1
|
Roy TB, Sarma SP. Insights into the solution structure and transcriptional regulation of the MazE9 antitoxin in Mycobacterium tuberculosis. Proteins 2025; 93:176-196. [PMID: 37737533 DOI: 10.1002/prot.26589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
The present study endeavors to decode the details of the transcriptional autoregulation effected by the MazE9 antitoxin of the Mycobacterium tuberculosis MazEF9 toxin-antitoxin system. Regulation of this bicistronic operon at the level of transcription is a critical biochemical process that is key for the organism's stress adaptation and virulence. Here, we have reported the solution structure of the DNA binding domain of MazE9 and scrutinized the thermodynamic and kinetic parameters operational in its interaction with the promoter/operator region, specific to the mazEF9 operon. A HADDOCK model of MazE9 bound to its operator DNA has been calculated based on the information on interacting residues obtained from these studies. The thermodynamics and kinetics of the interaction of MazE9 with the functionally related mazEF6 operon indicate that the potential for intracellular cross-regulation is unlikely. An interesting feature of MazE9 is the cis ⇌ trans conformational isomerization of proline residues in the intrinsically disordered C-terminal domain of this antitoxin.
Collapse
Affiliation(s)
- Tanaya Basu Roy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Siddhartha P Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
2
|
Tang Z, Jiang P, Xie W. Long Dynamic β1-β2 Loops in M. tb MazF Toxins Affect the Interaction Modes and Strengths of the Toxin-Antitoxin Pairs. Int J Mol Sci 2024; 25:9630. [PMID: 39273577 PMCID: PMC11394972 DOI: 10.3390/ijms25179630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Tuberculosis is a worldwide plague caused by the pathogen Mycobacterium tuberculosis (M. tb). Toxin-antitoxin (TA) systems are genetic elements abundantly present in prokaryotic organisms and regulate important cellular processes. MazEF is a TA system implicated in the formation of "persisters cells" of M. tb, which contain more than 10 such members. However, the exact function and inhibition mode of each MazF are not fully understood. Here we report crystal structures of MazF-mt3 in its apo form and in complex with the C-terminal half of MazE-mt3. Structural analysis suggested that two long but disordered β1-β2 loops would interfere with the binding of the cognate MazE-mt3 antitoxin. Similar loops are also present in the MazF-mt1 and -mt9 but are sustainably shortened in other M. tb MazF members, and these TA pairs behave distinctly in terms of their binding modes and their RNase activities. Systematic crystallographic and biochemical studies further revealed that the biochemical activities of M. tb toxins were combined results between the interferences from the characteristic loops and the electrostatic interactions between the cognate TA pairs. This study provides structural insight into the binding mode and the inhibition mechanism of the MazE/F TA pairs, which facilitate the structure-based peptide designs.
Collapse
Affiliation(s)
- Ziyun Tang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Z.T.); (P.J.)
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pengcheng Jiang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Z.T.); (P.J.)
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Z.T.); (P.J.)
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Olsson O, Søkilde R, Tesfaye F, Karlson S, Skogmar S, Jansson M, Björkman P. Plasma Ribonuclease Activity in Antiretroviral Treatment-Naive People With Human Immunodeficiency Virus and Tuberculosis Disease. J Infect Dis 2024; 230:403-410. [PMID: 38526179 PMCID: PMC12102472 DOI: 10.1093/infdis/jiae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND The role of ribonucleases in tuberculosis among people with human immunodeficiency virus (HIV; PWH) is unknown. We explored ribonuclease activity in plasma from PWH with and without tuberculosis. METHODS Participants were identified from a cohort of treatment-naive PWH in Ethiopia who had been classified for tuberculosis disease (HIV positive [HIV+]/tuberculosis positive [tuberculosis+] or HIV+/tuberculosis negative [tuberculosis-]). Ribonuclease activity in plasma was investigated by quantification of synthetic spike-in RNAs using sequencing and quantitative polymerase chain reaction and by a specific ribonuclease activity assay. Quantification of ribonuclease 1, 2, 3, 6, 7, and T2 proteins was performed by enzyme-linked immunosorbent assay. Ribonuclease activity and protein concentrations were correlated with markers of tuberculosis and HIV disease severity and with concentrations of inflammatory mediators. RESULTS Ribonuclease activity was significantly higher in plasma of HIV+/tuberculosis+ (n = 51) compared with HIV+/tuberculosis- (n = 78), causing reduced stability of synthetic spike-in RNAs. Concentrations of ribonucleases 2, 3, and T2 were also significantly increased in HIV+/tuberculosis+ compared with HIV+/tuberculosis-. Ribonuclease activity was correlated with HIV viral load, and inversely correlated with CD4 cell count, mid-upper arm circumference, and body mass index. Moreover, ribonuclease activity was correlated with concentrations of interleukin 27, procalcitonin and the kynurenine-tryptophan ratio. CONCLUSIONS PWH with tuberculosis disease have elevated plasma ribonuclease activity, which is also associated with HIV disease severity and systemic inflammation.
Collapse
Affiliation(s)
- Oskar Olsson
- Clinical Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
- Department of Infectious Diseases, Skåne University Hospital, Malmö/Lund, Sweden
| | - Rolf Søkilde
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Fregenet Tesfaye
- Clinical Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Sara Karlson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sten Skogmar
- Clinical Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
- Department of Infectious Diseases, Skåne University Hospital, Malmö/Lund, Sweden
| | - Marianne Jansson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Per Björkman
- Clinical Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
- Department of Infectious Diseases, Skåne University Hospital, Malmö/Lund, Sweden
| |
Collapse
|
4
|
Garcia PK, Martinez Borrero R, Annamalai T, Diaz E, Balarezo S, Tiwari PB, Tse-Dinh YC. Localization of Mycobacterium tuberculosis topoisomerase I C-terminal sequence motif required for inhibition by endogenous toxin MazF4. Front Microbiol 2022; 13:1032320. [PMID: 36545199 PMCID: PMC9760754 DOI: 10.3389/fmicb.2022.1032320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/17/2022] [Indexed: 12/08/2022] Open
Abstract
Only about half the multi-drug resistant tuberculosis (MDR-TB) cases are successfully cured. Thus, there is an urgent need of new TB treatment against a novel target. Mycobacterium tuberculosis (Mtb) topoisomerase I (TopA) is the only type IA topoisomerase in this organism and has been validated as an essential target for TB drug discovery. Toxin-antitoxin (TA) systems participate as gene regulators within bacteria. The TA systems contribute to the long-term dormancy of Mtb within the host-cell environment. Mtb's toxin MazF4 (Rv1495) that is part of the MazEF4 TA system has been shown to have dual activities as endoribonuclease and topoisomerase I inhibitor. We have developed a complementary assay using an Escherichia coli strain with temperature-sensitive topA mutation to provide new insights into the MazF4 action. The assay showed that E. coli is not sensitive to the endoribonuclease activity of Mtb MazF4 but became vulnerable to MazF4 growth inhibition when recombinant Mtb TopA relaxation activity is required for growth. Results from the complementation by Mtb TopA mutants with C-terminal deletions showed that the lysine-rich C-terminal tail is required for interaction with MazF4. Site-directed mutagenesis is utilized to identify two lysine residues within a conserved motif in this C-terminal tail that are critical for MazF4 inhibition. We performed molecular dynamics simulations to predict the Mtb TopA-MazF4 complex. Our simulation results show that the complex is stabilized by hydrogen bonds and electrostatic interactions established by residues in the TopA C-terminal tail including the two conserved lysines. The mechanism of Mtb TopA inhibition by MazF4 could be useful for the discovery of novel inhibitors against a new antibacterial target in pathogenic mycobacteria for treatment of both TB and diseases caused by the non-tuberculosis mycobacteria (NTM).
