1
|
Bizzarri BM, Saladino R, Delfino I, García-Ruiz JM, Di Mauro E. Prebiotic Organic Chemistry of Formamide and the Origin of Life in Planetary Conditions: What We Know and What Is the Future. Int J Mol Sci 2021; 22:ijms22020917. [PMID: 33477625 PMCID: PMC7831497 DOI: 10.3390/ijms22020917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 11/18/2022] Open
Abstract
The goal of prebiotic chemistry is the depiction of molecular evolution events preceding the emergence of life on Earth or elsewhere in the cosmos. Plausible experimental models require geochemical scenarios and robust chemistry. Today we know that the chemical and physical conditions for life to flourish on Earth were at work much earlier than thought, i.e., earlier than 4.4 billion years ago. In recent years, a geochemical model for the first five hundred million years of the history of our planet has been devised that would work as a cradle for life. Serpentinization processes in the Hadean eon affording self-assembled structures and vesicles provides the link between the catalytic properties of the inorganic environment and the impressive chemical potential of formamide to produce complete panels of organic molecules relevant in pre-genetic and pre-metabolic processes. Based on an interdisciplinary approach, we propose basic transformations connecting geochemistry to the chemistry of formamide, and we hint at the possible extension of this perspective to other worlds.
Collapse
Affiliation(s)
- Bruno Mattia Bizzarri
- Ecological and Biological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy; (B.M.B.); (I.D.); (E.D.M.)
| | - Raffaele Saladino
- Ecological and Biological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy; (B.M.B.); (I.D.); (E.D.M.)
- Correspondence: (R.S.); (J.M.G.-R.)
| | - Ines Delfino
- Ecological and Biological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy; (B.M.B.); (I.D.); (E.D.M.)
| | - Juan Manuel García-Ruiz
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas–Universidad de Granada, Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
- Correspondence: (R.S.); (J.M.G.-R.)
| | - Ernesto Di Mauro
- Ecological and Biological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy; (B.M.B.); (I.D.); (E.D.M.)
| |
Collapse
|
2
|
Sustainability and Chaos in the Abiotic Polymerization of 3′,5′ Cyclic Guanosine Monophosphate: The Role of Aggregation. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
Chemomimesis and Molecular Darwinism in Action: From Abiotic Generation of Nucleobases to Nucleosides and RNA. Life (Basel) 2018; 8:life8020024. [PMID: 29925796 PMCID: PMC6027154 DOI: 10.3390/life8020024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 01/26/2023] Open
Abstract
Molecular Darwinian evolution is an intrinsic property of reacting pools of molecules resulting in the adaptation of the system to changing conditions. It has no a priori aim. From the point of view of the origin of life, Darwinian selection behavior, when spontaneously emerging in the ensembles of molecules composing prebiotic pools, initiates subsequent evolution of increasingly complex and innovative chemical information. On the conservation side, it is a posteriori observed that numerous biological processes are based on prebiotically promptly made compounds, as proposed by the concept of Chemomimesis. Molecular Darwinian evolution and Chemomimesis are principles acting in balanced cooperation in the frame of Systems Chemistry. The one-pot synthesis of nucleosides in radical chemistry conditions is possibly a telling example of the operation of these principles. Other indications of similar cases of molecular evolution can be found among biogenic processes.
Collapse
|
4
|
Saladino R, Botta L, Di Mauro E. The Prevailing Catalytic Role of Meteorites in Formamide Prebiotic Processes. Life (Basel) 2018; 8:life8010006. [PMID: 29470412 PMCID: PMC5871938 DOI: 10.3390/life8010006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/26/2018] [Accepted: 02/18/2018] [Indexed: 01/03/2023] Open
Abstract
Meteorites are consensually considered to be involved in the origin of life on this Planet for several functions and at different levels: (i) as providers of impact energy during their passage through the atmosphere; (ii) as agents of geodynamics, intended both as starters of the Earth’s tectonics and as activators of local hydrothermal systems upon their fall; (iii) as sources of organic materials, at varying levels of limited complexity; and (iv) as catalysts. The consensus about the relevance of these functions differs. We focus on the catalytic activities of the various types of meteorites in reactions relevant for prebiotic chemistry. Formamide was selected as the chemical precursor and various sources of energy were analyzed. The results show that all the meteorites and all the different energy sources tested actively afford complex mixtures of biologically-relevant compounds, indicating the robustness of the formamide-based prebiotic chemistry involved. Although in some cases the yields of products are quite small, the diversity of the detected compounds of biochemical significance underlines the prebiotic importance of meteorite-catalyzed condensation of formamide.
