1
|
Cooksey LC, Friesen DC, Mangan ED, Mathew PA. Prospective Molecular Targets for Natural Killer Cell Immunotherapy against Glioblastoma Multiforme. Cells 2024; 13:1567. [PMID: 39329751 PMCID: PMC11429815 DOI: 10.3390/cells13181567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of primary malignant brain tumor and has a dismal overall survival rate. To date, no GBM therapy has yielded successful results in survival for patients beyond baseline surgical resection, radiation, and chemotherapy. Immunotherapy has taken the oncology world by storm in recent years and there has been movement from researchers to implement the immunotherapy revolution into GBM treatment. Natural killer (NK) cell-based immunotherapies are a rising candidate to treat GBM from multiple therapeutic vantage points: monoclonal antibody therapy targeting tumor-associated antigens (TAAs), immune checkpoint inhibitors, CAR-NK cell therapy, Bi-specific killer cell engagers (BiKEs), and more. NK therapies often focus on tumor antigens for targeting. Here, we reviewed some common targets analyzed in the fight for GBM immunotherapy relevant to NK cells: EGFR, HER2, CD155, and IL-13Rα2. We further propose investigating the Lectin-like Transcript 1 (LLT1) and cell surface proliferating cell nuclear antigen (csPCNA) as targets for NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Luke C. Cooksey
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Derek C. Friesen
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
| | - Enrique D. Mangan
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
| | - Porunelloor A. Mathew
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
2
|
Li X, Xiao X, Wang Y, Gu G, Li T, Wang Y, Li C, Zhang P, Ji N, Zhang Y, Zhang L. Expression of Interleukin-13 Receptor Alpha 2 in Brainstem Gliomas. Cancers (Basel) 2024; 16:228. [PMID: 38201655 PMCID: PMC10777982 DOI: 10.3390/cancers16010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
The objective of this study was to investigate IL13Ra2 expression in brainstem glioma (BSG) and its correlation with key markers, functions, and prognostic implications, evaluating its therapeutic potential. A total of 80 tumor samples from BSG patients were analyzed. Multiplex immunofluorescence was used to examine six markers-IL13Ra2, H3.3K27M, CD133, Ki67, HLA-1, and CD4-establishing relationships between IL13Ra2 and these markers. Survival analysis, employing Kaplan-Meier and Cox proportional hazard regression models, encompassed 66 patients with complete follow-up. RNA-Seq data from a previously published study involving 98 patients were analyzed using the DESeq2 library to determine differential gene expression between groups. Gene Ontology (GO) enrichment and single-sample gene set enrichment analysis (ssGSEA) via the clusterProfiler library were used to delineate the gene functions of differentially expressed genes (DEGs). Nearly all the BSG patients displayed varying IL13Ra2 expression, with 45.0% (36/80) exhibiting over a 20% increase. Elevated IL13Ra2 levels were notably observed in pontine gliomas, diffuse intrinsic pontine gliomas (DIPGs), H3F3A-mutant gliomas, and WHO IV gliomas. IL13Ra2 expression was strongly correlated with H3.3K27M mutant protein, Ki67, and CD133. Patients with IL13Ra2 expression >20% showed shorter overall survival compared to those with ≤20% IL13Ra2 expression. The Cox proportional hazard regression model identified H3F3A mutations, rather than IL13Ra2 expression, as an independent prognostic factor. Analysis of RNA-Seq data from our prior cohort confirmed IL13Ra2's correlation with H3.3, CD133, and Ki67 levels. Widespread IL13Ra2 expression in BSG, particularly elevated in the H3F3A mutant group, was strongly correlated with H3F3A mutations, increased proliferation, and heightened tumor stemness. IL13Ra2 represents a promising therapeutic target for BSGs, potentially benefiting patients with H3K27M mutations, DIPGs, WHO Grade IV, and pontine location-specific BSGs, particularly those with H3K27M mutations.
Collapse
Affiliation(s)
- Xiaoou Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xiong Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Guocan Gu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tian Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chunzhao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
3
|
Bernstein ZJ, Shenoy A, Chen A, Heller NM, Spangler JB. Engineering the IL-4/IL-13 axis for targeted immune modulation. Immunol Rev 2023; 320:29-57. [PMID: 37283511 DOI: 10.1111/imr.13230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The structurally and functionally related interleukin-4 (IL-4) and IL-13 cytokines play pivotal roles in shaping immune activity. The IL-4/IL-13 axis is best known for its critical role in T helper 2 (Th2) cell-mediated Type 2 inflammation, which protects the host from large multicellular pathogens, such as parasitic helminth worms, and regulates immune responses to allergens. In addition, IL-4 and IL-13 stimulate a wide range of innate and adaptive immune cells, as well as non-hematopoietic cells, to coordinate various functions, including immune regulation, antibody production, and fibrosis. Due to its importance for a broad spectrum of physiological activities, the IL-4/IL-13 network has been targeted through a variety of molecular engineering and synthetic biology approaches to modulate immune behavior and develop novel therapeutics. Here, we review ongoing efforts to manipulate the IL-4/IL-13 axis, including cytokine engineering strategies, formulation of fusion proteins, antagonist development, cell engineering approaches, and biosensor design. We discuss how these strategies have been employed to dissect IL-4 and IL-13 pathways, as well as to discover new immunotherapies targeting allergy, autoimmune diseases, and cancer. Looking ahead, emerging bioengineering tools promise to continue advancing fundamental understanding of IL-4/IL-13 biology and enabling researchers to exploit these insights to develop effective interventions.
Collapse
Affiliation(s)
- Zachary J Bernstein
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anjali Shenoy
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy Chen
- Department of Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jamie B Spangler
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, Maryland, USA
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Pozzi G, Carubbi C, Cerreto GM, Scacchi C, Cortellazzi S, Vitale M, Masselli E. Functionally Relevant Cytokine/Receptor Axes in Myelofibrosis. Biomedicines 2023; 11:2462. [PMID: 37760903 PMCID: PMC10525259 DOI: 10.3390/biomedicines11092462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Dysregulated inflammatory signaling is a key feature of myeloproliferative neoplasms (MPNs), most notably of myelofibrosis (MF). Indeed, MF is considered the prototype of onco-inflammatory hematologic cancers. While increased levels of circulatory and bone marrow cytokines are a well-established feature of all MPNs, a very recent body of literature is intriguingly pinpointing the selective overexpression of cytokine receptors by MF hematopoietic stem and progenitor cells (HSPCs), which, by contrast, are nearly absent or scarcely expressed in essential thrombocythemia (ET) or polycythemia vera (PV) cells. This new evidence suggests that MF CD34+ cells are uniquely capable of sensing inflammation, and that activation of specific cytokine signaling axes may contribute to the peculiar aggressive phenotype and biological behavior of this disorder. In this review, we will cover the main cytokine systems peculiarly activated in MF and how cytokine receptor targeting is shaping a novel therapeutic avenue in this disease.
Collapse
Affiliation(s)
- Giulia Pozzi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Cecilia Carubbi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Giacomo Maria Cerreto
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Chiara Scacchi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Samuele Cortellazzi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Marco Vitale
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| | - Elena Masselli
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| |
Collapse
|
5
|
Xiong Q, Zhu J, Zhang Y, Deng H. CAR-NK cell therapy for glioblastoma: what to do next? Front Oncol 2023; 13:1192128. [PMID: 37404752 PMCID: PMC10315652 DOI: 10.3389/fonc.2023.1192128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/29/2023] [Indexed: 07/06/2023] Open
Abstract
Glioblastoma is a malignant tumor with the highest morbidity and mortality in the central nervous system. Conventional surgical resection combined with radiotherapy or chemotherapy has a high recurrence rate and poor prognosis. The 5-year survival rate of patients is less than 10%. In tumor immunotherapy, CAR-T cell therapy represented by chimeric antigen receptor-modified T cells has achieved great success in hematological tumors. However, the application of CAR-T cells in solid tumors such as glioblastoma still faces many challenges. CAR-NK cells are another potential adoptive cell therapy strategy after CAR-T cells. Compared with CAR-T cell therapy, CAR-NK cells have similar anti-tumor effects. CAR-NK cells can also avoid some deficiencies in CAR-T cell therapy, a research hotspot in tumor immunity. This article summarizes the preclinical research status of CAR-NK cells in glioblastoma and the problems and challenges faced by CAR-NK in glioblastoma.
Collapse
|
6
|
Jovanovich N, Habib A, Hameed NF, Edwards L, Zinn PO. Applications and current challenges of chimeric antigen receptor T cells in treating high-grade gliomas in adult and pediatric populations. Immunotherapy 2023; 15:383-396. [PMID: 36876438 PMCID: PMC11921901 DOI: 10.2217/imt-2022-0200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/02/2023] [Indexed: 03/07/2023] Open
Abstract
High-grade gliomas (HGGs) continue to be some of the most devastating diseases in the USA. Despite extensive efforts, the survival of HGG patients has remained relatively stagnant. Chimeric antigen receptor (CAR) T-cell immunotherapy has recently been studied in the context of improving these tumors' clinical outcomes. HGG murine models treated with CAR T cells targeting tumor antigens have shown reduced tumor burden and longer overall survival than models without treatment. Subsequent clinical trials investigating the efficacy of CAR T cells have further shown that this therapy could be safe and might reduce tumor burden. However, there are still many challenges that need to be addressed to optimize the safety and efficacy of CAR T-cell therapy in treating HGG patients.
Collapse
Affiliation(s)
- Nicolina Jovanovich
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Nu Farrukh Hameed
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Lincoln Edwards
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Pascal O Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
7
|
Shankar A, McAlees JW, Lewkowich IP. Modulation of IL-4/IL-13 cytokine signaling in the context of allergic disease. J Allergy Clin Immunol 2022; 150:266-276. [PMID: 35934680 PMCID: PMC9371363 DOI: 10.1016/j.jaci.2022.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Aberrant activation of CD4 TH2 cells and excessive production of TH2 cytokines such as IL-4 and IL-13 have been implicated in the pathogenesis of allergic diseases. Generally, IL-4 and IL-13 utilize Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways for induction of inflammatory gene expression and the effector functions associated with disease pathology in many allergic diseases. However, it is increasingly clear that JAK/STAT pathways activated by IL-4/IL-13 can themselves be modulated in the presence of other intracellular signaling programs, thereby changing the overall tone and/or magnitude of IL-4/IL-13 signaling. Apart from direct activation of the canonic JAK/STAT pathways, IL-4 and IL-13 also induce proinflammatory gene expression and effector functions through activation of additional signaling cascades. These alternative signaling cascades contribute to several specific aspects of IL-4/IL-13-associated cellular and molecular responses. A more complete understanding of IL-4/IL-13 signaling pathways, including the precise conditions under which noncanonic signaling pathways are activated, and the impact of these pathways on cellular- and host-level responses, will better allow us to design agents that target specific pathologic outcomes or tailor therapies for the treatment of uncommon disease endotypes.
