1
|
Zhou G, Wang Q, Wang Y, Wen X, Peng H, Peng R, Shi Q, Xie X, Li L. Outer Membrane Porins Contribute to Antimicrobial Resistance in Gram-Negative Bacteria. Microorganisms 2023; 11:1690. [PMID: 37512863 PMCID: PMC10385648 DOI: 10.3390/microorganisms11071690] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Gram-negative bacteria depend on their cell membranes for survival and environmental adaptation. They contain two membranes, one of which is the outer membrane (OM), which is home to several different outer membrane proteins (Omps). One class of important Omps is porins, which mediate the inflow of nutrients and several antimicrobial drugs. The microorganism's sensitivity to antibiotics, which are predominantly targeted at internal sites, is greatly influenced by the permeability characteristics of porins. In this review, the properties and interactions of five common porins, OmpA, OmpC, OmpF, OmpW, and OmpX, in connection to porin-mediated permeability are outlined. Meanwhile, this review also highlighted the discovered regulatory characteristics and identified molecular mechanisms in antibiotic penetration through porins. Taken together, uncovering porins' functional properties will pave the way to investigate effective agents or approaches that use porins as targets to get rid of resistant gram-negative bacteria.
Collapse
Affiliation(s)
- Gang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qian Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yingsi Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xia Wen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hong Peng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ruqun Peng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingshan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liangqiu Li
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
2
|
Guidi C, De Wannemaeker L, De Baets J, Demeester W, Maertens J, De Paepe B, De Mey M. Dynamic feedback regulation for efficient membrane protein production using a small RNA-based genetic circuit in Escherichia coli. Microb Cell Fact 2022; 21:260. [PMID: 36522655 PMCID: PMC9753035 DOI: 10.1186/s12934-022-01983-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Membrane proteins (MPs) are an important class of molecules with a wide array of cellular functions and are part of many metabolic pathways. Despite their great potential-as therapeutic drug targets or in microbial cell factory optimization-many challenges remain for efficient and functional expression in a host such as Escherichia coli. RESULTS A dynamically regulated small RNA-based circuit was developed to counter membrane stress caused by overexpression of different MPs. The best performing small RNAs were able to enhance the maximum specific growth rate with 123%. On culture level, the total MP production was increased two-to three-fold compared to a system without dynamic control. This strategy not only improved cell growth and production of the studied MPs, it also suggested the potential use for countering metabolic burden in general. CONCLUSIONS A dynamically regulated feedback circuit was developed that can sense metabolic stress caused by, in casu, the overexpression of an MP and responds to it by balancing the metabolic state of the cell and more specifically by downregulating the expression of the MP of interest. This negative feedback mechanism was established by implementing and optimizing simple-to-use genetic control elements based on post-transcriptional regulation: small non-coding RNAs. In addition to membrane-related stress when the MP accumulated in the cytoplasm as aggregates, the sRNA-based feedback control system was still effective for improving cell growth but resulted in a decreased total protein production. This result suggests promiscuity of the MP sensor for more than solely membrane stress.
Collapse
Affiliation(s)
- Chiara Guidi
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | | | - Jasmine De Baets
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Wouter Demeester
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Jo Maertens
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Brecht De Paepe
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
3
|
Huang Y, Zhu F, Koh J, Stanton D, Chen S, Wang N. Proteomic and bioinformatic analyses of proteins in the outer membrane and extracellular compartments and outer membrane vesicles of Candidatus Liberibacter species. Front Microbiol 2022; 13:977710. [PMID: 36225379 PMCID: PMC9548881 DOI: 10.3389/fmicb.2022.977710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Citrus Huanglongbing (HLB) is the most devastating citrus disease in the world. Candidatus Liberibacter asiaticus (Las) is the prevalent HLB pathogen, which is yet to be cultivated. A recent study demonstrates that Las does not contain pathogenicity factors that are directly responsible for HLB symptoms. Instead, Las triggers systemic and chronic immune responses, representing a pathogen-triggered immune disease. Importantly, overproduction of reactive oxygen species (ROS) causes systemic cell death of phloem tissues, thus causing HLB symptoms. Because Las resides in the phloem tissues, it is expected that phloem cell might recognize outer membrane proteins, outer membrane vesicle (OMV) proteins and extracellular proteins of Las to contribute to the immune responses. Because Las has not been cultivated, we used Liberibacter crescens (Lcr) as a surrogate to identify proteins in the OM fraction, OMV proteins and extracellular proteins by liquid chromatography with tandem mass spectrometry (LC–MS/MS). We observed OMVs of Lcr under scanning electron microscope, representing the first experimental evidence that Liberibacter can deliver proteins to the extracellular compartment. In addition, we also further analyzed LC–MS/MS data using bioinformatic tools. Our study provides valuable information regarding the biology of Ca. Liberibacter species and identifies many putative proteins that may interact with host proteins in the phloem tissues.
Collapse
Affiliation(s)
- Yixiao Huang
- Department of Plant Pathology, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Fanchao Zhu
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Daniel Stanton
- Department of Plant Pathology, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- *Correspondence: Nian Wang,
| |
Collapse
|
4
|
Dale AG, Porcu A, Mann J, Neidle S. The mechanism of resistance in Escherichia coli to ridinilazole and other antibacterial head-to-head bis-benzimidazole compounds. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThe appY gene has been characterised as conferring resistance to a novel series of antimicrobial benzimidazole derivatives in E. coli MC1061 cells when expressed in high copy-number. A microarray approach was used to identify genes involved in the mechanism of appY-mediated antibacterial resistance, that were up- or down-regulated following induction of the gene in the appY knockout strain JW0553. In total, expression of 90 genes was induced and 48 repressed greater than 2.5-fold (P < 0.05), 45 min after appY induction. Over half the genes up-regulated following appY expression had confirmed or putative roles in acid resistance (AR) and response to oxidative and antibiotic stresses. These included the genes for MdtE and MdtF, which form a multi-drug transporter with TolC and have been implicated in resistance to several antibiotics including erythromycin. Amongst the acid resistance genes were gadAB and adiAC encoding the glutamate-dependant (AR2) and arginine-dependant (AR3) acid resistance systems respectively, in addition to the transcriptional activators of these systems gadE and gadX. In agreement with earlier studies, appA, appCB and hyaA-F were also up-regulated following induction of appY. This study has also confirmed that over-expression of mdtEF confers resistance to these antibacterial benzimidazoles, indicating that the observation of appY conferring resistance to these compounds, proceeds through an appY-mediated up-regulation of this efflux transporter. To assess the importance of the AppY enzyme to acid stress responses, the percentage survival of bacteria in acidified media (pH ≤ 2) was measured. From an initial input of 1 × 106 CFU/ml, the wild-type strain MG1655 showed 7.29% and 0.46% survival after 2 and 4 h, respectively. In contrast, strain JW0553 in which appY is deleted was completely killed by the treatment. Transformation of JW0553 with a plasmid carrying appY returned survival to wild-type levels (7.85% and 1.03% survival at 2 and 4 h). Further dissection of the response by prior induction of each of the three AR systems has revealed that AR1 and AR3 were most affected by the absence of appY. This work highlights an important and previously unidentified role for the AppY enzyme in mediating the responses to several stress conditions. It is likely that the appY gene fits into a complex transcriptional regulatory network involving σS and gadE and gadX. Further work to pinpoint its position in such a hierarchy and to assess the contribution of appY to oxidative stress responses should help determine its full significance. This work is also consistent with recent studies in C. difficile showing that the mechanism of action of ridinilazole involves AT-rich DNA minor groove binding.
Collapse
|
5
|
Young JW, Wason IS, Zhao Z, Kim S, Aoki H, Phanse S, Rattray DG, Foster LJ, Babu M, Duong van Hoa F. Development of a Method Combining Peptidiscs and Proteomics to Identify, Stabilize, and Purify a Detergent-Sensitive Membrane Protein Assembly. J Proteome Res 2022; 21:1748-1758. [PMID: 35616533 DOI: 10.1021/acs.jproteome.2c00129] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The peptidisc membrane mimetic enables global reconstitution of the bacterial membrane proteome into water-soluble detergent-free particles, termed peptidisc libraries. We present here a method that combines peptidisc libraries and chromosomal-level gene tagging technology with affinity purification and mass spectrometry (AP/MS) to stabilize and identify fragile membrane protein complexes that exist at native expression levels. This method circumvents common artifacts caused by bait protein overproduction and protein complex dissociation due to lengthy exposure to detergents during protein isolation. Using the Escherichia coli Sec system as a case study, we identify an expanded version of the translocon, termed the HMD complex, consisting of nine different integral membrane subunits. This complex is stable in peptidiscs but dissociates in detergents. Guided by this native-level proteomic information, we design and validate a procedure that enables purification of the HMD complex with minimal protein dissociation. These results highlight the utility of peptidiscs and AP/MS to discover and stabilize fragile membrane protein assemblies. Data are available via ProteomeXchange with identifier PXD032315.