Collapse
Affiliation(s)
- Raffaele Saladino
- Biological and Ecological Department, University of Tuscia, 01100 Viterbo, Italy.
| | - Lorenzo Botta
- Biological and Ecological Department, University of Tuscia, 01100 Viterbo, Italy.
| | - Ernesto Di Mauro
- Biological and Ecological Department, University of Tuscia, 01100 Viterbo, Italy.
| |
Collapse
|
5
|
Šponer JE, Šponer J, Nováková O, Brabec V, Šedo O, Zdráhal Z, Costanzo G, Pino S, Saladino R, Di Mauro E. Emergence of the First Catalytic Oligonucleotides in a Formamide-Based Origin Scenario. Chemistry 2016; 22:3572-86. [PMID: 26807661 DOI: 10.1002/chem.201503906] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Indexed: 02/02/2023]
Abstract
50 years after the historical Miller-Urey experiment, the formamide-based scenario is perhaps the most powerful concurrent hypothesis for the origin of life on our planet besides the traditional HCN-based concept. The information accumulated during the last 15 years in this topic is astonishingly growing and nowadays the formamide-based model represents one of the most complete and coherent pathways leading from simple prebiotic precursors up to the first catalytically active RNA molecules. In this work, we overview the major events of this long pathway that have emerged from recent experimental and theoretical studies, mainly concentrating on the mechanistic, methodological, and structural aspects of this research.
Collapse
Affiliation(s)
- Judit E Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic. .,CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 62500, Brno, Czech Republic.
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 62500, Brno, Czech Republic
| | - Olga Nováková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| | - Ondrej Šedo
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 62500, Brno, Czech Republic
| | - Zbyněk Zdráhal
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 62500, Brno, Czech Republic
| | - Giovanna Costanzo
- Istituto di Biologia e Patologia Molecolari, CNR, P.le Aldo Moro, 5, Rome, 00185, Italy
| | - Samanta Pino
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", "Sapienza" Università di Roma, Piazzale Aldo Moro, 5, Rome, 00185, Italy
| | - Raffaele Saladino
- Dipartimento di Scienze Ecologiche e Biologiche, Università della Tuscia, Via San Camillo De Lellis, 01100, Viterbo, Italy
| | - Ernesto Di Mauro
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", "Sapienza" Università di Roma, Piazzale Aldo Moro, 5, Rome, 00185, Italy
| |
Collapse
|
6
|
Pino S, Sponer JE, Costanzo G, Saladino R, Mauro ED. From formamide to RNA, the path is tenuous but continuous. Life (Basel) 2015; 5:372-84. [PMID: 25647486 PMCID: PMC4390857 DOI: 10.3390/life5010372] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 01/11/2023] Open
Abstract
Reactions of formamide (NH2COH) in the presence of catalysts of both terrestrial and meteoritic origin yield, in plausible and variegated conditions, a large panel of precursors of (pre)genetic and (pre)metabolic interest. Formamide chemistry potentially satisfies all of the steps from the very initial precursors to RNA. Water chemistry enters the scene in RNA non-enzymatic synthesis and recombination.