Collapse
Affiliation(s)
- Pamela K. Garcia
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | | | - Thirunavukkarasu Annamalai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Esnel Diaz
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Steve Balarezo
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | | | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States,*Correspondence: Yuk-Ching Tse-Dinh,
| |
Collapse
|
5
|
Structural and mutational analysis of MazE6-operator DNA complex provide insights into autoregulation of toxin-antitoxin systems. Commun Biol 2022; 5:963. [PMID: 36109664 PMCID: PMC9477884 DOI: 10.1038/s42003-022-03933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Of the 10 paralogs of MazEF Toxin-Antitoxin system in Mycobacterium tuberculosis, MazEF6 plays an important role in multidrug tolerance, virulence, stress adaptation and Non Replicative Persistant (NRP) state establishment. The solution structures of the DNA binding domain of MazE6 and of its complex with the cognate operator DNA show that transcriptional regulation occurs by binding of MazE6 to an 18 bp operator sequence bearing the TANNNT motif (-10 region). Kinetics and thermodynamics of association, as determined by NMR and ITC, indicate that the nMazE6-DNA complex is of high affinity. Residues in N-terminal region of MazE6 that are key for its homodimerization, DNA binding specificity, and the base pairs in the operator DNA essential for the protein-DNA interaction, have been identified. It provides a basis for design of chemotherapeutic agents that will act via disruption of TA autoregulation, leading to cell death. The dimeric MazE6 antitoxin binds to a specific sequence in its cognate operator DNA for autoregulation, and the key residues for dimerization and DNA binding are identified.
Collapse
|
6
|
Chattopadhyay G, Bhasin M, Ahmed S, Gosain TP, Ganesan S, Das S, Thakur C, Chandra N, Singh R, Varadarajan R. Functional and Biochemical Characterization of the MazEF6 Toxin-Antitoxin System of Mycobacterium tuberculosis. J Bacteriol 2022; 204:e0005822. [PMID: 35357163 PMCID: PMC9053165 DOI: 10.1128/jb.00058-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
The Mycobacterium tuberculosis genome harbors nine toxin-antitoxin (TA) systems that are members of the mazEF family, unlike other prokaryotes, which have only one or two. Although the overall tertiary folds of MazF toxins are predicted to be similar, it is unclear how they recognize structurally different RNAs and antitoxins with divergent sequence specificity. Here, we have expressed and purified the individual components and complex of the MazEF6 TA system from M. tuberculosis. Size exclusion chromatography-multiangle light scattering (SEC-MALS) was performed to determine the oligomerization status of the toxin, antitoxin, and the complex in different stoichiometric ratios. The relative stabilities of the proteins were determined by nano-differential scanning fluorimetry (nano-DSF). Microscale thermophoresis (MST) and yeast surface display (YSD) were performed to measure the relative affinities between the cognate toxin-antitoxin partners. The interaction between MazEF6 complexes and cognate promoter DNA was also studied using MST. Analysis of paired-end RNA sequencing data revealed that the overexpression of MazF6 resulted in differential expression of 323 transcripts in M. tuberculosis. Network analysis was performed to identify the nodes from the top-response network. The analysis of mRNA protection ratios resulted in identification of putative MazF6 cleavage site in its native host, M. tuberculosis. IMPORTANCE M. tuberculosis harbors a large number of type II toxin-antitoxin (TA) systems, the exact roles for most of which are unclear. Prior studies have reported that overexpression of several of these type II toxins inhibits bacterial growth and contributes to the formation of drug-tolerant populations in vitro. To obtain insights into M. tuberculosis MazEF6 type II TA system function, we determined stability, oligomeric states, and binding affinities of cognate partners with each other and with their promoter operator DNA. Using RNA-seq data obtained from M. tuberculosis overexpression strains, we have identified putative MazF6 cleavage sites and targets in its native, cellular context.
Collapse
Affiliation(s)
| | - Munmun Bhasin
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Shahbaz Ahmed
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Tannu Priya Gosain
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Srivarshini Ganesan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Sayan Das
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Chandrani Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
7
|
Chen R, Zhou J, Xie W. Mechanistic Insight into the Peptide Binding Modes to Two M. tb MazF Toxins. Toxins (Basel) 2021; 13:toxins13050319. [PMID: 33925254 PMCID: PMC8145246 DOI: 10.3390/toxins13050319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022] Open
Abstract
Tuberculosis (TB) is a contagious disease caused by Mycobacterium tuberculosis (M. tb). It is regarded as a major health threat all over the world, mainly because of its high mortality and drug-resistant nature. Toxin-antitoxin (TA) systems are modules ubiquitously found in prokaryotic organisms, and the well-studied MazEF systems (MazE means “what is it?” in Hebrew) are implicated in the formation of “persister cells” in the M. tb pathogen. Here, we report cocrystal structures of M. tb MazF-mt1 and -mt9, two important MazF members responsible for specific mRNA and tRNA cleavages, respectively, in complexes with truncated forms of their cognate antitoxin peptides. These peptides bind to the toxins with comparable affinities to their full-length antitoxins, which would reduce the RNA-cleavage capacities of the toxins in vitro. After structural analysis of the binding modes, we systemically tested the influence of the substitutions of individual residues in the truncated MazE-mt9 peptide on its affinity. This study provides structural insight into the binding modes and the inhibition mechanisms between the MazE/F-mt TA pairs. More importantly, it contributes to the future design of peptide-based antimicrobial agents against TB and potentially relieves the drug-resistance problems by targeting novel M. tb proteins.
Collapse
Affiliation(s)
- Ran Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510006, China; (R.C.); (J.Z.)
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Jie Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510006, China; (R.C.); (J.Z.)
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510006, China; (R.C.); (J.Z.)
- Correspondence:
| |
Collapse
|
8
|
Kahan R, Worm DJ, de Castro GV, Ng S, Barnard A. Modulators of protein-protein interactions as antimicrobial agents. RSC Chem Biol 2021; 2:387-409. [PMID: 34458791 PMCID: PMC8341153 DOI: 10.1039/d0cb00205d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Protein-Protein interactions (PPIs) are involved in a myriad of cellular processes in all living organisms and the modulation of PPIs is already under investigation for the development of new drugs targeting cancers, autoimmune diseases and viruses. PPIs are also involved in the regulation of vital functions in bacteria and, therefore, targeting bacterial PPIs offers an attractive strategy for the development of antibiotics with novel modes of action. The latter are urgently needed to tackle multidrug-resistant and multidrug-tolerant bacteria. In this review, we describe recent developments in the modulation of PPIs in pathogenic bacteria for antibiotic development, including advanced small molecule and peptide inhibitors acting on bacterial PPIs involved in division, replication and transcription, outer membrane protein biogenesis, with an additional focus on toxin-antitoxin systems as upcoming drug targets.
