1
|
Danahay H, Gosling M, Fox R, Lilley S, Charlton H, Hargrave JD, Schofield TB, Hay DA, Went N, McMahon P, Marlin F, Scott J, Vile J, Hewison S, Ellam S, Brown S, Sabater J, Kennet G, Lightowler S, Collingwood SP. Optimisation of a novel series of ENaC inhibitors, leading to the selection of the long-acting inhaled clinical candidate ETD001, a potential new treatment for cystic fibrosis. Eur J Med Chem 2025; 282:117040. [PMID: 39561495 DOI: 10.1016/j.ejmech.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
Cystic Fibrosis (CF) results from the loss of function of the cystic fibrosis transmembrane conductance regulator (CFTR), an ion channel of key importance in the airway epithelia. CFTR helps control optimal hydration of the airways, a crucial requirement for healthy lungs. CFTR modulators have recently been approved as an effective treatment option for many genetic variants of CF. The epithelial sodium channel (ENaC), unlike CFTR which is secretory, is an absorptive pathway, and therefore its inhibition is an alternative and potentially complementary approach to aid hydration of the airways. Due to the adverse effect of ENaC inhibition in the kidney we, as have several others, focused on the design and synthesis of novel ENaC inhibitors for direct delivery to the airways via inhalation. A new series of ENaC inhibitors is described, wherein the well-established pyrazine core of first-generation inhibitors was replaced with a pyrrolopyrazine. Aiming for high retention at the surface of the lung following inhalation, optimisation of this template focused on significantly increasing polarity to minimize passive cellular permeability. The resulting optimized clinical candidate ETD001 demonstrates potent inhibition of ENaC (59 nM) prolonged retention in the airways of rats (13 % of the delivered dose retained after 6h) following intratracheal administration and a potent and long-acting effect in a sheep model of mucociliary clearance following inhalation (ED100 (4-6h) = 9 μg/kg). ETD001 entered a phase II study in CF patients in July 2024.
Collapse
Affiliation(s)
- Henry Danahay
- Enterprise Therapeutics, Sussex Innovation Centre, University of Sussex, Science Park Square, Falmer, Brighton, BN1 9SB, United Kingdom
| | - Martin Gosling
- Enterprise Therapeutics, Sussex Innovation Centre, University of Sussex, Science Park Square, Falmer, Brighton, BN1 9SB, United Kingdom
| | - Roy Fox
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, BN1 9RH, United Kingdom
| | - Sarah Lilley
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, BN1 9RH, United Kingdom
| | - Holly Charlton
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, BN1 9RH, United Kingdom
| | - Jonathan D Hargrave
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Thomas B Schofield
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Duncan A Hay
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Naomi Went
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Pearl McMahon
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Frederic Marlin
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - John Scott
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Julia Vile
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Steve Hewison
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Sarah Ellam
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Samantha Brown
- Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Juan Sabater
- Department of Research, Mount Sinai Medical centre, 4300 Alton Rd, Miami Beach FL 3340, USA
| | - Guy Kennet
- Saretius, Whiteknights House (B10), University of Reading, Reading, RG6 6UR, United Kingdom
| | - Sean Lightowler
- Saretius, Whiteknights House (B10), University of Reading, Reading, RG6 6UR, United Kingdom
| | - Stephen P Collingwood
- Enterprise Therapeutics, Sussex Innovation Centre, University of Sussex, Science Park Square, Falmer, Brighton, BN1 9SB, United Kingdom.
| |
Collapse
|
2
|
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Epithelial Na + Channels Function as Extracellular Sensors. Compr Physiol 2024; 14:1-41. [PMID: 39109974 PMCID: PMC11309579 DOI: 10.1002/cphy.c230015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.
Collapse
Affiliation(s)
- Ossama B. Kashlan
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Lin J, Gettings SM, Talbi K, Schreiber R, Taggart MJ, Preller M, Kunzelmann K, Althaus M, Gray MA. Pharmacological inhibitors of the cystic fibrosis transmembrane conductance regulator exert off-target effects on epithelial cation channels. Pflugers Arch 2023; 475:167-179. [PMID: 36205782 PMCID: PMC9849171 DOI: 10.1007/s00424-022-02758-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 02/01/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel and the epithelial Na+ channel (ENaC) play essential roles in transepithelial ion and fluid transport in numerous epithelial tissues. Inhibitors of both channels have been important tools for defining their physiological role in vitro. However, two commonly used CFTR inhibitors, CFTRinh-172 and GlyH-101, also inhibit non-CFTR anion channels, indicating they are not CFTR specific. However, the potential off-target effects of these inhibitors on epithelial cation channels has to date not been addressed. Here, we show that both CFTR blockers, at concentrations routinely employed by many researchers, caused a significant inhibition of store-operated calcium entry (SOCE) that was time-dependent, poorly reversible and independent of CFTR. Patch clamp experiments showed that both CFTRinh-172 and GlyH-101 caused a significant block of Orai1-mediated whole cell currents, establishing that they likely reduce SOCE via modulation of this Ca2+ release-activated Ca2+ (CRAC) channel. In addition to off-target effects on calcium channels, both inhibitors significantly reduced human αβγ-ENaC-mediated currents after heterologous expression in Xenopus oocytes, but had differential effects on δβγ-ENaC function. Molecular docking identified two putative binding sites in the extracellular domain of ENaC for both CFTR blockers. Together, our results indicate that caution is needed when using these two CFTR inhibitors to dissect the role of CFTR, and potentially ENaC, in physiological processes.