Collapse
Affiliation(s)
- Samanta Pino
- Fondazione "Istituto Pasteur-Fondazione Cenci-Bolognetti" c/o Dipartimento di Biologia e Biotecnologie "Charles Darwin", "Sapienza" Università di Roma, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Judit E Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | - Giovanna Costanzo
- Istituto di Biologia e Patologia Molecolari, CNR, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Raffaele Saladino
- Dipartimento di Scienze Ecologiche e Biologiche Università della Tuscia Via San Camillo De Lellis, 01100 Viterbo, Italy.
| | - Ernesto Di Mauro
- Fondazione "Istituto Pasteur-Fondazione Cenci-Bolognetti" c/o Dipartimento di Biologia e Biotecnologie "Charles Darwin", "Sapienza" Università di Roma, P.le Aldo Moro, 5, 00185 Rome, Italy.
| |
Collapse
|
7
|
Saladino R, Botta G, Pino S, Costanzo G, Di Mauro E. Genetics first or metabolism first? The formamide clue. Chem Soc Rev 2012; 41:5526-65. [PMID: 22684046 DOI: 10.1039/c2cs35066a] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Life is made of the intimate interaction of metabolism and genetics, both built around the chemistry of the most common elements of the Universe (hydrogen, oxygen, nitrogen, and carbon). The transmissible interaction of metabolic and genetic cycles results in the hypercycles of organization and de-organization of chemical information, of living and non-living. The origin-of-life quest has long been split into several attitudes exemplified by the aphorisms "genetics-first" or "metabolism-first". Recently, the opposition between these approaches has been solved by more unitary theoretical and experimental frames taking into account energetic, evolutionary, proto-metabolic and environmental aspects. Nevertheless, a unitary and simple chemical frame is still needed that could afford both the precursors of the synthetic pathways eventually leading to RNA and to the key components of the central metabolic cycles, possibly connected with the synthesis of fatty acids. In order to approach the problem of the origin of life it is therefore reasonable to start from the assumption that both metabolism and genetics had a common origin, shared a common chemical frame, and were embedded under physical-chemical conditions favourable for the onset of both. The singleness of such a prebiotically productive chemical process would partake of Darwinian advantages over more complex fragmentary chemical systems. The prebiotic chemistry of formamide affords in a single and simple physical-chemical frame nucleic bases, acyclonucleosides, nucleotides, biogenic carboxylic acids, sugars, amino sugars, amino acids and condensing agents. Thus, we suggest the possibility that formamide could have jointly provided the main components for the onset of both (pre)genetic and (pre)metabolic processes. As a note of caution, we discuss the fact that these observations only indicate possible solutions at the level of organic substrates, not at the systemic chemical level.
Collapse
Affiliation(s)
- Raffaele Saladino
- Dipartimento di Agrobiologia ed Agrochimica, Università della Tuscia, Via San Camillo De Lellis, 01100 Viterbo, Italy.
| | | | | | | | | |
Collapse
|
8
|
Mulkidjanian AY, Bychkov AY, Dibrova DV, Galperin MY, Koonin EV. Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci U S A 2012; 109:E821-30. [PMID: 22331915 PMCID: PMC3325685 DOI: 10.1073/pnas.1117774109] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
All cells contain much more potassium, phosphate, and transition metals than modern (or reconstructed primeval) oceans, lakes, or rivers. Cells maintain ion gradients by using sophisticated, energy-dependent membrane enzymes (membrane pumps) that are embedded in elaborate ion-tight membranes. The first cells could possess neither ion-tight membranes nor membrane pumps, so the concentrations of small inorganic molecules and ions within protocells and in their environment would equilibrate. Hence, the ion composition of modern cells might reflect the inorganic ion composition of the habitats of protocells. We attempted to reconstruct the "hatcheries" of the first cells by combining geochemical analysis with phylogenomic scrutiny of the inorganic ion requirements of universal components of modern cells. These ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K(+), Zn(2+), Mn(2+), and phosphate. Thus, protocells must have evolved in habitats with a high K(+)/Na(+) ratio and relatively high concentrations of Zn, Mn, and phosphorous compounds. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in marine settings but is compatible with emissions of vapor-dominated zones of inland geothermal systems. Under the anoxic, CO(2)-dominated primordial atmosphere, the chemistry of basins at geothermal fields would resemble the internal milieu of modern cells. The precellular stages of evolution might have transpired in shallow ponds of condensed and cooled geothermal vapor that were lined with porous silicate minerals mixed with metal sulfides and enriched in K(+), Zn(2+), and phosphorous compounds.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- School of Physics, University of Osnabrück, D-49069 Osnabrück, Germany
- A. N. Belozersky Institute of Physico-Chemical Biology and Schools of
| | | | - Daria V. Dibrova
- School of Physics, University of Osnabrück, D-49069 Osnabrück, Germany
- Bioengineering and Bioinformatics, Moscow State University, Moscow 119992, Russia; and
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| |
Collapse
|
9
|
Saladino R, Botta G, Pino S, Costanzo G, Di Mauro E. From the one-carbon amide formamide to RNA all the steps are prebiotically possible. Biochimie 2012; 94:1451-6. [PMID: 22738728 DOI: 10.1016/j.biochi.2012.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/16/2012] [Indexed: 01/07/2023]
Abstract
Formamide provides the raw material and the reaction leads connecting hydrogen cyanide HCN chemistry with higher complexity molecular structures. Formamide is liquid between 4 and 210 °C and, upon heating in the presence of one of several catalysts, affords nucleic bases, acyclonucleosides, carboxylic acids and aminoacids. In formamide in the presence of a source of phosphate, nucleosides are non-fastidiously phosphorylated in every position of the sugar residue, also yielding cyclic nucleotides. Guanine 3',5' cyclic nucleotide monophosphates polymerize to oligonucleotides, up to 30 nucleotides long. Adenine 3',5' cyclic nucleotide monophosphate reacts similarly but less efficiently. Preformed oligonucleotides may undergo terminal ligation in the absence of enzymes, thus allowing the formation of abiotically obtained long RNA chains.
Collapse
Affiliation(s)
- Raffaele Saladino
- Dipartimento di Agrobiologia ed Agrochimica, Università della Tuscia, Via San Camillo De Lellis, 01100 Viterbo, Italy
| | | | | | | | | |
Collapse
|
10
|
Disorder to Order, Nonlife to Life: In the Beginning There Was a Mistake. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2012. [DOI: 10.1007/978-94-007-2941-4_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Saladino R, Neri V, Crestini C, Costanzo G, Graciotti M, Di Mauro E. The role of the formamide/zirconia system in the synthesis of nucleobases and biogenic carboxylic acid derivatives. J Mol Evol 2010; 71:100-10. [PMID: 20665014 DOI: 10.1007/s00239-010-9366-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 07/06/2010] [Indexed: 12/20/2022]
Abstract
We describe the one-pot synthesis of a large variety of nucleic acid bases and related compounds from formamide in the presence of zirconium minerals as catalysts. The major products observed are: purine, 2-hydroxy pyrimidine, 5-hydroxy pyrimidine, isocytosine, adenine, urea, and carbodiimide. The synthesis of low molecular weight amides and carboxylic acid derivatives (intermediates of extant metabolism) was also observed: glyoxylamide, glycolic-, lactic-, succinic-, oxalic-, fumaric-, and maleic acids. As the major problem in the origin of informational polymers is the instability of their precursors, we also investigated the effects of zirconia minerals on the stability of ribooligonucleotides in formamide and in water. The relevance of these findings with respect to the origin of informational polymers and primordial metabolism is discussed.