Collapse
Affiliation(s)
- John William Young
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Irvinder Singh Wason
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhiyu Zhao
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sunyoung Kim
- Department of Biochemistry, Faculty of Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, Faculty of Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Sadhna Phanse
- Department of Biochemistry, Faculty of Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - David G Rattray
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Michael Smith Laboratory, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Michael Smith Laboratory, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mohan Babu
- Department of Biochemistry, Faculty of Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
6
|
Sørensen PE, Baig S, Stegger M, Ingmer H, Garmyn A, Butaye P. Spontaneous Phage Resistance in Avian Pathogenic Escherichia coli. Front Microbiol 2021; 12:782757. [PMID: 34966369 PMCID: PMC8711792 DOI: 10.3389/fmicb.2021.782757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/23/2021] [Indexed: 01/19/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is one of the most important bacterial pathogens affecting poultry worldwide. The emergence of multidrug-resistant pathogens has renewed the interest in the therapeutic use of bacteriophages (phages). However, a major concern for the successful implementation of phage therapy is the emergence of phage-resistant mutants. The understanding of the phage-host interactions, as well as underlying mechanisms of resistance, have shown to be essential for the development of a successful phage therapy. Here, we demonstrate that the strictly lytic Escherichia phage vB_EcoM-P10 rapidly selected for resistance in the APEC ST95 O1 strain AM621. Whole-genome sequence analysis of 109 spontaneous phage-resistant mutant strains revealed 41 mutants with single-nucleotide polymorphisms (SNPs) in their core genome. In 32 of these, a single SNP was detected while two SNPs were identified in a total of nine strains. In total, 34 unique SNPs were detected. In 42 strains, including 18 strains with SNP(s), gene losses spanning 17 different genes were detected. Affected by genetic changes were genes known to be involved in phage resistance (outer membrane protein A, lipopolysaccharide-, O- antigen-, or cell wall-related genes) as well as genes not previously linked to phage resistance, including two hypothetical genes. In several strains, we did not detect any genetic changes. Infecting phages were not able to overcome the phage resistance in host strains. However, interestingly the initial infection was shown to have a great fitness cost for several mutant strains, with up to ∼65% decrease in overall growth. In conclusion, this study provides valuable insights into the phage-host interaction and phage resistance in APEC. Although acquired resistance to phages is frequently observed in pathogenic E. coli, it may be associated with loss of fitness, which could be exploited in phage therapy.
Collapse
Affiliation(s)
- Patricia E. Sørensen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Sharmin Baig
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - An Garmyn
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
7
|
Rosas NC, Lithgow T. Targeting bacterial outer-membrane remodelling to impact antimicrobial drug resistance. Trends Microbiol 2021; 30:544-552. [PMID: 34872824 DOI: 10.1016/j.tim.2021.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
The cell envelope is essential for survival and adaptation of bacteria. Bacterial membrane proteins include the major porins that mediate the influx of nutrients and several classes of antimicrobial drugs. Consequently, membrane remodelling is closely linked to antimicrobial resistance (AMR). Knowledge of bacterial membrane protein biogenesis and turnover underpins our understanding of bacterial membrane remodelling and the consequences that this process have in the evolution of AMR phenotypes. At the population level, the evolution of phenotypes is a reversible process, and we can use these insights to deploy evolutionary principles to resensitize bacteria to existing antimicrobial drugs. In our opinion, fundamental knowledge is opening a new way of thinking towards sustainable solutions to the mounting crisis in AMR. Here we discuss what is known about outer-membrane remodelling in bacteria and how the process could be targeted as a means to restore sensitivity to antimicrobial drugs. Bacteriophages are highlighted as a powerful means to exert this control over membrane remodelling but they require careful selection so as to reverse, and not exacerbate, AMR phenotypes.
Collapse
Affiliation(s)
- Natalia C Rosas
- Centre to Impact AMR, Monash University, Melbourne, Australia; Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Melbourne, Australia; Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia.
| |
Collapse
|
8
|
Freire CMADS, Taunay-Rodrigues A, Gonzatti MB, Fonseca FMP, Freire JEDC. New insights about the EptA protein and its correlation with the pmrC gene in polymyxin resistance in Pseudomonas aeruginosa. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100042. [PMID: 34841333 PMCID: PMC8610356 DOI: 10.1016/j.crmicr.2021.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/30/2021] [Accepted: 06/06/2021] [Indexed: 11/19/2022] Open
Abstract
Computational biology. Bacterial resistance. Pseudomonas aeruginosa. Gram-negative bacteria. Polymyxin.
Nowadays, clinical and scientific interest in antibiotics, as polymyxin, has increased due to the large number of reports of multiresistant Gram-negative bacteria, as Pseudomonas aeruginosa. The aim of this study was to investigate a related group of proteins for resistance to polymyxins, encoded by P. aeruginosa genome, through in silico analysis. The mobilized colistin resistance 1 (MCR1) protein from Escherichia coli was used for comparison. Similar sequences to the protein MCR1 in P. aeruginosa were analysed for physicochemical properties. 31 protein isoforms in P. aeruginosa (EptA) were found able to confer resistance to polymyxin showing protein lengths between 551 and 572 amino acids, with molecular mass values between 61.36 - 62. 80 kDa, isoelectric point between 6.10 to 7.17, instability index between 33.76 to 41.87, aliphatic index between 98.67 to 102.63 and the hydropathyindex between - 0.008 to 0.094. These proteins belong to the DUF1705 superfamily with bit-score values between 559.81 and 629.78. A high degree of similarity between EpTAs in P. aeruginosa was observed in relation to other proteins that confer resistance to polymyxins, present in Gram-negative bacteria species of clinical interest. Although, further studies are needed to identify the actual contribution of EptAs in P. aeruginosa species.
Collapse
|
9
|
Guo Y, Liu N, Lin Z, Ba X, Zhuo C, Li F, Wang J, Li Y, Yao L, Liu B, Xiao S, Jiang Y, Zhuo C. Mutations in porin LamB contribute to ceftazidime-avibactam resistance in KPC-producing Klebsiella pneumoniae. Emerg Microbes Infect 2021; 10:2042-2051. [PMID: 34551677 PMCID: PMC8567916 DOI: 10.1080/22221751.2021.1984182] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ceftazidime-avibactam (CAZ-AVI) shows promising activity against carbapenem-resistant Klebsiella pneumoniae (CRKP), however, CAZ-AVI resistance have emerged recently. Mutations in KPCs, porins OmpK35 and/or OmpK36, and PBPs are known to contribute to the resistance to CAZ-AVI in CRKP. To identify novel CAZ-AVI resistance mechanism, we generated 10 CAZ-AVI-resistant strains from 14 CAZ-AVI susceptible KPC-producing K. pneumoniae (KPC-Kp) strains through in vitro multipassage resistance selection using low concentrations of CAZ-AVI. Comparative genomic analysis for the original and derived mutants identified CAZ-AVI resistance-associated mutations in KPCs, PBP3 (encoded by ftsI), and LamB, an outer membrane maltoporin. CAZ-AVI susceptible KPC-Kp strains became resistant when complemented with mutated blaKPC genes. Complementation experiments also showed that a plasmid borne copy of wild-type lamB or ftsI gene reduced the MIC value of CAZ-AVI in the induced resistant strains. In addition, blaKPC expression level increased in four of the six CAZ-AVI-resistant strains without KPC mutations, indicating a probable association between increased blaKPC expression and increased resistance in these strains. In conclusion, we here identified a novel mechanism of CAZ-AVI resistance associated with mutations in porin LamB in KPC-Kp.
Collapse
Affiliation(s)
- Yingyi Guo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ningjing Liu
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhiwei Lin
- Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Guangdong, People's Republic of China
| | - Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Chuyue Zhuo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Feifeng Li
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jiong Wang
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yitan Li
- Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Guangdong, People's Republic of China
| | - Likang Yao
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Baomo Liu
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shunian Xiao
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ying Jiang
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Chao Zhuo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
10
|
Bodoev I, Malakhova M, Bespyatykh J, Bespiatykh D, Arapidi G, Pobeguts O, Zgoda V, Shitikov E, Ilina E. Substitutions in SurA and BamA Lead to Reduced Susceptibility to Broad Range Antibiotics in Gonococci. Genes (Basel) 2021; 12:1312. [PMID: 34573293 PMCID: PMC8467665 DOI: 10.3390/genes12091312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
There is growing concern about the emergence and spread of multidrug-resistant Neisseria gonorrhoeae. To effectively control antibiotic-resistant bacterial pathogens, it is necessary to develop new antimicrobials and to understand the resistance mechanisms to existing antibiotics. In this study, we discovered the unexpected onset of drug resistance in N. gonorrhoeae caused by amino acid substitutions in the periplasmic chaperone SurA and the β-barrel assembly machinery component BamA. Here, we investigated the i19.05 clinical isolate with mutations in corresponding genes along with reduced susceptibility to penicillin, tetracycline, and azithromycin. The mutant strain NG05 (surAmut bamAmut, and penAmut) was obtained using the pan-susceptible n01.08 clinical isolate as a recipient in the transformation procedure. Comparative proteomic analysis of NG05 and n01.08 strains revealed significantly increased levels of other chaperones, Skp and FkpA, and some transport proteins. Efflux pump inhibition experiments demonstrated that the reduction in sensitivity was achieved due to the activity of efflux pumps. We hypothesize that the described mutations in the surA and bamA genes cause the qualitative and quantitative changes of periplasmic chaperones, which in turn alters the function of synthesized cell envelope proteins.
Collapse
Affiliation(s)
- Ivan Bodoev
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (M.M.); (J.B.); (D.B.); (G.A.); (O.P.); (E.S.); (E.I.)
| | - Maja Malakhova
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (M.M.); (J.B.); (D.B.); (G.A.); (O.P.); (E.S.); (E.I.)
| | - Julia Bespyatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (M.M.); (J.B.); (D.B.); (G.A.); (O.P.); (E.S.); (E.I.)
| | - Dmitry Bespiatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (M.M.); (J.B.); (D.B.); (G.A.); (O.P.); (E.S.); (E.I.)
| | - Georgij Arapidi
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (M.M.); (J.B.); (D.B.); (G.A.); (O.P.); (E.S.); (E.I.)
