1
|
Puster LO, Stanley CB, Uversky VN, Curtis JE, Krueger S, Chu Y, Peterson CB. Characterization of an Extensive Interface on Vitronectin for Binding to Plasminogen Activator Inhibitor-1: Adoption of Structure in an Intrinsically Disordered Region. Biochemistry 2019; 58:5117-5134. [PMID: 31793295 DOI: 10.1021/acs.biochem.9b00605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Small-angle neutron scattering (SANS) measurements were pursued to study human vitronectin, a protein found in tissues and the circulation that regulates cell adhesion/migration and proteolytic cascades that govern hemostasis and pericellular proteolysis. Many of these functions occur via interactions with its binding partner, plasminogen activator inhibitor-1 (PAI-1), the chief inhibitor of proteases that lyse and activate plasminogen. We focused on a region of vitronectin that remains uncharacterized from previous X-ray scattering, nuclear magnetic resonance, and computational modeling approaches and which we propose is involved in binding to PAI-1. This region, which bridges the N-terminal somatomedin B (SMB) domain with a large central β-propeller domain of vitronectin, appears unstructured and has characteristics of an intrinsically disordered domain (IDD). The effect of osmolytes was evaluated using circular dichroism and SANS to explore the potential of the IDD to undergo a disorder-to-order transition. The results suggest that the IDD favors a more ordered structure under osmotic pressure; SANS shows a smaller radius of gyration (Rg) and a more compact fold of the IDD upon addition of osmolytes. To test whether PAI-1 binding is also coupled to folding within the IDD structure, a set of SANS experiments with contrast variation were performed on the complex of PAI-1 with a vitronectin fragment corresponding to the N-terminal 130 amino acids (denoted the SMB-IDD because it contains the SMB domain and IDD in linear sequence). Analysis of the SANS data using the Ensemble Optimization Method confirms that the SMB-IDD adopts a more compact configuration when bound to PAI-1. Calculated structures for the PAI-1:SMB-IDD complex suggest that the IDD provides an interaction surface outside of the primary PAI-1-binding site located within the SMB domain; this binding is proposed to lead to the assembly of higher-order structures of vitronectin and PAI-1 commonly found in tissues.
Collapse
Affiliation(s)
- Letitia O Puster
- Department of Biochemistry and Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Christopher B Stanley
- Computational Sciences and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine , University of South Florida , Tampa , Florida 33612 , United States.,Laboratory of New Methods in Biology , Institute for Biological Instrumentation, Russian Academy of Sciences , Pushchino , Moscow region 142290 , Russia
| | - Joseph E Curtis
- National Institute of Standards and Technology Center for Neutron Research , Gaithersburg , Maryland 20899 , United States
| | - Susan Krueger
- National Institute of Standards and Technology Center for Neutron Research , Gaithersburg , Maryland 20899 , United States
| | - Yuzhuo Chu
- Department of Biological Sciences , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Cynthia B Peterson
- Department of Biological Sciences , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
2
|
Chu Y, Bucci JC, Peterson CB. Identification of a PAI-1-binding site within an intrinsically disordered region of vitronectin. Protein Sci 2019; 29:494-508. [PMID: 31682300 DOI: 10.1002/pro.3770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
The serine protease inhibitor, plasminogen activator inhibitor Type-1 (PAI-1) is a metastable protein that undergoes an unusual transition to an inactive conformation with a short half-life of only 1-2 hr. Circulating PAI-1 is bound to a cofactor vitronectin, which stabilizes PAI-1 by slowing this latency conversion. A well-characterized PAI-1-binding site on vitronectin is located within the somatomedin B (SMB) domain, corresponding to the first 44 residues of the protein. Another PAI-1 recognition site has been identified with an engineered form of vitronectin lacking the SMB domain, yet retaining PAI-1 binding capacity (Schar, Blouse, Minor, Peterson. J Biol Chem. 2008;283:28487-28496). This additional binding site is hypothesized to lie within an intrinsically disordered domain (IDD) of vitronectin. To localize the putative binding site, we constructed a truncated form of vitronectin containing 71 amino acids from the N-terminus, including the SMB domain and an additional 24 amino acids from the IDD region. This portion of the IDD is rich in acidic amino acids, which are hypothesized to be complementary to several basic residues identified within an extensive vitronectin-binding site mapped on PAI-1 (Schar, Jensen, Christensen, Blouse, Andreasen, Peterson. J Biol Chem. 2008;283:10297-10309). Steady-state and stopped-flow fluorescence measurements demonstrate that the truncated form of vitronectin exhibits the same rapid biphasic association as full-length vitronectin and that the IDD hosts the elusive second PAI-1 binding site that lies external to the SMB domain of vitronectin.