Collapse
Affiliation(s)
- Raffaele Saladino
- Dipartimento A.B.A.C., Università della Tuscia, Via San Camillo De Lellis, 01100, Viterbo, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Costanzo G, Pino S, Ciciriello F, Di Mauro E. Generation of long RNA chains in water. J Biol Chem 2009; 284:33206-16. [PMID: 19801553 PMCID: PMC2785163 DOI: 10.1074/jbc.m109.041905] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/02/2009] [Indexed: 11/06/2022] Open
Abstract
The synthesis of RNA chains from 3',5'-cAMP and 3',5'-cGMP was observed. The RNA chains formed in water, at moderate temperatures (40-90 degrees C), in the absence of enzymes or inorganic catalysts. As determined by RNase analyses, the bonds formed were canonical 3',5'-phosphodiester bonds. The polymerizations are based on two reactions not previously described: 1) oligomerization of 3', 5'-cGMP to approximately 25-nucleotide-long RNA molecules, and of 3',5'-cAMP to 4- to 8-nucleotide-long molecules. Oligonucleotide A molecules were further extended by reciprocal terminal ligation to yield RNA molecules up to >120 nucleotides long and 2) chain extension by terminal ligation of newly polymerized products of 3',5'-cGMP on preformed oligonucleotides. The enzyme- and template-independent synthesis of long oligomers in water from prebiotically affordable precursors approaches the concept of spontaneous generation of (pre)genetic information.
Collapse
Affiliation(s)
| | - Samanta Pino
- the Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza di Roma, and
| | - Fabiana Ciciriello
- the Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza di Roma, and
| | - Ernesto Di Mauro
- the Fondazione Istituto Pasteur-Fondazione Cenci-Bolognetti, c/o Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza di Roma, P. le Aldo Moro, 5, Rome 00185, Italy
| |
Collapse
|
13
|
Saladino R, Crestini C, Ciciriello F, Pino S, Costanzo G, Di Mauro E. From formamide to RNA: the roles of formamide and water in the evolution of chemical information. Res Microbiol 2009; 160:441-8. [DOI: 10.1016/j.resmic.2009.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/22/2009] [Accepted: 06/03/2009] [Indexed: 11/24/2022]
|
14
|
Pino S, Ciciriello F, Costanzo G, Di Mauro E. Nonenzymatic RNA ligation in water. J Biol Chem 2008; 283:36494-503. [PMID: 18977755 DOI: 10.1074/jbc.m805333200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe the nonenzymatic ligation of RNA oligomers in water. Dimers and tetramers are formed in a time-, pH-, and temperature-dependent reaction. Ligation efficiency depends on oligonucleotide length and sequence and is strongly enhanced by adenine-based nucleotide cofactors. Ligation of short RNA fragments could have liberated the prebiotic polymerization systems from the thermodynamically demanding task of reaching a (pre)genetically meaningful size by stepwise addition of one precursor monomer at the time.
Collapse
Affiliation(s)
- Samanta Pino
- Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, Rome, Italy
| | | | | | | |
Collapse
|
15
|
Saladino R, Neri V, Crestini C, Costanzo G, Graciotti M, Di Mauro E. Synthesis and degradation of nucleic acid components by formamide and iron sulfur minerals. J Am Chem Soc 2008; 130:15512-8. [PMID: 18939836 DOI: 10.1021/ja804782e] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We describe the one-pot synthesis of a large panel of nucleic bases and related compounds from formamide in the presence of iron sulfur and iron-copper sulfur minerals as catalysts. The major products observed are purine, 1H-pyrimidinone, isocytosine, adenine, 2-aminopurine, carbodiimide, urea, and oxalic acid. Isocytosine and 2-aminopurine may recognize natural nucleobases by Watson-Crick and reverse Watson-Crick interactions, thus suggesting novel scenarios for the origin of primordial nucleic acids. Since the major problem in the origin of informational polymers is the instability of their precursors, we also investigate the effects of iron sulfur and iron-copper sulfur minerals on the stability of ribooligonucleotides in formamide and in water. All of the iron sulfur and iron-copper sulfur minerals stimulated degradation of RNA. The relevance of these findings with respect to the origin of informational polymers is discussed.