Collapse
|
8
|
Cytokine chemokine network in tumor microenvironment: Impact on CSC properties and therapeutic applications. Cytokine 2022; 156:155916. [DOI: 10.1016/j.cyto.2022.155916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
9
|
Chehade M, Falk GW, Aceves S, Lee JK, Mehta V, Leung J, Shumel B, Jacob-Nara JA, Deniz Y, Rowe PJ, Cunoosamy D, Khodzhayev A. Examining the Role of Type 2 Inflammation in Eosinophilic Esophagitis. GASTRO HEP ADVANCES 2022; 1:720-732. [PMID: 39131849 PMCID: PMC11307682 DOI: 10.1016/j.gastha.2022.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/06/2022] [Indexed: 08/13/2024]
Abstract
Eosinophilic esophagitis (EoE) is a chronic type 2 inflammatory disease characterized by an eosinophilic inflammatory infiltrate in the esophagus, leading to remodeling, stricture formation, and fibrosis. Triggered by food and aeroallergens, type 2 cytokines interleukin (IL)-4, IL-13, IL-5 produced by CD4+ T helper 2 cells (Th2), eosinophils, mast cells, basophils, and type 2 innate lymphoid cells alter the esophageal epithelial barrier and increase inflammatory cell tissue infiltration. Clustering analysis based on the expression of type 2 inflammatory genes demonstrated the diversity of EoE endotypes. Despite the availability of treatment options for patients with EoE, which include dietary restriction, proton pump inhibitors, swallowed topical steroids, and esophageal dilation, there are still no Food and Drug Administration-approved medications for this disease; as such, there are clear unmet medical needs for these patients. A number of novel biologic therapies currently in clinical trials represent a promising avenue for targeted therapeutic approaches in EoE. This review summarizes our current knowledge on the role of type 2 inflammatory cells and mediators in EoE disease pathogenesis, as well as the future treatment landscape targeting underlying inflammation in EoE.
Collapse
Affiliation(s)
- Mirna Chehade
- Deparment of Pediatrics and Medicine, Mount Sinai Center for Eosinophilic Disorders, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gary W. Falk
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Seema Aceves
- Deparment of Pediatrics and Medicine, University of California, San Diego, California
| | - Jason K. Lee
- Deparment of Clinical Immunology and Allergy and Internal Medicine, Toronto Allergy and Asthma Clinic, Toronto, Ontario, Canada
| | - Vinay Mehta
- Allergy, Asthma & Immunology Associates, P.C., Lincoln, Nebraska
| | - John Leung
- Boston Specialists, Boston, Massachusetts
| | - Brad Shumel
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York
| | | | - Yamo Deniz
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York
| | | | | | | |
Collapse
|
10
|
A novel TanCAR targeting IL13Rα2 and EphA2 for enhanced glioblastoma therapy. Mol Ther Oncolytics 2022; 24:729-741. [PMID: 35317513 PMCID: PMC8908045 DOI: 10.1016/j.omto.2022.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 02/15/2022] [Indexed: 01/05/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has been shown to be an effective strategy for combatting non-solid tumors; however, CAR-T therapy is still a challenge for solid tumors, such as glioblastoma. To improve CAR-T therapy for glioblastoma, a new TanCAR, comprising the tandem arrangement of IL13 (4MS) and EphA2 scFv, was generated and validated in vitro and in vivo. In vitro, the novel TanCAR-redirected T cells killed glioblastoma tumor cells by recognizing either IL-13 receptor α2 (IL13Rα2) or EphA2 alone or together upon simultaneous encounter of both targets, but did not kill normal cells bearing only the IL13Rα1/IL4Rα receptor. As further proof of principle, the novel TanCAR was tested in a subcutaneous glioma xenograft mouse model. The results indicated that the novel TanCAR-redirected T cells produced greater glioma tumor regression than single CAR-T cells. Thus, the novel TanCAR-redirected T cells kill gliomas more efficiently and selectively than a single IL13 CAR or EphA2 scFv CAR, with the potential for preventing antigen escape and reduced off-target cytotoxicity.
Collapse
|
11
|
Bridgewood C, Newton D, Bragazzi N, Wittmann M, McGonagle D. Unexpected connections of the IL-23/IL-17 and IL-4/IL-13 cytokine axes in inflammatory arthritis and enthesitis. Semin Immunol 2021; 58:101520. [PMID: 34799224 DOI: 10.1016/j.smim.2021.101520] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
The IL-23/IL-17 cytokine axis is related to spondyloarthropathy (SpA) pattern diseases that target the skin, eye, gut and joints. These share overlapping target tissues with Th2 type or allergic diseases, including the skin, eye and gut but SpA diseases exhibit distinct microanatomical topography, molecular characteristics, and clinical features including uveitis, psoriasis, apical pulmonary involvement, lower gastrointestinal involvement with colitis, and related arthritides including psoriatic arthritis and ankylosing spondylitis. Inflammatory arthritis is conspicuously absent from the Th2 diseases which are characterised IL-4/IL-13 dependent pathway activation including allergic rhino-conjunctivitis, atopic eczema, allergic asthma and food allergies. This traditional understanding of non-overlap of musculoskeletal territory between that atopic diseases and the IL-17 -mediated SpA diseases is undergoing a critical reappraisal with the recent demonstration of IL-4/IL-13 blockade, may be associated with the development of SpA pattern arthritis, psoriasiform skin disease and occasional anterior uveitis. Given the known plasticity within Th paradigm pathways, these findings suggest dynamic Th2 cytokine and Th17 cytokine counter regulation in vivo in humans. Unexpected, this is the case in peripheral enthesis and when the IL-4/13 immunological brake on IL-23/17 cytokines is removed, a SpA phenotype may emerge. We discuss hitherto unexpected observations in SpA, showing counter regulation between the Th17 and Th2 pathways at sites including the entheses that collectively indicate that the emergent reverse translational therapeutic data is more than coincidental and offers new insights into the "Th paradigms" in atopy and SpA.
Collapse
Affiliation(s)
- Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK.
| | - Darren Newton
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Nicola Bragazzi
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK; National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals, Leeds, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK; National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals, Leeds, UK
| |
Collapse
|
12
|
Ali ME, Halby HM, Ali MY, Hassan EA, El-Mokhtar MA, Sayed IM, Thabet MM, Fouad M, El-Ashmawy AM, Mahran ZG. Role of Serum Vitamin D, Interleukin 13, and microRNA-135a in Hepatocellular Carcinoma and Treatment Failure in Egyptian HCV-Infected Patients Receiving Direct Antiviral Agents. Viruses 2021; 13:2008. [PMID: 34696438 PMCID: PMC8539757 DOI: 10.3390/v13102008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
Direct-acting antivirals (DAAs) are used for hepatitis C virus (HCV) treatment. However, treatment failure and hepatocellular carcinoma (HCC) development following treatment was reported. In this study, we assessed the role of serum vitamin D, interleukin 13 (IL-13), and microRNA-135a in the prediction of treatment failure with DAA and HCC development among Egyptian HCV-infected patients. A total of 950 patients with HCV-related chronic liver disease underwent DAA treatment. Before DAAs, serum vitamin D and IL-13 were determined by ELISA, and gene expression of miRNA-135a was assessed in serum by real-time PCR. The predictive abilities of these markers were determined using the receiver operating characteristic (ROC) curve. Sustained virological response (SVR) was achieved in 92.6% of HCV-infected patients (responders). High viral load, IL-13, miRNA-135a, and low vitamin D levels were associated with treatment failure and HCC development. HCC development was recorded in non-responders, but not in the responders (35.7% vs. 0% p < 0.001). In conclusion: serum IL-13, Vitamin D, and miRNA-135a could be potential biomarkers in monitoring DAA treatment and HCC prediction. DAAs-induced SVR may decrease the incidence of HCC.
Collapse
Affiliation(s)
- Mohamed E. Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; (M.E.A.); (H.M.H.); (M.Y.A.)
| | - Hamada M. Halby
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; (M.E.A.); (H.M.H.); (M.Y.A.)
| | - Mamdouh Yones Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; (M.E.A.); (H.M.H.); (M.Y.A.)
| | - Elham Ahmed Hassan
- Department of Gastroenterology and Tropical Medicine, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (M.A.E.-M.); (I.M.S.)
| | - Ibrahim M. Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (M.A.E.-M.); (I.M.S.)
| | - Marwa M. Thabet
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Magdy Fouad
- Hepato-Gastroenterology Unit, Tropical Medicine Department, Faculty of Medicine, El-Minia University, Minya 61519, Egypt;
| | - Ahmed M. El-Ashmawy
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Zainab Gaber Mahran
- Department of Gastroenterology and Tropical Medicine, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| |
Collapse
|
13
|
Ono J, Takai M, Kamei A, Azuma Y, Izuhara K. Pathological Roles and Clinical Usefulness of Periostin in Type 2 Inflammation and Pulmonary Fibrosis. Biomolecules 2021; 11:1084. [PMID: 34439751 PMCID: PMC8391913 DOI: 10.3390/biom11081084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Periostin is known to be a useful biomarker for various diseases. In this article, we focus on allergic diseases and pulmonary fibrosis, for which we and others are now developing detection systems for periostin as a biomarker. Biomarker-based precision medicine in the management of type 2 inflammation and fibrotic diseases since heterogeneity is of utmost importance. Periostin expression is induced by type 2 cytokines (interleukin-4/-13) or transforming growth factor-β, and plays a vital role in the pathogenesis of allergic inflammation or interstitial lung disease, respectively, andits serum levels are correlated disease severity, prognosis and responsiveness to the treatment. We first summarise the importance of type 2 biomarker and then describe the pathological role of periostin in the development and progression of type 2 allergic inflammation and pulmonary fibrosis. In addition, then, we summarise the recent development of assay methods for periostin detection, and analyse the diseases in which periostin concentration is elevated in serum and local biological fluids and its usefulness as a biomarker. Furthermore, we describe recent findings of periostin as a biomarker in the use of biologics or anti-fibrotic therapy. Finally, we describe the factors that influence the change in periostin concentration under the healthy conditions.
Collapse
Affiliation(s)
- Junya Ono
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Masayuki Takai
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
- Division of Medical Biochemistry, Department of Biomolecular Science, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan;
| | - Ayami Kamei
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Yoshinori Azuma
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Science, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan;
| |
Collapse
|
14
|
Advances in immunotherapeutic targets for childhood cancers: A focus on glypican-2 and B7-H3. Pharmacol Ther 2021; 223:107892. [PMID: 33992682 DOI: 10.1016/j.pharmthera.2021.107892] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Cancer immunotherapies have revolutionized how we can treat adult malignancies and are being translated to pediatric oncology. Chimeric antigen receptor T-cell therapy and bispecific antibodies targeting CD19 have shown success for the treatment of pediatric patients with B-cell acute lymphoblastic leukemia. Anti-GD2 monoclonal antibody has demonstrated efficacy in neuroblastoma. In this review, we summarize the immunotherapeutic agents that have been approved for treating childhood cancers and provide an updated review of molecules expressed by pediatric cancers that are under study or are emerging candidates for future immunotherapies. Advances in our knowledge of tumor immunology and in genome profiling of cancers has led to the identification of new tumor-specific/associated antigens. While cell surface antigens are normally targeted in a major histocompatibility complex (MHC)-independent manner using antibody-based therapies, intracellular antigens are normally targeted with MHC-dependent T cell therapies. Glypican 2 (GPC2) and B7-H3 (CD276) are two cell surface antigens that are expressed by a variety of pediatric tumors such as neuroblastoma and potentially can have a positive impact on the treatment of pediatric cancers in the clinic.