Collapse
Affiliation(s)
- Rashi Kahan
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Dennis J Worm
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Guilherme V de Castro
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Simon Ng
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Anna Barnard
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| |
Collapse
|
9
|
Functional and structural characterization of Deinococcus radiodurans R1 MazEF toxin-antitoxin system, Dr0416-Dr0417. J Microbiol 2021; 59:186-201. [DOI: 10.1007/s12275-021-0523-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
|
10
|
Chen R, Zhou J, Sun R, Du C, Xie W. Conserved Conformational Changes in the Regulation of Mycobacterium tuberculosis MazEF-mt1. ACS Infect Dis 2020; 6:1783-1795. [PMID: 32485099 DOI: 10.1021/acsinfecdis.0c00048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Toxin-antitoxin (TA) systems, which regulate many important cellular processes, are abundantly present in prokaryotic organisms. MazEF is a common type of TA system implicated in the formation of "persisters cells" of the pathogen Mycobacterium tuberculosis, which contains 10 such systems. However, the exact function and inhibition mode of each MazF protein are not quite understood. Here, we report four high-resolution crystal structures of MazF-mt1 in various forms, including one in complex with MazE-mt1. The toxin displayed two unique interlocked loops that allow the formation of a tight dimer. These loops would open upon interacting with the MazE-mt1 antitoxin mediated by the last two helices of MazE-mt1. With our structure-based design, a mutant that could bind to the antitoxin with an enhanced affinity was produced. Combined crystallographic and biochemical studies further revealed that the binding affinity of MazE-mt1 to MazF-mt1 was mainly attributed to its α3 helical region, while the terminal helix η1 contributes very little or even negatively to the association of the pair, in stark contrast to the MazEF-mt9 system. This study provides structural insight into the binding mode and the inhibition mechanism of the MazE/F-mt1 TA pair, which may reflect the functional differences between different TA systems.
Collapse
Affiliation(s)
- Ran Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Jie Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Runlin Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Chaochao Du
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 E. Dongfeng Road, Guangzhou, Guangdong 510060, People’s Republic of China
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510006, People’s Republic of China
| |
Collapse
|
11
|
Janczak M, Hyz K, Bukowski M, Lyzen R, Hydzik M, Wegrzyn G, Szalewska-Palasz A, Grudnik P, Dubin G, Wladyka B. Chromosomal localization of PemIK toxin-antitoxin system results in the loss of toxicity - Characterization of pemIK Sa1-Sp from Staphylococcus pseudintermedius. Microbiol Res 2020; 240:126529. [PMID: 32622987 DOI: 10.1016/j.micres.2020.126529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/20/2022]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous in bacteria and on numerous occasions have been postulated to play a role in virulence of pathogens. Some Staphylococcus aureus strains carry a plasmid, which encodes the highly toxic PemIKSa TA system involved in maintenance of the plasmid but also implicated in modulation of gene expression. Here we showed that pemIKSa1-Sp TA system, homologous to the plasmid-encoded PemIKSa, is present in virtually each chromosome of S. pseudintermedius strain, however exhibits sequence heterogeneity. This results in two length variants of the PemKSa1-Sp toxin. The shorter (96 aa), C-terminally truncated toxin is enzymatically inactive, whereas the full length (112 aa) variant is an RNase, though nontoxic to the host cells. The lack of toxicity of the active PemKSa-Sp2 toxin is explained by increased substrate specificity. The pemISa1-Sp antitoxin gene seems pseudogenized, however, the whole pemIKSa1-Sp system is transcriptionally active. When production of N-terminally truncated antitoxins using alternative start codons is assumed, there are five possible length variants. Here we showed that even substantially truncated antitoxins are able to interact with PemKSa-Sp2 toxin and inhibit its RNase activity. Moreover, the antitoxins can rescue bacterial cells from toxic effects of overexpression of plasmid-encoded PemKSa toxin. Collectively, our data indicates that, contrary to the toxic plasmid-encoded PemIKSa TA system, location of pemIKSa1-Sp in the chromosome of S. pseudintermedius results in the loss of its toxicity. Interestingly, the retained RNase activity of PemKSa1-Sp2 toxin and functionality of the putative, N-terminally truncated antitoxins suggest the existence of evolutionary pressure for alleviation/mitigation of the toxin's toxicity and retention of the inhibitory activity of the antitoxin, respectively.
Collapse
Affiliation(s)
- Monika Janczak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Hyz
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Robert Lyzen
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, Gdansk, Poland
| | - Marcin Hydzik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Przemyslaw Grudnik
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
12
|
MazF Endoribonucleolytic Toxin Conserved in Nitrospira Specifically Cleaves the AACU, AACG, and AAUU Motifs. Toxins (Basel) 2020; 12:toxins12050287. [PMID: 32365819 PMCID: PMC7291052 DOI: 10.3390/toxins12050287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 11/27/2022] Open
Abstract
MazF is an endoribonucleolytic toxin that cleaves intracellular RNAs in sequence-specific manners. It is liberated in bacterial cells in response to environmental changes and is suggested to contribute to bacterial survival by inducing translational regulation. Thus, determining the cleavage specificity provides insights into the physiological functions of MazF orthologues. Nitrospira, detected in a wide range of environments, is thought to have evolved the ability to cope with their surroundings. To investigate the molecular mechanism of its environmental adaption, a MazF module from Nitrospira strain ND1, which was isolated from the activated sludge of a wastewater treatment plant, is examined in this study. By combining a massive parallel sequencing method and fluorometric assay, we detected that this functional RNA-cleaving toxin specifically recognizes the AACU, AACG, and AAUU motifs. Additionally, statistical analysis suggested that this enzyme regulates various specific functions in order to resist environmental stresses.