Collapse
Affiliation(s)
- JinHeng Lin
- grid.1006.70000 0001 0462 7212Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK ,grid.4991.50000 0004 1936 8948Present Address: Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
| | - Sean M. Gettings
- grid.1006.70000 0001 0462 7212School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU UK
| | - Khaoula Talbi
- grid.7727.50000 0001 2190 5763Physiological Institute, University of Regensburg, 93053 Regensburg, Germany
| | - Rainer Schreiber
- grid.7727.50000 0001 2190 5763Physiological Institute, University of Regensburg, 93053 Regensburg, Germany
| | - Michael J. Taggart
- grid.1006.70000 0001 0462 7212Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Matthias Preller
- grid.425058.e0000 0004 0473 3519Department of Natural Sciences/Institute for Functional Gene Analytics, Structural Biology Group, Bonn-Rhein-Sieg University of Applied Sciences, 53359 Rheinbach, Germany
| | - Karl Kunzelmann
- grid.7727.50000 0001 2190 5763Physiological Institute, University of Regensburg, 93053 Regensburg, Germany
| | - Mike Althaus
- grid.1006.70000 0001 0462 7212School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU UK ,grid.425058.e0000 0004 0473 3519Present Address: Department of Natural Sciences /Institute for Functional Gene Analytics, Ion Transport Physiology Group, Bonn-Rhein-Sieg University of Applied Sciences, 53359 Rheinbach, Germany
| | - Michael A. Gray
- grid.1006.70000 0001 0462 7212Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| |
Collapse
|
4
|
Wang XP, Tomilin V, Nickerson AJ, Tian R, Ertem M, McKernan A, Lei X, Pochynyuk O, Kashlan OB. Bile acids regulate the epithelial Na + channel in native tissues through direct binding at multiple sites. J Physiol 2022; 600:4695-4711. [PMID: 36071685 PMCID: PMC9633555 DOI: 10.1113/jp283318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022] Open
Abstract
Bile acids, originally known to emulsify dietary lipids, are now established signalling molecules that regulate physiological processes. Signalling targets several proteins that include the ion channels involved in regulating intestinal motility and bile viscosity. Studies show that bile acids regulate the epithelial sodium channel (ENaC) in cultured cell models and heterologous expression systems. ENaC plays both local and systemic roles in regulating extracellular fluids. Here we investigated whether bile acids regulate ENaC expressed in native tissues. We found that taurocholic acid and taurohyodeoxycholic acid regulated ENaC in both the distal nephron and distal colon. We also tested the hypothesis that regulation occurs through direct binding. Using photoaffinity labelling, we found evidence for specific binding to both the β and γ subunits of the channel. In functional experiments, we found that the α subunit was sufficient for regulation. We also found that regulation by at least one bile acid was voltage-sensitive, suggesting that one binding site may be closely associated with the pore-forming helices of the channel. Our data provide evidence that bile acids regulate ENaC by binding to multiple sites to influence the open probability of the channel. KEY POINTS: Recent studies have shown that bile acids regulate the epithelial sodium channel (ENaC) in vitro. Here we investigated whether bile acids regulate ENaC in native tissues and whether bile acids directly bind the channel. We found that bile acids regulate ENaC expressed in the mouse cortical collecting duct and mouse colon by modulating open probability. Photoaffinity labelling experiments showed specific binding to the β and γ subunits of the channel, while channels comprising only α subunits were sensitive to taurocholic acid in functional experiments using Xenopus oocytes. Taurocholic acid regulation of ENaC was voltage-dependent, providing evidence for binding to pore-forming helices. Our data indicate that bile acids are ENaC regulatory effectors that may have a role in the physiology and pathophysiology of several systems.
Collapse
Affiliation(s)
- Xue-Ping Wang
- Departments of Medicine, Renal-electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Viktor Tomilin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Andrew J Nickerson
- Departments of Medicine, Renal-electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Runze Tian
- Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Merve Ertem
- Departments of Medicine, Renal-electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Abagail McKernan
- Departments of Medicine, Renal-electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ossama B Kashlan
- Departments of Medicine, Renal-electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Departments of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Abstract
The development of high blood pressure is influenced by genetic and environmental factors, with high salt intake being a known environmental contributor. Humans display a spectrum of sodium-sensitivity, with some individuals displaying a significant blood pressure rise in response to increased sodium intake while others experience almost no change. These differences are, in part, attributable to genetic variation in pathways involved in sodium handling and excretion. ENaC (epithelial sodium channel) is one of the key transporters responsible for the reabsorption of sodium in the distal nephron. This channel has an important role in the regulation of extracellular fluid volume and consequently blood pressure. Herein, we review the role of ENaC in the development of salt-sensitive hypertension, and present mechanistic insights into the regulation of ENaC activity and how it may accelerate sodium-induced damage and dysfunction. We discuss the traditional role of ENaC in renal sodium reabsorption and review work addressing ENaC expression and function in the brain, vasculature, and immune cells, and how this has expanded the implications for its role in the initiation and progression of salt-sensitive hypertension.
Collapse
Affiliation(s)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, and Department of Molecular Physiology and Biophysics Vanderbilt University, Nashville, TN (A.K.)
| | - Thomas R Kleyman
- From the Department of Medicine (S.M.M., T.R.K.), University of Pittsburgh, PA.,Department of Cell Biology (T.R.K.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (T.R.K.), University of Pittsburgh, PA
| |
Collapse
|
6
|
Krauson AJ, Rooney JG, Carattino MD. Molecular basis of inhibition of acid sensing ion channel 1A by diminazene. PLoS One 2018; 13:e0196894. [PMID: 29782492 PMCID: PMC5962070 DOI: 10.1371/journal.pone.0196894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/20/2018] [Indexed: 11/18/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are trimeric proton-gated cation permeable ion channels expressed primarily in neurons. Here we employed site-directed mutagenesis and electrophysiology to investigate the mechanism of inhibition of ASIC1a by diminazene. This compound inhibits mouse ASIC1a with a half-maximal inhibitory concentration (IC50) of 2.4 μM. At first, we examined whether neutralizing mutations of Glu79 and Glu416 alter diminazene block. These residues form a hexagonal array in the lower palm domain that was previously shown to contribute to pore opening in response to extracellular acidification. Significantly, single Gln substitutions at positions 79 and 416 in ASIC1a reduced diminazene apparent affinity by 6-7 fold. This result suggests that diminazene inhibits ASIC1a in part by limiting conformational rearrangement in the lower palm domain. Because diminazene is charged at physiological pHs, we assessed whether it inhibits ASIC1a by blocking the ion channel pore. Consistent with the notion that diminazene binds to a site within the membrane electric field, diminazene block showed a strong dependence with the membrane potential. Moreover, a Gly to Ala mutation at position 438, in the ion conduction pathway of ASIC1a, increased diminazene IC50 by one order of magnitude and eliminated the voltage dependence of block. Taken together, our results indicate that the inhibition of ASIC1a by diminazene involves both allosteric modulation and blocking of ion flow through the conduction pathway. Our findings provide a foundation for the development of more selective and potent ASIC pore blockers.