Collapse
|
15
|
Kumar A, Bellayr IH, Singh HS, Puri RK. IL-13Rα2 gene expression is a biomarker of adverse outcome in patients with adrenocortical carcinoma. PLoS One 2021; 16:e0246632. [PMID: 33591997 PMCID: PMC7886164 DOI: 10.1371/journal.pone.0246632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/24/2021] [Indexed: 11/29/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare but aggressive endocrine malignancy that usually results in a fatal outcome. To allow the better clinical management and reduce mortality, we searched for clinical and molecular markers that are reliable predictor of disease severity and clinical outcome in ACC patients. We determined a correlation between the overexpression of IL-13Rα2 and the clinical outcome in ACC patients using comprehensive data available in The Cancer Genome Atlas (TCGA) database. The dataset of 79 ACC subjects were divided into groups of low, medium, or high expression of IL-13Rα2 as determined by RNA-seq. These patients were also stratified by length of survival, overall survival, incidence of a new tumor event, incidence of metastasis, and production of excess hormones. We report a correlation between IL-13Rα2 expression and survival of subjects with ACC. High expression of IL-13Rα2 in ACC tumors was significantly associated with a lower patient survival rate and period of survival compared to low expression (p = 0.0084). In addition, high IL-13Rα2 expression was significantly associated with a higher incidence of new tumor events and excess hormone production compared to low or medium IL-13Rα2 expression. Within the cohort of patients that produced excess hormone, elevated IL-13Rα2 expression was significantly associated with a lower survival rate. Additionally, IL-13Rα1 had a potential relationship between transcript level and ACC survival. Our results and promising antitumor activity in preclinical models and trials indicate that IL-13Rα2 expression is an important prognostic biomarker of ACC disease outcome and a promising target for therapeutic treatment of ACC.
Collapse
Affiliation(s)
- Abhinav Kumar
- Division of Cellular and Gene Therapies, Tumor Vaccines and Biotechnology Branch, Center for Biologics and Evaluation Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ian H. Bellayr
- Division of Cellular and Gene Therapies, Tumor Vaccines and Biotechnology Branch, Center for Biologics and Evaluation Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Hridaya S. Singh
- Department of Zoology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Raj K. Puri
- Division of Cellular and Gene Therapies, Tumor Vaccines and Biotechnology Branch, Center for Biologics and Evaluation Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Two single nucleotide polymorphisms in IL13 and IL13RA1 from individuals with idiopathic Parkinson's disease increase cellular susceptibility to oxidative stress. Brain Behav Immun 2020; 88:920-924. [PMID: 32276028 PMCID: PMC9012133 DOI: 10.1016/j.bbi.2020.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 01/18/2023] Open
Abstract
The human genes for interleukin 13 (IL-13) and its receptor alpha 1 (IL-13Rα1) are in chromosomal regions associated with Parkinson's disease (PD). The interaction of IL-13 with its receptor increases the susceptibility of mouse dopaminergic neurons to oxidative stress. We identified two rare single SNPs in IL13 and IL13RA1 and measured their cytotoxic effects. rs148077750 is a missense leucine to proline substitution in IL13. It was found in individuals with early onset PD and no other known monogenic forms of the disease and is significantly linked with PD (Fisher's exact test: p-value = 0.01, odds ratio = 14.2). rs145868092 is a leucine to phenylalanine substitution in IL13RA1 affecting a residue critical for IL-13 binding. Both mutations increased the cytotoxic activity of IL-13 on human SH-SY5Y neurons exposed to sublethal doses of hydrogen peroxide, t-butyl hydroperoxide or RLS3, an inducer of ferroptosis. Our data show that both rs148077750 and rs145868092 conferred a gain-of-function that may increase the risk of developing PD.
Collapse
|
17
|
Xi C, Zhang GQ, Sun ZK, Song HJ, Shen CT, Chen XY, Sun JW, Qiu ZL, Luo QY. Interleukins in Thyroid Cancer: From Basic Researches to Applications in Clinical Practice. Front Immunol 2020; 11:1124. [PMID: 32655554 PMCID: PMC7325887 DOI: 10.3389/fimmu.2020.01124] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammation is crucial to tumorigenesis and progression of many cancers. Inflammatory molecules in tumor microenvironment exert pro- or anti-tumor effects. Among them, interleukin, mainly produced by CD3+ and CD4+ T lymphocytes, is a class of small molecule proteins which play an important role in intercellular communication. Numerous studies have confirmed that interleukins are closely related to thyroid cancer. Interleukins regulate the proliferation and migration of thyroid cancer cells and they have prospects in discriminating benign and malignant thyroid diseases, predicting the risk of tumorigenesis, evaluating the prognosis and monitoring the recurrence of thyroid cancer. Besides, the effective application of interleukins in treatment of thyroid cancer has been confirmed by some cell and animal researches. The present review will introduce the potential mechanisms of interleukins in thyroid cancer and focus on the applications of interleukins in clinical practice of thyroid cancer, which will help update understanding of the progress of interleukins researches in thyroid cancer.
Collapse
Affiliation(s)
- Chuang Xi
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guo-Qiang Zhang
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhen-Kui Sun
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hong-Jun Song
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chen-Tian Shen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao-Yue Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jian-Wen Sun
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhong-Ling Qiu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
18
|
Chong ST, Tan KM, Kok CYL, Guan SP, Lai SH, Lim C, Hu J, Sturgis C, Eng C, Lam PYP, Ngeow J. IL13RA2 Is Differentially Regulated in Papillary Thyroid Carcinoma vs Follicular Thyroid Carcinoma. J Clin Endocrinol Metab 2019; 104:5573-5584. [PMID: 31290966 DOI: 10.1210/jc.2019-00040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022]
Abstract
CONTEXT The interleukin-13 receptor alpha2 (IL13RA2), which is known to be overexpressed in glioblastoma multiforme, plays a role in various cellular processes such as cell migration that may contribute to tumor progression. Studies have attributed IL13RA2 to invasion and metastasis in cancers of the ovary, breast, and pancreas, but the pathological role of IL13RA2 in thyroid cancer is still unclear. OBJECTIVE This study aims to evaluate IL13RA2 expression in thyroid carcinomas and to examine the role of IL13RA2 in the progression of papillary thyroid carcinoma (PTC). METHODS IL13RA2 immunochemical staining was performed on tissue microarrays of 137 thyroid carcinomas from patients, and the differential profile of IL13RA2 was validated in thyroid cancer cell lines. In PTC cell lines, we functionally assessed the effects of IL13RA2 underexpression and overexpression on cell proliferation, cell migration, and epithelial-mesenchymal transition (EMT) by using CCK-8, transwell migration assay, quantitative RT-PCR, and Western blot analysis. RESULTS IL13RA2 expression was significantly correlated with advanced tumor T stage (pT3 or pT4; P = 0.001) and regional lymph node metastasis (pN1; P < 0.001). The staining scores of IL13RA2 were significantly higher in PTC compared with follicular subtypes (P < 0.001) and correlated with advanced tumor stage among PTC samples (pT3 or pT4; P = 0.028). Knockdown of IL13RA2 in B-CPAP cells significantly reduced cell viability, cell migration, and EMT markers including N-cadherin, Vimentin, and Snail. Exogenous overexpression of IL13RA2 in K1 cells increased cell migration and EMT, although cell proliferation was not affected. CONCLUSION IL13RA2 is differentially regulated in PTC and is involved in cell migration by enhancing EMT.
Collapse
Affiliation(s)
- Siao Ting Chong
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore
| | - Khee Ming Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Catherine Y L Kok
- Cellular and Molecular Research Division, National Cancer Centre, Singapore
| | - Shou Ping Guan
- Cellular and Molecular Research Division, National Cancer Centre, Singapore
| | - Siang Hui Lai
- Department of Pathology, Singapore General Hospital, Singapore
| | - Cindy Lim
- Department of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore
| | - Jiancheng Hu
- Cellular and Molecular Research Division, National Cancer Centre, Singapore
| | - Charles Sturgis
- Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Genetics and Genome Sciences, and Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Paula Y P Lam
- Cellular and Molecular Research Division, National Cancer Centre, Singapore
| | - Joanne Ngeow
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Institute of Molecular and Cell Biology, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School Singapore, Singapore
| |
Collapse
|
19
|
Inhibition of IL-13 and IL-13Rα2 Expression by IL-32θ in Human Monocytic Cells Requires PKCδ and STAT3 Association. Int J Mol Sci 2019; 20:ijms20081949. [PMID: 31010051 PMCID: PMC6514684 DOI: 10.3390/ijms20081949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/06/2019] [Accepted: 04/19/2019] [Indexed: 12/27/2022] Open
Abstract
Interleukin (IL)-32θ, a newly identified IL-32 isoform, has been reported to exert pro-inflammatory effects through the association with protein kinase C delta (PKCδ). In this study, we further examined the effects of IL-32θ on IL-13 and IL-13Rα2 expression and the related mechanism in THP-1 cells. Upon stimulating IL-32θ-expressing and non-expressing cells with phorbol 12-myristate 13-acetate (PMA), the previous microarray analysis showed that IL-13Rα2 and IL-13 mRNA expression were significantly decreased by IL-32θ. The protein expression of these factors was also confirmed to be down-regulated. The nuclear translocation of transcription factors STAT3 and STAT6, which are necessary for IL-13Rα2 and IL-13 promoter activities, was suppressed by IL-32θ. Additionally, a direct association was found between IL-32θ, PKCδ, and signal transducer and activator of transcription 3 (STAT3), but not STAT6, revealing that IL-32θ might act mainly through STAT3 and indirectly affect STAT6. Moreover, the interaction of IL-32θ with STAT3 requires PKCδ, since blocking PKCδ activity eliminated the interaction and consequently limited the inhibitory effect of IL-32θ on STAT3 activity. Interfering with STAT3 or STAT6 binding by decoy oligodeoxynucleotides (ODNs) identified that IL-32θ had additive effects with the STAT3 decoy ODN to suppress IL-13 and IL-13Rα2 mRNA expression. Taken together, our data demonstrate the intracellular interaction of IL-32θ, PKCδ, and STAT3 to regulate IL-13 and IL-13Rα2 synthesis, supporting the role of IL-32θ as an inflammatory modulator.