Collapse
|
13
|
Jurėnas D, Van Melderen L. The Variety in the Common Theme of Translation Inhibition by Type II Toxin-Antitoxin Systems. Front Genet 2020; 11:262. [PMID: 32362907 PMCID: PMC7180214 DOI: 10.3389/fgene.2020.00262] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Type II Toxin-antitoxin (TA) modules are bacterial operons that encode a toxic protein and its antidote, which form a self-regulating genetic system. Antitoxins put a halter on toxins in many ways that distinguish different types of TA modules. In type II TA modules, toxin and antitoxin are proteins that form a complex which physically sequesters the toxin, thereby preventing its toxic activity. Type II toxins inhibit various cellular processes, however, the translation process appears to be their favorite target and nearly every step of this complex process is inhibited by type II toxins. The structural features, enzymatic activities and target specificities of the different toxin families are discussed. Finally, this review emphasizes that the structural folds presented by these toxins are not restricted to type II TA toxins or to one particular cellular target, and discusses why so many of them evolved to target translation as well as the recent developments regarding the role(s) of these systems in bacterial physiology and evolution.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, CNRS, Aix-Marseille Université, Marseille, France
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
14
|
Girardin RC, McDonough KA. Small RNA Mcr11 requires the transcription factor AbmR for stable expression and regulates genes involved in the central metabolism of Mycobacterium tuberculosis. Mol Microbiol 2020; 113:504-520. [PMID: 31782837 PMCID: PMC7064933 DOI: 10.1111/mmi.14436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis, must adapt to host-associated environments during infection by modulating gene expression. Small regulatory RNAs (sRNAs) are key regulators of bacterial gene expression, but their roles in Mtb are not well understood. Here, we address the expression and function of the Mtb sRNA Mcr11, which is associated with slow bacterial growth and chronic infections in mice. We found that stable expression of Mcr11 requires multiple factors specific to TB-complex bacteria, including the AbmR transcription factor. Bioinformatic analyses used to predict regulatory targets of Mcr11 identified 7-11 nucleotide regions with potential for direct base-pairing with Mcr11 immediately upstream of Rv3282, fadA3, and lipB. mcr11-dependent regulation of these genes was demonstrated using qRT-PCR and found to be responsive to the presence of fatty acids. Mutation of the putative Mcr11 base-pairing site upstream of lipB in a promoter reporter strain resulted in significant de-repression of lipB expression, similar to that observed in mcr11-deleted Mtb. These studies establish Mcr11's roles in regulating growth and central metabolism in Mtb. Our finding that multiple TB-complex-specific factors are required for production of stable Mcr11 also emphasizes the need to better understand mechanisms of sRNA expression and stability in TB.
Collapse
Affiliation(s)
- Roxie C. Girardin
- Department of Biomedical SciencesSchool of Public HealthUniversity at AlbanyAlbanyNY
| | - Kathleen A. McDonough
- Department of Biomedical SciencesSchool of Public HealthUniversity at AlbanyAlbanyNY
- Wadsworth Center, New York State Department of HealthAlbanyNY
| |
Collapse
|
15
|
Yee R, Feng J, Wang J, Chen J, Zhang Y. Identification of Genes Regulating Cell Death in Staphylococcus aureus. Front Microbiol 2019; 10:2199. [PMID: 31632363 PMCID: PMC6779855 DOI: 10.3389/fmicb.2019.02199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that causes acute and chronic infections. Due to S. aureus's highly resistant and persistent nature, it is paramount to identify better drug targets in order to eradicate S. aureus infections. Despite the efforts in understanding bacterial cell death, the genes, and pathways of S. aureus cell death remain elusive. Here, we performed a genome-wide screen using a transposon mutant library to study the genetic mechanisms involved in S. aureus cell death. Using a precisely controlled heat-ramp and acetic acid exposure assays, mutations in 27 core genes (hsdR1, hslO, nsaS, sspA, folD, mfd, vraF, kdpB, USA300HOU_2684, 0868, 0369, 0420, 1154, 0142, 0930, 2590, 0997, 2559, 0044, 2004, 1209, 0152, 2455, 0154, 2386, 0232, 0350 involved in transporters, transcription, metabolism, peptidases, kinases, transferases, SOS response, nucleic acid, and protein synthesis) caused the bacteria to be more death-resistant. In addition, we identified mutations in 10 core genes (capA, gltT, mnhG1, USA300HOU_1780, 2496, 0200, 2029, 0336, 0329, 2386, involved in transporters, metabolism, transcription, and cell wall synthesis) from heat-ramp and acetic acid that caused the bacteria to be more death-sensitive or with defect in persistence. Interestingly, death-resistant mutants were more virulent than the parental strain USA300 and caused increased mortality in a Caenorhabditis elegans infection model. Conversely, death-sensitive mutants were less persistent and formed fewer persister cells upon exposure to different classes of antibiotics. These findings provide new insights into the mechanisms of S. aureus cell death and offer new therapeutic targets for developing more effective treatments for infections caused by S. aureus.
Collapse
Affiliation(s)
- Rebecca Yee
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Jie Feng
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Jiazhen Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
16
|
Chen R, Tu J, Tan Y, Cai X, Yang C, Deng X, Su B, Ma S, Liu X, Ma P, Du C, Xie W. Structural and Biochemical Characterization of the Cognate and Heterologous Interactions of the MazEF-mt9 TA System. ACS Infect Dis 2019; 5:1306-1316. [PMID: 31267737 DOI: 10.1021/acsinfecdis.9b00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toxin-antitoxin (TA) modules widely exist in bacteria, and their activities are associated with the persister phenotype of the pathogen Mycobacterium tuberculosis (M. tb). M. tb causes tuberculosis, a contagious and severe airborne disease. There are 10 MazEF TA systems in M. tb that play important roles in stress adaptation. How the antitoxins antagonize toxins in M. tb or how the 10 TA systems crosstalk to each other are of interest, but the detailed molecular mechanisms are largely unclear. MazEF-mt9 is a unique member among the MazEF family due to its tRNase activity, which is usually carried out by the VapC toxins. Here, we present the cocrystal structure of the MazEF-mt9 complex at 2.7 Å. By characterizing the association mode between the TA pairs through various techniques, we found that MazF-mt9 bound not only its cognate antitoxin but also the noncognate antitoxin MazE-mt1, a phenomenon that could be also observed in vivo. Based on our structural and biochemical work, we propose that the cognate and heterologous interactions among different TA systems work together in vivo to relieve the toxicity of MazF-mt9 toward M. tb cells.
Collapse
Affiliation(s)
- Ran Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Road, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Jie Tu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Road, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Yaoju Tan
- Guangzhou Chest Hospital, 62 HengzhiGang Road, Guangzhou, Guangdong 510095, People’s Republic of China
| | - Xingshan Cai
- Guangzhou Chest Hospital, 62 HengzhiGang Road, Guangzhou, Guangdong 510095, People’s Republic of China
| | - Chengwen Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Road, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Xiangyu Deng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Road, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Biyi Su
- Guangzhou Chest Hospital, 62 HengzhiGang Road, Guangzhou, Guangdong 510095, People’s Republic of China
| | - Shangming Ma
- Guangzhou Chest Hospital, 62 HengzhiGang Road, Guangzhou, Guangdong 510095, People’s Republic of China
| | - Xin Liu
- Guangzhou Chest Hospital, 62 HengzhiGang Road, Guangzhou, Guangdong 510095, People’s Republic of China
| | - Pinyun Ma
- Guangzhou Chest Hospital, 62 HengzhiGang Road, Guangzhou, Guangdong 510095, People’s Republic of China
| | - Chaochao Du
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 E. Dongfeng Road, Guangzhou, Guangdong 510060, People’s Republic of China
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Road, Guangzhou, Guangdong 510006, People’s Republic of China
| |
Collapse
|
17
|
Kim DH, Kang SM, Park SJ, Jin C, Yoon HJ, Lee BJ. Functional insights into the Streptococcus pneumoniae HicBA toxin-antitoxin system based on a structural study. Nucleic Acids Res 2019; 46:6371-6386. [PMID: 29878152 PMCID: PMC6159526 DOI: 10.1093/nar/gky469] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/15/2018] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pneumonia has attracted increasing attention due to its resistance to existing antibiotics. TA systems are essential for bacterial persistence under stressful conditions such as nutrient deprivation, antibiotic treatment, and immune system attacks. In particular, S. pneumoniae expresses the HicBA TA gene, which encodes the stable HicA toxin and the labile HicB antitoxin. These proteins interact to form a non-toxic TA complex under normal conditions, but the toxin is activated by release from the antitoxin in response to unfavorable growth conditions. Here, we present the first crystal structure showing the complete conformation of the HicBA complex from S. pneumonia. The structure reveals that the HicA toxin contains a double-stranded RNA-binding domain that is essential for RNA recognition and that the C-terminus of the HicB antitoxin folds into a ribbon-helix-helix DNA-binding motif. The active site of HicA is sterically blocked by the N-terminal region of HicB. RNase activity assays show that His36 is essential for the ribonuclease activity of HicA, and nuclear magnetic resonance (NMR) spectra show that several residues of HicB participate in binding to the promoter DNA of the HicBA operon. A toxin-mimicking peptide that inhibits TA complex formation and thereby increases toxin activity was designed, providing a novel approach to the development of new antibiotics.
