suggest that C. albicans Esa1 and Sas2 play opposite roles in cell growth and morphogenesis and contribute coordinately to histone acetylation and gene regulation.
Collapse
|
25
|
Inositol phosphate kinase Vip1p interacts with histone chaperone Asf1p in Saccharomyces cerevisiae. Mol Biol Rep 2011; 39:4989-96. [PMID: 22160571 DOI: 10.1007/s11033-011-1295-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 11/30/2011] [Indexed: 12/25/2022]
Abstract
Histone eviction and deposition are critical steps in many nuclear processes. The histone H3/H4 chaperone Asf1p is highly conserved and is involved in DNA replication, DNA repair, and transcription. To identify the factors concerned with anti-silencing function 1 (ASF1), we purified Asf1p-associated factors from the yeast Saccharomyces cerevisiae by a GST pull-down experiment, and mass spectrometry analysis was performed. Several factors are specifically associated with Asf1p, including Vip1p. VIP1 is conserved from yeast to humans and encodes inositol hexakisphoshate and inositol heptakisphosphate kinase. Vip1p interacted with Asf1p as a dimer or in a complex with another protein(s). Deletion of VIP1 did not affect the interaction between Asf1p and other Asf1p-associated factors. An in vitro GST pull-down assay indicated a direct interaction between Asf1p and Vip1p, and the interaction between the two factors in vivo was detected by an immunoprecipitation experiment. Furthermore, genetic experiments revealed that VIP1 disruption increased sensitivity to 6-azauracil (6-AU), but not to DNA-damaging reagents in wild-type and ASF1-deleted strains. It is thought that 6-AU decreases nucleotide levels and reduces transcription elongation. These observations suggest that the association of Asf1p and Vip1p may be implicated in transcription elongation.
Collapse
|
26
|
Dodd IB, Sneppen K. Barriers and silencers: a theoretical toolkit for control and containment of nucleosome-based epigenetic states. J Mol Biol 2011; 414:624-37. [PMID: 22037584 DOI: 10.1016/j.jmb.2011.10.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/08/2011] [Accepted: 10/14/2011] [Indexed: 10/16/2022]
Abstract
Positive feedback in nucleosome modification has been proposed to allow large chromatin regions to exist stably and heritably in distinct expression states. However, modeling has shown that such epigenetic bistability requires that modifying enzymes recruited by nucleosomes are active on distant nucleosomes, potentially allowing uncontrollable spreading of modification. By modeling the silencing of mating-type loci in Saccharomyces cerevisiae, we show that a modification reaction that combines a long-range component and a locally acting component can provide bistability and can be blocked by simple barriers that interrupt the nucleosome chain. We find that robust containment of the silenced region could be achieved by the presence of a number of weak simple barriers in the surrounding chromatin and a limited capacity of the positive feedback reaction. In addition, we show that the state of the silenced region can be regulated by silencer elements acting only on neighboring nucleosomes. Thus, a relatively simple set of nucleosome-modifying enzymes and recognition domains is all that is needed to make chromatin-based epigenetics useful and safe.
Collapse
Affiliation(s)
- Ian B Dodd
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark.
| | | |
Collapse
|
27
|
Abstract
Alterations of chromatin structure have been shown to be crucial for response to cell signaling and for programmed gene expression in development. Posttranslational histone modifications influence changes in chromatin structure both directly and by targeting or activating chromatin-remodeling complexes. Histone modifications intersect with cell signaling pathways to control gene expression and can act combinatorially to enforce or reverse epigenetic marks in chromatin. Through their recognition by protein complexes with enzymatic activities cross talk is established between different modifications and with other epigenetic pathways, including noncoding RNAs (ncRNAs) and DNA methylation. Here, we review the functions of histone modifications and their exploitation in the programming of gene expression during several events in development.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
28
|
A role for histone H4K16 hypoacetylation in Saccharomyces cerevisiae kinetochore function. Genetics 2011; 189:11-21. [PMID: 21652526 DOI: 10.1534/genetics.111.130781] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hypoacetylated H4 is present at regional centromeres; however, its role in kinetochore function is poorly understood. We characterized H4 acetylation at point centromeres in Saccharomyces cerevisiae and determined the consequences of altered H4 acetylation on chromosome segregation. We observed low levels of tetra-acetylated and K16 acetylated histone H4 (H4K16Ac) at centromeres. Low levels of H4K16Ac were also observed at noncentromeric regions associated with Cse4p. Inhibition of histone deacetylases (HDAC) using nicotinamide (NAM) caused lethality in cse4 and hhf1-20 kinetochore mutants and increased centromeric H4K16Ac. Overexpression of Sas2-mediated H4K16 acetylation activity in wild-type cells led to increased rates of chromosome loss and synthetic dosage lethality in kinetochore mutants. Consistent with increased H4K16 acetylation as a cause of the phenotypes, deletion of the H4K16 deacetylase SIR2 or a sir2-H364Y catalytic mutant resulted in higher rates of chromosome loss compared to wild-type cells. Moreover, H4K16Q acetylmimic mutants displayed increased rates of chromosome loss compared to H4K16R nonacetylatable mutants and wild-type cells. Our work shows that hypoacetylated centromeric H4 is conserved across eukaryotic centromeres and hypoacetylation of H4K16 at centromeres plays an important role in accurate chromosome segregation.