Collapse
Affiliation(s)
- Aram J Krauson
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James G Rooney
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
7
|
Roldán-Olarte M, Maillo V, Sánchez-Calabuig MJ, Beltrán-Breña P, Rizos D, Gutiérrez-Adán A. Effect of urokinase type plasminogen activator on in vitro bovine oocyte maturation. Reproduction 2017; 154:231-240. [PMID: 28667127 DOI: 10.1530/rep-17-0204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/23/2017] [Accepted: 06/30/2017] [Indexed: 12/27/2022]
Abstract
This study examines the impacts of the urokinase-type plasminogen activator (uPA) on the in vitro maturation (IVM) of bovine oocytes. Cumulus-oocyte complexes in IVM medium were treated with uPA, amiloride (an uPA inhibitor), dimethyl sulfoxide (DMSO) or left untreated (control group). After 24 h of IVM, oocytes were recovered for testing or were in vitro fertilized and cultured to the blastocyst stage. The factors examined in all groups were: (i) oocyte nuclear maturation (Hoëscht staining); (ii) oocyte cytoplasmic maturation (cortical granules, CGs, distribution assessed by LCA-FITC); (iii) oocyte and cumulus cell (CC) gene expression (RT-qPCR); and (iv) embryo development (cleavage rate and blastocyst yield). Oocytes subjected to uPA treatment showed rates of nuclear maturation and CG distribution patterns similar to controls (P > 0.05), whereas lower rates of oocyte maturation were recorded in the amiloride group (P < 0.05). Both in oocytes and CC, treatment with uPA did not affect the transcription of genes related to apoptosis, cell junctions, cell cycle or serpin protease inhibitors. In contrast, amiloride altered the expression of genes associated with cell junctions, cell cycle, oxidative stress and CC serpins. No differences were observed between the control and uPA group in cleavage rate or in blastocyst yield recorded on Days 7, 8 or 9 post-insemination. However, amiloride led to drastically reduced cleavage rate (28.5% vs 83.2%) and Day 9 embryo production (6.0% vs 21.0%) over the rates recorded for DMSO. These results indicate that the proteolytic activity of uPA is needed for successful oocyte maturation in bovine.
Collapse
Affiliation(s)
- Mariela Roldán-Olarte
- Department Reproducción AnimalINIA, Madrid, Spain .,Instituto Superior de Investigaciones Biológicas (INSIBIO)CONICET-Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina
| | | | | | | | | | | |
Collapse
|
8
|
Shi S, Luke CJ, Miedel MT, Silverman GA, Kleyman TR. Activation of the Caenorhabditis elegans Degenerin Channel by Shear Stress Requires the MEC-10 Subunit. J Biol Chem 2016; 291:14012-14022. [PMID: 27189943 DOI: 10.1074/jbc.m116.718031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 01/12/2023] Open
Abstract
Mechanotransduction in Caenorhabditis elegans touch receptor neurons is mediated by an ion channel formed by MEC-4, MEC-10, and accessory proteins. To define the role of these subunits in the channel's response to mechanical force, we expressed degenerin channels comprising MEC-4 and MEC-10 in Xenopus oocytes and examined their response to laminar shear stress (LSS). Shear stress evoked a rapid increase in whole cell currents in oocytes expressing degenerin channels as well as channels with a MEC-4 degenerin mutation (MEC-4d), suggesting that C. elegans degenerin channels are sensitive to LSS. MEC-10 is required for a robust LSS response as the response was largely blunted in oocytes expressing homomeric MEC-4 or MEC-4d channels. We examined a series of MEC-10/MEC-4 chimeras to identify specific domains (amino terminus, first transmembrane domain, and extracellular domain) and sites (residues 130-132 and 134-137) within MEC-10 that are required for a robust response to shear stress. In addition, the LSS response was largely abolished by MEC-10 mutations encoded by a touch-insensitive mec-10 allele, providing a correlation between the channel's responses to two different mechanical forces. Our findings suggest that MEC-10 has an important role in the channel's response to mechanical forces.
Collapse
Affiliation(s)
- Shujie Shi
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Cliff J Luke
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Mark T Miedel
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Gary A Silverman
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
9
|
Hanukoglu I, Hanukoglu A. Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 2016; 579:95-132. [PMID: 26772908 PMCID: PMC4756657 DOI: 10.1016/j.gene.2015.12.061] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 01/24/2023]
Abstract
The epithelial sodium channel (ENaC) is composed of three homologous subunits and allows the flow of Na(+) ions across high resistance epithelia, maintaining body salt and water homeostasis. ENaC dependent reabsorption of Na(+) in the kidney tubules regulates extracellular fluid (ECF) volume and blood pressure by modulating osmolarity. In multi-ciliated cells, ENaC is located in cilia and plays an essential role in the regulation of epithelial surface liquid volume necessary for cilial transport of mucus and gametes in the respiratory and reproductive tracts respectively. The subunits that form ENaC (named as alpha, beta, gamma and delta, encoded by genes SCNN1A, SCNN1B, SCNN1G, and SCNN1D) are members of the ENaC/Degenerin superfamily. The earliest appearance of ENaC orthologs is in the genomes of the most ancient vertebrate taxon, Cyclostomata (jawless vertebrates) including lampreys, followed by earliest representatives of Gnathostomata (jawed vertebrates) including cartilaginous sharks. Among Euteleostomi (bony vertebrates), Actinopterygii (ray finned-fishes) branch has lost ENaC genes. Yet, most animals in the Sarcopterygii (lobe-finned fish) branch including Tetrapoda, amphibians and amniotes (lizards, crocodiles, birds, and mammals), have four ENaC paralogs. We compared the sequences of ENaC orthologs from 20 species and established criteria for the identification of ENaC orthologs and paralogs, and their distinction from other members of the ENaC/Degenerin superfamily, especially ASIC family. Differences between ENaCs and ASICs are summarized in view of their physiological functions and tissue distributions. Structural motifs that are conserved throughout vertebrate ENaCs are highlighted. We also present a comparative overview of the genotype-phenotype relationships in inherited diseases associated with ENaC mutations, including multisystem pseudohypoaldosteronism (PHA1B), Liddle syndrome, cystic fibrosis-like disease and essential hypertension.