- Moscow Institute of Physics and Technology, State University, 141701 Dolgoprudny, Russia
| | - Olga Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (M.M.); (J.B.); (D.B.); (G.A.); (O.P.); (E.S.); (E.I.)
| | - Victor Zgoda
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 119121 Moscow, Russia;
| | - Egor Shitikov
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (M.M.); (J.B.); (D.B.); (G.A.); (O.P.); (E.S.); (E.I.)
| | - Elena Ilina
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (M.M.); (J.B.); (D.B.); (G.A.); (O.P.); (E.S.); (E.I.)
| |
Collapse
|
11
|
The MCR-3 inside linker appears as a facilitator of colistin resistance. Cell Rep 2021; 35:109135. [PMID: 34010644 DOI: 10.1016/j.celrep.2021.109135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/23/2020] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
An evolving family of mobile colistin resistance (MCR) enzymes is threatening public health. However, the molecular mechanism by which the MCR enzyme as a rare member of lipid A-phosphoethanolamine (PEA) transferases gains the ability to confer phenotypic colistin resistance remains enigmatic. Here, we report an unusual example that genetic duplication and amplification produce a functional variant (Ah762) of MCR-3 in certain Aeromonas species. The lipid A-binding cavity of Ah762 is functionally defined. Intriguingly, we locate a hinge linker of Ah762 (termed Linker 59) that determines the MCR. Genetic and biochemical characterization reveals that Linker 59 behaves as a facilitator to render inactive MCR variants to regain the ability of colistin resistance. Along with molecular dynamics (MD) simulation, isothermal titration calorimetry (ITC) suggests that this facilitator guarantees the formation of substrate phosphatidylethanolamine (PE)-accessible pocket within MCR-3-like enzymes. Therefore, our finding defines an MCR-3 inside facilitator for colistin resistance.
Collapse
|
12
|
Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. The Dynamic SecYEG Translocon. Front Mol Biosci 2021; 8:664241. [PMID: 33937339 PMCID: PMC8082313 DOI: 10.3389/fmolb.2021.664241] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal coordination of protein transport is an essential cornerstone of the bacterial adaptation to different environmental conditions. By adjusting the protein composition of extra-cytosolic compartments, like the inner and outer membranes or the periplasmic space, protein transport mechanisms help shaping protein homeostasis in response to various metabolic cues. The universally conserved SecYEG translocon acts at the center of bacterial protein transport and mediates the translocation of newly synthesized proteins into and across the cytoplasmic membrane. The ability of the SecYEG translocon to transport an enormous variety of different substrates is in part determined by its ability to interact with multiple targeting factors, chaperones and accessory proteins. These interactions are crucial for the assisted passage of newly synthesized proteins from the cytosol into the different bacterial compartments. In this review, we summarize the current knowledge about SecYEG-mediated protein transport, primarily in the model organism Escherichia coli, and describe the dynamic interaction of the SecYEG translocon with its multiple partner proteins. We furthermore highlight how protein transport is regulated and explore recent developments in using the SecYEG translocon as an antimicrobial target.
Collapse
Affiliation(s)
- Julia Oswald
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Robert Njenga
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Li H, Wang Y, Chen Q, Xia X, Shen J, Wang Y, Shao B. Identification of Functional Interactome of Colistin Resistance Protein MCR-1 in Escherichia coli. Front Microbiol 2021; 11:583185. [PMID: 33569043 PMCID: PMC7868338 DOI: 10.3389/fmicb.2020.583185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/30/2020] [Indexed: 11/24/2022] Open
Abstract
The emergence and worldwide dissemination of plasmid-mediated colistin resistance gene mcr-1 has attracted global attention. The MCR-1 enzyme mediated colistin resistance by catalyzing phosphoethanolamine (PEA) transfer onto bacterial lipid A. However, the interaction partners of MCR-1 located in membrane protein in E. coli are unknown. Co-immunoprecipitation (Co-IP) and Mass Spectrometry were performed to define the interacting proteins of MCR-1. A total of three different anti-MCR-1 monoclonal antibody (mAbs) were prepared and 3G4 mAb was selected as the bait protein by compared their suitability for Co-IP. We identified 53, 13, and 14 interacting proteins in E. coli BL21 (DE3) (pET28a-mcr-1), E. coli BL21 (DE3) (pET28a-mcr-1-200), and E. coli DH5α (pUC19-mcr-1), respectively. Six proteins, including the stress response proteins DnaK (chaperone protein) and SspB (stringent starvation protein B), the transcriptional regulation protein H-NS, and ribosomal proteins (RpsE, RpsJ, and RpsP) were identified in all these three strains. These MCR-1-interacting proteins were mainly involved in ribosome and RNA degradation, suggesting that MCR-1 influences the protein biosynthesis through the interaction with ribosomal protein. Multidrug efflux pump AcrA and TolC were important interacting membrane proteins of MCR-1 referred to drug efflux during the PEA modification of the bacterial cell membrane. Overall, we firstly identified the functional interactome profile of MCR-1 in E. coli and discovered that two-component AcrA-TolC multidrug efflux pump was involved in mcr-1-mediated colistin resistance.
Collapse
Affiliation(s)
- Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yingyu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiyan Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xi Xia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Functions of the BamBCDE Lipoproteins Revealed by Bypass Mutations in BamA. J Bacteriol 2020; 202:JB.00401-20. [PMID: 32817097 DOI: 10.1128/jb.00401-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022] Open
Abstract
The heteropentomeric β-barrel assembly machine (BAM complex) is responsible for folding and inserting a diverse array of β-barrel outer membrane proteins (OMPs) into the outer membrane (OM) of Gram-negative bacteria. The BAM complex contains two essential proteins, the β-barrel OMP BamA and a lipoprotein BamD, whereas the auxiliary lipoproteins BamBCE are individually nonessential. Here, we identify and characterize three bamA mutations, the E-to-K change at position 470 (bamAE470K ), the A-to-P change at position 496 (bamAA496P ), and the A-to-S change at position 499 (bamAA499S ), that suppress the otherwise lethal ΔbamD, ΔbamB ΔbamC ΔbamE, and ΔbamC ΔbamD ΔbamE mutations. The viability of cells lacking different combinations of BAM complex lipoproteins provides the opportunity to examine the role of the individual proteins in OMP assembly. Results show that, in wild-type cells, BamBCE share a redundant function; at least one of these lipoproteins must be present to allow BamD to coordinate productively with BamA. Besides BamA regulation, BamD shares an additional essential function that is redundant with a second function of BamB. Remarkably, bamAE470K suppresses both, allowing the construction of a BAM complex composed solely of BamAE470K that is able to assemble OMPs in the absence of BamBCDE. This work demonstrates that the BAM complex lipoproteins do not participate in the catalytic folding of OMP substrates but rather function to increase the efficiency of the assembly process by coordinating and regulating the assembly of diverse OMP substrates.IMPORTANCE The folding and insertion of β-barrel outer membrane proteins (OMPs) are conserved processes in mitochondria, chloroplasts, and Gram-negative bacteria. In Gram-negative bacteria, OMPs are assembled into the outer membrane (OM) by the heteropentomeric β-barrel assembly machine (BAM complex). In this study, we probe the function of the individual BAM proteins and how they coordinate assembly of a diverse family of OMPs. Furthermore, we identify a gain-of-function bamA mutant capable of assembling OMPs independently of all four other BAM proteins. This work advances our understanding of OMP assembly and sheds light on how this process is distinct in Gram-negative bacteria.
Collapse
|
15
|
Leandro M, Andrade L, Vespoli L, Moreira J, Pimentel V, Soares F, Passamani L, Silveira V, de Souza Filho G. Comparative proteomics reveals essential mechanisms for osmotolerance in Gluconacetobacter diazotrophicus. Res Microbiol 2020; 172:103785. [PMID: 33035671 DOI: 10.1016/j.resmic.2020.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Plant growth-promoting bacteria are a promising alternative to improve agricultural sustainability. Gluconacetobacter diazotrophicus is an osmotolerant bacterium able to colonize several plant species, including sugarcane, coffee, and rice. Despite its biotechnological potential, the mechanisms controlling such osmotolerance remain unclear. The present study investigated the key mechanisms of resistance to osmotic stress in G. diazotrophicus. The molecular pathways regulated by the stress were investigated by comparative proteomics, and proteins essential for resistance were identified by knock-out mutagenesis. Proteomics analysis led to identify regulatory pathways for osmotic adjustment, de novo saturated fatty acids biosynthesis, and uptake of nutrients. The mutagenesis analysis showed that the lack of AccC protein, an essential component of de novo fatty acid biosynthesis, severely affected G. diazotrophicus resistance to osmotic stress. Additionally, knock-out mutants for nutrients uptake (Δtbdr and ΔoprB) and compatible solutes synthesis (ΔmtlK and ΔotsA) became more sensitive to osmotic stress. Together, our results identified specific genes and mechanisms regulated by osmotic stress in an osmotolerant bacterium, shedding light on the essential role of cell envelope and extracytoplasmic proteins for osmotolerance.
Collapse
Affiliation(s)
- Mariana Leandro
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Leandro Andrade
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Luciano Vespoli
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Julia Moreira
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Vivian Pimentel
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Fabiano Soares
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Lucas Passamani
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Vanildo Silveira
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Gonçalo de Souza Filho
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Han MJ. Novel Bacterial Surface Display System Based on the Escherichia coli Protein MipA. J Microbiol Biotechnol 2020; 30:1097-1103. [PMID: 32325544 PMCID: PMC9728377 DOI: 10.4014/jmb.2001.01053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/19/2020] [Indexed: 12/15/2022]
Abstract
Bacterial surface display systems have been developed for various applications in biotechnology and industry. Particularly, the discovery and design of anchoring motifs is highly important for the successful display of a target protein or peptide on the surface of bacteria. In this study, an efficient display system on Escherichia coli was developed using novel anchoring motifs designed from the E. coli mipA gene. Using the C-terminal fusion system of an industrial enzyme, Pseudomonas fluorescens lipase, six possible fusion sites, V140, V176, K179, V226, V232, and K234, which were truncated from the C-terminal end of the mipA gene (MV140, MV176, MV179, MV226, MV232, and MV234) were examined. The whole-cell lipase activities showed that MV140 was the best among the six anchoring motifs. Furthermore, the lipase activity obtained using MV140 as the anchoring motif was approximately 20-fold higher than that of the previous anchoring motifs FadL and OprF but slightly higher than that of YiaTR232. Western blotting and confocal microscopy further confirmed the localization of the fusion lipase displayed on the E. coli surface using the truncated MV140. Additionally the MV140 motif could be used for successfully displaying another industrial enzyme, α-amylase from Bacillus subtilis. These results showed that the fusion proteins using the MV140 motif had notably high enzyme activities and did not exert any adverse effects on either cell growth or outer membrane integrity. Thus, this study shows that MipA can be used as a novel anchoring motif for more efficient bacterial surface display in the biotechnological and industrial fields.