Collapse
Affiliation(s)
- Raffaele Saladino
- Dipartimento di Agrobiologia ed Agrochimica, Università della Tuscia, Viterbo, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Ciciriello F, Costanzo G, Pino S, Crestini C, Saladino R, Di Mauro E. Molecular complexity favors the evolution of ribopolymers. Biochemistry 2008; 47:2732-42. [PMID: 18220362 DOI: 10.1021/bi7021014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have explored the stability of selected ribo oligomers in water and have determined the physical-chemical conditions in which the key 3'-phosphoester bond is more stable when embedded in the polymer than when present in the monomer. In these conditions, the spontaneous formation and the survival of ribo polymers are potentially favored. A narrow pH range was identified in which complex sequences resist degradation markedly more than monotonous ones, thus potentially favoring the evolution of sequence-based genetic information. Given that the founding property of a polymer is to maintain its polymeric form and its sequence information, these findings support the view that the evolution of pregenetic molecular information occurred based on intrinsic properties of nucleic polymers.
Collapse
Affiliation(s)
- Fabiana Ciciriello
- Dipartimento di Genetica e Biologia Molecolare, Università di Roma Sapienza, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Costanzo G, Saladino R, Crestini C, Ciciriello F, Di Mauro E. Formamide as the main building block in the origin of nucleic acids. BMC Evol Biol 2007; 7 Suppl 2:S1. [PMID: 17767725 PMCID: PMC1963486 DOI: 10.1186/1471-2148-7-s2-s1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The simplest molecules grouping the four most common elements of the universe H,C,O and N (with the exception of the biologically inert He) are isocyanate HNCO and formamide H2NCOH. Reasons for the availability of formamide on prebiotic Earth are presented. We review evidence showing that formamide in the presence of largely available catalysts and by moderate heating yields the complete set of nucleic bases necessary for the formation of nucleic acids. Formamide also favours the formation of acyclonucleosides and the phosphorylation and trans-phosphorylation of nucleosides, thus providing a plausible chemical frame for the passage from a simple one-carbon compound to nucleic polymers. Physico-chemical conditions exist in which formamide favours the stability of the phosphoester bonds in nucleic polymers relative to that of the same bonds in monomers. Starting from a formamide-laden environment subject only to the laws of chemistry, a hypothesis is outlined sketching the passage towards an aqueous world in which Darwinian rules apply.
Collapse
Affiliation(s)
- Giovanna Costanzo
- Istituto di Biologia e Patologia Molecolari, CNR, P.le Aldo Moro, 5, Rome 00185, Italy
| | - Raffaele Saladino
- Istituto di Biologia e Patologia Molecolari, CNR, P.le Aldo Moro, 5, Rome 00185, Italy
- Dipartimento A.B.A.C., Università della Tuscia, Via San Camillo De Lellis, Viterbo, Italy
| | - Claudia Crestini
- Marine Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Rome 00133, Italy
| | - Fabiana Ciciriello
- Fondazione "Istituto Pasteur-Fondazione Cenci-Bolognetti" c/o Dipartimento di Genetica e Biologia Molecolare, Università "La Sapienza" di Roma, P.le Aldo Moro, 5, Rome 00185, Italy
| | - Ernesto Di Mauro
- Ernesto Di Mauro, Dipartimento di Genetica e Biologia Molecolare, Università "La Sapienza" di Roma, P.le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
18
|
Ciciriello F, Costanzo G, Crestini C, Saladino R, Di Mauro E. Origin of informational polymers and the search for non-terran life: protection of the polymeric state of DNA by phosphate minerals. ASTROBIOLOGY 2007; 7:616-30. [PMID: 17723093 DOI: 10.1089/ast.2006.0044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
An in-depth analysis of the effects exerted on the DNA backbone by 25 crystal phosphate minerals is reported. Degradation of DNA oligomers was performed with two different reactions: Hydrolysis following Nucleophilic Degradation (HND), initiated by the nucleophilic addition of formamide on both purine and pyrimidine nucleobases, and Hydrolysis following Nucleophilic Substitution (HNS) carried on by water and starting with the removal of a nondegraded base. A complete panel of effects on the phosphoester bonds, from protection to enhanced instability to absence of interference, is described. These effects differ in the different degradation pathways and in different physical-chemical conditions. The relationship between the hardness of the mineral and its protective ability is discussed. In addition to its interest per se, this study was prompted by the observed catalytic abilities of soluble and mineral phosphates (Saladino et al., 2006c) on the synthetic reactions by formamide. The relevance of these observations in the search for nonterran life is discussed.