Collapse
Affiliation(s)
- Israel Hanukoglu
- Laboratory of Cell Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.
| | - Aaron Hanukoglu
- Division of Pediatric Endocrinology, E. Wolfson Medical Center, Holon, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Chen MX, Gatfield K, Ward E, Downie D, Sneddon HF, Walsh S, Powell AJ, Laine D, Carr M, Trezise D. Validation and optimization of novel high-throughput assays for human epithelial sodium channels. ACTA ACUST UNITED AC 2014; 20:242-53. [PMID: 25278498 DOI: 10.1177/1087057114552399] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The epithelial sodium channel (ENaC) plays a crucial role in salt and water homeostasis and is primarily involved in sodium reabsorption in the kidney and lung. Modulators of ENaC function, particularly within lung epithelia, could offer potential treatments for a number of diseases. As a constitutively active sodium channel, ENaC expression at the cell membrane is highly regulated through rapid turnover. This short half-life of the channel at the membrane and cytotoxicity from overexpression pose a problem for reagent generation and assay development in drug discovery. We have generated an HEK293 stable cell line expressing ENaC β and γ subunits containing the PY motif trafficking mutations found in Liddle's syndrome to overcome rapid channel turnover at the membrane. A BacMam virus was used to transiently express the ENaC α subunit to reconstitute channel function to reduce the toxicity associated with long-term overexpression. We have configured a 384-well FLIPR membrane potential antagonist assay for high-throughput screening and an IonWorks Quattro electrophysiology antagonist assay that is predictive of potency values derived from primary lung epithelial cell short-circuit measurements. The triage strategy for compound screening and profiling against this target using these assays has resulted in the discovery of novel chemotypes.
Collapse
Affiliation(s)
- Mao Xiang Chen
- Biological Sciences, GlaxoSmithKline R&D, Stevenage, Herts, UK
| | - Kelly Gatfield
- Biological Sciences, GlaxoSmithKline R&D, Stevenage, Herts, UK
| | - Emma Ward
- Biological Sciences, GlaxoSmithKline R&D, Stevenage, Herts, UK
| | - David Downie
- Biological Sciences, GlaxoSmithKline R&D, Stevenage, Herts, UK
| | - Helen F Sneddon
- Green Chemistry Performance Unit, GlaxoSmithKline R&D, Stevenage, Herts, UK
| | - Stacey Walsh
- Target and Pathway Validation, GlaxoSmithKline R&D, Upper Providence, Philadelphia, PA, USA
| | - Andrew J Powell
- Biological Sciences, GlaxoSmithKline R&D, Stevenage, Herts, UK
| | - Dramane Laine
- Neurobiology DPU, GlaxoSmithKline R&D, Upper Merion, Philadelphia, PA, USA
| | - Michael Carr
- Neurobiology DPU, GlaxoSmithKline R&D, Upper Merion, Philadelphia, PA, USA
| | - Derek Trezise
- Biological Sciences, GlaxoSmithKline R&D, Stevenage, Herts, UK
| |
Collapse
|
11
|
Shi S, Kleyman TR. Gamma subunit second transmembrane domain contributes to epithelial sodium channel gating and amiloride block. Am J Physiol Renal Physiol 2013; 305:F1585-92. [PMID: 24107424 DOI: 10.1152/ajprenal.00337.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The epithelial sodium channel (ENaC) is comprised of three homologous subunits. Channels composed solely of α- and β-subunits (αβ-channels) exhibit a very high open probability (Po) and reduced sensitivity to amiloride, in contrast to channels composed of α- and γ-subunits or of all three subunits (i.e., αγ- and αβγ-channels). A mutant channel comprised of α- and β-subunits, and a chimeric γ-subunit where the region immediately preceding (β12 and wrist) and encompassing the second transmembrane domain (TM2) was replaced with the corresponding region of the β-subunit (γ-βTM2), displayed characteristics reminiscent of αβ-channels, including a reduced amiloride potency of block and a loss of Na(+) self-inhibition (reflecting an increased Po). Substitutions at key pore-lining residues of the γ-βTM2 chimera enhanced the Na(+) self-inhibition response, whereas key γ-subunit substitutions reduced the response. Furthermore, multiple sites within the TM2 domain of the γ-subunit were required to confer high amiloride potency. In summary, we have identified novel pore-lining residues of the γ-subunit of ENaC that are important for proper channel gating and its interaction with amiloride.
Collapse
Affiliation(s)
- Shujie Shi
- Renal-Electrolyte Division, A919 Scaife Hall, 3550 Terrace St., Pittsburgh, PA 15261.
| | | |
Collapse
|
12
|
Carattino MD, Della Vecchia MC. Contribution of residues in second transmembrane domain of ASIC1a protein to ion selectivity. J Biol Chem 2012; 287:12927-34. [PMID: 22371494 DOI: 10.1074/jbc.m111.329284] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated cation-selective channels expressed in the peripheral and central nervous systems. The ion permeation pathway of ASIC1a is defined by residues 426-450 in the second transmembrane (TM2) segment. The gate, formed by the intersection of the TM2 segments, localizes near the extracellular boundary of the plasma membrane. We explored the contribution to ion permeation and selectivity of residues in the TM2 segment of ASIC1a. Studies of accessibility with positively charged methanethiosulfonate reagents suggest that the permeation pathway in the open state constricts below the gate, restricting the passage to large ions. Substitution of residues in the intracellular vestibule at positions 437, 438, 443, or 446 significantly increased the permeability to K(+) versus Na(+). ASIC1a shows a selectivity sequence for alkali metals of Na(+)>Li(+)>K(+)≫Rb(+)>Cs(+). Alanine and cysteine substitutions at position 438 increased, to different extents, the relative permeability to Li(+), K(+), Rb(+), and Cs(+). For these mutants, ion permeation was not a function of the diameter of the nonhydrated ion, suggesting that Gly-438 encompasses an ion coordination site that is essential for ion selectivity. M437C and A443C mutants showed slightly increased permeability to K(+), Rb(+), and Cs(+), suggesting that substitutions at these positions influence ion discrimination by altering molecular sieving. Our results indicate that ion selectivity is accomplished by the contribution of multiple sites in the pore of ASIC1a.