Collapse
Affiliation(s)
- Mee-Jung Han
- Department of Biomolecular and Chemical Engineering, and Department of Nursing, Dongyang University, Yeongju 36040, Republic of Korea,Corresponding author Phone: +82-54-630-1148 Fax: +82-54-630-1275 E-mail:
| |
Collapse
|
17
|
Young JW, Wason IS, Zhao Z, Rattray DG, Foster LJ, Duong Van Hoa F. His-Tagged Peptidiscs Enable Affinity Purification of the Membrane Proteome for Downstream Mass Spectrometry Analysis. J Proteome Res 2020; 19:2553-2562. [PMID: 32364744 DOI: 10.1021/acs.jproteome.0c00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Characterization of the integral membrane proteome by mass spectrometry (MS) remains challenging due its high complexity and inherent insolubility. In a typical experiment, the cellular membranes are isolated, the proteins are solubilized and fractionated, and the detergent micelles are removed before MS analysis. Detergents are not compatible with mass spectrometry, however, and their removal from biological samples often results in reduced protein identification. As an alternative to detergents, we recently developed the peptidisc membrane mimetic, which allows entrapment of the cell envelope proteome into water-soluble particles, termed a "peptidisc library". Here, we employ a His-tagged version of the peptidisc peptide scaffold to enrich the reconstituted membrane proteome by affinity chromatography. This purification step reduces the sample complexity by depleting ribosomal and soluble proteins that often cosediment with cellular membranes. As a result, the peptidisc library is enriched in low-abundance membrane proteins. We apply this method to survey changes in the membrane proteome upon depletion of the SecDFyajC complex, the ancillary subunit of the Sec translocon. In the depleted strain, we detect increased membrane localization of the motor ATPase SecA, along with increased levels of an unannotated inner membrane protein, YibN. Together, these results demonstrate the utility of the peptidisc for global purification of membrane proteins and for monitoring change in the membrane proteome.
Collapse
Affiliation(s)
- John William Young
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Irvinder Singh Wason
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Zhiyu Zhao
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - David G Rattray
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Michael Smith Laboratory, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Michael Smith Laboratory, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Franck Duong Van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
18
|
Jauss B, Petriman NA, Drepper F, Franz L, Sachelaru I, Welte T, Steinberg R, Warscheid B, Koch HG. Noncompetitive binding of PpiD and YidC to the SecYEG translocon expands the global view on the SecYEG interactome in Escherichia coli. J Biol Chem 2019; 294:19167-19183. [PMID: 31699901 DOI: 10.1074/jbc.ra119.010686] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
The SecYEG translocon constitutes the major protein transport channel in bacteria and transfers an enormous variety of different secretory and inner-membrane proteins. The minimal core of the SecYEG translocon consists of three inner-membrane proteins, SecY, SecE, and SecG, which, together with appropriate targeting factors, are sufficient for protein transport in vitro However, in vivo the SecYEG translocon has been shown to associate with multiple partner proteins, likely allowing the SecYEG translocon to process its diverse substrates. To obtain a global view on SecYEG plasticity in Escherichia coli, here we performed a quantitative interaction proteomic analysis, which identified several known SecYEG-interacting proteins, verified the interaction of SecYEG with quality-control proteins, and revealed several previously unknown putative SecYEG-interacting proteins. Surprisingly, we found that the chaperone complex PpiD/YfgM is the most prominent interaction partner of SecYEG. Detailed analyses of the PpiD-SecY interaction by site-directed cross-linking revealed that PpiD and the established SecY partner protein YidC use almost completely-overlapping binding sites on SecY. Both PpiD and YidC contacted the lateral gate, the plug domain, and the periplasmic cavity of SecY. However, quantitative MS and cross-linking analyses revealed that despite having almost identical binding sites, their binding to SecY is noncompetitive. This observation suggests that the SecYEG translocon forms different substrate-independent subassemblies in which SecYEG either associates with YidC or with the PpiD/YfgM complex. In summary, the results of this study indicate that the PpiD/YfgM chaperone complex is a primary interaction partner of the SecYEG translocon.
Collapse
Affiliation(s)
- Benjamin Jauss
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Narcis-Adrian Petriman
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Lisa Franz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Ilie Sachelaru
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Thomas Welte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Ruth Steinberg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
19
|
Coordinate regulation of the expression of SdsR toxin and its downstream pphA gene by RyeA antitoxin in Escherichia coli. Sci Rep 2019; 9:9627. [PMID: 31270363 PMCID: PMC6610125 DOI: 10.1038/s41598-019-45998-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/10/2019] [Indexed: 12/17/2022] Open
Abstract
In Escherichia coli, SdsR and RyeA, a unique pair of mutually cis-encoded small RNAs (sRNAs), act as toxin and antitoxin, respectively. SdsR and RyeA expression are reciprocally regulated; however, how each regulates the synthesis of the other remains unclear. Here, we characterized the biosynthesis of the two sRNAs during growth and investigated their coordinate regulation using sdsR and ryeA promoter mutant strains. We found that RyeA transcription occurred even upon entry of cells into the stationary phase, but its apparent expression was restricted to exponentially growing cells because of its degradation by SdsR. Likewise, the appearance of SdsR was delayed owing to its RyeA-mediated degradation. We also found that the sdsR promoter was primarily responsible for transcription of the downstream pphA gene encoding a phosphatase and that pphA mRNA was synthesized by transcriptional read-through over the sdsR terminator. Transcription from the σ70-dependent ryeA promoter inhibited transcription from the σS-dependent sdsR promoter through transcriptional interference. This transcriptional inhibition also downregulated pphA expression, but RyeA itself did not downregulate pphA expression.
Collapse
|
20
|
Mathews SL, Epps MJ, Blackburn RK, Goshe MB, Grunden AM, Dunn RR. Public questions spur the discovery of new bacterial species associated with lignin bioconversion of industrial waste. ROYAL SOCIETY OPEN SCIENCE 2019; 6:180748. [PMID: 31031986 PMCID: PMC6458430 DOI: 10.1098/rsos.180748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 02/07/2019] [Indexed: 05/04/2023]
Abstract
A citizen science project found that the greenhouse camel cricket (Diestrammena asynamora) is common in North American homes. Public response was to wonder 'what good are they anyway?' and ecology and evolution guided the search for potential benefit. We predicted that camel crickets and similar household species would likely host bacteria with the ability to degrade recalcitrant carbon compounds. Lignocellulose is particularly relevant as it is difficult to degrade yet is an important feedstock for pulp and paper, chemical and biofuel industries. We screened gut bacteria of greenhouse camel crickets and another household insect, the hide beetle (Dermestes maculatus) for the ability to grow on and degrade lignocellulose components as well as the lignocellulose-derived industrial waste product black liquor. From three greenhouse camel crickets and three hide beetles, 14 bacterial strains were identified that were capable of growth on lignocellulosic components, including lignin. Cedecea lapagei was selected for further study due to growth on most lignocellulose components. The C. lapagei secretome was identified using LC/MS/MS analysis. This work demonstrates a novel source of lignocellulose-degrading bacteria and introduces an effective workflow to identify bacterial enzymes for transforming industrial waste into value-added products. More generally, our research suggests the value of ecologically guided discovery of novel organisms.
Collapse
Affiliation(s)
- Stephanie L. Mathews
- Department of Biological Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Mary Jane Epps
- Department of Biology, Mary Baldwin University, Staunton, VA 24401, USA
| | - R. Kevin Blackburn
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Michael B. Goshe
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Amy M. Grunden
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Robert R. Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
- Center for Macroecology, Evolution and Climate, University of Copenhagen, Copenhagen, 2100Denmark
| |
Collapse
|
21
|
Chorev DS, Baker LA, Wu D, Beilsten-Edmands V, Rouse SL, Zeev-Ben-Mordehai T, Jiko C, Samsudin F, Gerle C, Khalid S, Stewart AG, Matthews SJ, Grünewald K, Robinson CV. Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry. Science 2018; 362:829-834. [PMID: 30442809 PMCID: PMC6522346 DOI: 10.1126/science.aau0976] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 10/08/2018] [Indexed: 12/25/2022]
Abstract
Membrane proteins reside in lipid bilayers and are typically extracted from this environment for study, which often compromises their integrity. In this work, we ejected intact assemblies from membranes, without chemical disruption, and used mass spectrometry to define their composition. From Escherichia coli outer membranes, we identified a chaperone-porin association and lipid interactions in the β-barrel assembly machinery. We observed efflux pumps bridging inner and outer membranes, and from inner membranes we identified a pentameric pore of TonB, as well as the protein-conducting channel SecYEG in association with F1FO adenosine triphosphate (ATP) synthase. Intact mitochondrial membranes from Bos taurus yielded respiratory complexes and fatty acid-bound dimers of the ADP (adenosine diphosphate)/ATP translocase (ANT-1). These results highlight the importance of native membrane environments for retaining small-molecule binding, subunit interactions, and associated chaperones of the membrane proteome.