Collapse
Affiliation(s)
- Yuzhuo Chu
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States
| | - Joel C Bucci
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States
| | - Cynthia B Peterson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States
| |
Collapse
|
3
|
Brautigam CA, Padrick SB, Schuck P. Multi-signal sedimentation velocity analysis with mass conservation for determining the stoichiometry of protein complexes. PLoS One 2013; 8:e62694. [PMID: 23696787 PMCID: PMC3656001 DOI: 10.1371/journal.pone.0062694] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/25/2013] [Indexed: 01/12/2023] Open
Abstract
Multi-signal sedimentation velocity analytical ultracentrifugation (MSSV) is a powerful tool for the determination of the number, stoichiometry, and hydrodynamic shape of reversible protein complexes in two- and three-component systems. In this method, the evolution of sedimentation profiles of macromolecular mixtures is recorded simultaneously using multiple absorbance and refractive index signals and globally transformed into both spectrally and diffusion-deconvoluted component sedimentation coefficient distributions. For reactions with complex lifetimes comparable to the time-scale of sedimentation, MSSV reveals the number and stoichiometry of co-existing complexes. For systems with short complex lifetimes, MSSV reveals the composition of the reaction boundary of the coupled reaction/migration process, which we show here may be used to directly determine an association constant. A prerequisite for MSSV is that the interacting components are spectrally distinguishable, which may be a result, for example, of extrinsic chromophores or of different abundances of aromatic amino acids contributing to the UV absorbance. For interacting components that are spectrally poorly resolved, here we introduce a method for additional regularization of the spectral deconvolution by exploiting approximate knowledge of the total loading concentrations. While this novel mass conservation principle does not discriminate contributions to different species, it can be effectively combined with constraints in the sedimentation coefficient range of uncomplexed species. We show in theory, computer simulations, and experiment, how mass conservation MSSV as implemented in SEDPHAT can enhance or even substitute for the spectral discrimination of components. This should broaden the applicability of MSSV to the analysis of the composition of reversible macromolecular complexes.
Collapse
Affiliation(s)
- Chad A. Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Shae B. Padrick
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Peter Schuck
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
4
|
Jensen JK, Thompson LC, Bucci JC, Nissen P, Gettins PGW, Peterson CB, Andreasen PA, Morth JP. Crystal structure of plasminogen activator inhibitor-1 in an active conformation with normal thermodynamic stability. J Biol Chem 2011; 286:29709-17. [PMID: 21697084 DOI: 10.1074/jbc.m111.236554] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The serpin plasminogen activator inhibitor-1 (PAI-1) is a crucial regulator in fibrinolysis and tissue remodeling. PAI-1 has been associated with several pathological conditions and is a validated prognostic marker in human cancers. However, structural information about the native inhibitory form of PAI-1 has been elusive because of its inherent conformational instability and rapid conversion to a latent, inactive structure. Here we report the crystal structure of PAI-1 W175F at 2.3 Å resolution as the first model of the metastable native molecule. Structural comparison with a quadruple mutant (14-1B) previously used as representative of the active state uncovered key differences. The most striking differences occur near the region that houses three of the four mutations in the 14-1B PAI-1 structure. Prominent changes are localized within a loop connecting β-strand 3A with the F helix, in which a previously observed 3(10)-helix is absent in the new structure. Notably these structural changes are found near the binding site for the cofactor vitronectin. Because vitronectin is the only known physiological regulator of PAI-1 that slows down the latency conversion, the structure of this region is important. Furthermore, the previously identified chloride-binding site close to the F-helix is absent from the present structure and likely to be artifactual, because of its dependence on the 14-1B mutations. Instead we found a different chlorine-binding site that is likely to be present in wild type PAI-1 and that more satisfactorily accounts for the chlorine stabilizing effect on PAI-1.