Collapse
Affiliation(s)
- Marcelo D Carattino
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | |
Collapse
|
13
|
Kashlan OB, Kleyman TR. ENaC structure and function in the wake of a resolved structure of a family member. Am J Physiol Renal Physiol 2011; 301:F684-96. [PMID: 21753073 DOI: 10.1152/ajprenal.00259.2011] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Our understanding of epithelial Na(+) channel (ENaC) structure and function has been profoundly impacted by the resolved structure of the homologous acid-sensing ion channel 1 (ASIC1). The structure of the extracellular and pore regions provide insight into channel assembly, processing, and the ability of these channels to sense the external environment. The absence of intracellular structures precludes insight into important interactions with intracellular factors that regulate trafficking and function. The primary sequences of ASIC1 and ENaC subunits are well conserved within the regions that are within or in close proximity to the plasma membrane, but poorly conserved in peripheral domains that may functionally differentiate family members. This review examines functional data, including ion selectivity, gating, and amiloride block, in light of the resolved ASIC1 structure.
Collapse
Affiliation(s)
- Ossama B Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | |
Collapse
|
14
|
Abi-Antoun T, Shi S, Tolino LA, Kleyman TR, Carattino MD. Second transmembrane domain modulates epithelial sodium channel gating in response to shear stress. Am J Physiol Renal Physiol 2011; 300:F1089-95. [PMID: 21307123 DOI: 10.1152/ajprenal.00610.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Na(+) absorption and K(+) secretion in the distal segments of the nephron are modulated by the tubular flow rate. Epithelial Na(+) channels (ENaC), composed of α-, β-, and γ-subunits respond to laminar shear stress (LSS) with an increase in open probability. Higher vertebrates express a δ-ENaC subunit that is functionally related to the α-subunit, while sharing only 35% of sequence identity. We investigated the response of δβγ channels to LSS. Both the time course and magnitude of activation of δβγ channels by LSS were remarkably different from those of αβγ channels. ENaC subunits have similar topology, with an extracellular region connected by two transmembrane domains with intracellular N and C termini. To identify the specific domains that are responsible for the differences in the response to flow of αβγ and δβγ channels, we generated a series of α-δ chimeras and site-specific α-subunit mutants and examined parameters of activation by LSS. We found that specific sites in the region encompassing and just preceding the second transmembrane domain were responsible for the differences in the magnitude and time course of channel activation by LSS.
Collapse
Affiliation(s)
- Tania Abi-Antoun
- Renal-Electrolyte Div., Dept. of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
15
|
Qadri YJ, Song Y, Fuller CM, Benos DJ. Amiloride docking to acid-sensing ion channel-1. J Biol Chem 2010; 285:9627-9635. [PMID: 20048170 PMCID: PMC2843212 DOI: 10.1074/jbc.m109.082735] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/23/2009] [Indexed: 12/27/2022] Open
Abstract
Amiloride is a small molecule diuretic, which has been used to dissect sodium transport pathways in many different systems. This drug is known to interact with the epithelial sodium channel and acid-sensing ion channel proteins, as well as sodium/hydrogen antiporters and sodium/calcium exchangers. The exact structural basis for these interactions has not been elucidated as crystal structures of these proteins have been challenging to obtain, though some involved residues and domains have been mapped. This work examines the interaction of amiloride with acid-sensing ion channel-1, a protein whose structure is available using computational and experimental techniques. Using molecular docking software, amiloride and related molecules were docked to model structures of homomeric human ASIC-1 to generate potential interaction sites and predict which analogs would be more or less potent than amiloride. The predictions made were experimentally tested using whole-cell patch clamp. Drugs previously classified as NCX or NHE inhibitors are shown to also inhibit hASIC-1. Potential docking sites were re-examined against experimental data to remove spurious interaction sites. The voltage sensitivity of inhibitors was also examined. Using the aggregated data from these computational and experimental experiments, putative interaction sites for amiloride and hASIC-1 have been defined. Future work will experimentally verify these interaction sites, but at present this should allow for virtual screening of drug libraries at these putative interaction sites.
Collapse
Affiliation(s)
- Yawar J Qadri
- Departments of Physiology and Biophysics, Birmingham, Alabama 35294
| | - Yuhua Song
- Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | | - Dale J Benos
- Departments of Physiology and Biophysics, Birmingham, Alabama 35294.
| |
Collapse
|
16
|
Guan Z, Pollock JS, Cook AK, Hobbs JL, Inscho EW. Effect of epithelial sodium channel blockade on the myogenic response of rat juxtamedullary afferent arterioles. Hypertension 2009; 54:1062-9. [PMID: 19720952 DOI: 10.1161/hypertensionaha.109.137992] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mechanotransduction mechanism underlying the myogenic response is poorly understood, but evidence implicates participation of epithelial sodium channel (ENaC)-like proteins. Therefore, the role of ENaC on the afferent arteriolar myogenic response was investigated in vitro using the blood-perfused juxtamedullary nephron technique. Papillectomy was used to isolate myogenic influences by eliminating tubuloglomerular feedback signals. Autoregulatory responses were assessed by manipulating perfusion pressure in 30-mm Hg steps. Under control conditions, arteriolar diameter increased by 15% from 13.0+/-1.3 to 14.7+/-1.2 microm (P<0.05) after reducing perfusion pressure from 100 to 70 mm Hg. Diameter decreased to 11.3+/-1.1 and 10.6+/-1.0 microm after increasing pressure to 130 and 160 mm Hg (88+/-1 and 81+/-2% of control diameter, P<0.05), respectively. Pressure-mediated autoregulatory responses were significantly inhibited by superfusion of 10 micromol/L amiloride (102+/-2, 97+/-4, and 94+/-3% of control diameter), or 10 micromol/L benzamil (106+/-5, 100+/-3, and 103+/-3% of control diameter), and when perfusing with blood containing 5 micromol/L amiloride (106+/-2, 97+/-4, and 97+/-4% of control diameter). Vasoconstrictor responses to 55 mmol/L KCl were preserved as diameters decreased by 67+/-4, 55+/-8, and 60+/-4% in afferent arterioles superfused with amiloride or benzamil, and perfused with amiloride, respectively. These responses were similar to responses obtained from control afferent arterioles (64+/-6%, P>0.05). Immunofluorescence revealed expression of the alpha, beta, and gamma subunits of ENaC in freshly isolated preglomerular microvascular smooth muscle cells. These results demonstrate that selective ENaC inhibitors attenuate afferent arteriolar myogenic responses and suggest that ENaC may function as mechanosensitive ion channels initiating pressure-dependent myogenic responses in rat juxtamedullary afferent arterioles.