Collapse
Affiliation(s)
- Dror S Chorev
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Lindsay A Baker
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Di Wu
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Victoria Beilsten-Edmands
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Sarah L Rouse
- Department of Life Sciences, Imperial College, London, South Kensington Campus, London SW7 2AZ, UK
| | | | - Chimari Jiko
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Japan
| | - Firdaus Samsudin
- School of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Christoph Gerle
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan and Science and Technology Agency, Kawaguchi, Japan
| | - Syma Khalid
- School of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, NSW, Australia
| | - Stephen J Matthews
- Department of Life Sciences, Imperial College, London, South Kensington Campus, London SW7 2AZ, UK
| | - Kay Grünewald
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Centre of Structural Systems Biology (CSSB), Notkestr. 85, D-22607, Heinrich-Pette Institute/University of Hamburg, Hamburg, Germany
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| |
Collapse
|
22
|
Choi JS, Kim W, Suk S, Park H, Bak G, Yoon J, Lee Y. The small RNA, SdsR, acts as a novel type of toxin in Escherichia coli. RNA Biol 2018; 15:1319-1335. [PMID: 30293519 PMCID: PMC6284582 DOI: 10.1080/15476286.2018.1532252] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 01/08/2023] Open
Abstract
Most small noncoding RNAs (sRNAs) are known to base pair with target mRNAs and regulate mRNA stability or translation to trigger various changes in the cell metabolism of Escherichia coli. The SdsR sRNA is expressed specifically during the stationary phase and represses tolC and mutS expression. However, it was not previously known whether the growth-phase-dependent regulation of SdsR is important for cell growth. Here, we ectopically expressed SdsR during the exponential phase and examined cell growth and survival. We found that ectopic expression of SdsR led to a significant and Hfq-dependent cell death with accompanying cell filamentation. This SdsR-driven cell death was alleviated by overexpression of RyeA, an sRNA transcribed on the opposite DNA strand, suggesting that SdsR/RyeA is a novel type of toxin-antitoxin (T/A) system in which both the toxin and the antitoxin are sRNAs. We defined the minimal region required for the SdsR-driven cell death. We also performed RNA-seq analysis and identified 209 genes whose expression levels were altered by more than two-fold following pulse expression of ectopic SdsR at exponential phase. Finally, we found that that the observed SdsR-driven cell death was mainly caused by the SdsR-mediated repression of yhcB, which encodes an inner membrane protein.
Collapse
Affiliation(s)
| | | | - Shinae Suk
- Department of Chemistry, KAIST, Daejeon, Korea
| | | | - Geunu Bak
- Department of Chemistry, KAIST, Daejeon, Korea
| | | | | |
Collapse
|
23
|
Maserati A, Lourenco A, Diez-Gonzalez F, Fink RC. iTRAQ-Based Global Proteomic Analysis of Salmonella enterica Serovar Typhimurium in Response to Desiccation, Low Water Activity, and Thermal Treatment. Appl Environ Microbiol 2018; 84:e00393-18. [PMID: 29959250 PMCID: PMC6121987 DOI: 10.1128/aem.00393-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/26/2018] [Indexed: 01/21/2023] Open
Abstract
In this study, the changes in the global proteome of Salmonella in response to desiccation and thermal treatment were investigated by using an iTRAQ multiplex technique. A Salmonella enterica serovar Typhimurium strain was dried, equilibrated at high (1.0) and low (0.11) water activity (aw), and thermally treated at 75°C. The proteomes were characterized after every treatment. The proteomes of the different treatments differed in the expression of 175 proteins. On the basis of their proteomic expression profiles, the samples were clustered into two major groups, namely, "dry" samples and "moist" samples. The groups had different levels of proteins involved in DNA synthesis and transcription and in metabolic reactions, indicating that cells under either of the aw conditions need to strictly control energy metabolism, the rate of replication, and protein synthesis. The proteins with higher expression levels in moist samples were flagellar proteins (FlgEFGH), membrane proteins, and export systems (SecF, SecD, the Bam complex), as well as stress response proteins, suggesting that rehydration can trigger stress responses in moist cells. Dry samples had higher levels of ribosomal proteins, indicating that ribosomal proteins might be important for additional regulation of the cellular response, even when the synthesis of proteins is slowed down. At both aws, no differences in protein expression were observed between the thermally treated samples and the nonheated cells. In conclusion, our study indicates that the preadaptation to a dry condition was linked to increased thermal tolerance, while reversion from a dry state to a moist state induced a significant change in protein expression, possibly linked to the observed loss of thermal tolerance.IMPORTANCESalmonella enterica is able to survive in dry environments for very long periods. While it is well known that the initial exposure to desiccation is fundamental to trigger thermal tolerance in this organism, the specific physiological and molecular processes involved in this cross-protection phenomenon have not been fully characterized. Several studies have focused on the low-aw transcriptome of this pathogen when inoculated in different food matrices or on abiotic surfaces, but proteomic analyses have not been reported in the literature. Our study investigated the changes in proteomic expression in Salmonella enterica serovar Typhimurium during desiccation, exposure to low aw, and thermal treatment. A better knowledge of the systems involved in the response to desiccation and thermal tolerance, as well as a better understanding of their interplay, is fundamental to identify the most effective combination of interventions to prevent Salmonella's contamination of foods.
Collapse
Affiliation(s)
- Alice Maserati
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | - Antonio Lourenco
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | | | - Ryan C Fink
- Department of Biology, Saint Cloud State University, Saint Cloud, Minnesota, USA
| |
Collapse
|
24
|
Samsudin F, Boags A, Piggot TJ, Khalid S. Braun's Lipoprotein Facilitates OmpA Interaction with the Escherichia coli Cell Wall. Biophys J 2017; 113:1496-1504. [PMID: 28978443 DOI: 10.1016/j.bpj.2017.08.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 11/29/2022] Open
Abstract
Gram-negative bacteria such as Escherichia coli are protected by a complex cell envelope. The development of novel therapeutics against these bacteria necessitates a molecular level understanding of the structure-dynamics-function relationships of the various components of the cell envelope. We use atomistic MD simulations to reveal the details of covalent and noncovalent protein interactions that link the outer membrane to the aqueous periplasmic region. We show that the Braun's lipoprotein tilts and bends, and thereby lifts the cell wall closer to the outer membrane. Both monomers and dimers of the outer membrane porin OmpA can interact with peptidoglycan in the presence of Braun's lipoprotein, but in the absence of the latter, only dimers of OmpA show a propensity to form contacts with peptidoglycan. Our study provides a glimpse of how the molecular components of the bacterial cell envelope interact with each other to mediate cell wall attachment in E. coli.
Collapse
Affiliation(s)
- Firdaus Samsudin
- School of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
| | - Alister Boags
- School of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
| | - Thomas J Piggot
- School of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom; CBR Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Syma Khalid
- School of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom.
| |
Collapse
|
25
|
Compartmentalization of Co and Mn in live cells of Escherichia coli: investigation using 60Co and 54Mn as radioindicators. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5480-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Identification of functional interactome of a key cell division regulatory protein CedA of E.coli. Int J Biol Macromol 2017; 106:763-767. [PMID: 28818726 DOI: 10.1016/j.ijbiomac.2017.08.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 11/23/2022]
Abstract
Cell division is compromised in DnaAcos mutant Escherichia coli cells that results in filamentous cell morphology. This is countered by over-expression of CedA protein that induces cytokinesis and thus, regular cell morphology is regained; however via an unknown mechanism. To understand the process systematically, exact role of CedA should be deciphered. Protein interactions are crucial for functional organization of a cell and their identification helps in revealing exact function(s) of a protein and its binding partners. Thus, this study was intended to identify CedA binding proteins (CBPs) to gain more clues of CedA function. We isolated CBPs by pull down assay using purified recombinant CedA and identified nine CBPs by mass spectrometric analysis (MALDI-TOF MS and LC-MS/MS), viz. PDHA1, RL2, DNAK, LPP, RPOB, G6PD, GLMS, RL3 and YBCJ. Based on CBPs identified, we hypothesize that CedA plays a crucial and multifaceted role in cell cycle regulation and specific pathways in which CedA participates may include transcription and energy metabolism. However, further validation through in-vitro and in-vivo experiments is necessary. In conclusion, identification of CBPs may help us in deciphering mechanism of CedA mediated cell division during chromosomal DNA over-replication.
Collapse
|
27
|
Zilkenat S, Grin I, Wagner S. Stoichiometry determination of macromolecular membrane protein complexes. Biol Chem 2017; 398:155-164. [PMID: 27664774 DOI: 10.1515/hsz-2016-0251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023]
Abstract
Gaining knowledge of the structural makeup of protein complexes is critical to advance our understanding of their formation and functions. This task is particularly challenging for transmembrane protein complexes, and grows ever more imposing with increasing size of these large macromolecular structures. The last 10 years have seen a steep increase in solved high-resolution membrane protein structures due to both new and improved methods in the field, but still most structures of large transmembrane complexes remain elusive. An important first step towards the structure elucidation of these difficult complexes is the determination of their stoichiometry, which we discuss in this review. Knowing the stoichiometry of complex components not only answers unresolved structural questions and is relevant for understanding the molecular mechanisms of macromolecular machines but also supports further attempts to obtain high-resolution structures by providing constraints for structure calculations.
Collapse
|
28
|
Sachelaru I, Winter L, Knyazev DG, Zimmermann M, Vogt A, Kuttner R, Ollinger N, Siligan C, Pohl P, Koch HG. YidC and SecYEG form a heterotetrameric protein translocation channel. Sci Rep 2017; 7:101. [PMID: 28273911 PMCID: PMC5427846 DOI: 10.1038/s41598-017-00109-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/08/2017] [Indexed: 11/26/2022] Open
Abstract
The heterotrimeric SecYEG complex cooperates with YidC to facilitate membrane protein insertion by an unknown mechanism. Here we show that YidC contacts the interior of the SecY channel resulting in a ligand-activated and voltage-dependent complex with distinct ion channel characteristics. The SecYEG pore diameter decreases from 8 Å to only 5 Å for the YidC-SecYEG pore, indicating a reduction in channel cross-section by YidC intercalation. In the presence of a substrate, YidC relocates to the rim of the pore as indicated by increased pore diameter and loss of YidC crosslinks to the channel interior. Changing the surface charge of the pore by incorporating YidC into the channel wall increases the anion selectivity, and the accompanying change in wall hydrophobicity is liable to alter the partition of helices from the pore into the membrane. This could explain how the exit of transmembrane domains from the SecY channel is facilitated by YidC.