Collapse
Affiliation(s)
- Fabiana Ciciriello
- Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza di Roma, Piazzale Aldo Moro, Rome, Italy
| | | | | | | | | |
Collapse
|
19
|
Saladino R, Crestini C, Ciciriello F, Costanzo G, Di Mauro E. Formamide chemistry and the origin of informational polymers. Chem Biodivers 2007; 4:694-720. [PMID: 17443884 DOI: 10.1002/cbdv.200790059] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Formamide (HCONH2) provides a chemical frame potentially affording all the monomeric components necessary for the formation of nucleic polymers. In the presence of the appropriate catalysts, and by moderate heating, formamide yields a complete set of nucleic bases, acyclonucleosides, and favors both phosphorylations and transphosphorylations. Physico-chemical conditions exist in which formamide favors the stability of the phosphoester bonds in nucleic polymers more than that of the same bonds in monomers. This property establishes 'thermodynamic niches' in which the polymeric forms are favored. The hypothesis that these specific attributes of formamide allowed the onset of prebiotic chemical equilibria capable of Darwinian evolution is discussed.
Collapse
Affiliation(s)
- Raffaele Saladino
- Dipartimento A. B. A. C., Università della Tuscia, Via San Camillo De Lellis, I-01100 Viterbo
| | | | | | | | | |
Collapse
|
20
|
Costanzo G, Saladino R, Crestini C, Ciciriello F, Di Mauro E. Nucleoside phosphorylation by phosphate minerals. J Biol Chem 2007; 282:16729-35. [PMID: 17412692 DOI: 10.1074/jbc.m611346200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the presence of formamide, crystal phosphate minerals may act as phosphate donors to nucleosides, yielding both 5'- and, to a lesser extent, 3'-phosphorylated forms. With the mineral Libethenite the formation of 5'-AMP can be as high as 6% of the adenosine input and last for at least 10(3) h. At high concentrations, soluble non-mineral phosphate donors (KH(2)PO(4) or 5'-CMP) afford 2'- and 2':3'-cyclic AMP in addition to 5'-and 3'-AMP. The phosphate minerals analyzed were Herderite Ca[BePO(4)F], Hureaulite Mn(2+)(5)(PO(3)(OH)(2)(PO(4))(2)(H(2)O)(4), Libethenite Cu(2+)(2)(PO(4))(OH), Pyromorphite Pb(5)(PO(4))(3)Cl, Turquoise Cu(2+)Al(6)(PO(4))(4)(OH)(8)(H(2)O)(4), Fluorapatite Ca(5)(PO(4))(3)F, Hydroxylapatite Ca(5)(PO(4))(3)OH, Vivianite Fe(2+)(3)(PO(4))(2)(H(2)O)(8), Cornetite Cu(2+)(3)(PO(4))(OH)(3), Pseudomalachite Cu(2+)(5)(PO(4))(2)(OH)(4), Reichenbachite Cu(2+)(5)(PO(4))(2)(OH)(4), and Ludjibaite Cu(2+)(5)(PO(4))(2)(OH)(4)). Based on their behavior in the formamide-driven nucleoside phosphorylation reaction, these minerals can be characterized as: 1) inactive, 2) low level phosphorylating agents, or 3) active phosphorylating agents. Instances were detected (Libethenite and Hydroxylapatite) in which phosphorylation occurs on the mineral surface, followed by release of the phosphorylated compounds. Libethenite and Cornetite markedly protect the beta-glycosidic bond. Thus, activated nucleic monomers can form in a liquid non-aqueous environment in conditions compatible with the thermodynamics of polymerization, providing a solution to the standard-state Gibbs free energy change (DeltaG degrees ') problem, the major obstacle for polymerizations in the liquid phase in plausible prebiotic scenarios.