Collapse
Affiliation(s)
- Jan K Jensen
- Department of Molecular Biology, Aarhus University, Aarhus C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Padrick SB, Brautigam CA. Evaluating the stoichiometry of macromolecular complexes using multisignal sedimentation velocity. Methods 2011; 54:39-55. [PMID: 21256217 PMCID: PMC3147156 DOI: 10.1016/j.ymeth.2011.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/06/2011] [Accepted: 01/13/2011] [Indexed: 12/21/2022] Open
Abstract
Gleaning information regarding the molecular physiology of macromolecular complexes requires knowledge of their component stoichiometries. In this work, a relatively new means of analyzing sedimentation velocity (SV) data from the analytical ultracentrifuge is examined in detail. The method depends on collecting concentration profile data simultaneously using multiple signals, like Rayleigh interferometry and UV spectrophotometry. If the cosedimenting components of a complex are spectrally distinguishable, continuous sedimentation-coefficient distributions specific for each component can be calculated to reveal the molar ratio of the complex's components. When combined with the hydrodynamic information available from the SV data, a stoichiometry can be derived. Herein, the spectral properties of sedimenting species are systematically explored to arrive at a predictive test for whether a set of macromolecules can be spectrally resolved in a multisignal SV (MSSV) experiment. Also, a graphical means of experimental design and criteria to judge the success of the spectral discrimination in MSSV are introduced. A detailed example of the analysis of MSSV experiments is offered, and the possibility of deriving equilibrium association constants from MSSV analyses is explored. Finally, successful implementations of MSSV are reviewed.
Collapse
Affiliation(s)
- Shae B. Padrick
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd. Dallas, TX 75390-8816
| | - Chad A. Brautigam
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd. Dallas, TX 75390-8816
| |
Collapse
|
6
|
Padrick SB, Deka RK, Chuang JL, Wynn RM, Chuang DT, Norgard MV, Rosen MK, Brautigam CA. Determination of protein complex stoichiometry through multisignal sedimentation velocity experiments. Anal Biochem 2010; 407:89-103. [PMID: 20667444 PMCID: PMC3089910 DOI: 10.1016/j.ab.2010.07.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 01/21/2023]
Abstract
Determination of the stoichiometry of macromolecular assemblies is fundamental to an understanding of how they function. Many different biophysical methodologies may be used to determine stoichiometry. In the past, both sedimentation equilibrium and sedimentation velocity analytical ultracentrifugation have been employed to determine component stoichiometries. Recently, a method of globally analyzing multisignal sedimentation velocity data was introduced by Schuck and coworkers. This global analysis removes some of the experimental inconveniences and inaccuracies that could occur in the previously used strategies. This method uses spectral differences between the macromolecular components to decompose the well-known c(s) distribution into component distributions c(k)(s); that is, each component k has its own c(k)(s) distribution. Integration of these distributions allows the calculation of the populations of each component in cosedimenting complexes, yielding their stoichiometry. In our laboratories, we have used this method extensively to determine the component stoichiometries of several protein-protein complexes involved in cytoskeletal remodeling, sugar metabolism, and host-pathogen interactions. The overall method is described in detail in this work, as are experimental examples and caveats.