Collapse
Affiliation(s)
- Ilie Sachelaru
- grid.5963.9Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Stefan Meier Str. 17, Freiburg, 79104 Germany ,grid.5963.9Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Stefan Meier Str. 17, 79104 Freiburg, Germany
| | - Lukas Winter
- 0000 0001 1941 5140grid.9970.7Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria
| | - Denis G. Knyazev
- 0000 0001 1941 5140grid.9970.7Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria
| | - Mirjam Zimmermann
- 0000 0001 1941 5140grid.9970.7Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria
| | - Andreas Vogt
- grid.5963.9Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Stefan Meier Str. 17, Freiburg, 79104 Germany ,grid.5963.9Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Stefan Meier Str. 17, 79104 Freiburg, Germany ,grid.5963.9Spemann-Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Roland Kuttner
- 0000 0001 1941 5140grid.9970.7Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria
| | - Nicole Ollinger
- 0000 0001 1941 5140grid.9970.7Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria
| | - Christine Siligan
- 0000 0001 1941 5140grid.9970.7Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020, Linz, Austria.
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Stefan Meier Str. 17, Freiburg, 79104, Germany. .,Spemann-Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
29
|
The secondary resistome of multidrug-resistant Klebsiella pneumoniae. Sci Rep 2017; 7:42483. [PMID: 28198411 PMCID: PMC5309761 DOI: 10.1038/srep42483] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
Klebsiella pneumoniae causes severe lung and bloodstream infections that are difficult to treat due to multidrug resistance. We hypothesized that antimicrobial resistance can be reversed by targeting chromosomal non-essential genes that are not responsible for acquired resistance but essential for resistant bacteria under therapeutic concentrations of antimicrobials. Conditional essentiality of individual genes to antimicrobial resistance was evaluated in an epidemic multidrug-resistant clone of K. pneumoniae (ST258). We constructed a high-density transposon mutant library of >430,000 unique Tn5 insertions and measured mutant depletion upon exposure to three clinically relevant antimicrobials (colistin, imipenem or ciprofloxacin) by Transposon Directed Insertion-site Sequencing (TraDIS). Using this high-throughput approach, we defined three sets of chromosomal non-essential genes essential for growth during exposure to colistin (n = 35), imipenem (n = 1) or ciprofloxacin (n = 1) in addition to known resistance determinants, collectively termed the "secondary resistome". As proof of principle, we demonstrated that inactivation of a non-essential gene not previously found linked to colistin resistance (dedA) restored colistin susceptibility by reducing the minimum inhibitory concentration from 8 to 0.5 μg/ml, 4-fold below the susceptibility breakpoint (S ≤ 2 μg/ml). This finding suggests that the secondary resistome is a potential target for developing antimicrobial "helper" drugs that restore the efficacy of existing antimicrobials.
Collapse
|
30
|
Thiel K, Vuorio E, Aro EM, Kallio PT. The effect of enhanced acetate influx on Synechocystis sp. PCC 6803 metabolism. Microb Cell Fact 2017; 16:21. [PMID: 28153019 PMCID: PMC5290672 DOI: 10.1186/s12934-017-0640-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/25/2017] [Indexed: 11/17/2022] Open
Abstract
Background Acetate is a common microbial fermentative end-product, which can potentially be used as a supplementary carbon source to enhance the output of biotechnological production systems. This study focuses on the acetate metabolism of the photosynthetic cyanobacterium Synechocystis sp. PCC 6803 which is unable to grow on acetate as a sole carbon source but still can assimilate it via acetyl-CoA—derived metabolic intermediates. In order to gain insight into the acetate uptake, associated limitations and metabolic effects, a heterologous acetate transporter ActP from Escherichia coli was introduced into Synechocystis to facilitate the transport of supplemented acetate from the medium into the cell. Results The results show that enhanced acetate intake can efficiently promote the growth of the cyanobacterial host. The effect is apparent specifically under low-light conditions when the photosynthetic activity is low, and expected to result from increased availability of acetyl-CoA precursors, accompanied by changes induced in cellular glycogen metabolism which may include allocation of resources towards enhanced growth instead of glycogen accumulation. Despite the stimulated growth of the mutant, acetate is shown to suppress the activity of the photosynthetic apparatus, further emphasizing the contribution of glycolytic metabolism in the acetate-induced effect. Conclusions The use of acetate by the cyanobacterium Synechocystis sp. PCC 6803 is at least partially restricted by the import into the cell. This can be improved by the introduction of a heterologous acetate transporter into the system, thereby providing a potential advantage by expanding the scope of acetate utilization for various biosynthetic processes. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0640-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kati Thiel
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Itäinen Pitkäkatu 4 C, 6th Floor, 20014, Turku, Finland
| | - Eerika Vuorio
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Itäinen Pitkäkatu 4 C, 6th Floor, 20014, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Itäinen Pitkäkatu 4 C, 6th Floor, 20014, Turku, Finland
| | - Pauli Tapio Kallio
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Itäinen Pitkäkatu 4 C, 6th Floor, 20014, Turku, Finland.
| |
Collapse
|
31
|
Samsudin F, Ortiz-Suarez ML, Piggot TJ, Bond PJ, Khalid S. OmpA: A Flexible Clamp for Bacterial Cell Wall Attachment. Structure 2016; 24:2227-2235. [PMID: 27866852 DOI: 10.1016/j.str.2016.10.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/16/2016] [Accepted: 10/14/2016] [Indexed: 11/22/2022]
Abstract
The envelope of Gram-negative bacteria is highly complex, containing separate outer and inner membranes and an intervening periplasmic space encompassing a peptidoglycan (PGN) cell wall. The PGN scaffold is anchored non-covalently to the outer membrane via globular OmpA-like domains of various proteins. We report atomically detailed simulations of PGN bound to OmpA in three different states, including the isolated C-terminal domain (CTD), the full-length monomer, or the complete full-length dimeric form. Comparative analysis of dynamics of OmpA CTD from different bacteria helped to identify a conserved PGN-binding mode. The dynamics of full-length OmpA, embedded within a realistic representation of the outer membrane containing full-rough (Ra) lipopolysaccharide, phospholipids, and cardiolipin, suggested how the protein may provide flexible mechanical support to the cell wall. An accurate model of the heterogeneous bacterial cell envelope should facilitate future efforts to develop antibacterial agents.
Collapse
Affiliation(s)
- Firdaus Samsudin
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Maite L Ortiz-Suarez
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Thomas J Piggot
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK; CBR Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Peter J Bond
- Bioinformatics Institute (A(∗)STAR), 30 Biopolis Street, 07-01 Matrix, Singapore 138671, Singapore; National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, Singapore 117543, Singapore.
| | - Syma Khalid
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| |
Collapse
|
32
|
Sperandeo P, Martorana AM, Polissi A. Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1451-1460. [PMID: 27760389 DOI: 10.1016/j.bbalip.2016.10.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/10/2023]
Abstract
The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer containing a unique glycolipid, lipopolysaccharide (LPS) in its outer leaflet. LPS molecules confer to the OM peculiar permeability barrier properties enabling Gram-negative bacteria to exclude many toxic compounds, including clinically useful antibiotics, and to survive harsh environments. Transport of LPS poses several problems to the cells due to the amphipatic nature of this molecule. In this review we summarize the current knowledge on the LPS transport machinery, discuss the challenges associated with this process and present the solutions that bacterial cells have evolved to address the problem of LPS transport and assembly at the cell surface. Finally, we discuss how knowledge on LPS biogenesis can be translated for the development of novel antimicrobial therapies. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Paola Sperandeo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| | - Alessandra M Martorana
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Alessandra Polissi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
33
|
Benedet M, Falchi FA, Puccio S, Di Benedetto C, Peano C, Polissi A, Dehò G. The Lack of the Essential LptC Protein in the Trans-Envelope Lipopolysaccharide Transport Machine Is Circumvented by Suppressor Mutations in LptF, an Inner Membrane Component of the Escherichia coli Transporter. PLoS One 2016; 11:e0161354. [PMID: 27529623 PMCID: PMC4986956 DOI: 10.1371/journal.pone.0161354] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/03/2016] [Indexed: 12/29/2022] Open
Abstract
The lipopolysaccharide (LPS) transport (Lpt) system is responsible for transferring LPS from the periplasmic surface of the inner membrane (IM) to the outer leaflet of the outer membrane (OM), where it plays a crucial role in OM selective permeability. In E. coli seven essential proteins are assembled in an Lpt trans-envelope complex, which is conserved in γ-Proteobacteria. LptBFG constitute the IM ABC transporter, LptDE form the OM translocon for final LPS delivery, whereas LptC, an IM-anchored protein with a periplasmic domain, interacts with the IM ABC transporter, the periplasmic protein LptA, and LPS. Although essential, LptC can tolerate several mutations and its role in LPS transport is unclear. To get insights into the functional role of LptC in the Lpt machine we searched for viable mutants lacking LptC by applying a strong double selection for lptC deletion mutants. Genome sequencing of viable ΔlptC mutants revealed single amino acid substitutions at a unique position in the predicted large periplasmic domain of the IM component LptF (LptFSupC). In complementation tests, lptFSupC mutants suppress lethality of both ΔlptC and lptC conditional expression mutants. Our data show that mutations in a specific residue of the predicted LptF periplasmic domain can compensate the lack of the essential protein LptC, implicate such LptF domain in the formation of the periplasmic bridge between the IM and OM complexes, and suggest that LptC may have evolved to improve the performance of an ancestral six-component Lpt machine.