Collapse
Affiliation(s)
- Do-Hee Kim
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sung-Min Kang
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 534-2 Yeonsu-dong, Yeonsu-gu, Incheon 13120, Republic of Korea
| | - Chenglong Jin
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
18
|
Gample SP, Agrawal S, Sarkar D. Evidence of nitrite acting as a stable and robust inducer of non-cultivability in Mycobacterium tuberculosis with physiological relevance. Sci Rep 2019; 9:9261. [PMID: 31239517 PMCID: PMC6593118 DOI: 10.1038/s41598-019-45652-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/30/2019] [Indexed: 11/21/2022] Open
Abstract
Tuberculosis (TB) is the ninth leading cause of death worldwide, ranking above human immunodeficiency virus. Latency is the major obstacle in the eradication of this disease. How the physiology of the pathogen changes in transition to the latent stage needs to be understood. The latent bacteria extracted from animal hosts exist in a nonculturable (NC) phase, whereas bacteria extracted from most in vitro models are culture-positive. In the present study, we observed that nitrite, up to a concentration of 5 mM, shows the growth of Mycobacterium tuberculosis (MTB) in liquid media, but this effect starts reversing at higher concentrations. At a concentration of 10 mM, nitrite induces rapid nonculturability of MTB at the aerobic stage. This noncultivable dormancy was confirmed by analyzing the characteristics of NC bacteria. Further differential gene expression analyses clearly supported the formation of a dormancy phenotype. This study will be helpful for the use of this bacillus as a dormancy model in future studies on TB latency.
Collapse
Affiliation(s)
- Suwarna P Gample
- CSIR-National Chemical Laboratory, Organic Chemistry Division, Pune, 411008, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sonia Agrawal
- CSIR-National Chemical Laboratory, Organic Chemistry Division, Pune, 411008, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dhiman Sarkar
- CSIR-National Chemical Laboratory, Organic Chemistry Division, Pune, 411008, Maharashtra, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
19
|
Shaku M, Park JH, Inouye M, Yamaguchi Y. Identification of MazF Homologue in Legionella pneumophila Which Cleaves RNA at the AACU Sequence. J Mol Microbiol Biotechnol 2019; 28:269-280. [PMID: 30893701 DOI: 10.1159/000497146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/18/2019] [Indexed: 11/19/2022] Open
Abstract
MazF is a sequence-specific endoribonuclease that is widely conserved in bacteria and archaea. Here, we found an MazF homologue (MazF-lp; LPO-p0114) in Legionella pneumophila. The mazF-lp gene overlaps 14 base pairs with the upstream gene mazE-lp (MazE-lp; LPO-p0115). The induction of mazF-lp caused cell growth arrest, while mazE-lp co-induction recovered cell growth in Escherichia coli. In vivo and in vitro primer extension experiments showed that MazF-lp is a sequence-specific endoribonuclease cleaving RNA at AACU. The endoribonuclease activity of purified MazF-lp was inhibited by purified MazE-lp. We found that MazE-lp and the MazEF-lp complex specifically bind to the palindromic sequence present in the 5'-untranslated region of the mazEF-lp operon. MazE-lp and MazEF-lp both likely function as a repressor for the mazEF-lp operon and for other genes, including icmR, whose gene product functions as a secretion chaperone for the IcmQ pore-forming protein, by specifically binding to the palindromic sequence in 5'-UTR of these genes.
Collapse
Affiliation(s)
- Mao Shaku
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Masayori Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School and Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, USA
| | - Yoshihiro Yamaguchi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan, .,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan,
| |
Collapse
|
20
|
Slayden RA, Dawson CC, Cummings JE. Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis. Pathog Dis 2018; 76:4969681. [PMID: 29788125 DOI: 10.1093/femspd/fty039] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/01/2018] [Indexed: 11/14/2022] Open
Abstract
There has been a significant reduction in annual tuberculosis incidence since the World Health Organization declared tuberculosis a global health threat. However, treatment of M. tuberculosis infections requires lengthy multidrug therapeutic regimens to achieve a durable cure. The development of new drugs that are active against resistant strains and phenotypically diverse organisms continues to present the greatest challenge in the future. Numerous phylogenomic analyses have revealed that the Mtb genome encodes a significantly expanded repertoire of toxin-antitoxin (TA) loci that makes up the Mtb TA system. A TA loci is a two-gene operon encoding a 'toxin' protein that inhibits bacterial growth and an interacting 'antitoxin' partner that neutralizes the inhibitory activity of the toxin. The presence of multiple chromosomally encoded TA loci in Mtb raises important questions in regard to expansion, regulation and function. Thus, the functional roles of TA loci in Mtb pathogenesis have received considerable attention over the last decade. The cumulative results indicate that they are involved in regulating adaptive responses to stresses associated with the host environment and drug treatment. Here we review the TA families encoded in Mtb, discuss the duplication of TA loci in Mtb, regulatory mechanism of TA loci, and phenotypic heterogeneity and pathogenesis.
Collapse
Affiliation(s)
- Richard A Slayden
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Clinton C Dawson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Jason E Cummings
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| |
Collapse
|
21
|
Miyamoto T, Yokota A, Ota Y, Tsuruga M, Aoi R, Tsuneda S, Noda N. Nitrosomonas europaea MazF Specifically Recognises the UGG Motif and Promotes Selective RNA Degradation. Front Microbiol 2018; 9:2386. [PMID: 30349517 PMCID: PMC6186784 DOI: 10.3389/fmicb.2018.02386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023] Open
Abstract
Toxin-antitoxin (TA) systems are implicated in prokaryotic stress adaptation. Previously, bioinformatics analysis predicted that such systems are abundant in some slowly growing chemolithotrophs; e.g., Nitrosomonas europaea. Nevertheless, the molecular functions of these stress-response modules remain largely unclear, limiting insight regarding their physiological roles. Herein, we show that one of the putative MazF family members, encoded at the ALW85_RS04820 locus, constitutes a functional toxin that engenders a TA pair with its cognate MazE antitoxin. The coordinate application of a specialised RNA-Seq and a fluorescence quenching technique clarified that a unique triplet, UGG, serves as the determinant for MazF cleavage. Notably, statistical analysis predicted that two transcripts, which are unique in the autotroph, comprise the prime targets of the MazF endoribonuclease: hydroxylamine dehydrogenase (hao), which is essential for ammonia oxidation, and a large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (rbcL), which plays an important role in carbon assimilation. Given that N. europaea obtains energy and reductants via ammonia oxidation and the carbon for its growth from carbon dioxide, the chemolithotroph might use the MazF endoribonuclease to modulate its translation profile and subsequent biochemical reactions.