Collapse
|
20
|
Jiang X, Gao J, Xue Y, Qin Y, Li X, Sun Z, Xie H, Chang M, Nie P, Zou J, Gao Q. Identification and expression analysis of IL-4/13 receptors in grass carp Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2019; 87:254-264. [PMID: 30630048 DOI: 10.1016/j.fsi.2019.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/31/2018] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
Interleukin (IL)-4 and IL-13 are T helper 2 (Th2) cytokines with pleiotropic functions. IL-4 interacts with two receptors consisting of IL-4Rα/γ chain receptor (γC) and IL-4Rα/IL-13Rα1. In contrast, IL-13 binds to IL-13Rα2 but also shares the receptor complex containing IL-4Rα/IL-13Rα1. In fish, two IL-4/13 homologs have been identified but their phylogenetic relationships with IL-4 and IL-13 are ambiguous. In this study, we identified six putative IL-4/13 receptor homologs in grass carp, including γC1, γC2, IL-4Rα1, IL-13Rα1, IL-13Rα2 and a soluble form of IL-4Rα2. Comparative sequence analyses revealed that these receptors possess conserved characteristic domains and the genes encoding them share conserved gene synteny with their human counterparts. All six receptors contain a cytokine binding homology domain (CHD) and two fibronectin type Ⅲ (FNⅢ) like domains, with IL-13Rα1 and IL-13Rα2 harbouring an extra Ig-like domain preceding the CHD domain. Interestingly, grass carp IL-13Rα1 and IL-13Rα2 lack the characteristic WSXWS motif, a typical feature of mammalian type I cytokine receptors. The IL-4/13 receptor genes are differentially expressed in tissues and primary leukocytes of head kidney and can be modulated by Flavobacterium cloumnare (F. cloumnare), suggesting they are involved in immune response against F. cloumnare infection.
Collapse
Affiliation(s)
- Xinyu Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jingduo Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yujie Xue
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yuting Qin
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xia Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhaosheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Haixia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Mingxian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
21
|
Sharma P, Debinski W. Receptor-Targeted Glial Brain Tumor Therapies. Int J Mol Sci 2018; 19:E3326. [PMID: 30366424 PMCID: PMC6274942 DOI: 10.3390/ijms19113326] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022] Open
Abstract
Among primary brain tumors, malignant gliomas are notably difficult to manage. The higher-grade tumors represent an unmet need in medicine. There have been extensive efforts to implement receptor-targeted therapeutic approaches directed against gliomas. These approaches include immunotherapies, such as vaccines, adoptive immunotherapy, and passive immunotherapy. Targeted cytotoxic radio energy and pro-drug activation have been designed specifically for brain tumors. The field of targeting through receptors progressed significantly with the discovery of an interleukin 13 receptor alpha 2 (IL-13RA2) as a tumor-associated receptor over-expressed in most patients with glioblastoma (GBM) but not in normal brain. IL-13RA2 has been exploited in novel experimental therapies with very encouraging clinical responses. Other receptors are specifically over-expressed in many patients with GBM, such as EphA2 and EphA3 receptors, among others. These findings are important in view of the heterogeneity of GBM tumors and multiple tumor compartments responsible for tumor progression and resistance to therapies. The combined targeting of multiple receptors in different tumor compartments should be a preferred way to design novel receptor-targeted therapeutic approaches in gliomas.
Collapse
Affiliation(s)
- Puja Sharma
- Brain Tumor Center of Excellence, Department of Cancer Biology, Wake Forest University School of Medicine, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Waldemar Debinski
- Brain Tumor Center of Excellence, Department of Cancer Biology, Wake Forest University School of Medicine, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
22
|
Mitamura Y, Nunomura S, Nanri Y, Arima K, Yoshihara T, Komiya K, Fukuda S, Takatori H, Nakajima H, Furue M, Izuhara K. Hierarchical control of interleukin 13 (IL-13) signals in lung fibroblasts by STAT6 and SOX11. J Biol Chem 2018; 293:14646-14658. [PMID: 30076218 DOI: 10.1074/jbc.ra117.001364] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 07/05/2018] [Indexed: 12/22/2022] Open
Abstract
Interleukin (IL)-13 is a signature cytokine of type 2 inflammation important for the pathogenesis of various diseases, including allergic diseases. Signal transducer and activator of transcription (STAT) 6 is a critical transcriptional factor for the IL-13 signals; however, it remains unknown how expression of the IL-13-induced genes is differentiated by the transcriptional machineries. In this study, we identified IL-13-induced transcriptional factors in lung fibroblasts using DNA microarrays in which SOX11 was included. Knockdown of SOX11 down-regulated expression of periostin and CCL26, both of which are known to be downstream molecules of IL-13, whereas enforced expression of SOX11 together with IL-13 stimulation enhanced expression of periostin. Moreover, we found that in DNA microarrays combining IL-13 induction and SOX11 knockdown there exist both SOX11-dependent and -independent molecules in IL-13-inducible molecules. In the former, many inflammation-related and fibrosis-related molecules, including periostin and CCL26, are involved. These results suggest that SOX11 acts as a trans-acting transcriptional factor downstream of STAT6 and that in lung fibroblasts the IL-13 signals are hierarchically controlled by STAT6 and SOX11.
Collapse
Affiliation(s)
- Yasutaka Mitamura
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan.,the Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Satoshi Nunomura
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan
| | - Yasuhiro Nanri
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan
| | - Kazuhiko Arima
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan
| | - Tomohito Yoshihara
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan
| | - Kosaku Komiya
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan.,the Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Yufu 879-5593, Japan, and
| | - Shogo Fukuda
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan
| | - Hiroaki Takatori
- the Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8670, Japan
| | - Hiroshi Nakajima
- the Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8670, Japan
| | - Masutaka Furue
- the Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenji Izuhara
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan,
| |
Collapse
|
23
|
Kwon HJ, Choi JE, Bae YK. Interleukin-13 receptor alpha 2 expression in tumor cells is associated with reduced disease-free survival in patients with luminal subtype invasive breast cancer. Tumour Biol 2018; 40:1010428318783657. [PMID: 29911489 DOI: 10.1177/1010428318783657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Interleukin-13 receptor alpha 2 is one of the subunits of transmembrane receptor for interleukin-13. The aim of this study was to investigate the prognostic value of interleukin-13 receptor alpha 2 expression in invasive breast cancer. Interleukin-13 receptor alpha 2 expressions were assessed by immunohistochemistry in tissue microarrays of 1283 invasive breast cancer samples, and associations between these expressions and clinicopathological variables and clinical outcomes were investigated. Interleukin-13 receptor alpha 2 expression was observed in 138 (10.8%) samples, and found to be associated with positive estrogen receptor (p < 0.001) and progesterone receptor (p < 0.001) and with the luminal subtype (p < 0.001). No significant association was found between interleukin-13 receptor alpha 2 expression and other clinicopathological variables including age, tumor size, lymph node metastasis, histologic types, histologic grade, HER2 status, Ki-67 labeling index, or tumor-infiltrating lymphocytes levels. Patients with interleukin-13 receptor alpha 2 expression tended to have poorer disease-free survival, but the difference was not statistically significant (p = 0.069). Subgroup analysis showed luminal breast cancer patients positive for interleukin-13 receptor alpha 2 expression had significantly poorer disease-free survival (p = 0.018) than luminal breast cancer patients negative for interleukin-13 receptor alpha 2 expression. However, no association between interleukin-13 receptor alpha 2 expression and clinical outcome was observed in HER2-positive and triple-negative subgroups (p = 0.574 and p = 0.936, respectively). Multivariate analysis showed interleukin-13 receptor alpha 2 expression was an independent poor prognostic factor for luminal breast cancer (p = 0.03). This study shows interleukin-13 receptor alpha 2 expression could be a useful prognostic marker for selecting patients with luminal breast cancer likely to follow a clinically aggressive course despite receiving systemic therapy.
Collapse
Affiliation(s)
- Hee Jung Kwon
- 1 Department of Pathology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Jung Eun Choi
- 2 Department of Surgery, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Young Kyung Bae
- 1 Department of Pathology, College of Medicine, Yeungnam University, Daegu, South Korea
| |
Collapse
|
24
|
Newman JP, Wang GY, Arima K, Guan SP, Waters MR, Cavenee WK, Pan E, Aliwarga E, Chong ST, Kok CYL, Endaya BB, Habib AA, Horibe T, Ng WH, Ho IAW, Hui KM, Kordula T, Lam PYP. Interleukin-13 receptor alpha 2 cooperates with EGFRvIII signaling to promote glioblastoma multiforme. Nat Commun 2017; 8:1913. [PMID: 29203859 PMCID: PMC5715073 DOI: 10.1038/s41467-017-01392-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/14/2017] [Indexed: 01/09/2023] Open
Abstract
The interleukin-13 receptor alpha2 (IL-13Rα2) is a cancer-associated receptor overexpressed in human glioblastoma multiforme (GBM). This receptor is undetectable in normal brain which makes it a highly suitable target for diagnostic and therapeutic purposes. However, the pathological role of this receptor in GBM remains to be established. Here we report that IL-13Rα2 alone induces invasiveness of human GBM cells without affecting their proliferation. In contrast, in the presence of the mutant EGFR (EGFRvIII), IL-13Rα2 promotes GBM cell proliferation in vitro and in vivo. Mechanistically, the cytoplasmic domain of IL-13Rα2 specifically binds to EGFRvIII, and this binding upregulates the tyrosine kinase activity of EGFRvIII and activates the RAS/RAF/MEK/ERK and STAT3 pathways. Our findings support the "To Go or To Grow" hypothesis whereby IL-13Rα2 serves as a molecular switch from invasion to proliferation, and suggest that targeting both receptors with STAT3 signaling inhibitor might be a therapeutic approach for the treatment of GBM.