Collapse
Affiliation(s)
- Mattia Benedet
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Federica A. Falchi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Simone Puccio
- Scuola di Dottorato in Medicina Molecolare e Traslazionale, Università degli Studi di Milano, Segrate, Italy
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Milan, Italy
| | | | - Clelia Peano
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Alessandra Polissi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Gianni Dehò
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
- * E-mail:
| |
Collapse
|
34
|
Han MJ. Exploring the proteomic characteristics of the Escherichia coli B and K-12 strains in different cellular compartments. J Biosci Bioeng 2016; 122:1-9. [DOI: 10.1016/j.jbiosc.2015.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/24/2015] [Accepted: 12/03/2015] [Indexed: 11/26/2022]
|
35
|
Borghese R, Canducci L, Musiani F, Cappelletti M, Ciurli S, Turner RJ, Zannoni D. On the role of a specific insert in acetate permeases (ActP) for tellurite uptake in bacteria: Functional and structural studies. J Inorg Biochem 2016; 163:103-109. [PMID: 27421695 DOI: 10.1016/j.jinorgbio.2016.06.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/14/2016] [Accepted: 06/23/2016] [Indexed: 11/17/2022]
Abstract
The oxyanion tellurite (TeO32-) is extremely toxic to bacterial cells. In Rhodobacter capsulatus, tellurite enters the cytosol by means of the high uptake-rate acetate permease RcActP2, encoded by one of the three actP genes present in this species (actP1, actP2 and actP3). Conversely, in Escherichia coli a low rate influx of the oxyanion is measured, which depends mainly on the phosphate transporter EcPitA, even though E. coli contains its own EcActP acetate permease. Here we report that when the actP2 gene from R. capsulatus is expressed in wild-type E. coli HB101 and in E. coli JW3460 ΔpitA mutant, the cellular intake of tellurite increases up to four times, suggesting intrinsic structural differences between EcActP and RcActP2. Indeed, a sequence analysis indicated the presence in RcActP2 of an insert of 15-16 residues, located between trans-membrane (TM) helices 6 and 7, which is absent in both EcActP and RcActP1. Based on this observation, the molecular models of homodimeric RcActP1 and RcActP2 were calculated and analyzed. In the RcActP2 model, the insert induces a perturbation in the conformation of the loop between TM helices 6 and 7, located at the RcActP2 dimerization interface. This perturbation opens a cavity on the periplasmic side that is closed, instead, in the RcActP1 model. This cavity also features an increase of the positive electric potential on the protein surface, an effect ascribed to specific residues Lys261, Lys281 and Arg560. We propose that this positively charged patch in RcActP2 is involved in recognition and translocation of the TeO32- anion, attributing to RcActP2 a greater ability as compared to RcActP1 to transport this inorganic poison inside the cells.
Collapse
Affiliation(s)
- Roberto Borghese
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Laura Canducci
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefano Ciurli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
36
|
In Silico Structure and Sequence Analysis of Bacterial Porins and Specific Diffusion Channels for Hydrophilic Molecules: Conservation, Multimericity and Multifunctionality. Int J Mol Sci 2016; 17:ijms17040599. [PMID: 27110766 PMCID: PMC4849052 DOI: 10.3390/ijms17040599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 12/18/2022] Open
Abstract
Diffusion channels are involved in the selective uptake of nutrients and form the largest outer membrane protein (OMP) family in Gram-negative bacteria. Differences in pore size and amino acid composition contribute to the specificity. Structure-based multiple sequence alignments shed light on the structure-function relations for all eight subclasses. Entropy-variability analysis results are correlated to known structural and functional aspects, such as structural integrity, multimericity, specificity and biological niche adaptation. The high mutation rate in their surface-exposed loops is likely an important mechanism for host immune system evasion. Multiple sequence alignments for each subclass revealed conserved residue positions that are involved in substrate recognition and specificity. An analysis of monomeric protein channels revealed particular sequence patterns of amino acids that were observed in other classes at multimeric interfaces. This adds to the emerging evidence that all members of the family exist in a multimeric state. Our findings are important for understanding the role of members of this family in a wide range of bacterial processes, including bacterial food uptake, survival and adaptation mechanisms.
Collapse
|
37
|
Wessels HJCT, de Almeida NM, Kartal B, Keltjens JT. Bacterial Electron Transfer Chains Primed by Proteomics. Adv Microb Physiol 2016; 68:219-352. [PMID: 27134025 DOI: 10.1016/bs.ampbs.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fraction of the microbial richness is known. Besides these variations, microbial species may show substantial versatility in using respiratory systems. In connection herewith, regulatory mechanisms control the expression of these respiratory enzyme systems and their assembly at the translational and posttranslational levels, to optimally accommodate changes in the supply of their energy substrates. Here, we present an overview of methods and techniques from the field of proteomics to explore bacterial electron transfer chains and their regulation at levels ranging from the whole organism down to the Ångstrom scales of protein structures. From the survey of the literature on this subject, it is concluded that proteomics, indeed, has substantially contributed to our comprehending of bacterial respiratory mechanisms, often in elegant combinations with genetic and biochemical approaches. However, we also note that advanced proteomics offers a wealth of opportunities, which have not been exploited at all, or at best underexploited in hypothesis-driving and hypothesis-driven research on bacterial bioenergetics. Examples obtained from the related area of mitochondrial oxidative phosphorylation research, where the application of advanced proteomics is more common, may illustrate these opportunities.
Collapse
Affiliation(s)
- H J C T Wessels
- Nijmegen Center for Mitochondrial Disorders, Radboud Proteomics Centre, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N M de Almeida
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B Kartal
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - J T Keltjens
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
38
|
Han L, Zheng J, Wang Y, Yang X, Liu Y, Sun C, Cao B, Zhou H, Ni D, Lou J, Zhao Y, Huang Y. Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Nat Struct Mol Biol 2016; 23:192-6. [PMID: 26900875 DOI: 10.1038/nsmb.3181] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/02/2016] [Indexed: 11/09/2022]
Abstract
In Gram-negative bacteria, the assembly of β-barrel outer-membrane proteins (OMPs) requires the β-barrel-assembly machinery (BAM) complex. We determined the crystal structure of the 200-kDa BAM complex from Escherichia coli at 3.55-Å resolution. The structure revealed that the BAM complex assembles into a hat-like shape, in which the BamA β-barrel domain forms the hat's crown embedded in the outer membrane, and its five polypeptide transport-associated (POTRA) domains interact with the four lipoproteins BamB, BamC, BamD and BamE, thus forming the hat's brim in the periplasm. The assembly of the BAM complex creates a ring-like apparatus beneath the BamA β-barrel in the periplasm and a potential substrate-exit pore located at the outer membrane-periplasm interface. The complex structure suggests that the chaperone-bound OMP substrates may feed into the chamber of the ring-like apparatus and insert into the outer membrane via the potential substrate-exit pore in an energy-independent manner.
Collapse
Affiliation(s)
- Long Han
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiangge Zheng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xu Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanqing Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chuanqi Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Baohua Cao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haizhen Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongchun Ni
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jizhong Lou
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yongfang Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yihua Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Ke M, Zhang Y, Xiong Y, Saeed Y, Deng Y. Identification of protein complexes of microsomes in rat adipocytes by native gel coupled with LC-ESI-QTOF. MOLECULAR BIOSYSTEMS 2016; 12:1313-23. [PMID: 26886786 DOI: 10.1039/c5mb00707k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of the composition of microsome proteins/complexes/interactions in adipocytes provides useful information for researchers related to energy metabolism disorders. The native gel coupled with LC-ESI-QTOF approach was employed here for separating protein complexes. We found a series of proteins functionally clustered in biological processes of protein metabolism, cellular carbohydrate catabolism, response to stimulus and wounding, macromolecular complex subunit organization, positive regulation of molecular function, regulation of programmed cell death and biomolecule transport. According to clustering of proteins' electrophoresis profiles across native gel fractions and bioinformatics data retrieval, protein complexes/interactions involved in protein metabolism, cellular carbohydrate catabolism, macromolecular complex subunit organization and biomolecule transport were identified. Besides, the results also revealed some functional linkages, which may provide useful information for discovering previously unknown interactions. The interaction between SSAO and ALDH2 was verified by co-immunoprecipitation. The native gel combining mass spectrometry approach appeared to be a useful tool for investigating microsome proteins and complexes to complement the traditional electrophoresis approaches. The native gel strategy together with our findings should facilitate future studies of the composition of rat adipocyte microsome protein complexes under different conditions.
Collapse
Affiliation(s)
- Ming Ke
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | | | | | | | | |
Collapse
|
40
|
Huynen MA, Mühlmeister M, Gotthardt K, Guerrero-Castillo S, Brandt U. Evolution and structural organization of the mitochondrial contact site (MICOS) complex and the mitochondrial intermembrane space bridging (MIB) complex. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:91-101. [DOI: 10.1016/j.bbamcr.2015.10.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/25/2015] [Accepted: 10/14/2015] [Indexed: 02/03/2023]
|
41
|
A 1 MDa protein complex containing critical components of the Escherichia coli divisome. Sci Rep 2015; 5:18190. [PMID: 26643979 PMCID: PMC4672292 DOI: 10.1038/srep18190] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/13/2015] [Indexed: 11/09/2022] Open
Abstract
Cell division in bacteria is an essential process that is carried out at mid-cell by a group of cell division proteins referred to as the divisome. In Escherichia coli, over two dozen cell division proteins have been identified of which ten are essential. These division proteins localize sequentially and interdependently to the division site, after which constriction eventually produces two daughter cells. Various genetic and biochemical techniques have identified many interactions amongst cell division proteins, however the existence of the divisome as a large multi-protein complex has never been shown. Here, we identify a 1 MDa protein complex by native page that contains seven essential cell division proteins (FtsZ, ZipA, FtsK, FtsQ, FtsB, FtsL, and FtsN). The 1 MDa complex is present in rapidly dividing cells, but absent when cultures enter the stationary growth phase. Slight overexpression of the ftsQ D237N mutation that blocks cell division prevents formation of this 1 MDa complex. In cells depleted of FtsN, the 1 MDa complex is not assembled. Combined, our findings indicate that a large protein complex containing many different cell division proteins indeed exists. We note that this complex is very fragile and sensitive to the expression of tagged versions of FtsQ.