Collapse
|
29
|
Abstract
Chromatin is by its very nature a repressive environment which restricts the recruitment of transcription factors and acts as a barrier to polymerases. Therefore the complex process of gene activation must operate at two levels. In the first instance, localized chromatin decondensation and nucleosome displacement is required to make DNA accessible. Second, sequence-specific transcription factors need to recruit chromatin modifiers and remodellers to create a chromatin environment that permits the passage of polymerases. In this review I will discuss the chromatin structural changes that occur at active gene loci and at regulatory elements that exist as DNase I hypersensitive sites.
Collapse
Affiliation(s)
- Peter N Cockerill
- Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, UK.
| |
Collapse
|
30
|
Miao J, Fan Q, Cui L, Li X, Wang H, Ning G, Reese JC, Cui L. The MYST family histone acetyltransferase regulates gene expression and cell cycle in malaria parasite Plasmodium falciparum. Mol Microbiol 2010; 78:883-902. [PMID: 20807207 DOI: 10.1111/j.1365-2958.2010.07371.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Histone lysine acetylation, normally associated with euchromatin and active genes, is regulated by different families of histone acetyltransferases (HATs). A single Plasmodium falciparum MYST (PfMYST) HAT was expressed as a long and a short version in intraerythrocytic stages. Whereas the recombinant PfMYST expressed in prokaryotes and insect cells did not show HAT activity, recombinant PfMYST purified from the parasites exhibited a predilection to acetylate histone H4 in vitro at K5, K8, K12 and K16. Tagging PfMYST with the green fluorescent protein at the C-terminus showed that PfMYST protein was localized in both the nucleus and cytoplasm. Consistent with the importance of H4 acetylation in var gene expression, PfMYST was recruited to the active var promoter. Attempts to disrupt PfMYST were not successful, suggesting that PfMYST is essential for asexual intraerythrocytic growth. However, overexpression of the long, active or a truncated, non-active version of PfMYST by stable integration of the expression cassette in the parasite genome resulted in changes of H4 acetylation and cell cycle progression. Furthermore, parasites with PfMYST overexpression showed changes in sensitivity to DNA-damaging agents. Collectively, this study showed that PfMYST plays important roles in cellular processes such as gene activation, cell cycle control and DNA repair.
Collapse
Affiliation(s)
- Jun Miao
- Department of Entomology, The Pennsylvania State University, 501 ASI Bldg., University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Bowers EM, Yan G, Mukherjee C, Orry A, Wang L, Holbert MA, Crump NT, Hazzalin CA, Liszczak G, Yuan H, Larocca C, Saldanha SA, Abagyan R, Sun Y, Meyers DJ, Marmorstein R, Mahadevan LC, Alani RM, Cole PA. Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. ACTA ACUST UNITED AC 2010; 17:471-82. [PMID: 20534345 DOI: 10.1016/j.chembiol.2010.03.006] [Citation(s) in RCA: 513] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/18/2010] [Accepted: 03/04/2010] [Indexed: 01/18/2023]
Abstract
The histone acetyltransferase (HAT) p300/CBP is a transcriptional coactivator implicated in many gene regulatory pathways and protein acetylation events. Although p300 inhibitors have been reported, a potent, selective, and readily available active-site-directed small molecule inhibitor is not yet known. Here we use a structure-based, in silico screening approach to identify a commercially available pyrazolone-containing small molecule p300 HAT inhibitor, C646. C646 is a competitive p300 inhibitor with a K(i) of 400 nM and is selective versus other acetyltransferases. Studies on site-directed p300 HAT mutants and synthetic modifications of C646 confirm the importance of predicted interactions in conferring potency. Inhibition of histone acetylation and cell growth by C646 in cells validate its utility as a pharmacologic probe and suggest that p300/CBP HAT is a worthy anticancer target.