Collapse
Affiliation(s)
- Zhengrong Guan
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
17
|
Goolaerts A, Roux J, Ganter MT, Shlyonsky V, Chraibi A, Stéphane R, Mies F, Matthay MA, Naeije R, Sariban-Sohraby S, Howard M, Pittet JF. Serotonin decreases alveolar epithelial fluid transport via a direct inhibition of the epithelial sodium channel. Am J Respir Cell Mol Biol 2009; 43:99-108. [PMID: 19717814 DOI: 10.1165/rcmb.2008-0472oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hypoxia and epithelial stretch that are commonly observed in patients with acute lung injury have been shown to promote the release of serotonin (5-hydroxytryptamine, 5-HT) in vitro. However, whether 5-HT contributes to the decrease of alveolar epithelial fluid transport, which is a hallmark of lung injury, is unknown. Thus, we investigated the effect of 5-HT on ion and fluid transport across the alveolar epithelium. 5-HT caused a dose-dependent inhibition of the amiloride-sensitive current across primary rat and human alveolar epithelial type II cell monolayers, but did not affect Na(+)/K(+) ATPase function. Furthermore, we found that the 5-HT induced inhibition of ion transport across the lung epithelium was receptor independent, as it was not prevented by the blockade of 5-HT2R (5-HT receptor 2), 5-HT3R (5-HT receptor 3), or by pretreatment with an intracellular calcium-chelating agent, BAPTA-AM (1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester). In addition, the stimulation of 5-HT1R (5-HT receptor 1), 5-HT2R (5-HT receptor 2), 5-HT4R (5-HT receptor 4), and 5-HT7R (5-HT receptor 7) failed to reproduce the 5-HT effect on amiloride-sensitive sodium transport. We ascertained that 5-HT directly inhibited the function of rat alphabetagamma epithelial sodium channel (ENaC), as determined by heterologous expression of rat ENaC in Xenopus oocytes that do not express endogenous ENaC nor 5-HT receptors (5-HTR). Exposure of mice to hypoxia for 1 hour induced a 30% increase of 5-HT secretion into the distal airways of mice. Finally, the intratracheal instillation of 5-HT inhibited the amiloride-sensitive fraction of alveolar fluid clearance in mice. Together, these results indicate that 5-HT inhibits the amiloride-sensitive fraction of the alveolar epithelial fluid transport via a direct interaction with ENaC, and thus can be an endogenous inhibitor of this ion channel.
Collapse
Affiliation(s)
- Arnaud Goolaerts
- Department of Anesthesia, Room 3C-38, San Francisco General Hospital, 1001 Potrero Avenue, San Francisco, CA 94110, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nie HG, Tucker T, Su XF, Na T, Peng JB, Smith PR, Idell S, Ji HL. Expression and regulation of epithelial Na+ channels by nucleotides in pleural mesothelial cells. Am J Respir Cell Mol Biol 2008; 40:543-54. [PMID: 18927349 DOI: 10.1165/rcmb.2008-0166oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pleural effusions are commonly clinical disorders, resulting from the imbalance between pleural fluid turnover and reabsorption. The mechanisms underlying pleural fluid clearance across the mesothelium remain to be elucidated. We hypothesized that epithelial Na(+) channel (ENaC) is expressed and forms the molecular basis of the amiloride-sensitive resistance in human mesothelial cells. Our RT-PCR results showed that three ENaC subunits, namely, alpha, beta, gamma, and two delta ENaC subunits, are expressed in human primary pleural mesothelial cells, a human mesothelioma cell line (M9K), and mouse pleural tissue. In addition, Western blotting and immunofluorescence microscopy studies revealed that alpha, beta, gamma, and delta ENaC subunits are expressed in primary human mesothelial cells and M9K cells at the protein level. An amiloride-inhibitable short-circuit current was detected in M9K monolayers and mouse pleural tissues when mounted in Ussing chambers. Whole-cell patch clamp recordings showed an ENaC-like channel with an amiloride concentration producing 50% inhibition of 12 microM in M9K cells. This cation channel has a high affinity for extracellular Na+ ions (K(m): 53 mM). The ion selectivity of this channel to cations follows the same order as ENaC: Li+ > Na+ > K+. The unitary Li(+) conductance was 15 pS in on-cell patches. Four ENaC subunits form a functional Na+ channel when coinjected into Xenopus oocytes. Furthermore, we found that both forskolin and cGMP increased the short-circuit currents in mouse pleural tissues. Taken together, our data demonstrate that the ENaC channels are biochemically and functionally expressed in human pleural mesothelial cells, and can be up-regulated by cyclic AMP and cyclic GMP.