Collapse
|
42
|
Aoto S, Yura K. Case study on the evolution of hetero-oligomer interfaces based on the differences in paralogous proteins. Biophys Physicobiol 2015; 12:103-16. [PMID: 27493859 PMCID: PMC4736837 DOI: 10.2142/biophysico.12.0_103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022] Open
Abstract
We addressed the evolutionary trace of hetero-oligomer interfaces by comparing the structures of paralogous proteins; one of them is a monomer or homo-oligomer and the other is a hetero-oligomer. We found different trends in amino acid conservation pattern and hydrophobicity between homo-oligomer and hetero-oligomer. The degree of amino acid conservation in the interface of homo-oligomer has no obvious difference from that in the surface, whereas the degree of conservation is much higher in the interface of hetero-oligomer. The interface of homo-oligomer has a few very conserved residue positions, whereas the residue conservation in the interface of hetero-oligomer tends to be higher. In addition, the interface of hetero-oligomer has a tendency of being more hydrophobic compared with the one in homo-oligomer. We conjecture that these differences are related to the inherent symmetry in homo-oligomers that cannot exist in hetero-oligomers. Paucity of the structural data precludes statistical tests of these tendencies, yet the trend can be applied to the prediction of the interface of hetero-oligomer. We obtained putative interfaces of the subunits in CPSF (cleavage and polyadenylation specificity factor), one of the human pre-mRNA 3′-processing complexes. The locations of predicted interface residues were consistent with the known experimental data.
Collapse
Affiliation(s)
- Saki Aoto
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo, Tokyo 112-8610, Japan
| | - Kei Yura
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo, Tokyo 112-8610, Japan; Centre for Informational Biology, Ochanomizu University, Bunkyo, Tokyo 112-8610, Japan; National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
43
|
Papanastasiou M, Orfanoudaki G, Kountourakis N, Koukaki M, Sardis MF, Aivaliotis M, Tsolis KC, Karamanou S, Economou A. Rapid label-free quantitative analysis of the E. coli
BL21(DE3) inner membrane proteome. Proteomics 2015; 16:85-97. [DOI: 10.1002/pmic.201500304] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/05/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Malvina Papanastasiou
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
- Department Pathology & Laboratory Medicine, Perelman School of Medicine; University of Pennsylvania; Philadelphia USA
| | - Georgia Orfanoudaki
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
- Department of Biology; University of Crete; Iraklio Greece
| | - Nikos Kountourakis
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
| | - Marina Koukaki
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
| | - Marios Frantzeskos Sardis
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology; Katholieke Universiteit Leuven; Leuven Belgium
| | - Michalis Aivaliotis
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
| | - Konstantinos C. Tsolis
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
- Department of Biology; University of Crete; Iraklio Greece
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology; Katholieke Universiteit Leuven; Leuven Belgium
| | - Spyridoula Karamanou
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology; Katholieke Universiteit Leuven; Leuven Belgium
| | - Anastassios Economou
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
- Department of Biology; University of Crete; Iraklio Greece
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology; Katholieke Universiteit Leuven; Leuven Belgium
| |
Collapse
|
44
|
Abstract
The major class of integral proteins found in the outer membrane (OM) of E. coli and Salmonella adopt a β-barrel conformation (OMPs). OMPs are synthesized in the cytoplasm with a typical signal sequence at the amino terminus, which directs them to the secretion machinery (SecYEG) located in the inner membrane for translocation to the periplasm. Chaperones such as SurA, or DegP and Skp, escort these proteins across the aqueous periplasm protecting them from aggregation. The chaperones then deliver OMPs to a highly conserved outer membrane assembly site termed the Bam complex. In E. coli, the Bam complex is composed of an essential OMP, BamA, and four associated OM lipoproteins, BamBCDE, one of which, BamD, is also essential. Here we provide an overview of what we know about the process of OMP assembly and outline the various hypotheses that have been proposed to explain how proteins might be integrated into the asymmetric OM lipid bilayer in an environment that lacks obvious energy sources. In addition, we describe the envelope stress responses that ensure the fidelity of OM biogenesis and how factors, such as phage and certain toxins, have coopted this essential machine to gain entry into the cell.
Collapse
|
45
|
Trimeric microsomal glutathione transferase 2 displays one third of the sites reactivity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1365-71. [DOI: 10.1016/j.bbapap.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/25/2015] [Accepted: 06/05/2015] [Indexed: 11/22/2022]
|
46
|
Badaluddin NA, Kitakawa M. Escherichia coli inner membrane protein YciB interacts with ZipA that is important for cell division. Genes Cells 2015; 20:956-65. [PMID: 26391555 DOI: 10.1111/gtc.12299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/06/2015] [Indexed: 11/29/2022]
Abstract
Escherichia coli propagates by undergoing cycles of lateral elongation, septum formation, and cell fission at the mid-cell. A large number of genes involved in these processes have been identified, but it is likely that others remain. A deletion mutant of yciB (ΔyciB) is shorter in the cell length compared to wild type and, in contrast, over-expression of yciB causes elongation of the cell. Furthermore, the septum localization of ZipA, an essential protein of cell division, is disturbed in a ΔyciB mutant. Purified YciB protein directly interacted with ZipA, which might indicate that YciB is involved in the cell envelope synthesis directed by ZipA in a PBP3-independent manner.
Collapse
Affiliation(s)
- Noor Afiza Badaluddin
- Department of Biology, Faculty of Science, Kobe University, Rokko 1-1, Nada, Kobe 657-8501, Japan
| | - Madoka Kitakawa
- Department of Biology, Faculty of Science, Kobe University, Rokko 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
47
|
Fujii S, Matsuura T, Yomo T. Membrane Curvature Affects the Formation of α-Hemolysin Nanopores. ACS Chem Biol 2015; 10:1694-701. [PMID: 25860290 DOI: 10.1021/acschembio.5b00107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Membrane proteins perform their functions within or on the lipid membrane, and lipid compositions are known to affect membrane protein integration and activity. Recently, the geometric aspect of membrane curvature was shown to play an important role in membrane protein behavior. Certain membrane proteins are known to sense the curvature of the membrane and to preferentially bind to highly curved membranes. However, although numerous membrane proteins assemble to form homo- or heterocomplexes and perform their biological functions, the dependence of membrane protein assembly on membrane curvature remains elusive. In this study, we analyzed the effect of the membrane curvature on the nanopore formation of α-hemolysin (AH), which is a toxic membrane protein derived from Staphylococcus aureus. The AH protein binds to the membrane as a monomer, assembles to form a heptamer, and forms a nanopore. By simultaneously measuring the molecules bound to the membrane and the activities of the nanopore on the membrane, we determined the nanopore formation ratio of AH. We used various sizes of liposomes and analyzed the dependence on the membrane curvature by using flow cytometry. Combining the results for positive and negative curvature, we found that the nanopore formation ratio of AH was curvature sensitive and was higher in a flat membrane than in a curved membrane. Furthermore, the nanopore formation ratio was almost identical or relatively higher in membranes with negative curvature than those with positive curvature.
Collapse
Affiliation(s)
- Satoshi Fujii
- Japan Science and Technology (JST), ERATO, Yomo
Dynamical Micro-scale Reaction Environment Project, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoaki Matsuura
- Japan Science and Technology (JST), ERATO, Yomo
Dynamical Micro-scale Reaction Environment Project, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate
School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Yomo
- Japan Science and Technology (JST), ERATO, Yomo
Dynamical Micro-scale Reaction Environment Project, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate
School of Information Science and Technology, Osaka University, 1-5
Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate
School of Frontier Biosciences, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
- Earth-Life
Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan
| |
Collapse
|
48
|
Baker LA, Daniëls M, van der Cruijsen EAW, Folkers GE, Baldus M. Efficient cellular solid-state NMR of membrane proteins by targeted protein labeling. JOURNAL OF BIOMOLECULAR NMR 2015; 62:199-208. [PMID: 25956570 PMCID: PMC4451474 DOI: 10.1007/s10858-015-9936-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/23/2015] [Indexed: 05/20/2023]
Abstract
Solid-state NMR spectroscopy (ssNMR) has made significant progress towards the study of membrane proteins in their native cellular membranes. However, reduced spectroscopic sensitivity and high background signal levels can complicate these experiments. Here, we describe a method for ssNMR to specifically label a single protein by repressing endogenous protein expression with rifampicin. Our results demonstrate that treatment of E. coli with rifampicin during induction of recombinant membrane protein expression reduces background signals for different expression levels and improves sensitivity in cellular membrane samples. Further, the method reduces the amount of time and resources needed to produce membrane protein samples, enabling new strategies for studying challenging membrane proteins by ssNMR.
Collapse
Affiliation(s)
- Lindsay A. Baker
- />NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- />Oxford Particle Imaging Centre, The Wellcome Trust Centre for Human Genetics, Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| | - Mark Daniëls
- />NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Elwin A. W. van der Cruijsen
- />NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Gert E. Folkers
- />NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marc Baldus
- />NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
49
|
Putker F, Bos MP, Tommassen J. Transport of lipopolysaccharide to the Gram-negative bacterial cell surface. FEMS Microbiol Rev 2015; 39:985-1002. [DOI: 10.1093/femsre/fuv026] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2015] [Indexed: 12/15/2022] Open
|
50
|
Quantitative and Systems-Based Approaches for Deciphering Bacterial Membrane Interactome and Gene Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:135-54. [PMID: 26621466 DOI: 10.1007/978-3-319-23603-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
High-throughput genomic and proteomic methods provide a concise description of the molecular constituents of a cell, whereas systems biology strives to understand the way these components function as a whole. Recent developments, such as genome editing technologies and protein epitope-tagging coupled with high-sensitivity mass-spectrometry, allow systemic studies to be performed at an unprecedented scale. Available methods can be successfully applied to various goals, both expanding fundamental knowledge and solving applied problems. In this review, we discuss the present state and future of bacterial cell envelope interactomics, with a specific focus on host-pathogen interactions and drug target discovery. Both experimental and computational methods will be outlined together with examples of their practical implementation.
Collapse
|