Collapse
Affiliation(s)
- Erin M Bowers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Miller A, Chen J, Takasuka TE, Jacobi JL, Kaufman PD, Irudayaraj JMK, Kirchmaier AL. Proliferating cell nuclear antigen (PCNA) is required for cell cycle-regulated silent chromatin on replicated and nonreplicated genes. J Biol Chem 2010; 285:35142-54. [PMID: 20813847 DOI: 10.1074/jbc.m110.166918] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In Saccharomyces cerevisiae, silent chromatin is formed at HMR upon the passage through S phase, yet neither the initiation of DNA replication at silencers nor the passage of a replication fork through HMR is required for silencing. Paradoxically, mutations in the DNA replication processivity factor, POL30, disrupt silencing despite this lack of requirement for DNA replication in the establishment of silencing. We tested whether pol30 mutants could establish silencing at either replicated or non-replicated HMR loci during S phase and found that pol30 mutants were defective in establishing silencing at HMR regardless of its replication status. Although previous studies tie the silencing defect of pol30 mutants to the chromatin assembly factors Asf1p and CAF-1, we found pol30 mutants did not exhibit a gross defect in packaging HMR into chromatin. Rather, the pol30 mutants exhibited defects in histone modifications linked to ASF1 and CAF-1-dependent pathways, including SAS-I- and Rtt109p-dependent acetylation events at H4-K16 and H3-K9 (plus H3-K56; Miller, A., Yang, B., Foster, T., and Kirchmaier, A. L. (2008) Genetics 179, 793-809). Additional experiments using FLIM-FRET revealed that Pol30p interacted with SAS-I and Rtt109p in the nuclei of living cells. However, these interactions were disrupted in pol30 mutants with defects linked to ASF1- and CAF-1-dependent pathways. Together, these results imply that Pol30p affects epigenetic processes by influencing the composition of chromosomal histone modifications.
Collapse
Affiliation(s)
- Andrew Miller
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Schulze JM, Kane CM, Ruiz-Manzano A. The YEATS domain of Taf14 in Saccharomyces cerevisiae has a negative impact on cell growth. Mol Genet Genomics 2010; 283:365-80. [PMID: 20179968 PMCID: PMC2839515 DOI: 10.1007/s00438-010-0523-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 01/28/2010] [Indexed: 12/15/2022]
Abstract
The role of a highly conserved YEATS protein motif is explored in the context of the Taf14 protein of Saccharomyces cerevisiae. In S. cerevisiae, Taf14 is a protein physically associated with many critical multisubunit complexes including the general transcription factors TFIID and TFIIF, the chromatin remodeling complexes SWI/SNF, Ino80 and RSC, Mediator and the histone modification enzyme NuA3. Taf14 is a member of the YEATS superfamily, conserved from bacteria to eukaryotes and thought to have a transcription stimulatory activity. However, besides its ubiquitous presence and its links with transcription, little is known about Taf14’s role in the nucleus. We use structure–function and mutational analysis to study the function of Taf14 and its well conserved N-terminal YEATS domain. We show here that the YEATS domain is not necessary for Taf14’s association with these transcription and chromatin remodeling complexes, and that its presence in these complexes is dependent only on its C-terminal domain. Our results also indicate that Taf14’s YEATS domain is not necessary for complementing the synthetic lethality between TAF14 and the general transcription factor TFIIS (encoded by DST1). Furthermore, we present evidence that the YEATS domain of Taf14 has a negative impact on cell growth: its absence enables cells to grow better than wild-type cells under stress conditions, like the microtubule destabilizing drug benomyl. Moreover, cells expressing solely the YEATS domain grow worser than cells expressing any other Taf14 construct tested, including the deletion mutant. Thus, this highly conserved domain should be considered part of a negative regulatory loop in cell growth.
Collapse
Affiliation(s)
- Julia M Schulze
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | | | |
Collapse
|
34
|
Kozak ML, Chavez A, Dang W, Berger SL, Ashok A, Guo X, Johnson FB. Inactivation of the Sas2 histone acetyltransferase delays senescence driven by telomere dysfunction. EMBO J 2009; 29:158-70. [PMID: 19875981 DOI: 10.1038/emboj.2009.314] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 09/24/2009] [Indexed: 01/28/2023] Open
Abstract
Changes in telomere chromatin have been linked to cellular senescence, but the underlying mechanisms and impact on lifespan are unclear. We found that inactivation of the Sas2 histone acetyltransferase delays senescence in Saccharomyces cerevisiae telomerase (tlc1) mutants through a homologous recombination-dependent mechanism. Sas2 acetylates histone H4 lysine 16 (H4K16), and telomere shortening in tlc1 mutants was accompanied by a selective and Sas2-dependent increase in subtelomeric H4K16 acetylation. Further, mutation of H4 lysine 16 to arginine, which mimics constitutively deacetylated H4K16, delayed senescence and was epistatic to sas2 deletion, indicating that deacetylated H4K16 mediates the delay caused by sas2 deletion. Sas2 normally prevents the Sir2/3/4 heterochromatin complex from leaving the telomere and spreading to internal euchromatic loci. Senescence was delayed by sir3 deletion, but not sir2 deletion, indicating that senescence delay is mediated by release of Sir3 specifically from the telomere repeats. In contrast, sir4 deletion sped senescence and blocked the delay conferred by sas2 or sir3 deletion. We thus show that manipulation of telomere chromatin modulates senescence caused by telomere shortening.