Collapse
Affiliation(s)
- Tatsuki Miyamoto
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Akiko Yokota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Yuri Ota
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Masako Tsuruga
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Rie Aoi
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Naohiro Noda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| |
Collapse
|
22
|
Quorum Sensing Extracellular Death Peptides Enhance the Endoribonucleolytic Activities of Mycobacterium tuberculosis MazF Toxins. mBio 2018; 9:mBio.00685-18. [PMID: 29717013 PMCID: PMC5930309 DOI: 10.1128/mbio.00685-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
mazEF is a toxin-antitoxin module located on chromosomes of most bacteria. MazF toxins are endoribonucleases antagonized by MazE antitoxins. Previously, we characterized several quorum sensing peptides called "extracellular death factors" (EDFs). When secreted from bacterial cultures, EDFs induce interspecies cell death. EDFs also enhance the endoribonucleolytic activity of Escherichia coli MazF. Mycobacterium tuberculosis carries several mazEF modules. Among them, the endoribonucleolytic activities of MazF proteins mt-1, mt-3, and mt-6 were identified. MazF-mt6 and MazF-mt-3 cleave M. tuberculosis rRNAs. Here we report the in vitro effects of EDFs on the endoribonucleolytic activities of M. tuberculosis MazFs. Escherichia coli EDF (EcEDF) and the three Pseudomonas aeruginosa EDFs (PaEDFs) individually enhance the endoribonucleolytic activities of MazF-mt6 and MazF-mt3 and overcome the inhibitory effect of MazE-mt3 or MazE-mt6 on the endoribonucleolytic activities of the respective toxins. We propose that these EDFs can serve as a basis for a novel class of antibiotics against M. tuberculosis. Mycobacterium tuberculosis is one of the leading causes of death from infectious disease. M. tuberculosis is highly drug resistant, and drug delivery to the infected site is very difficult. In previous studies, we showed that extracellular death factors (EDFs) can work as quorum sensing molecules which participate in interspecies bacterial cell death. In this study, we demonstrated the role of different EDFs in the endoribonucleolytic activities of M. tuberculosis MazFs. Escherichia coli EDF (EcEDF) and the three Pseudomonas aeruginosa EDFs (PaEDFs) individually enhance the endoribonucleolytic activities of MazF-mt6 and MazF-mt3. The current report provides a basis for the use of the EDF peptides EcEDF and PaEDF as novel antibiotics against M. tuberculosis.
Collapse
|
23
|
Kang SM, Kim DH, Lee KY, Park SJ, Yoon HJ, Lee SJ, Im H, Lee BJ. Functional details of the Mycobacterium tuberculosis VapBC26 toxin-antitoxin system based on a structural study: insights into unique binding and antibiotic peptides. Nucleic Acids Res 2017; 45:8564-8580. [PMID: 28575388 PMCID: PMC5737657 DOI: 10.1093/nar/gkx489] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022] Open
Abstract
Toxin-antitoxin (TA) systems are essential for bacterial persistence under stressful conditions. In particular, Mycobacterium tuberculosis express VapBC TA genes that encode the stable VapC toxin and the labile VapB antitoxin. Under normal conditions, these proteins interact to form a non-toxic TA complex, but the toxin is activated by release from the antitoxin in response to unfavorable conditions. Here, we present the crystal structure of the M. tuberculosis VapBC26 complex and show that the VapC26 toxin contains a pilus retraction protein (PilT) N-terminal (PIN) domain that is essential for ribonuclease activity and that, the VapB26 antitoxin folds into a ribbon-helix-helix DNA-binding motif at the N-terminus. The active site of VapC26 is sterically blocked by the flexible C-terminal region of VapB26. The C-terminal region of free VapB26 adopts an unfolded conformation but forms a helix upon binding to VapC26. The results of RNase activity assays show that Mg2+ and Mn2+ are essential for the ribonuclease activity of VapC26. As shown in the nuclear magnetic resonance spectra, several residues of VapB26 participate in the specific binding to the promoter region of the VapBC26 operon. In addition, toxin-mimicking peptides were designed that inhibit TA complex formation and thereby increase toxin activity, providing a novel approach to the development of new antibiotics.
Collapse
Affiliation(s)
- Sung-Min Kang
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Do-Hee Kim
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Ki-Young Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Sung Jean Park
- College of Pharmacy, Gachon University, 534-2 Yeonsu-dong, Yeonsu-gu, Incheon 406-799, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang Jae Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Hookang Im
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| |
Collapse
|
24
|
Ahn DH, Lee KY, Lee SJ, Park SJ, Yoon HJ, Kim SJ, Lee BJ. Structural analyses of the MazEF4 toxin-antitoxin pair in Mycobacterium tuberculosis provide evidence for a unique extracellular death factor. J Biol Chem 2017; 292:18832-18847. [PMID: 28972145 DOI: 10.1074/jbc.m117.807974] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/20/2017] [Indexed: 11/06/2022] Open
Abstract
The bacterial toxin-antitoxin MazEF system in the tuberculosis (TB)-causing bacterium Mycobacterium tuberculosis is activated under unfavorable conditions, including starvation, antibiotic exposure, and oxidative stress. This system contains the ribonucleolytic enzyme MazF and has emerged as a promising drug target for TB treatments targeting the latent stage of M. tuberculosis infection and reportedly mediates a cell death process via a peptide called extracellular death factor (EDF). Although it is well established that the increase in EDF-mediated toxicity of MazF drives a cell-killing phenomenon, the molecular details are poorly understood. Moreover, the divergence in sequences among reported EDFs suggests that each bacterial species has a unique EDF. To address these open questions, we report here the structures of MazF4 and MazEF4 complexes from M. tuberculosis, representing the first MazEF structures from this organism. We found that MazF4 possesses a negatively charged MazE4-binding pocket in contrast to the positively charged MazE-binding pockets in homologous MazEF complex structures from other bacteria. Moreover, using NMR spectroscopy and biochemical assays, we unraveled the molecular interactions of MazF4 with its RNA substrate and with a new EDF homolog originating from M. tuberculosis The EDF homolog discovered here possesses a positively charged residue at the C terminus, making this EDF distinct from previously reported EDFs. Overall, our results suggest that M. tuberculosis evolved a unique MazF and EDF and that the distinctive EDF sequence could serve as a starting point for designing new anti-tuberculosis drugs. We therefore conclude that this study might contribute to the development of a new line of anti-tuberculosis agents.