Collapse
Affiliation(s)
- Jennifer P Newman
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, 169610, Singapore
| | - Grace Y Wang
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, 169610, Singapore.,Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Kazuhiko Arima
- Department of Biomolecular Sciences, Saga Medical School, Saga, 840-8502, Japan
| | - Shou P Guan
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, 169610, Singapore
| | - Michael R Waters
- School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | | | - Edward Pan
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Edita Aliwarga
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, 169610, Singapore
| | - Siao T Chong
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, 169610, Singapore
| | - Catherine Y L Kok
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, 169610, Singapore
| | - Berwini B Endaya
- School of Medical Science, Griffith Health Institute, Griffith University, Southport, 4222, Queensland, Australia
| | - Amyn A Habib
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center and the North Texas VA Medical Center, Dallas, 75390, USA
| | - Tomohisa Horibe
- Department of Pharmacoepidemiology, Kyoto University School of Public Health, Kyoto, 606-8501, Japan
| | - Wai H Ng
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Ivy A W Ho
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, 169610, Singapore.,National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Kam M Hui
- Bek Chai Heah Laboratory of Cancer Genomics, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore.,Cancer and Stem Cells Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Dr, Singapore, 117596, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Proteos, 61 Biopolis Dr, Singapore, 138673, Singapore
| | - Tomasz Kordula
- School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Paula Y P Lam
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, 169610, Singapore. .,Cancer and Stem Cells Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore, 117593, Singapore.
| |
Collapse
|
25
|
Gandhi NA, Pirozzi G, Graham NMH. Commonality of the IL-4/IL-13 pathway in atopic diseases. Expert Rev Clin Immunol 2017; 13:425-437. [PMID: 28277826 DOI: 10.1080/1744666x.2017.1298443] [Citation(s) in RCA: 349] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Allergy results from an aberrant Type 2 inflammatory response, triggered by a wide range of environmental antigens (allergens) that lead to various immune responses, culminating in the production of immunoglobulin E (IgE). Two key cytokines, interleukin (IL)-4 and IL-13, are critical to the induction and perpetuation of the Type 2 response, and have been implicated in multiple atopic diseases. Area covered: This review summarizes recent milestone developments that have elucidated components of the pathogenesis of atopic diseases such as atopic dermatitis (AD), asthma, and chronic sinusitis with nasal polyposis (CSwNP). Expert commentary: Several therapeutic agents that selectively target potentiators of the Type 2 pathway have shown efficacy in one or more of these atopic diseases, but few agents have proven to be broadly applicable across all three atopic diseases. Dupilumab, a human monoclonal antibody that simultaneously inhibits signaling of IL-4 and IL-13, has demonstrated significant clinical efficacy in AD, asthma, and CSwNP. The fact that these diseases often occur as comorbidities and respond to the same therapy suggests that there is a common underlying pathogenic pathway, and that IL-4 and IL-13 cytokines are central to regulating the pathogenesis of these atopic diseases.
Collapse
Affiliation(s)
- Namita A Gandhi
- a Clinical Sciences , Regeneron Pharmaceuticals, Inc. , Tarrytown , New York , USA
| | - Gianluca Pirozzi
- b Research and Development , Sanofi, Bridgewater , New Jersey , USA
| | - Neil M H Graham
- c Project Direction , Regeneron Pharmaceuticals, Inc. , Tarrytown , New York , USA
| |
Collapse
|
26
|
Chung SI, Horton JA, Ramalingam TR, White AO, Chung EJ, Hudak KE, Scroggins BT, Arron JR, Wynn TA, Citrin DE. IL-13 is a therapeutic target in radiation lung injury. Sci Rep 2016; 6:39714. [PMID: 28004808 PMCID: PMC5177927 DOI: 10.1038/srep39714] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/25/2016] [Indexed: 01/08/2023] Open
Abstract
Pulmonary fibrosis is a potentially lethal late adverse event of thoracic irradiation. Prior research indicates that unrestrained TGF-β1 and/or type 2 cytokine-driven immune responses promote fibrosis following radiation injury, but the full spectrum of factors governing this pathology remains unclear. Interleukin 13 (IL-13) is a key factor in fibrotic disease associated with helminth infection, but it is unclear whether it plays a similar role in radiation-induced lung fibrosis. Using a mouse model, we tested the hypothesis that IL-13 drives the progression of radiation-induced pulmonary fibrosis. Irradiated lungs from wild-type c57BL/6NcR mice accumulated alternatively-activated macrophages, displayed elevated levels of IL-13, and extensive fibrosis, whereas IL-13 deficient mice were resistant to these changes. Furthermore, plasma from irradiated wild-type mice showed a transient increase in the IL-13 saturated fraction of the circulating decoy receptor IL-13Rα2. Finally, we determined that therapeutic neutralization of IL-13, during the period of IL-13Rα2 saturation was sufficient to protect mice from lung fibrosis. Taken together, our results demonstrate that IL-13 is a major regulator of radiation-induced lung injury and demonstrates that strategies focusing on IL-13 may be useful in screening for timely delivery of anti-IL-13 therapeutics.
Collapse
Affiliation(s)
- Su I Chung
- Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason A Horton
- Musculoskeletal Science Research Center, Dept. of Orthopedic Surgery, Upstate Medical University, Syracuse, New York, USA
| | | | - Ayla O White
- Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Kathryn E Hudak
- Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Bradley T Scroggins
- Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph R Arron
- Biomarker Discovery OMNI, Genentech, Inc. MS 231c, 1 DNA way, San Francisco, CA 94080 USA
| | - Thomas A Wynn
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, 4 Memorial Drive, Room 211C, Bethesda, MD 20892-0425, USA
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Teplyakov A, Malia TJ, Obmolova G, Jacobs SA, O'Neil KT, Gilliland GL. Conformational flexibility of an anti-IL-13 DARPin†. Protein Eng Des Sel 2016; 30:31-37. [PMID: 27881684 DOI: 10.1093/protein/gzw059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/24/2016] [Accepted: 10/20/2016] [Indexed: 01/29/2023] Open
Abstract
Designed ankyrin repeat proteins (DARPin®) are artificial non-immunoglobulin binding proteins with potential applications as therapeutic molecules. DARPin 6G9 binds interleukin-13 with high affinity and blocks the signaling pathway and as such is promising for the treatment of asthma and other atopic diseases. The crystal structures of DARPin 6G9 in the unbound form and in complex with IL-13 were determined at high resolution. The DARPin competes for the same epitope as the IL-13 receptor chain 13Rα1 but does not interfere with the binding of the other receptor chain, IL-4Rα. Analysis of multiple copies of the DARPin molecule in the crystal indicates the conformational instability in the N-terminal cap that was predicted from molecular dynamics simulations. Comparison of the DARPin structures in the free state and in complex with IL-13 reveals a concerted movement of the ankyrin repeats upon binding resulted in the opening of the binding site. The induced-fit mode of binding employed by DARPin 6G9 is very unusual for DARPins since they were designed as particularly stable and rigid molecules. This finding shows that DARPins can operate by various binding mechanisms and suggests that some flexibility in the scaffold may be an advantage.
Collapse
Affiliation(s)
- Alexey Teplyakov
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Thomas J Malia
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Galina Obmolova
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Steven A Jacobs
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Karyn T O'Neil
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Gary L Gilliland
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA
| |
Collapse
|
28
|
Suzuki A, Leland P, Joshi BH, Puri RK. Targeting of IL-4 and IL-13 receptors for cancer therapy. Cytokine 2015; 75:79-88. [DOI: 10.1016/j.cyto.2015.05.026] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 02/03/2023]
|
29
|
Liu Z, Li P, Wang J, Fan Q, Yan P, Zhang X, Han B. A meta-analysis of IL-13 polymorphisms and pediatric asthma risk. Med Sci Monit 2014; 20:2617-23. [PMID: 25502839 PMCID: PMC4271802 DOI: 10.12659/msm.891017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background IL13–1112C/T and +2044A/G polymorphisms have been reported to be correlated with pediatric asthma susceptibility, but study results were still debatable. Thus, a meta-analysis was conducted. Material/Methods PubMed and EMBASE databases were searched. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to calculate the strength of association in the random-effects model or fixed-effects model. Results Fourteen case-control studies with 4710 asthma cases and 6086 controls were included in this meta-analysis. IL13–1112C/T and +2044A/G polymorphisms were significantly associated with an increased risk of pediatric asthma (OR=1.14, 95% CI 1.01–1.28, P=0.04, I2=0%; OR=1.20, 95% CI 1.09–1.32, P<0.01, I2=0%), respectively. In the subgroup analysis by ethnicity, IL13–1112C/T polymorphism was significantly associated with pediatric asthma risk in whites (OR=1.29, 95% CI 1.02–1.63, P=0.03, I2=16%). IL13 +2044A/G polymorphism was significantly associated with pediatric asthma risk in Asians (OR=1.21, 95% CI 1.10–1.34, P<0.01, I2=24%). Conclusions The results of this meta-analysis suggest that IL13–1112C/T and +2044A/G polymorphisms contribute to the development of pediatric asthma.
Collapse
Affiliation(s)
- Zhigang Liu
- Department of Pediatrics, Jinan Maternal and Child Health Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Peijie Li
- Department of Pediatrics, Jinan Maternal and Child Health Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Jinrong Wang
- Department of Pediatrics, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Qing Fan
- Department of Pediatrics, Jinan Maternal and Child Health Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Ping Yan
- Department of Pediatrics, Jinan Maternal and Child Health Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Xiaojing Zhang
- Department of Pediatrics, Jinan Maternal and Child Health Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Bo Han
- Department of Pediatrics, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
30
|
Interleukin-13 receptor alpha 2-targeted glioblastoma immunotherapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:952128. [PMID: 25247196 PMCID: PMC4163479 DOI: 10.1155/2014/952128] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/05/2014] [Indexed: 01/23/2023]
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor, and despite several refinements in its multimodal management, generally has very poor prognosis. Targeted immunotherapy is an emerging field of research that shows great promise in the treatment of GBM. One of the most extensively studied targets is the interleukin-13 receptor alpha chain variant 2 (IL13Rα2). Its selective expression on GBM, discovered almost two decades ago, has been a target for therapy ever since. Immunotherapeutic strategies have been developed targeting IL13Rα2, including monoclonal antibodies as well as cell-based strategies such as IL13Rα2-pulsed dendritic cells and IL13Rα2-targeted chimeric antigen receptor-expressing T cells. Advanced therapeutic development has led to the completion of several clinical trials with promising outcomes. In this review, we will discuss the recent advances in the IL13Rα2-targeted immunotherapy and evaluate the most promising strategy for targeted GBM immunotherapy.
Collapse
|
31
|
Li W, Holsinger RMD, Kruse CA, Flügel A, Graeber MB. The potential for genetically altered microglia to influence glioma treatment. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:750-62. [PMID: 24047526 DOI: 10.2174/18715273113126660171] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/06/2012] [Accepted: 12/06/2012] [Indexed: 01/06/2023]
Abstract
Diffuse and unstoppable infiltration of brain and spinal cord tissue by neoplastic glial cells is the single most important therapeutic problem posed by the common glioma group of tumors: astrocytoma, oligoastrocytoma, oligodendroglioma, their malignant variants and glioblastoma. These neoplasms account for more than two thirds of all malignant central nervous system tumors. However, most glioma research focuses on an examination of the tumor cells rather than on host-specific, tumor micro-environmental cells and factors. This can explain why existing diffuse glioma therapies fail and why these tumors have remained incurable. Thus, there is a great need for innovation. We describe a novel strategy for the development of a more effective treatment of diffuse glioma. Our approach centers on gaining control over the behavior of the microglia, the defense cells of the CNS, which are manipulated by malignant glioma and support its growth. Armoring microglia against the influences from glioma is one of our research goals. We further discuss how microglia precursors may be genetically enhanced to track down infiltrating glioma cells.