Collapse
Affiliation(s)
- Marina L Kozak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6100, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Jo WJ, Ren X, Chu F, Aleshin M, Wintz H, Burlingame A, Smith MT, Vulpe CD, Zhang L. Acetylated H4K16 by MYST1 protects UROtsa cells from arsenic toxicity and is decreased following chronic arsenic exposure. Toxicol Appl Pharmacol 2009; 241:294-302. [PMID: 19732783 DOI: 10.1016/j.taap.2009.08.027] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/20/2009] [Accepted: 08/24/2009] [Indexed: 01/08/2023]
Abstract
Arsenic, a human carcinogen that is associated with an increased risk of bladder cancer, is commonly found in drinking water. An important mechanism by which arsenic is thought to be carcinogenic is through the induction of epigenetic changes that lead to aberrant gene expression. Previously, we reported that the SAS2 gene is required for optimal growth of yeast in the presence of arsenite (As(III)). Yeast Sas2p is orthologous to human MYST1, a histone 4 lysine 16 (H4K16) acetyltransferase. Here, we show that H4K16 acetylation is necessary for the resistance of yeast to As(III) through the modulation of chromatin state. We further explored the role of MYST1 and H4K16 acetylation in arsenic toxicity and carcinogenesis in human bladder epithelial cells. The expression of MYST1 was knocked down in UROtsa cells, a model of bladder epithelium that has been used to study arsenic-induced carcinogenesis. Silencing of MYST1 reduced acetylation of H4K16 and induced sensitivity to As(III) and to its more toxic metabolite monomethylarsonous acid (MMA(III)) at doses relevant to high environmental human exposures. In addition, both As(III) and MMA(III) treatments decreased global H4K16 acetylation levels in a dose- and time-dependent manner. This indicates that acetylated H4K16 is required for resistance to arsenic and that a reduction in its levels as a consequence of arsenic exposure may contribute to toxicity in UROtsa cells. Based on these findings, we propose a novel role for the MYST1 gene in human sensitivity to arsenic.
Collapse
Affiliation(s)
- William Jaime Jo
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Manzo F, Tambaro FP, Mai A, Altucci L. Histone acetyltransferase inhibitors and preclinical studies. Expert Opin Ther Pat 2009; 19:761-74. [PMID: 19473103 DOI: 10.1517/13543770902895727] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Drugs able to regulate the histone modifier enzymes are very promising tools for the treatment of several diseases, such as cancer. Histone acetyltransferase (HAT) inhibitors are compounds able to inhibit the catalytic activity of HATs reported to be active in cancer, or in several other diseases, such as Alzheimer (AD), diabetes and hyperlipidaemia. OBJECTIVES Here we review the status and the rationale for the use of HAT inhibitors in the treatment of various diseases. METHODS Patents have been found on the espacenet database; the clinical trials have been reported as in the clinicaltrial.gov website. RESULTS AND CONCLUSION Despite the fact that other drugs able to regulate the histone modifier enzymes (such as histone deacetylase inhibitors) have been already approved for the treatment of cancer, HAT inhibitors seem promising for the treatment of human diseases such as AD and diabetes, although side effects and toxicity need to be investigated.
Collapse
Affiliation(s)
- Fabio Manzo
- Dipartimento di Patologia generale, Seconda Università degli Studi di Napoli, Vico L. De Crecchio 7, 80138, Napoli, IT.
| | | | | | | |
Collapse
|
37
|
Verzijlbergen KF, Faber AW, Stulemeijer IJ, van Leeuwen F. Multiple histone modifications in euchromatin promote heterochromatin formation by redundant mechanisms in Saccharomyces cerevisiae. BMC Mol Biol 2009; 10:76. [PMID: 19638198 PMCID: PMC2724485 DOI: 10.1186/1471-2199-10-76] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 07/28/2009] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Methylation of lysine 79 on histone H3 by Dot1 is required for maintenance of heterochromatin structure in yeast and humans. However, this histone modification occurs predominantly in euchromatin. Thus, Dot1 affects silencing by indirect mechanisms and does not act by the recruitment model commonly proposed for histone modifications. To better understand the role of H3K79 methylation gene silencing, we investigated the silencing function of Dot1 by genetic suppressor and enhancer analysis and examined the relationship between Dot1 and other global euchromatic histone modifiers. RESULT We determined that loss of H3K79 methylation results in a partial silencing defect that could be bypassed by conditions that promote targeting of Sir proteins to heterochromatin. Furthermore, the silencing defect in strains lacking Dot1 was dependent on methylation of H3K4 by Set1 and histone acetylation by Gcn5, Elp3, and Sas2 in euchromatin. Our study shows that multiple histone modifications associated with euchromatin positively modulate the function of heterochromatin by distinct mechanisms. Genetic interactions between Set1 and Set2 suggested that the H3K36 methyltransferase Set2, unlike most other euchromatic modifiers, negatively affects gene silencing. CONCLUSION Our genetic dissection of Dot1's role in silencing in budding yeast showed that heterochromatin formation is modulated by multiple euchromatic histone modifiers that act by non-overlapping mechanisms. We discuss how euchromatic histone modifiers can make negative as well as positive contributions to gene silencing by competing with heterochromatin proteins within heterochromatin, within euchromatin, and at the boundary between euchromatin and heterochromatin.