Collapse
Affiliation(s)
- Do-Hwan Ahn
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742
| | - Ki-Young Lee
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742
| | - Sang Jae Lee
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742
| | - Sung Jean Park
- the College of Pharmacy, Gachon University, 534-2 Yeonsu-dong, Yeonsu-gu, Incheon
| | - Hye-Jin Yoon
- the Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul 151-742, and
| | - Soon-Jong Kim
- the Department of Chemistry, Mokpo National University, Chonnam 534-729, Republic of Korea
| | - Bong-Jin Lee
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742,
| |
Collapse
|
25
|
Gupta A, Venkataraman B, Vasudevan M, Gopinath Bankar K. Co-expression network analysis of toxin-antitoxin loci in Mycobacterium tuberculosis reveals key modulators of cellular stress. Sci Rep 2017; 7:5868. [PMID: 28724903 PMCID: PMC5517426 DOI: 10.1038/s41598-017-06003-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 06/07/2017] [Indexed: 11/09/2022] Open
Abstract
Research on toxin-antitoxin loci (TA loci) is gaining impetus due to their ubiquitous presence in bacterial genomes and their observed roles in stress survival, persistence and drug tolerance. The present study investigates the expression profile of all the seventy-nine TA loci found in Mycobacterium tuberculosis. The bacterium was subjected to multiple stress conditions to identify key players of cellular stress response and elucidate a TA-coexpression network. This study provides direct experimental evidence for transcriptional activation of each of the seventy-nine TA loci following mycobacterial exposure to growth-limiting environments clearly establishing TA loci as stress-responsive modules in M. tuberculosis. TA locus activation was found to be stress-specific with multiple loci activated in a duration-based response to a particular stress. Conditions resulting in arrest of cellular translation led to greater up-regulation of TA genes suggesting that TA loci have a primary role in arresting translation in the cell. Our study identifed higBA2 and vapBC46 as key loci that were activated in all the conditions tested. Besides, relBE1, higBA3, vapBC35, vapBC22 and higBA1 were also upregulated in multpile stresses. Certain TA modules exhibited co-activation across multiple conditions suggestive of a common regulatory mechanism.
Collapse
Affiliation(s)
- Amita Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India. .,Department of Biochemistry and Centre for Innovation in Infectious Diseases Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, 110021, India.
| | - Balaji Venkataraman
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Madavan Vasudevan
- Genome Informatics Research Group, Bionivid Technology Pvt Ltd, Bengaluru, 560043, India
| | - Kiran Gopinath Bankar
- Genome Informatics Research Group, Bionivid Technology Pvt Ltd, Bengaluru, 560043, India
| |
Collapse
|
26
|
Miyamoto T, Ota Y, Yokota A, Suyama T, Tsuneda S, Noda N. Characterization of a Deinococcus radiodurans MazF: A UACA-specific RNA endoribonuclease. Microbiologyopen 2017; 6. [PMID: 28675659 PMCID: PMC5635168 DOI: 10.1002/mbo3.501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 04/20/2017] [Accepted: 05/03/2017] [Indexed: 11/15/2022] Open
Abstract
Microbes are known to withstand environmental stresses by using chromosomal toxin–antitoxin systems. MazEF is one of the most extensively studied toxin–antitoxin systems. In stressful environments, MazF toxins modulate translation by cleaving single‐stranded RNAs in a sequence‐specific fashion. Previously, a chromosomal gene located at DR0417 in Deinococcus radiodurans was predicted to code for a MazF endoribonuclease (MazFDR0417); however, its function remains unclear. In the present study, we characterized the molecular function of MazFDR0417. Analysis of MazFDR0417‐cleaved RNA sites using modified massively parallel sequencing revealed a unique 4‐nt motif, UACA, as a potential cleavage pattern. The activity of MazFDR0417 was also assessed in a real‐time fluorometric assay, which revealed that MazFDR0417 strictly recognizes the unique tetrad UACA. This sequence specificity may allow D. radiodurans to alter its translation profile and survive under stressful conditions.
Collapse
Affiliation(s)
- Tatsuki Miyamoto
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Yuri Ota
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Akiko Yokota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Tetsushi Suyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Naohiro Noda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| |
Collapse
|
27
|
Masuda H, Inouye M. Toxins of Prokaryotic Toxin-Antitoxin Systems with Sequence-Specific Endoribonuclease Activity. Toxins (Basel) 2017; 9:toxins9040140. [PMID: 28420090 PMCID: PMC5408214 DOI: 10.3390/toxins9040140] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 01/21/2023] Open
Abstract
Protein translation is the most common target of toxin-antitoxin system (TA) toxins. Sequence-specific endoribonucleases digest RNA in a sequence-specific manner, thereby blocking translation. While past studies mainly focused on the digestion of mRNA, recent analysis revealed that toxins can also digest tRNA, rRNA and tmRNA. Purified toxins can digest single-stranded portions of RNA containing recognition sequences in the absence of ribosome in vitro. However, increasing evidence suggests that in vivo digestion may occur in association with ribosomes. Despite the prevalence of recognition sequences in many mRNA, preferential digestion seems to occur at specific positions within mRNA and also in certain reading frames. In this review, a variety of tools utilized to study the nuclease activities of toxins over the past 15 years will be reviewed. A recent adaptation of an RNA-seq-based technique to analyze entire sets of cellular RNA will be introduced with an emphasis on its strength in identifying novel targets and redefining recognition sequences. The differences in biochemical properties and postulated physiological roles will also be discussed.
Collapse
Affiliation(s)
- Hisako Masuda
- School of Sciences, Indiana University Kokomo, Kokomo, IN 46902, USA.
| | - Masayori Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08854, USA.
| |
Collapse
|
28
|
Hoffer ED, Miles SJ, Dunham CM. The structure and function of Mycobacterium tuberculosis MazF-mt6 toxin provide insights into conserved features of MazF endonucleases. J Biol Chem 2017; 292:7718-7726. [PMID: 28298445 DOI: 10.1074/jbc.m117.779306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/14/2017] [Indexed: 11/06/2022] Open
Abstract
Toxin-antitoxin systems are ubiquitous in prokaryotic and archaeal genomes and regulate growth in response to stress. Escherichia coli contains at least 36 putative toxin-antitoxin gene pairs, and some pathogens such as Mycobacterium tuberculosis have over 90 toxin-antitoxin operons. E. coli MazF cleaves free mRNA after encountering stress, and nine M. tuberculosis MazF family members cleave mRNA, tRNA, or rRNA. Moreover, M. tuberculosis MazF-mt6 cleaves 23S rRNA Helix 70 to inhibit protein synthesis. The overall tertiary folds of these MazFs are predicted to be similar, and therefore, it is unclear how they recognize structurally distinct RNAs. Here we report the 2.7-Å X-ray crystal structure of MazF-mt6. MazF-mt6 adopts a PemK-like fold but lacks an elongated β1-β2 linker, a region that typically acts as a gate to direct RNA or antitoxin binding. In the absence of an elongated β1-β2 linker, MazF-mt6 is unable to transition between open and closed states, suggesting that the regulation of RNA or antitoxin selection may be distinct from other canonical MazFs. Additionally, a shortened β1-β2 linker allows for the formation of a deep, solvent-accessible, active-site pocket, which may allow recognition of specific, structured RNAs like Helix 70. Structure-based mutagenesis and bacterial growth assays demonstrate that MazF-mt6 residues Asp-10, Arg-13, and Thr-36 are critical for RNase activity and likely catalyze the proton-relay mechanism for RNA cleavage. These results provide further critical insights into how MazF secondary structural elements adapt to recognize diverse RNA substrates.