Collapse
Affiliation(s)
- W Li
- Brain and Mind Research Institute, The University of Sydney, Camperdown, NSW, Australia.
| | | | | | | | | |
Collapse
|
32
|
Thaci B, Brown CE, Binello E, Werbaneth K, Sampath P, Sengupta S. Significance of interleukin-13 receptor alpha 2-targeted glioblastoma therapy. Neuro Oncol 2014; 16:1304-12. [PMID: 24723564 DOI: 10.1093/neuonc/nou045] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma multiforme (GBM) remains one of the most lethal primary brain tumors despite surgical and therapeutic advancements. Targeted therapies of neoplastic diseases, including GBM, have received a great deal of interest in recent years. A highly studied target of GBM is interleukin-13 receptor α chain variant 2 (IL13Rα2). Targeted therapies against IL13Rα2 in GBM include fusion chimera proteins of IL-13 and bacterial toxins, nanoparticles, and oncolytic viruses. In addition, immunotherapies have been developed using monoclonal antibodies and cell-based strategies such as IL13Rα2-pulsed dendritic cells and IL13Rα2-targeted chimeric antigen receptor-modified T cells. Advanced therapeutic development has led to the completion of phase I clinical trials for chimeric antigen receptor-modified T cells and phase III clinical trials for IL-13-conjugated bacterial toxin, with promising outcomes. Selective expression of IL13Rα2 on tumor cells, while absent in the surrounding normal brain tissue, has motivated continued study of IL13Rα2 as an important candidate for targeted glioma therapy. Here, we review the preclinical and clinical studies targeting IL13Rα2 in GBM and discuss new advances and promising applications.
Collapse
Affiliation(s)
- Bart Thaci
- Brain Tumor Laboratory, Roger Williams Medical Center, Providence, Rhode Island (P.S., S.S.); Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts (B.T., K.W., E.B., P.S., S.S.); Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Hospital, Duarte, California (C.E.B.)
| | - Christine E Brown
- Brain Tumor Laboratory, Roger Williams Medical Center, Providence, Rhode Island (P.S., S.S.); Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts (B.T., K.W., E.B., P.S., S.S.); Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Hospital, Duarte, California (C.E.B.)
| | - Emanuela Binello
- Brain Tumor Laboratory, Roger Williams Medical Center, Providence, Rhode Island (P.S., S.S.); Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts (B.T., K.W., E.B., P.S., S.S.); Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Hospital, Duarte, California (C.E.B.)
| | - Katherine Werbaneth
- Brain Tumor Laboratory, Roger Williams Medical Center, Providence, Rhode Island (P.S., S.S.); Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts (B.T., K.W., E.B., P.S., S.S.); Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Hospital, Duarte, California (C.E.B.)
| | - Prakash Sampath
- Brain Tumor Laboratory, Roger Williams Medical Center, Providence, Rhode Island (P.S., S.S.); Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts (B.T., K.W., E.B., P.S., S.S.); Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Hospital, Duarte, California (C.E.B.)
| | - Sadhak Sengupta
- Brain Tumor Laboratory, Roger Williams Medical Center, Providence, Rhode Island (P.S., S.S.); Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts (B.T., K.W., E.B., P.S., S.S.); Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Hospital, Duarte, California (C.E.B.)
| |
Collapse
|
33
|
Development and validation of an ELISA at acidic pH for the quantitative determination of IL-13 in human plasma and serum. DISEASE MARKERS 2013; 35:465-74. [PMID: 24222716 PMCID: PMC3810116 DOI: 10.1155/2013/290670] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/25/2013] [Accepted: 08/03/2013] [Indexed: 11/18/2022]
Abstract
A novel sandwich ELISA for the quantitative and sensitive determination of IL-13 in human serum and plasma was established. The assay employs an incubation step at acidic pH, which was shown to decrease nonspecific binding and interference from IL-13 binding proteins. The assay was validated and was shown to be accurate and precise over the entire quantification range (0.59 to 68.4 pg/mL in human EDTA plasma). The validated assay was successfully applied to samples from healthy volunteers and patients with atopic seasonal rhinitis. The assay is suitable for use in clinical trials to monitor efficacy or pharmacodynamic effects of drug candidates.
Collapse
|
34
|
He YF, Hua L, Bao YX, Liu QH, Chu Y, Fang DZ. IL-13 R110Q, a Naturally Occurring IL-13 Polymorphism, Confers Enhanced Functional Activity in Cultured Human Bronchial Smooth Muscle Cells. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2013; 5:377-82. [PMID: 24179684 PMCID: PMC3810544 DOI: 10.4168/aair.2013.5.6.377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 01/07/2013] [Accepted: 01/24/2013] [Indexed: 12/01/2022]
Abstract
Purpose Interleukin (IL)-13, a Th2-type cytokine, plays a pivotal role in the pathogenesis of asthma through its direct effects on airway smooth muscles. A naturally occurring IL-13 polymorphism, R110Q, is strongly associated with increased total serum IgE levels and asthma. In the present study, we aimed to determine whether the IL-13 R110Q variant would display different biochemical properties or altered functions in comparison with wild-type (WT) IL-13 in cultured human bronchial smooth muscle cells (hBSMCs). Methods Culture supernatants and cell proteins were collected from cultured hBSMCs that were treated with 50 ng/mL IL-13 or IL-13 R110Q for 24 hours. Eotaxin released into hBSMC culture medium was determined by ELISA. The expression levels of the high-affinity IgE receptor (FcεRI) α-chain, smooth muscle-specific actin alpha chain (α-SMA), smooth muscle myosin heavy chain (SmMHC), and calreticulin in the cells were measured on Western blots. Results Compared with WT IL-13, treatment with the IL-13 R110Q variant resulted in a significant increase in eotaxin release as well as significant, although modest, increases in the expression levels of α-SMA, SmMHC, calreticulin, and FcεRI α-chain. Conclusions The results of the present study suggenst that the IL-13 R110Q variant may enhance enhanced functional activities in hBSMCs.
Collapse
Affiliation(s)
- Ya-Fang He
- Department of Pediatrics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
35
|
Lightwood D, O'Dowd V, Carrington B, Veverka V, Carr MD, Tservistas M, Henry AJ, Smith B, Tyson K, Lamour S, Sarkar K, Turner A, Lawson AD, Bourne T, Gozzard N, Palframan R. The Discovery, Engineering and Characterisation of a Highly Potent Anti-Human IL-13 Fab Fragment Designed for Administration by Inhalation. J Mol Biol 2013; 425:577-93. [DOI: 10.1016/j.jmb.2012.11.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/20/2012] [Accepted: 11/22/2012] [Indexed: 01/13/2023]
|
36
|
Abstract
Asthma affects nearly 300 million people worldwide. The majority respond to inhaled corticosteroid treatment with or without beta-adrenergic agonists. However, a subset of 5 to 10% with severe asthma do not respond optimally to these medications. Different phenotypes of asthma may explain why current therapies show limited benefits in subgroups of patients. Interleukin-13 is implicated as a central regulator in IgE synthesis, mucus hypersecretion, airway hyperresponsiveness, and fibrosis. Promising research suggests that the interleukin-13 pathway may be an important target in the treatment of the different asthma phenotypes.
Collapse
|
37
|
Kong S, Sengupta S, Tyler B, Bais AJ, Ma Q, Doucette S, Zhou J, Sahin A, Carter BS, Brem H, Junghans RP, Sampath P. Suppression of human glioma xenografts with second-generation IL13R-specific chimeric antigen receptor-modified T cells. Clin Cancer Res 2012; 18:5949-60. [PMID: 22966020 PMCID: PMC4337849 DOI: 10.1158/1078-0432.ccr-12-0319] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Glioblastoma multiforme (GBM) remains highly incurable, with frequent recurrences after standard therapies of maximal surgical resection, radiation, and chemotherapy. To address the need for new treatments, we have undertaken a chimeric antigen receptor (CAR) "designer T cell" (dTc) immunotherapeutic strategy by exploiting interleukin (IL)13 receptor α-2 (IL13Rα2) as a GBM-selective target. EXPERIMENTAL DESIGN We tested a second-generation IL13 "zetakine" CAR composed of a mutated IL13 extracellular domain linked to intracellular signaling elements of the CD28 costimulatory molecule and CD3ζ. The aim of the mutation (IL13.E13K.R109K) was to enhance selectivity of the CAR for recognition and killing of IL13Rα2(+) GBMs while sparing normal cells bearing the composite IL13Rα1/IL4Rα receptor. RESULTS Our aim was partially realized with improved recognition of tumor and reduced but persisting activity against normal tissue IL13Rα1(+) cells by the IL13.E13K.R109K CAR. We show that these IL13 dTcs were efficient in killing IL13Rα2(+) glioma cell targets with abundant secretion of cytokines IL2 and IFNγ, and they displayed enhanced tumor-induced expansion versus control unmodified T cells in vitro. In an in vivo test with a human glioma xenograft model, single intracranial injections of IL13 dTc into tumor sites resulted in marked increases in animal survivals. CONCLUSIONS These data raise the possibility of immune targeting of diffusely invasive GBM cells either via dTc infusion into resection cavities to prevent GBM recurrence or via direct stereotactic injection of dTcs to suppress inoperable or recurrent tumors. Systemic administration of these IL13 dTc could be complicated by reaction against normal tissues expressing IL13Ra1.
Collapse
Affiliation(s)
- Seogkyoung Kong
- Brain Tumor Lab, Department of Neurosurgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Sadhak Sengupta
- Brain Tumor Lab, Department of Neurosurgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Betty Tyler
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anthony J. Bais
- Biotherapeutics Development Lab, Department of Medicine, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Qiangzhong Ma
- Biotherapeutics Development Lab, Department of Medicine, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Saryn Doucette
- Department of Pathology, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Jinyuan Zhou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ayguen Sahin
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Henry Brem
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard P. Junghans
- Biotherapeutics Development Lab, Department of Medicine, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Prakash Sampath
- Brain Tumor Lab, Department of Neurosurgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| |
Collapse
|
38
|
Balyasnikova IV, Wainwright DA, Solomaha E, Lee G, Han Y, Thaci B, Lesniak MS. Characterization and immunotherapeutic implications for a novel antibody targeting interleukin (IL)-13 receptor α2. J Biol Chem 2012; 287:30215-27. [PMID: 22778273 DOI: 10.1074/jbc.m112.370015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The high affinity interleukin-13 receptor α2 (IL13Rα2) is selectively expressed at a high frequency by glioblastoma multiforme (GBM) as well as several other tumor types. One approach for targeting this tumor-specific receptor utilizes the cognate ligand, IL-13, conjugated to cytotoxic molecules. However, this approach lacks specificity because the lower affinity receptor for IL-13, IL13Rα1, is widely expressed by normal tissues. Here, we aimed to develop and characterize a novel monoclonal antibody (mAb) specific to IL13Rα2 for the therapeutic purpose of targeting IL13Rα2-expressing tumors. Hybridoma cell lines were generated and compared for binding affinities to recombinant human IL13Rα2 (rhIL13Rα2). Clone 47 demonstrated binding to the native conformation of IL13Rα2 and was therefore chosen for further studies. Clone 47 bound specifically and with high affinity (K(D) = 1.39 × 10(-9) M) to rhIL13Rα2 but not to rhIL13Rα1 or murine IL13Rα2. Furthermore, clone 47 specifically recognized wild-type IL13Rα2 expressed on the surface of CHO and HEK cells as well as several glioma cell lines. Competitive binding assays revealed that clone 47 also significantly inhibited the interaction between human soluble IL-13 and IL13Rα2 receptor. Moreover, we found that N-linked glycosylation of IL13Rα2 contributes in part to the interaction of the antibody to IL13Rα2. In vivo, the IL13Rα2 mAb improved the survival of nude mice intracranially implanted with a human U251 glioma xenograft. Collectively, these data warrant further investigation of this novel IL13Rα2 mAb with an emphasis on translational implications for therapeutic use.