Collapse
Affiliation(s)
- Kitty F Verzijlbergen
- Fred van Leeuwen, Division of Gene Regulation B4, Netherlands Cancer Institute, The Netherlands.
| | | | | | | |
Collapse
|
38
|
A 'higher order' of telomere regulation: telomere heterochromatin and telomeric RNAs. EMBO J 2009; 28:2323-36. [PMID: 19629032 PMCID: PMC2722253 DOI: 10.1038/emboj.2009.197] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/24/2009] [Indexed: 01/20/2023] Open
Abstract
Protection of chromosome ends from DNA repair and degradation activities is mediated by specialized protein complexes bound to telomere repeats. Recently, it has become apparent that epigenetic regulation of the telomric chromatin template critically impacts on telomere function and telomere-length homeostasis from yeast to man. Across all species, telomeric repeats as well as the adjacent subtelomeric regions carry features of repressive chromatin. Disruption of this silent chromatin environment results in loss of telomere-length control and increased telomere recombination. In turn, progressive telomere loss reduces chromatin compaction at telomeric and subtelomeric domains. The recent discoveries of telomere chromatin regulation during early mammalian development, as well as during nuclear reprogramming, further highlights a central role of telomere chromatin changes in ontogenesis. In addition, telomeres were recently shown to generate long, non-coding RNAs that remain associated to telomeric chromatin and will provide new insights into the regulation of telomere length and telomere chromatin. In this review, we will discuss the epigenetic regulation of telomeres across species, with special emphasis on mammalian telomeres. We will also discuss the links between epigenetic alterations at mammalian telomeres and telomere-associated diseases.
Collapse
|
39
|
Biswas M, Maqani N, Rai R, Kumaran SP, Iyer KR, Sendinc E, Smith JS, Laloraya S. Limiting the extent of the RDN1 heterochromatin domain by a silencing barrier and Sir2 protein levels in Saccharomyces cerevisiae. Mol Cell Biol 2009; 29:2889-98. [PMID: 19289503 PMCID: PMC2682026 DOI: 10.1128/mcb.00728-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 05/30/2008] [Accepted: 02/18/2009] [Indexed: 12/31/2022] Open
Abstract
In Saccharomyces cerevisiae, transcriptional silencing occurs at the cryptic mating-type loci (HML and HMR), telomeres, and ribosomal DNA (rDNA; RDN1). Silencing in the rDNA is unusual in that polymerase II (Pol II) promoters within RDN1 are repressed by Sir2 but not Sir3 or Sir4. rDNA silencing unidirectionally spreads leftward, but the mechanism of limiting its spreading is unclear. We searched for silencing barriers flanking the left end of RDN1 by using an established assay for detecting barriers to HMR silencing. Unexpectedly, the unique sequence immediately adjacent to RDN1, which overlaps a prominent cohesin binding site (CARL2), did not have appreciable barrier activity. Instead, a fragment located 2.4 kb to the left, containing a tRNA(Gln) gene and the Ty1 long terminal repeat, had robust barrier activity. The barrier activity was dependent on Pol III transcription of tRNA(Gln), the cohesin protein Smc1, and the SAS1 and Gcn5 histone acetyltransferases. The location of the barrier correlates with the detectable limit of rDNA silencing when SIR2 is overexpressed, where it blocks the spreading of rDNA heterochromatin. We propose a model in which normal Sir2 activity results in termination of silencing near the physical rDNA boundary, while tRNA(Gln) blocks silencing from spreading too far when nucleolar Sir2 pools become elevated.
Collapse
MESH Headings
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Gene Expression Regulation, Fungal
- Gene Silencing
- Genome, Fungal
- Heterochromatin/metabolism
- Histone Acetyltransferases/metabolism
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Microarray Analysis
- RNA Polymerase III/metabolism
- RNA, Transfer, Gln/genetics
- RNA, Transfer, Gln/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics
- Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism
- Sirtuin 2
- Sirtuins/genetics
- Sirtuins/metabolism
- Cohesins
Collapse
Affiliation(s)
- Moumita Biswas
- Department of Biochemistry, Indian Institute of Science, C. V. Raman Ave., Bangalore KA 560012, India
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chimenti F, Bizzarri B, Maccioni E, Secci D, Bolasco A, Chimenti P, Fioravanti R, Granese A, Carradori S, Tosi F, Ballario P, Vernarecci S, Filetici P. A novel histone acetyltransferase inhibitor modulating Gcn5 network: cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl)hydrazone. J Med Chem 2009; 52:530-6. [PMID: 19099397 DOI: 10.1021/jm800885d] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acetylation is a key modulator of genome accessibility through decondensation of the chromatin structure. The balance between acetylation and opposite deacetylation is, in fact, a prerequisite for several cell functions and differentiation. To find modulators of the histone acetyltransferase Gcn5p, we performed a phenotypic screening on a set of newly synthesized molecules derived from thiazole in budding yeast Saccharomyces cerevisiae. We selected compounds that induce growth inhibition in yeast strains deleted in genes encoding known histone acetyltransferases. A novel molecule CPTH2, cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl)hydrazone, was selected based on its inhibitory effect on the growth of a gcn5Delta strain. We demonstrated a specific chemical-genetic interaction between CPTH2 and HAT Gcn5p, indicating that CPTH2 inhibits the Gcn5p dependent functional network. CPTH2 inhibited an in vitro HAT reaction, which is reverted by increasing concentration of histone H3. In vivo, it decreased acetylation of bulk histone H3 at the specific H3-AcK14 site. On the whole, our results demonstrate that CPTH2 is a novel HAT inhibitor modulating Gcn5p network in vitro and in vivo.