Collapse
Affiliation(s)
- Shae B. Padrick
- Department of Biochemistry, The University of Texas, Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-8816
| | - Ranjit K. Deka
- Department of Microbiology, The University of Texas, Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-8816
| | - Jacinta L. Chuang
- Department of Biochemistry, The University of Texas, Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-8816
| | - R. Max Wynn
- Department of Biochemistry, The University of Texas, Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-8816
- Department of Internal Medicine, The University of Texas, Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-8816
| | - David T. Chuang
- Department of Biochemistry, The University of Texas, Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-8816
- Department of Internal Medicine, The University of Texas, Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-8816
| | - Michael V. Norgard
- Department of Microbiology, The University of Texas, Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-8816
| | - Michael K. Rosen
- Department of Biochemistry, The University of Texas, Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-8816
- Howard Hughes Medical Institute, The University of Texas, Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-8816
| | - Chad A. Brautigam
- Department of Biochemistry, The University of Texas, Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-8816
| |
Collapse
|
7
|
Blouse GE, Dupont DM, Schar CR, Jensen JK, Minor KH, Anagli JY, Gårdsvoll H, Ploug M, Peterson CB, Andreasen PA. Interactions of plasminogen activator inhibitor-1 with vitronectin involve an extensive binding surface and induce mutual conformational rearrangements. Biochemistry 2010; 48:1723-35. [PMID: 19193026 DOI: 10.1021/bi8017015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to explore early events during the association of plasminogen activator inhibitor-1 (PAI-1) with its cofactor vitronectin, we have applied a robust strategy that combines protein engineering, fluorescence spectroscopy, and rapid reaction kinetics. Fluorescence stopped-flow experiments designed to monitor the rapid association of PAI-1 with vitronectin indicate a fast, concentration-dependent, biphasic binding of PAI-1 to native vitronectin but only a monophasic association with the somatomedin B (SMB) domain, suggesting that multiple phases of the binding interaction occur only when full-length vitronectin is present. Nonetheless, in all cases, the initial fast interaction is followed by slower fluorescence changes attributed to a conformational change in PAI-1. Complementary experiments using an engineered, fluorescently silent PAI-1 with non-natural amino acids showed that concomitant structural changes occur as well in native vitronectin. Furthermore, we have measured the effect of vitronectin on the rate of insertion of the reactive center loop into beta-sheet A of PAI-1 during reaction with target proteases. With a variety of PAI-1 variants, we observe that both full-length vitronectin and the SMB domain have protease-specific effects on the rate of loop insertion but that the two exhibit clearly different effects. These results support a model for PAI-1 binding to vitronectin in which the interaction surface extends beyond the region of PAI-1 occupied by the SMB domain. In support of this model are recent results that define a PAI-1-binding site on vitronectin that lies outside the somatomedin B domain (Schar, C. R., Blouse, G. E., Minor, K. H., and Peterson, C. B. (2008) J. Biol. Chem. 283, 10297-10309) and the complementary site on PAI-1 (Schar, C. R., Jensen, J. K., Christensen, A., Blouse, G. E., Andreasen, P. A., and Peterson, C. B. (2008) J. Biol. Chem. 283, 28487-28496).