Collapse
Affiliation(s)
- Hong-Guang Nie
- Department of Biochemistry, Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Stockand JD, Staruschenko A, Pochynyuk O, Booth RE, Silverthorn DU. Insight toward epithelial Na +channel mechanism revealed by the acid-sensing ion channel 1 structure. IUBMB Life 2008; 60:620-628. [DOI: 10.1002/iub.89] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
20
|
Hirsh AJ, Zhang J, Zamurs A, Fleegle J, Thelin WR, Caldwell RA, Sabater JR, Abraham WM, Donowitz M, Cha B, Johnson KB, St George JA, Johnson MR, Boucher RC. Pharmacological properties of N-(3,5-diamino-6-chloropyrazine-2-carbonyl)-N'-4-[4-(2,3-dihydroxypropoxy)phenyl]butyl-guanidine methanesulfonate (552-02), a novel epithelial sodium channel blocker with potential clinical efficacy for cystic fibrosis lung disease. J Pharmacol Exp Ther 2008; 325:77-88. [PMID: 18218832 DOI: 10.1124/jpet.107.130443] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amiloride improves mucociliary clearance (MC) by blocking airway epithelial sodium channels (ENaC) and expanding airway surface liquid (ASL). However, the low potency and rapid absorption of amiloride by airway epithelia translated into a short duration of efficacy as an aerosolized therapy for cystic fibrosis (CF) patients. To improve ENaC blocker CF pharmacotherapy, a more potent and durable ENaC blocker tailored for aerosol delivery was synthesized. Parion compound N-(3,5-diamino-6-chloropyrazine-2-carbonyl)-N'-4-[4-(2,3-dihydroxypropoxy)phenyl]butyl-guanidine methanesulfonate (552-02) was tested for potency and reversibility of ENaC block, epithelial absorption and biotransformation, selectivity, durability of ASL expansion under isotonic and hypertonic conditions in canine and human CF bronchial epithelial cells, and drug dissociation on ENaC in Xenopus oocytes. Short-circuit current assessed compound potency and reversibility, patch-clamp recordings of ENaC current assessed drug off-rate (k(off)), a gravimetric method and confocal microscopy measured mucosal water retention and ASL height, and drug absorption and biotransformation were assessed using liquid chromatography-mass spectrometry. Amiloride and 552-02 were tested in vivo for MC activity in sheep immediately and 4 to 6 h after aerosol dosing. Compared with amiloride, compound 552-02 was 60 to 100-fold more potent, it was 2 to 5-fold less reversible, it was slower at crossing the epithelium, and it exhibited a 170-fold slower k(off) value. 552-02 exhibited greater ASL expansion over 8 h in vitro, and it was more effective than amiloride at increasing MC immediately and 4 to 6 h after dosing. When combining hypertonic saline and 552-02, a synergistic effect on ASL expansion was measured in canine or CF bronchial epithelia. In summary, the preclinical data support the clinical use of 552-02 +/- hypertonic saline for CF lung disease.
Collapse
Affiliation(s)
- Andrew J Hirsh
- Parion Sciences Inc., 2525 Meridian Pkwy., Suite 260, Durham, NC 27713, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lu M, Echeverri F, Kalabat D, Laita B, Dahan DS, Smith RD, Xu H, Staszewski L, Yamamoto J, Ling J, Hwang N, Kimmich R, Li P, Patron E, Keung W, Patron A, Moyer BD. Small molecule activator of the human epithelial sodium channel. J Biol Chem 2008; 283:11981-94. [PMID: 18326490 DOI: 10.1074/jbc.m708001200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epithelial sodium channel (ENaC), a heterotrimeric complex composed of alpha, beta, and gamma subunits, belongs to the ENaC/degenerin family of ion channels and forms the principal route for apical Na(+) entry in many reabsorbing epithelia. Although high affinity ENaC blockers, including amiloride and derivatives, have been described, potent and specific small molecule ENaC activators have not been reported. Here we describe compound S3969 that fully and reversibly activates human ENaC (hENaC) in an amiloride-sensitive and dose-dependent manner in heterologous cells. Mechanistically, S3969 increases hENaC open probability through interactions requiring the extracellular domain of the beta subunit. hENaC activation by S3969 did not require cleavage by the furin protease, indicating that nonproteolyzed channels can be opened. Function of alphabetaG37Sgamma hENaC, a channel defective in gating that leads to the salt-wasting disease pseudohypoaldosteronism type I, was rescued by S3969. Small molecule activation of hENaC may find application in alleviating human disease, including pseudohypoaldosteronism type I, hypotension, and neonatal respiratory distress syndrome, when improved Na(+) flux across epithelial membranes is clinically desirable.
Collapse
Affiliation(s)
- Min Lu
- Senomyx, Inc., San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
O'Brodovich H, Yang P, Gandhi S, Otulakowski G. Amiloride-insensitive Na+and fluid absorption in the mammalian distal lung. Am J Physiol Lung Cell Mol Physiol 2008; 294:L401-8. [DOI: 10.1152/ajplung.00431.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The ability of the distal lung epithelia to actively transport Na+, with Cl−and water following, from the alveolar spaces inversely correlates with morbidity and mortality of infants, children, and adults with alveolar pulmonary edema. It is now recognized, in contrast to many other Na+transporting epithelia, that at least half of this active transport is not sensitive to amiloride, which inhibits the epithelial Na+channel. This paper reviews amiloride-insensitive Na+and fluid transport in the mammalian distal lung unit under basal conditions and speculates on potential explanations for this amiloride-insensitive transport. It also provides new information, using primary cultures of rat fetal distal lung epithelia and alveolar type II cells grown under submersion and air-liquid interface culture conditions, regarding putative blockers of this transport.
Collapse
|
23
|
Shigemura N, Ohkuri T, Sadamitsu C, Yasumatsu K, Yoshida R, Beauchamp GK, Bachmanov AA, Ninomiya Y. Amiloride-sensitive NaCl taste responses are associated with genetic variation of ENaC alpha-subunit in mice. Am J Physiol Regul Integr Comp Physiol 2007; 294:R66-75. [PMID: 17977920 DOI: 10.1152/ajpregu.00420.2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An epithelial Na(+) channel (ENaC) is expressed in taste cells and may be involved in the salt taste transduction. ENaC activity is blocked by amiloride, which in several mammalian species also inhibits taste responses to NaCl. In mice, lingual application of amiloride inhibits NaCl responses in the chorda tympani (CT) gustatory nerve much stronger in the C57BL/6 (B6) strain than in the 129P3/J (129) strain. We examined whether this strain difference is related to gene sequence variation or mRNA expression of three ENaC subunits (alpha, beta, gamma). Real-time RT-PCR and in situ hybridization detected no significant strain differences in expression of all three ENaC subunits in fungiform papillae. Sequences of the beta- and gammaENaC subunit genes were also similar in the B6 and 129 strains, but alphaENaC gene had three single nucleotide polymorphisms (SNPs). One of these SNPs resulted in a substitution of arginine in the B6 strain to tryptophan in the 129 strain (R616W) in the alphaENaC protein. To examine association of this SNP with amiloride sensitivity of CT responses to NaCl, we produced F(2) hybrids between B6 and 129 strains. Amiloride inhibited CT responses to NaCl in F(2) hybrids with B6/129 and B6/B6 alphaENaC R616W genotypes stronger than in F(2) hybrids with 129/129 genotype. This suggests that the R616W variation in the alphaENaC subunit affects amiloride sensitivity of the ENaC channel and provides evidence that ENaC is involved in amiloride-sensitive salt taste responses in mice.