Collapse
Affiliation(s)
- Franco Chimenti
- Dipartimento di Chimica e Tecnologie del Farmaco, Universita degli Studi di Roma La Sapienza, P. le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Schulze JM, Wang AY, Kobor MS. YEATS domain proteins: a diverse family with many links to chromatin modification and transcriptionThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB’s 51st Annual Meeting – Epigenetics and Chromatin Dynamics, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2009; 87:65-75. [DOI: 10.1139/o08-111] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chromatin modifications play crucial roles in various biological processes. An increasing number of conserved protein domains, often found in multisubunit protein complexes, are involved in establishing and recognizing different chromatin modifications. The YEATS domain is one of these domains, and its role in chromatin modifications and transcription is just beginning to be appreciated. The YEATS domain family of proteins, conserved from yeast to human, contains over 100 members in more than 70 eukaryotic species. Yaf9, Taf14, and Sas5 are the only YEATS domain proteins in Saccharomyces cerevisiae. Human YEATS domain family members, such as GAS41, ENL, and AF9, have a strong link to cancer. GAS41 is amplified in glioblastomas and astrocytomas; ENL and AF9 are among the most frequent translocation partners of the mixed lineage leukemia (MLL) gene. This review will focus on the best characterized YEATS proteins, discuss their diverse roles, and reflect potential functions of the YEATS domain.
Collapse
Affiliation(s)
- Julia M. Schulze
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Alice Y. Wang
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
42
|
The double-histone-acetyltransferase complex ATAC is essential for mammalian development. Mol Cell Biol 2008; 29:1176-88. [PMID: 19103755 DOI: 10.1128/mcb.01599-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acetylation of the histone tails, catalyzed by histone acetyltransferases (HATs), is a well-studied process that contributes to transcriptionally active chromatin states. Here we report the characterization of a novel mammalian HAT complex, which contains the two acetyltransferases GCN5 and ATAC2 as well as other proteins linked to chromatin metabolism. This multisubunit complex has a similar but distinct subunit composition to that of the Drosophila ADA2A-containing complex (ATAC). Recombinant ATAC2 has a weak HAT activity directed to histone H4. Moreover, depletion of ATAC2 results in the disassembly of the complex, indicating that ATAC2 not only carries out an enzymatic function but also plays an architectural role in the stability of mammalian ATAC. By targeted disruption of the Atac2 locus in mice, we demonstrate for the first time the essential role of the ATAC complex in mammalian development, histone acetylation, cell cycle progression, and prevention of apoptosis during embryogenesis.
Collapse
|
43
|
A silencer promotes the assembly of silenced chromatin independently of recruitment. Mol Cell Biol 2008; 29:43-56. [PMID: 18955502 DOI: 10.1128/mcb.00983-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, silenced chromatin occurs at telomeres and the silent mating-type loci HMR and HML. At these sites, the Sir proteins are recruited to a silencer and then associate with adjacent chromatin. We used chromatin immunoprecipitation to compare the rates of Sir protein assembly at different genomic locations and discovered that establishment of silenced chromatin was much more rapid at HMR than at the telomere VI-R. Silenced chromatin also assembled more quickly on one side of HMR-E than on the other. Despite differences in spreading, the Sir proteins were recruited to HMR-E and telomeric silencers at equivalent rates. Additionally, insertion of HMR-E adjacent to the telomere VI-R increased the rate of Sir2p association with the telomere. These data suggest that HMR-E functions to both recruit Sir proteins and promote their assembly across several kilobases. Observations that association of Sir2p occurs simultaneously throughout HMR and that silencing at HMR is insensitive to coexpression of catalytically inactive Sir2p suggest that HMR-E acts by enabling assembly to occur in a nonlinear fashion. The ability of silencers to promote assembly of silenced chromatin over several kilobases is likely an important mechanism for maintaining what would otherwise be unstable chromatin at the correct genomic locations.