Collapse
Affiliation(s)
- Grant E Blouse
- Laboratory of Cellular Protein Science, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Arhus C, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Adair JE, Stober V, Sobhany M, Zhuo L, Roberts JD, Negishi M, Kimata K, Garantziotis S. Inter-alpha-trypsin inhibitor promotes bronchial epithelial repair after injury through vitronectin binding. J Biol Chem 2009; 284:16922-16930. [PMID: 19395377 DOI: 10.1074/jbc.m808560200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pulmonary epithelial injury is central to the pathogenesis of many lung diseases, such as asthma, pulmonary fibrosis, and the acute respiratory distress syndrome. Regulated epithelial repair is crucial for lung homeostasis and prevents scar formation and inflammation that accompany dysregulated healing. The extracellular matrix (ECM) plays an important role in epithelial repair after injury. Vitronectin is a major ECM component that promotes epithelial repair. However, the factors that modify cell-vitronectin interactions after injury and help promote epithelial repair are not well studied. Inter-alpha-trypsin inhibitor (IaI) is an abundant serum protein. IaI heavy chains contain von Willebrand A domains that can bind the arginine-glycine-aspartate domain of vitronectin. We therefore hypothesized that IaI can bind vitronectin and promote vitronectin-induced epithelial repair after injury. We show that IaI binds vitronectin at the arginine-glycine-aspartate site, thereby promoting epithelial adhesion and migration in vitro. Furthermore, we show that IaI-deficient mice have a dysregulated response to epithelial injury in vivo, consisting of decreased proliferation and epithelial metaplasia. We conclude that IaI interacts not only with hyaluronan, as previously reported, but also other ECM components like vitronectin and is an important regulator of cellular repair after injury.
Collapse
Affiliation(s)
- Jennifer E Adair
- From the National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Vandy Stober
- From the National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Mack Sobhany
- From the National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Lisheng Zhuo
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - John D Roberts
- From the National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Masahiko Negishi
- From the National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Koji Kimata
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Stavros Garantziotis
- From the National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709.
| |
Collapse
|
9
|
Schar CR, Jensen JK, Christensen A, Blouse GE, Andreasen PA, Peterson CB. Characterization of a site on PAI-1 that binds to vitronectin outside of the somatomedin B domain. J Biol Chem 2008; 283:28487-96. [PMID: 18658131 DOI: 10.1074/jbc.m804257200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitronectin and plasminogen activator inhibitor-1 (PAI-1) are proteins that interact in the circulatory system and pericellular region to regulate fibrinolysis, cell adhesion, and migration. The interactions between the two proteins have been attributed primarily to binding of the somatomedin B (SMB) domain, which comprises the N-terminal 44 residues of vitronectin, to the flexible joint region of PAI-1, including residues Arg-103, Met-112, and Gln-125 of PAI-1. A strategy for deletion mutagenesis that removes the SMB domain demonstrates that this mutant form of vitronectin retains PAI-1 binding (Schar, C. R., Blouse, G. E., Minor, K. M., and Peterson, C. B. (2008) J. Biol. Chem. 283, 10297-10309). In the current study, the complementary binding site on PAI-1 was mapped by testing for the ability of a battery of PAI-1 mutants to bind to the engineered vitronectin lacking the SMB domain. This approach identified a second, separate site for interaction between vitronectin and PAI-1. The binding of PAI-1 to this site was defined by a set of mutations in PAI-1 distinct from the mutations that disrupt binding to the SMB domain. Using the mutations in PAI-1 to map the second site suggested interactions between alpha-helices D and E in PAI-1 and a site in vitronectin outside of the SMB domain. The affinity of this second interaction exhibited a K(D) value approximately 100-fold higher than that of the PAI-1-somatomedin B interaction. In contrast to the PAI-1-somatomedin B binding, the second interaction had almost the same affinity for active and latent PAI-1. We hypothesize that, together, the two sites form an extended binding area that may promote assembly of higher order vitronectin-PAI-1 complexes.
Collapse
Affiliation(s)
- Christine R Schar
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | |
Collapse
|
10
|
Brown PH, Balbo A, Schuck P. Characterizing protein-protein interactions by sedimentation velocity analytical ultracentrifugation. CURRENT PROTOCOLS IN IMMUNOLOGY 2008; Chapter 18:18.15.1-18.15.39. [PMID: 18491296 DOI: 10.1002/0471142735.im1815s81] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This unit introduces the basic principles and practice of sedimentation velocity analytical ultracentrifugation for the study of reversible protein interactions, such as the characterization of self-association, heterogeneous association, multi-protein complexes, binding stoichiometry, and the determination of association constants. The analytical tools described include sedimentation coefficient and molar mass distributions, multi-signal sedimentation coefficient distributions, Gilbert-Jenkins theory, different forms of isotherms, and global Lamm equation modeling. Concepts for the experimental design are discussed, and a detailed step-by-step protocol guiding the reader through the experiment and the data analysis is available as an Internet resource.