Collapse
|
39
|
Tamao H, Inoshima Y, Ishiguro N. Distribution of immune cells and expression of interleukin receptors in ileal Peyer's patches of calves. Cell Tissue Res 2012; 346:245-54. [PMID: 21975847 DOI: 10.1007/s00441-011-1250-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
Newborn calves lack a mature immune system. The immune system develops with age, but the role of the expression of cytokine receptors in the development of immune cells of Peyer's patches (PPs) in the intestines of calves in the first 2 months has not yet been elucidated. In this study, the distribution of immune cells and the expression of interleukin (IL) receptors (R) in the ileal PPs of newborn and 2-month-old calves were investigated immunohistochemically with monoclonal antibodies against bovine CD4, CD8, IgM, γδTCR, T19, WC3, WC5, and WC6 antigens. The expression of ILRs was examined with antibodies against CD25 (IL-2Rα), IL-2Rγ, IL-4R, IL-6R, IL-10R, and IL-13R antigens. CD4(+), CD8(+), γδTCR(+), T19(+), and WC6(+) cells were found to be more widely distributed in the ileal PPs of 2-month-old calves than in those of newborn calves. Moreover, the expression of CD25 (IL-2Rα), IL-4R, and IL-13R in the ileal PPs of 2-month-old calves was more prominent than that in newborn calves. These data suggest that the immune system of calves at 2 months of age is developed by reactions to foreign antigens and aging.
Collapse
Affiliation(s)
- Hidehisa Tamao
- Laboratory of Food and Environmental Hygiene, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | |
Collapse
|
40
|
Choi WA, Kang MJ, Kim YJ, Seo JH, Kim HY, Kwon JW, Yu J, Park SJ, Lee YC, Hong SJ. Gene-gene interactions between candidate gene polymorphisms are associated with total IgE levels in Korean children with asthma. J Asthma 2012; 49:243-52. [PMID: 22376040 DOI: 10.3109/02770903.2012.660294] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate associations between total serum immunoglobulin E (IgE) levels and single nucleotide polymorphisms (SNPs) from eight candidate genes (IL-4 rs2243250, IL-4Rα rs1805010, IL-13 rs20541, IL-13Rα1 rs2495636, CD14 rs2569190, tumor necrosis factor-alpha (TNF-α) rs1800629, cytotoxic T lymphocyte-associated antigen (CTLA4) rs231775, FCER1B rs1441585) in children with asthma and to evaluate gene-gene interactions. METHODS A total of 669 Korean children with asthma (n = 544 atopic n = 125 non-atopic) were included. Asthma phenotypes, total serum IgE levels, and methacholine challenge test results were evaluated. SNPs were genotyped using the polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) method. Multi-factor dimensionality reduction (MDR) was used to analyze gene-gene interactions. RESULTS The combination of the IL-13, IL-13Rα1, and CTLA4 polymorphisms was selected through MDR analysis of the data pertaining to children with atopic and non-atopic asthma (accuracy = 0.5459, cross validation consistency (CVC) = 10/10). The IL-4Rα, IL-13, IL-13Rα1, CD14, and CTLA4 polymorphisms were selected as the best model of increased total serum IgE levels in non-atopic and atopic asthma (asthma: accuracy = 0.4726, CVC = 10/10; atopic asthma: accuracy = 0.4573, CVC = 10/10). Both the IL-4Rα and the IL-13 polymorphisms were correlated with the IgE level. ANOVA analysis revealed that the combinations of the CTLA4 and IL-13, IL-13 and IL-13Rα1, IL-4Rα and IL-13, and CD14 and IL-13 polymorphisms were all significantly associated with increased total serum IgE levels. CONCLUSIONS The best model of increased IgE level included the IL-4Rα, IL-13, IL-13Rα1, CD14, and CTLA4 polymorphisms. Of the various interactions between these polymorphisms, the combinations of the CTLA4 and IL-13 polymorphisms and the IL-13 and IL-13Rα1 polymorphisms showed synergistic effects in terms of increased total serum IgE levels in the present cohort.
Collapse
Affiliation(s)
- Won-Ah Choi
- Asan Institute for Life Sciences, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Namkung JH, Lee JE, Kim E, Kim HJ, Seo EY, Jang HY, Shin ES, Cho EY, Yang JM. Association of polymorphisms in genes encoding IL-4, IL-13 and their receptors with atopic dermatitis in a Korean population. Exp Dermatol 2011; 20:915-9. [PMID: 21913997 DOI: 10.1111/j.1600-0625.2011.01357.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Th2-dominated immune responses are believed to contribute to the pathogenesis of atopic dermatitis (AD). IL-4 and IL-13 are typical pleiotropic Th2 cytokines that play a central role in IgE-dependent inflammatory reactions. Single-nucleotide polymorphisms (SNPs) in IL-4 and IL-13 have been reported in patients with allergic disease from numerous countries. Gene-gene interactions among genes have been identified in patients with asthma, although negative results have been reported. To investigate the associations of SNPs in these genes and the interactions between these genes in AD, we genotyped 23 SNPs of the IL-4, IL-13, IL-4R, IL-13Rα1 and IL-13Rα2 genes for 1089 case-control samples (631 AD patients and 458 controls) and analysed the SNPs and haplotypes in these genes. We also searched for gene-gene interactions among these five genes. Our data identified an association between rs3091307 and rs20541 in the IL-13 gene and between rs2265753 and rs2254672 in the IL-13Rα1 gene and the AD phenotype. In particular, three of the four SNPs were especially predictive of the allergic type of AD (ADe), and the haplotype TCGG in the IL-13Rα1 gene showed significant association with AD, especially ADe. Furthermore, the combination of rs3091307 GG/ rs2265753 GG (IL-13/IL-13Rα1) conveyed a significantly higher risk for developing ADe. However, we did not identify any SNPs in the IL-4, IL-4R and IL-13Rα2 genes that were associated with AD. As IL-13Rα1 is most likely expressed in Th17 cells rather than in Th2 cells, these data suggest diversity in the classification of Th cells that needs to be verified in future studies.
Collapse
Affiliation(s)
- Jung-Hyun Namkung
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Madala SK, Dolan MA, Sharma D, Ramalingam TR, Wilson MS, Mentink-Kane MM, Masison DC, Wynn TA. Mapping mouse IL-13 binding regions using structure modeling, molecular docking, and high-density peptide microarray analysis. Proteins 2011; 79:282-93. [PMID: 21064130 DOI: 10.1002/prot.22881] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Interleukin-13 is a Th2-associated cytokine responsible for many pathological responses in allergic asthma including mucus production, inflammation, and extracellular matrix remodeling. In addition, IL-13 is required for immunity to many helminth infections. IL-13 signals via the type-II IL-4 receptor, a heterodimeric receptor of IL-13Rα1 and IL-4Rα, which is also used by IL-4. IL-13 also binds to IL-13Rα2, but with much higher affinity than the type-II IL-4 receptor. Binding of IL-13 to IL-13Rα2 has been shown to attenuate IL-13 signaling through the type-II IL-4 receptor. However, molecular determinants that dictate the specificity and affinity of mouse IL-13 for the different receptors are largely unknown. Here, we used high-density overlapping peptide arrays, structural modeling, and molecular docking methods to map IL-13 binding sequences on its receptors. Predicted binding sequences on mouse IL-13Rα1 and IL-13Rα2 were in agreement with the reported human IL-13 receptor complex structures and site-directed mutational analysis. Novel structural differences were identified between IL-13 receptors, particularly at the IL-13 binding interface. Notably, additional binding sites were observed for IL-13 on IL-13Rα2. In addition, the identification of peptide sequences that are unique to IL-13Rα1 allowed us to generate a monoclonal antibody that selectively binds IL-13Rα1. Thus, high-density peptide arrays combined with molecular docking studies provide a novel, rapid, and reliable method to map cytokine-receptor interactions that may be used to generate signaling and decoy receptor-specific antagonists.
Collapse
Affiliation(s)
- Satish K Madala
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang T, Huang W, Costa MM, Martin SAM, Secombes CJ. Two copies of the genes encoding the subunits of putative interleukin (IL)-4/IL-13 receptors, IL-4Rα, IL-13Rα1 and IL-13Rα2, have been identified in rainbow trout (Oncorhynchus mykiss) and have complex patterns of expression and modulation. Immunogenetics 2011; 63:235-53. [PMID: 21210100 DOI: 10.1007/s00251-010-0508-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 12/20/2010] [Indexed: 01/04/2023]
Abstract
Mammalian interleukin-4 (IL-4) and IL-13 are T helper type 2 (Th2) cytokines with pleiotropic functions in immunity. They signal through receptors containing IL-4Rα and IL-2Rγ or IL-13Rα1. In addition, a decoy receptor, IL-13Rα2, is known to exist and modulates the function of IL-13. The existence of fish orthologues to mammalian IL-4 and IL-13 is still under debate. However, the receptor chains have been predicted in zebrafish, and we have previously cloned IL-2Rγ and IL-13Rα2 in rainbow trout. In this study, we have cloned a further five novel trout IL-4/13 receptors. Thus, each of the IL-4Rα, IL-13Rα1 and IL-13Rα2 chains has two copies. The identities of the receptors is supported by homology analysis, characteristic domain structure, phylogenetic tree analysis and synteny analysis in zebrafish. However, the characteristic WSXWS motif of structural importance in mammalian type I cytokine receptors is missing in all fish IL-4Rα and IL-13Rα1 molecules. All the receptors have a characteristic domain structure that is similar to their mammalian counterparts except for IL-13Rα1b that has the N-terminal Ig domain missing. Since this Ig domain is a specific and critical binding unit for IL-13 but not for IL-4 signalling, its absence potentially converts the IL-13Rα1b into a receptor that can only signal via IL-4 ligation. The existence of duplicated receptor genes perhaps suggests that more ligands still remain to be discovered that will bind these receptors. The duplicated receptors are differentially expressed in most tissues and cell lines examined, and their expression can be modulated by LPS, polyIC and IFN-γ in cell lines. In contrast, the T-cell stimulant phytohaemagglutinin increased the expression of IL-4Rα1 and IL-4Rα2, but not IL-13Rα1/2, suggesting a role of an IL-4-like molecule in T-cell growth/activation in fish.