Collapse
|
44
|
Kawahara T, Siegel TN, Ingram AK, Alsford S, Cross GAM, Horn D. Two essential MYST-family proteins display distinct roles in histone H4K10 acetylation and telomeric silencing in trypanosomes. Mol Microbiol 2008; 69:1054-68. [PMID: 18631159 PMCID: PMC2556858 DOI: 10.1111/j.1365-2958.2008.06346.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chromatin modification is important for virtually all aspects of DNA metabolism but little is known about the consequences of such modification in trypanosomatids, early branching protozoa of significant medical and veterinary importance. MYST-family histone acetyltransferases in other species function in transcription regulation, DNA replication, recombination and repair. Trypanosoma brucei HAT3 was recently shown to acetylate histone H4K4 and we now report characterization of all three T. brucei MYST acetyltransferases (HAT1–3). First, GFP-tagged HAT1–3 all localize to the trypanosome nucleus. While HAT3 is dispensable, both HAT1 and HAT2 are essential for growth. Strains with HAT1 knock-down display mitosis without nuclear DNA replication and also specific de-repression of a telomeric reporter gene, a rare example of transcription control in an organism with widespread and constitutive polycistronic transcription. Finally, we show that HAT2 is responsible for H4K10 acetylation. By analogy to the situation in Saccharomyces cerevisiae, we discuss low-level redundancy of acetyltransferase function in T. brucei and suggest that two MYST-family acetyltransferases are essential due to the absence of a Gcn5 homologue. The results are also consistent with the idea that HAT1 contributes to establishing boundaries between transcriptionally active and repressed telomeric domains in T. brucei.
Collapse
Affiliation(s)
- Taemi Kawahara
- London School of Hygiene and Tropical Medicine, London, UK
| | | | | | | | | | | |
Collapse
|
45
|
Arimbasseri AG, Bhargava P. Chromatin structure and expression of a gene transcribed by RNA polymerase III are independent of H2A.Z deposition. Mol Cell Biol 2008; 28:2598-607. [PMID: 18268003 PMCID: PMC2293117 DOI: 10.1128/mcb.01953-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/04/2007] [Accepted: 02/04/2008] [Indexed: 01/09/2023] Open
Abstract
The genes transcribed by RNA polymerase III (Pol III) generally have intragenic promoter elements. One of them, the yeast U6 snRNA (SNR6) gene is activated in vitro by a positioned nucleosome between its intragenic box A and extragenic, downstream box B separated by approximately 200 bp. We demonstrate here that the in vivo chromatin structure of the gene region is characterized by the presence of an array of positioned nucleosomes, with only one of them in the 5' end of the gene having a regulatory role. A positioned nucleosome present between boxes A and B in vivo does not move when the gene is repressed due to nutritional deprivation. In contrast, the upstream nucleosome which covers the TATA box under repressed conditions is shifted approximately 50 bp further upstream by the ATP-dependent chromatin remodeler RSC upon activation. It is marked with the histone variant H2A.Z and H4K16 acetylation in active state. In the absence of H2A.Z, the chromatin structure of the gene does not change, suggesting that H2A.Z is not required for establishing the active chromatin structure. These results show that the chromatin structure directly participates in regulation of a Pol III-transcribed gene under different states of its activity in vivo.
Collapse
|
46
|
Rosaleny LE, Ruiz-García AB, García-Martínez J, Pérez-Ortín JE, Tordera V. The Sas3p and Gcn5p histone acetyltransferases are recruited to similar genes. Genome Biol 2008; 8:R119. [PMID: 17584493 PMCID: PMC2394765 DOI: 10.1186/gb-2007-8-6-r119] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 03/20/2007] [Accepted: 06/20/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Specific histone modifications can perform several cellular functions, for example, as signals to recruit trans-acting factors and as modulators of chromatin structure. Acetylation of Lys14 of histone H3 is the main target of many histone acetyltransferases in vitro and may play a central role in the stability of the nucleosome. This study is focused on the genome-wide binding of Saccharomyces cerevisiae histone acetyltransferases that are specific for Lys14 of histone H3. RESULTS We have used a variation of the genome-wide location analysis method, based on a macroarray platform, to identify binding sites of yeast histone acetyltransferase catalytic subunits and to correlate their positions with acetylation of Lys14 of histone H3. Our results revealed that the histone acetyltransferases Sas3p and Gcn5p are recruited to a pool of intensely transcribed genes and that there is considerable overlap between the two cohorts of Sas3p and Gcn5p bound gene pools. We also demonstrate a positive correlation between binding sites of both proteins and the acetylation state of Lys14 of histone H3. Finally, a positive correlation between the decrease of H3 Lys14 acetylation in a GCN5 deleted strain and the Gcn5p genome occupancy is shown. CONCLUSION Our data support a model in which both Gcn5p and Sas3p act as general activators of an overlapping pool of intensely transcribed genes. Since both proteins preferentially acetylate Lys14 of histone H3, our data support the hypothesis that acetylation of this specific residue facilitates the action of the transcriptional apparatus.