Collapse
Affiliation(s)
| | - Andrea Balbo
- National Institutes of Health, Bethesda, Maryland
| | - Peter Schuck
- National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Brown PH, Schuck P. A new adaptive grid-size algorithm for the simulation of sedimentation velocity profiles in analytical ultracentrifugation. COMPUTER PHYSICS COMMUNICATIONS 2008; 178:105-120. [PMID: 18196178 PMCID: PMC2267755 DOI: 10.1016/j.cpc.2007.08.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Analytical ultracentrifugation allows one to measure in real-time the concentration gradients arising from the application of a centrifugal force to macromolecular mixtures in solution. In the last decade, the ability to efficiently solve the partial differential equation governing the ultracentrifugal sedimentation and diffusion process, the Lamm equation, has spawned significant progress in the application of sedimentation velocity analytical ultracentrifugation for the study of biological macromolecules, for example, the characterization of protein oligomeric states and the study of reversible multi-protein complexes in solution. The present work describes a numerical algorithm that can provide an improvement in accuracy or efficiency over existing algorithms by more than one order of magnitude, and thereby greatly facilitate the practical application of sedimentation velocity analysis, in particular, for the study of multi-component macromolecular mixtures. It is implemented in the public domain software SEDFIT for the analysis of experimental data.
Collapse
Affiliation(s)
| | - Peter Schuck
- Address for correspondence Dr. Peter Schuck National Institutes of Health Bldg. 13, Rm. 3N17 13 South Drive Bethesda, MD 20892, USA Phone: 301 435−1950 Fax: 301 480−1242
| |
Collapse
|
12
|
Schar CR, Blouse GE, Minor KH, Peterson CB. A deletion mutant of vitronectin lacking the somatomedin B domain exhibits residual plasminogen activator inhibitor-1-binding activity. J Biol Chem 2008; 283:10297-309. [PMID: 18174166 DOI: 10.1074/jbc.m708017200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitronectin and plasminogen activator inhibitor-1 (PAI-1) are important physiological binding partners that work in concert to regulate cellular adhesion, migration, and fibrinolysis. The high affinity binding site for PAI-1 is located within the N-terminal somatomedin B domain of vitronectin; however, several studies have suggested a second PAI-1-binding site within vitronectin. To investigate this secondary site, a vitronectin mutant lacking the somatomedin B domain (rDeltasBVN) was engineered. The short deletion had no effect on heparin-binding, integrin-binding, or cellular adhesion. Binding to the urokinase receptor was completely abolished while PAI-1 binding was still observed, albeit with a lower affinity. Analytical ultracentrifugation on the PAI-1-vitronectin complex demonstrated that increasing NaCl concentration favors 1:1 versus 2:1 PAI-1-vitronectin complexes and hampers formation of higher order complexes, pointing to the contribution of charge-charge interactions for PAI-1 binding to the second site. Furthermore, fluorescence resonance energy transfer between differentially labeled PAI-1 molecules confirmed that two independent molecules of PAI-1 are capable of binding to vitronectin. These results support a model for the assembly of higher order PAI-1-vitronectin complexes via two distinct binding sites in both proteins.