Collapse
Affiliation(s)
- Giovanna Costanzo
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Pizalle Aldo Moro, 5, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
21
|
Saladino R, Crestini C, Neri V, Ciciriello F, Costanzo G, Di Mauro E. Origin of informational polymers: The concurrent roles of formamide and phosphates. Chembiochem 2007; 7:1707-14. [PMID: 17051657 DOI: 10.1002/cbic.200600139] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Formamide chemistry provides a unitary system by gathering all of the precursors needed to synthesise pregenetic informational polymers in a single milieu. This is not observed with HCN chemistry. With common catalysts, formamide affords all of the precursor nucleobases, photochemically condenses into acyclonucleosides, favours transphosphorylation and enhances micellar aggregation of surfactants. Also, formamide provides a set of physicochemical conditions that thermodynamically favour the polymeric state of nucleotides over the monomers. In the origin-of-informational-polymers scenario, formamide acts in every step, the least characterised being the set of its reactions with phosphates. On this matter, we report two complementary sets of results: 1) the synthesis of prebiotic precursors from formamide, which are catalysed by soluble and mineral phosphates-we observed the formation of rich mixtures that include uracil, 9H-purine, cytosine, dihydrouracil, hypoxanthine, adenosine, urea, parabanic acid, the amino acid N-formylglycine and the peptide-condensing agent carbodiimide; and 2) the protection of ribo- and deoxyribophosphoester bonds by phosphates. The relevance of these effects with respect to the origin of informational polymers is discussed.
Collapse
Affiliation(s)
- Raffaele Saladino
- Dipartimento A.B.A.C., Università della Tuscia, Via San Camillo De Lellis, 01100 Viterbo, Italy.
| | | | | | | | | | | |
Collapse
|
22
|
Saladino R, Crestini C, Ciciriello F, Costanzo G, Di Mauro E. About a formamide-based origin of informational polymers: syntheses of nucleobases and favourable thermodynamic niches for early polymers. ORIGINS LIFE EVOL B 2006; 36:523-31. [PMID: 17136429 DOI: 10.1007/s11084-006-9053-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Formamide NH(2)CHO chemistry provides a unitary frame into which several pieces of the origin-of-life puzzle may be adjusted. Synthetic processes were uncovered which, starting from formamide and prebiotically easily available common catalysts, yield all the necessary nucleic bases precursors, including acyclonucleosides. Formamide allows phosphorylations and trans-phosphorylations, favours the micellar aggregation of surfactants and, most importantly, determines conditions in which the formation of nucleic polymers is thermodynamically favoured. In the detected conditions, the phosphoester bonds are more stable in the polymeric than in the monomeric form, thus allowing formation and survival of informational nucleic polymers.
Collapse
Affiliation(s)
- Raffaele Saladino
- Dipartimento A.B.A.C., Università della Tuscia, Via San Camillo De Lellis, Viterbo 01100, Italy.
| | | | | | | | | |
Collapse
|
23
|
Saladino R, Crestini C, Ciciriello F, Di Mauro E, Costanzo G. Origin of informational polymers: differential stability of phosphoester bonds in ribomonomers and ribooligomers. J Biol Chem 2006; 281:5790-6. [PMID: 16407319 DOI: 10.1074/jbc.m512545200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have measured the stabilities of the bonds that are critical for determining the half-life of ribonucleotides and the beta-glycosidic and 3'- and 5'-phosphoester bonds. Stabilities were measured under a wide range of temperatures and water/formamide ratios. The stability of phosphodiester bonds in oligoribonucleotides was determined in the same environments. The comparison of bond stabilities in the monomer versus the polymer forms of the ribo compounds revealed that physico-chemical conditions exist in which polymerization is thermodynamically favored. These conditions were compared with those determining a similar behavior for 2'-deoxyribonucleosides, deoxyribonucleotides, and deoxyribooligonucleotides and were shown to profoundly differ. The implications of these facts on the origin of informational polymers are discussed.
Collapse
Affiliation(s)
- Raffaele Saladino
- Dipartimento Agrobiologia e Agrochimica, Università della Tuscia, Via San Camillo De Lellis, Viterbo 01100, Italy
| | | | | | | | | |
Collapse
|