Collapse
Affiliation(s)
- Lorena E Rosaleny
- Departament de Bioquímica i Biologia Molecular, Universitat de València, València. Spain
| | - Ana B Ruiz-García
- Departament de Bioquímica i Biologia Molecular, Universitat de València, València. Spain
| | - José García-Martínez
- Laboratori de Chips de DNA del Servei Central de Suport a la Investigació Experimental, Universitat de València, València
| | - José E Pérez-Ortín
- Departament de Bioquímica i Biologia Molecular, Universitat de València, València. Spain
| | - Vicente Tordera
- Departament de Bioquímica i Biologia Molecular, Universitat de València, València. Spain
| |
Collapse
|
47
|
Abstract
Histone modifications such as acetylation, methylation and phosphorylation have been implicated in fundamental cellular processes such as epigenetic regulation of gene expression, organization of chromatin structure, chromosome segregation, DNA replication and DNA repair. Males absent on the first (MOF) is responsible for acetylating histone H4 at lysine 16 (H4K16) and is a key component of the MSL complex required for dosage compensation in Drosophila. The human ortholog of MOF (hMOF) has the same substrate specificity and recent purification of the human and Drosophila MOF complexes showed that these complexes were also highly conserved through evolution. Several studies have shown that loss of hMOF in mammalian cells leads to a number of different phenotypes; a G2/M cell cycle arrest, nuclear morphological defects, spontaneous chromosomal aberrations, reduced transcription of certain genes and an impaired DNA repair response upon ionizing irradiation. Moreover, hMOF is involved in ATM activation in response to DNA damage and acetylation of p53 by hMOF influences the cell's decision to undergo apoptosis instead of a cell cycle arrest. These data, highlighting hMOF as an important component of many cellular processes, as well as links between hMOF and cancer will be discussed.
Collapse
Affiliation(s)
- S Rea
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
48
|
Lafon A, Chang CS, Scott EM, Jacobson SJ, Pillus L. MYST opportunities for growth control: yeast genes illuminate human cancer gene functions. Oncogene 2007; 26:5373-84. [PMID: 17694079 DOI: 10.1038/sj.onc.1210606] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The MYST family of histone acetyltransferases (HATs) was initially defined by human genes with disease connections and by yeast genes identified for their role in epigenetic transcriptional silencing. Since then, many new MYST genes have been discovered through genetic and genomic approaches. Characterization of the complexes through which MYST proteins act, regions of the genome to which they are targeted and biological consequences when they are disrupted, all deepen the connections of MYST proteins to development, growth control and human cancers. Many of the insights into MYST family function have come from studies in model organisms. Herein, we review functions of two of the founding MYST genes, yeast SAS2 and SAS3, and the essential yeast MYST ESA1. Analysis of these genes in yeast has defined roles for MYST proteins in transcriptional activation and silencing, and chromatin-mediated boundary formation. They have further roles in DNA damage repair and nuclear integrity. The observation that MYST protein complexes share subunits with other HATs, histone deacetylases and other key nuclear proteins, many with connections to human cancers, strengthens the idea that coordinating distinct chromatin modifications is critical for regulation.
Collapse
Affiliation(s)
- A Lafon
- Section of Molecular Biology, Division of Biological Sciences, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
49
|
Lee KK, Workman JL. Histone acetyltransferase complexes: one size doesn't fit all. Nat Rev Mol Cell Biol 2007; 8:284-95. [PMID: 17380162 DOI: 10.1038/nrm2145] [Citation(s) in RCA: 799] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the past 10 years, the study of histone acetyltransferases (HATs) has advanced significantly, and a number of HATs have been isolated from various organisms. It emerged that HATs are highly diverse and generally contain multiple subunits. The functions of the catalytic subunit depend largely on the context of the other subunits in the complex. We are just beginning to understand the specialized roles of HAT complexes in chromosome decondensation, DNA-damage repair and the modification of non-histone substrates, as well as their role in the broader epigenetic landscape, including the role of protein domains within HAT complexes and the dynamic interplay between HAT complexes and existing histone modifications.
Collapse
Affiliation(s)
- Kenneth K Lee
- Stowers Institute, 1000 East 50th Street, Kansas City, Missouri 64110, USA
| | | |
Collapse
|
50
|
Abstract
ATP-dependent chromatin remodeling complexes contain ATPases of the Swi/Snf superfamily and alter DNA accessibility of chromatin in an ATP-dependent manner. Recently characterized INO80 and SWR1 complexes belong to a subfamily of these chromatin remodelers and are characterized by a split ATPase domain in the core ATPase subunit and the presence of Rvb proteins. INO80 and SWR1 complexes are evolutionarily conserved from yeast to human and have been implicated in transcription regulation, as well as DNA repair. The individual components, assembly patterns, and molecular mechanisms of the INO80 class of chromatin remodeling complexes are discussed in this review.
Collapse
Affiliation(s)
- Yunhe Bao
- Department of Carcinogenesis, Science Park Research Division, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
| | - Xuetong Shen
- Department of Carcinogenesis, Science Park Research Division, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
| |
Collapse
|