Collapse
Affiliation(s)
- Christine R Schar
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | |
Collapse
|
13
|
Falanga V, Butmarc J, Cha J, Yufit T, Carson P. Migration of the epidermal over the dermal component (epiboly) in a bilayered bioengineered skin construct. ACTA ACUST UNITED AC 2007; 13:21-8. [PMID: 17518578 DOI: 10.1089/ten.2006.0148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A bilayered bioengineered living skin construct (LSC) consisting of viable human neonatal keratinocytes over a collagenous dermis seeded with dermal fibroblasts has been used extensively in difficult-to heal human wounds. Its biological properties include production of several mediators, cytokines, and growth factors and the ability to heal itself upon injury. In this study, we investigated the process of keratinocyte migration in LSC. At baseline, 6-mm punch biopsies of the construct were placed in serum-free medium (AIM-V) or Dulbecco's modified Eagle medium. At varying time points, the LSC samples were processed and analyzed using histology and immunohistochemistry. By 72 h, in a time-dependent manner, the overlying epidermis had migrated over and enveloped the entire underlying dermis, a process known as epiboly. Increasing concentrations of neutralizing antibodies to epidermal growth factor or interleukin-1 alpha down-regulated the extent of epiboly, as measured using computerized planimetry, but antibodies to transforming growth factor-beta 1 did not affect it. The consistent expression of laminin V, alpha3beta1 integrin, and vitronectin (epibolin) and its integrin receptor (alphavbeta5) characterized the tongue of migrating epidermis. Increasing concentrations of antibodies to vitronectin blocked the process of epiboly, as did antibodies to the alphavbeta5 integrin receptor, which mediates vitronectin-driven keratinocyte locomotion. This process of epiboly provides novel mechanisms of action for bioengineered skin constructs.
Collapse
Affiliation(s)
- Vincent Falanga
- Department of Dermatology, Roger Williams Medical Center, Providence, Rhode Island 02908, and Boston University School of Medicine, Boston, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
14
|
Brown PH, Balbo A, Schuck P. Using prior knowledge in the determination of macromolecular size-distributions by analytical ultracentrifugation. Biomacromolecules 2007; 8:2011-24. [PMID: 17521163 PMCID: PMC1994561 DOI: 10.1021/bm070193j] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Analytical ultracentrifugation has reemerged as a widely used tool for the study of ensembles of biological macromolecules to understand, for example, their size-distribution and interactions in free solution. Such information can be obtained from the mathematical analysis of the concentration and signal gradients across the solution column and their evolution in time generated as a result of the gravitational force. In sedimentation velocity analytical ultracentrifugation, this analysis is frequently conducted using high resolution, diffusion-deconvoluted sedimentation coefficient distributions. They are based on Fredholm integral equations, which are ill-posed unless stabilized by regularization. In many fields, maximum entropy and Tikhonov-Phillips regularization are well-established and powerful approaches that calculate the most parsimonious distribution consistent with the data and prior knowledge, in accordance with Occam's razor. In the implementations available in analytical ultracentrifugation, to date, the basic assumption implied is that all sedimentation coefficients are equally likely and that the information retrieved should be condensed to the least amount possible. Frequently, however, more detailed distributions would be warranted by specific detailed prior knowledge on the macromolecular ensemble under study, such as the expectation of the sample to be monodisperse or paucidisperse or the expectation for the migration to establish a bimodal sedimentation pattern based on Gilbert-Jenkins' theory for the migration of chemically reacting systems. So far, such prior knowledge has remained largely unused in the calculation of the sedimentation coefficient or molecular weight distributions or was only applied as constraints. In the present paper, we examine how prior expectations can be built directly into the computational data analysis, conservatively in a way that honors the complete information of the experimental data, whether or not consistent with the prior expectation. Consistent with analogous results in other fields, we find that the use of available prior knowledge can have a dramatic effect on the resulting molecular weight, sedimentation coefficient, and size-and-shape distributions and can significantly increase both their sensitivity and their resolution. Further, the use of multiple alternative prior information allows us to probe the range of possible interpretations consistent with the data.
Collapse
Affiliation(s)
- Patrick H. Brown
- Protein Biophysics Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Andrea Balbo
- Protein Biophysics Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Peter Schuck
- Protein Biophysics Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|