Collapse
Affiliation(s)
- Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Dahan E, Bize V, Lehnert T, Horisberger JD, Gijs MAM. Integrated microsystem for non-invasive electrophysiological measurements on Xenopus oocytes. Biosens Bioelectron 2007; 22:3196-202. [PMID: 17416513 DOI: 10.1016/j.bios.2007.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/12/2007] [Accepted: 02/21/2007] [Indexed: 11/28/2022]
Abstract
We propose a new non-invasive integrated microsystem for electrophysiological measurements on Xenopus laevis oocytes. Xenopus oocyte is a well-known expression system for various kinds of ion channels, that are potential tools in drug screening. In the traditional "Two Electrode Voltage Clamp" (TEVC) method, delicate micromanipulation is required to impale an oocyte with two microelectrodes. In our system, a non-invasive electrical access to the cytoplasm is provided by permeabilizing the cell membrane with an ionophore (e.g. nystatin). Unlike the classical patch-clamp or "macropatch" techniques, this method does not require removal of the vitelline membrane. Cell handling is significantly simplified, resulting in more robust recordings with increased throughput. Moreover, because only part of the oocyte surface is exposed to reagents, the required volume of reagent solutions could be reduced by an order of magnitude compared to the TEVC method. The fabrication process for this disposable microchip, based on poly-dimethylsiloxane (PDMS) molding and glass/PDMS bonding, is cost-efficient and simple. We tested this new microdevice by recording currents in oocytes expressing the human Epithelial Sodium Channel (hENaC) for membrane potentials between -100 and +50 mV. We recorded benzamil-sensitive currents with a large signal-to-noise ratio and we also obtained a benzamil concentration-inhibition curve displaying an inhibition constant IC(50) of about 50 nM, comparable to previously published values obtained with the TEVC technique.
Collapse
Affiliation(s)
- E Dahan
- Ecole Polytechnique Fédérale de Lausanne, Institute of Microelectronics and Microsystems, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
25
|
Stilwell GE, Saraswati S, Littleton JT, Chouinard SW. Development of aDrosophilaseizure model forin vivohigh-throughput drug screening. Eur J Neurosci 2006; 24:2211-22. [PMID: 17074045 DOI: 10.1111/j.1460-9568.2006.05075.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An important application of model organisms in neurological research has been to identify and characterise therapeutic approaches for epilepsy, a recurrent seizure disorder that affects > 1% of the human population. Proconvulsant-treated rodent models have been widely used for antiepileptic drug discovery and development, but are not suitable for high-throughput screening. To generate a genetically tractable model that would be suitable for large-scale, high-throughput screening for antiepileptic drug candidates, we characterized a Drosophila chemical treatment model using the GABA(A) receptor antagonist picrotoxin. This proconvulsant, delivered to Drosophila larvae via simple feeding methods suitable for automated screening, generated robust generalised seizures with lethality occurring at doses between 0.3 and 0.5 mg/mL. Electrophysiological analysis of CNS motor neuron output in picrotoxin-treated larvae revealed generalised seizures within minutes of drug exposure. At subthreshold doses for seizure induction, picrotoxin produced an increased frequency of motor neuron action potential bursting, indicating that CNS GABAergic transmission regulates patterned activity. Mutants in the Drosophila Rdl GABA(A) receptor are resistant to picrotoxin, confirming that seizure induction occurs via a conserved GABA(A) receptor pathway. To validate the usefulness of this model for in vivo drug screening, we identified several classes of neuroactive antiepileptic compounds in a pilot screen, including phenytoin and nifedipine, which can rescue the seizures and lethal neurotoxicity induced by picrotoxin. The well-defined actions of picrotoxin in Drosophila and the ease with which compounds can be assayed for antiseizure activity makes this genetically tractable model attractive for high-throughput in vivo screens to identify novel anticonvulsants and seizure susceptibility loci.
Collapse
|
26
|
Hirsh AJ, Molino BF, Zhang J, Astakhova N, Geiss WB, Sargent BJ, Swenson BD, Usyatinsky A, Wyle MJ, Boucher RC, Smith RT, Zamurs A, Johnson MR. Design, synthesis, and structure-activity relationships of novel 2-substituted pyrazinoylguanidine epithelial sodium channel blockers: drugs for cystic fibrosis and chronic bronchitis. J Med Chem 2006; 49:4098-115. [PMID: 16821771 DOI: 10.1021/jm051134w] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amiloride (1), the prototypical epithelial sodium channel (ENaC) blocker, has been administered with limited success as aerosol therapy for improving pulmonary function in patients with the genetic disorder cystic fibrosis. This study was conducted to synthesize and identify more potent, less reversible ENaC blockers, targeted for aerosol therapy and possessing minimal systemic renal activity. A series of novel 2-substituted acylguanidine analogues of amiloride were synthesized and evaluated for potency and reversibility on bronchial ENaC. All compounds tested were more potent and less reversible at blocking sodium-dependent short-circuit current than amiloride. Compounds 30-34 showed the greatest potency on ENaC with IC(50) values below 10 nM. A regioselective difference in potency was found (compounds 30, 39, and 40), whereas no stereospecific (compounds 33, 34) difference in potency on ENaC was displayed. Lead compound 32 was 102-fold more potent and 5-fold less reversible than amiloride and displayed the lowest IC(50) value ever reported for an ENaC blocker.
Collapse
Affiliation(s)
- Andrew J Hirsh
- Parion Sciences Inc., 2525 Meridian Parkway, Suite 260, Durham, North Carolina 27713, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|