Collapse
Affiliation(s)
- Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | | | | | | | | |
Collapse
|
44
|
Saka M, Amano T, Kajiwara K, Yoshikawa K, Ideguchi M, Nomura S, Fujisawa H, Kato S, Fujii M, Ueno K, Hinoda Y, Suzuki M. Vaccine therapy with dendritic cells transfected with Il13ra2 mRNA for glioma in mice. J Neurosurg 2010; 113:270-9. [PMID: 19895199 DOI: 10.3171/2009.9.jns09708] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The Il13ra2 gene is often overexpressed in brain tumors, making Il13ra2 one of the vaccine targets for immunotherapy of glioma. In this study, using a mouse glioma model, the authors tested the hypothesis that vaccination using dendritic cells transfected with Il13ra2 mRNA induces strong immunological antitumor effects. METHODS A plasmid was constructed for transduction of the mRNAs transcribed in vitro into dendritic cells. This was done to transport the intracellular protein efficiently into major histocompatibility complex class II compartments by adding a late endosomal/lysosomal sorting signal to the Il13ra2 gene. The dendritic cells transfected with this Il13ra2 mRNA were injected intraperitoneally into the mouse glioma model at 3 and 10 days after tumor cell implantation. The antitumor effects were estimated based on the survival rate, results of histological analysis, and immunohistochemical findings for immune cells. RESULTS The group treated by vaccination therapy with dendritic cells transfected with Il13ra2 mRNA survived significantly longer than did the control groups. Immunohistochemical analysis revealed that greater numbers of T lymphocytes containing CD4+ and CD8+ T cells were found in the group vaccinated with dendritic cells transfected with Il13ra2 mRNA. CONCLUSIONS These results demonstrate the therapeutic potential of vaccination with dendritic cells transfected with Il13ra2 mRNA for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Makoto Saka
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shi X, Cai W, Zhou Y, Zhang X, Xiong L, Li R, Yu X, Li W. IL-13 upregulates GPIIb expression in megakaryocytic cell lines via STAT6. Anat Rec (Hoboken) 2010; 293:1470-6. [DOI: 10.1002/ar.21144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Lupardus PJ, Birnbaum ME, Garcia KC. Molecular basis for shared cytokine recognition revealed in the structure of an unusually high affinity complex between IL-13 and IL-13Ralpha2. Structure 2010; 18:332-42. [PMID: 20223216 DOI: 10.1016/j.str.2010.01.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/12/2010] [Accepted: 01/19/2010] [Indexed: 11/28/2022]
Abstract
Interleukin-13 is a cytokine important for development of T helper cell type 2 (Th2) responses and plays a critical role in asthma and allergy. The IL-13 Receptor alpha2 (IL-13Ralpha2) is a receptor for IL-13 lacking canonical Jak/STAT signaling functions. Here we present the crystal structure along with a mutational and biophysical analysis of the IL-13/IL-13Ralpha2 complex. While retaining a similar mode of IL-13 binding to its related signaling receptor, IL-13Ralpha1, IL-13Ralpha2 uses peripheral receptor residues unused in the IL-13/IL-13Ralpha1 complex to generate a larger and more complementary interface for IL-13. This results in a four orders of magnitude increase in affinity, to the femtomolar level, compared to IL-13Ralpha1. Alanine scanning mutagenesis of the IL-13 interface reveals several common "hotspot" residues important for binding to both receptors, but also identifies a prominent IL-13Ralpha2-specific contact. These results provide a framework for development of receptor subtype-selective IL-13 antagonists and indicate a decoy function for IL-13Ralpha2.
Collapse
Affiliation(s)
- Patrick J Lupardus
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Department of Structural Biology, and Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
47
|
Todorcević M, Skugor S, Krasnov A, Ruyter B. Gene expression profiles in Atlantic salmon adipose-derived stromo-vascular fraction during differentiation into adipocytes. BMC Genomics 2010; 11:39. [PMID: 20078893 PMCID: PMC2824722 DOI: 10.1186/1471-2164-11-39] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 01/17/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Excessive fat deposition is one of the largest problems faced by salmon aquaculture industries, leading to production losses due to high volume of adipose tissue offal. In addition, increased lipid accumulation may impose considerable stress on adipocytes leading to adipocyte activation and production and secretion of inflammatory mediators, as observed in mammals. RESULTS Microarray and qPCR analyses were performed to follow transcriptome changes during adipogenesis in the primary culture of adipose stromo-vascular fraction (aSVF) of Atlantic salmon. Cellular heterogeneity decreased by confluence as evidenced by the down-regulation of markers of osteo/chondrogenic, myogenic, immune and vasculature lineages. Transgelin (TAGLN), a marker of the multipotent pericyte, was prominently expressed around confluence while adipogenic PPARgamma was up-regulated already in subconfluent cells. Proliferative activity and subsequent cell cycle arrest were reflected in the fluctuations of pro- and anti-mitotic regulators. Marked regulation of genes involved in lipid and glucose metabolism and pathways producing NADPH and glycerol-3-phosphate (G3P) was seen during the terminal differentiation, also characterised by diverse stress responses. Activation of the glutathione and thioredoxin antioxidant systems and changes in the iron metabolism suggested the need for protection against oxidative stress. Signs of endoplasmic reticulum (ER) stress and unfolded protein response (UPR) occured in parallel with the increased lipid droplet (LD) formation and production of secretory proteins (adipsin, visfatin). The UPR markers XBP1 and ATF6 were induced together with genes involved in ubiquitin-proteasome and lysosomal proteolysis. Concurrently, translation was suppressed as evidenced by the down-regulation of genes encoding elongation factors and components of the ribosomal machinery. Notably, expression changes of a panel of genes that belong to different immune pathways were seen throughout adipogenesis. The induction of AP1 (Jun, Fos), which is a master regulator of stress responses, culminated by the end of adipogenesis, concurrent with the maximal observed lipid deposition. CONCLUSIONS Our data point to an intimate relationship between metabolic regulation and immune responses in white adipocytes of a cold-blooded vertebrate. Stress imposed on adipocytes by LD formation and expansion is prominently reflected in the ER compartment and the activated UPR response could have an important role at visceral obesity in fish.
Collapse
Affiliation(s)
- Marijana Todorcević
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, As NO-1430, Norway.
| | | | | | | |
Collapse
|
48
|
Ito T, Suzuki S, Kanaji S, Shiraishi H, Ohta S, Arima K, Tanaka G, Tamada T, Honjo E, Garcia KC, Kuroki R, Izuhara K. Distinct structural requirements for interleukin-4 (IL-4) and IL-13 binding to the shared IL-13 receptor facilitate cellular tuning of cytokine responsiveness. J Biol Chem 2009; 284:24289-96. [PMID: 19586918 PMCID: PMC2782022 DOI: 10.1074/jbc.m109.007286] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 06/22/2009] [Indexed: 11/06/2022] Open
Abstract
Both interleukin-4 (IL-4) and IL-13 can bind to the shared receptor composed of the IL-4 receptor alpha chain and the IL-13 receptor alpha1 chain (IL-13Ralpha1); however, the mechanisms by which these ligands bind to the receptor chains are different, enabling the principal functions of these ligands to be different. We have previously shown that the N-terminal Ig-like domain in IL-13Ralpha1, called the D1 domain, is the specific and critical binding unit for IL-13. However, it has still remained obscure which amino acid has specific binding capacity to IL-13 and why the D1 domain acts as the binding site for IL-13, but not IL-4. To address these questions, in this study we performed mutational analyses for the D1 domain, combining the structural data to identify the amino acids critical for binding to IL-13. Mutations of Lys-76, Lys-77, or Ile-78 in c' strand in which the crystal structure showed interaction with IL-13, and those of Trp-65 and Ala-79 adjacent to the interacting site, resulted in significant impairment of IL-13 binding, demonstrating that these amino acids generate the binding site. Furthermore, mutations of Val-35, Leu-38, or Val-42 at the N-terminal beta-strand also resulted in loss of IL-13 binding, probably from decreased structural stability. None of the mutations employed here affected IL-4 binding. These results demonstrate that the D1 domain of IL-13Ralpha1 acts as an affinity converter, through direct cytokine interactions, that allows the shared receptor to respond differentially to IL-4 and IL-13.
Collapse
Affiliation(s)
- Takachika Ito
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences
- Department of Emergency Medicine, and
| | - Shoichi Suzuki
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences
| | - Sachiko Kanaji
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences
| | - Hiroshi Shiraishi
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences
| | - Shoichiro Ohta
- Department of Laboratory Medicine, Saga Medical School, Saga 849-8501, Japan
| | - Kazuhiko Arima
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences
| | - Go Tanaka
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences
| | - Taro Tamada
- the Molecular Structural Biology Group, Neutron Science Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and
| | - Eijiro Honjo
- the Molecular Structural Biology Group, Neutron Science Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and
| | - K. Christopher Garcia
- the Howard Hughes Medical Institute and Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Ryota Kuroki
- the Molecular Structural Biology Group, Neutron Science Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and
| | - Kenji Izuhara
- From the Division of Medical Biochemistry, Department of Biomolecular Sciences
- Department of Laboratory Medicine, Saga Medical School, Saga 849-8501, Japan
| |
Collapse
|
49
|
Abstract
Recent structural information for complexes of cytokine receptor ectodomains bound to their ligands has significantly expanded our understanding of the macromolecular topology and ligand recognition mechanisms used by our three principal shared cytokine signaling receptors-gp130, gamma(c), and beta(c). The gp130 family receptors intricately coordinate three structurally unique cytokine-binding sites on their four-helix bundle cytokine ligands to assemble multimeric signaling complexes. These organizing principles serve as topological blueprints for the entire gp130 family of cytokines. Novel structures of gamma(c) and beta(c) complexes show us new twists, such as the use of a nonstandard sushi-type alpha receptors for IL-2 and IL-15 in assembling quaternary gamma(c) signaling complexes and an antiparallel interlocked dimer in the GM-CSF signaling complex with beta(c). Unlike gp130, which appears to recognize vastly different cytokine surfaces in chemically unique fashions for each ligand, the gamma(c)-dependent cytokines appear to seek out some semblance of a knobs-in-holes shape recognition code in order to engage gamma(c) in related fashions. We discuss the structural similarities and differences between these three shared cytokine receptors, as well as the implications for transmembrane signaling.
Collapse
Affiliation(s)
- Xinquan Wang
- Howard Hughes Medical Institute, Stanford University School of Medicine, Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford, California 94305, USA.
| | | | | | | |
Collapse
|
50
|
In vitro and in vivo characterisation of anti-murine IL-13 antibodies recognising distinct functional epitopes. Int Immunopharmacol 2009; 9:201-6. [DOI: 10.1016/j.intimp.2008.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/05/2008] [Accepted: 11/06/2008] [Indexed: 11/20/2022]
|