Collapse
Affiliation(s)
- Eric D Hoffer
- From the Biochemistry, Cell and Developmental Biology Program, Graduate Division of Biological and Biomedical Sciences and.,the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Stacey J Miles
- the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Christine M Dunham
- the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
29
|
Ishida Y, Inouye K, Inouye M. The role of the loop 1 region in MazFbs mRNA interferase from Bacillus subtilis in recognition of the 3' end of the RNA substrate. Biochem Biophys Res Commun 2017; 483:403-408. [PMID: 28017721 DOI: 10.1016/j.bbrc.2016.12.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 02/08/2023]
Abstract
MazFbs is an mRNA interferase from Bacillus subtilis specifically recognizing UACAU. The X-ray structure of its complex with an RNA substrate has been also solved. When its amino acid sequence is compared with that of MazFhw, an mRNA interferase from a highly halophilic archaeon, recognizing UUACUCA, the 9-residue loop-1 region is highly homologous except that the V16V17 sequence in MazFbs is replaced with TK in MazFhw. Thus, we examined the role of the VV sequence in RNA substrate recognition by replacing it with TK, GG, AA or LL. The substitution mutants thus constructed showed significant differences in cleavage specificity using MS2 phage RNA. The primer extension analysis of the cleavage sites revealed that the VV sequence plays an important role in the recognition of the 3'-end base of the RNA substrate.
Collapse
Affiliation(s)
- Yojiro Ishida
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Keiko Inouye
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Masayori Inouye
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
30
|
Oron-Gottesman A, Sauert M, Moll I, Engelberg-Kulka H. A Stress-Induced Bias in the Reading of the Genetic Code in Escherichia coli. mBio 2016; 7:e01855-16. [PMID: 27935840 PMCID: PMC5111409 DOI: 10.1128/mbio.01855-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 10/20/2016] [Indexed: 01/30/2023] Open
Abstract
Escherichia coli mazEF is an extensively studied stress-induced toxin-antitoxin (TA) system. The toxin MazF is an endoribonuclease that cleaves RNAs at ACA sites. Thereby, under stress, the induced MazF generates a stress-induced translation machinery (STM), composed of MazF-processed mRNAs and selective ribosomes that specifically translate the processed mRNAs. Here, we further characterized the STM system, finding that MazF cleaves only ACA sites located in the open reading frames of processed mRNAs, while out-of-frame ACAs are resistant. This in-frame ACA cleavage of MazF seems to depend on MazF binding to an extracellular-death-factor (EDF)-like element in ribosomal protein bS1 (bacterial S1), apparently causing MazF to be part of STM ribosomes. Furthermore, due to the in-frame MazF cleavage of ACAs under stress, a bias occurs in the reading of the genetic code causing the amino acid threonine to be encoded only by its synonym codon ACC, ACU, or ACG, instead of by ACA. IMPORTANCE The genetic code is a universal characteristic of all living organisms. It defines the set of rules by which nucleotide triplets specify which amino acid will be incorporated into a protein. Our results represent the first existing report on a stress-induced bias in the reading of the genetic code. We found that in E. coli, under stress, the amino acid threonine is encoded only by its synonym codon ACC, ACU, or ACG, instead of by ACA. This is because under stress, MazF generates a stress-induced translation machinery (STM) in which MazF cleaves in-frame ACA sites of the processed mRNAs.
Collapse
Affiliation(s)
- Adi Oron-Gottesman
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Martina Sauert
- Department of Microbiology, Max F. Perutz Laboratories, Center for Molecular Biology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Isabella Moll
- Department of Microbiology, Max F. Perutz Laboratories, Center for Molecular Biology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Hanna Engelberg-Kulka
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
31
|
Abstract
The unusually high number of toxin-antitoxin (TA) systems in Mycobacterium tuberculosis, the etiological agent of tuberculosis, is thought to contribute to the unique ability of this pathogen to evade killing by the immune system and persist as a latent infection. One TA family, designated mazEF (for the MazE antitoxin and MazF toxin), comprises 10 of the >80 TA systems in the M. tuberculosis genome. Here we discuss the significance of our recent Nucleic Acids Res. paper that reports a surprising enzymatic activity for the MazF-mt9 toxin-sequence- and structure-specific cleavage of tRNA to generate tRNA halves-that underlies the growth-regulating properties of this toxin. This activity is distinct from all characterized MazF family members in M. tuberculosis and other bacteria; instead it is strikingly similar to that documented for members of another toxin family, VapC, despite the absence of sequence or structural similarity.
Collapse
Affiliation(s)
- Jason M Schifano
- a Department of Biochemistry and Molecular Biology , Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ; Member, Rutgers Cancer Institute of New Jersey , USA
| | - Nancy A Woychik
- a Department of Biochemistry and Molecular Biology , Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ; Member, Rutgers Cancer Institute of New Jersey , USA
| |
Collapse
|
32
|
Structure, Biology, and Therapeutic Application of Toxin-Antitoxin Systems in Pathogenic Bacteria. Toxins (Basel) 2016; 8:toxins8100305. [PMID: 27782085 PMCID: PMC5086665 DOI: 10.3390/toxins8100305] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023] Open
Abstract
Bacterial toxin–antitoxin (TA) systems have received increasing attention for their diverse identities, structures, and functional implications in cell cycle arrest and survival against environmental stresses such as nutrient deficiency, antibiotic treatments, and immune system attacks. In this review, we describe the biological functions and the auto-regulatory mechanisms of six different types of TA systems, among which the type II TA system has been most extensively studied. The functions of type II toxins include mRNA/tRNA cleavage, gyrase/ribosome poison, and protein phosphorylation, which can be neutralized by their cognate antitoxins. We mainly explore the similar but divergent structures of type II TA proteins from 12 important pathogenic bacteria, including various aspects of protein–protein interactions. Accumulating knowledge about the structure–function correlation of TA systems from pathogenic bacteria has facilitated a novel strategy to develop antibiotic drugs that target specific pathogens. These molecules could increase the intrinsic activity of the toxin by artificially interfering with the intermolecular network of the TA systems.
Collapse
|
33
|
Emerging Roles of Toxin-Antitoxin Modules in Bacterial Pathogenesis. Molecules 2016; 21:molecules21060790. [PMID: 27322231 PMCID: PMC6273597 DOI: 10.3390/molecules21060790] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 11/17/2022] Open
Abstract
Toxin-antitoxin (TA) cassettes are encoded widely by bacteria. The modules typically comprise a protein toxin and protein or RNA antitoxin that sequesters the toxin factor. Toxin activation in response to environmental cues or other stresses promotes a dampening of metabolism, most notably protein translation, which permits survival until conditions improve. Emerging evidence also implicates TAs in bacterial pathogenicity. Bacterial persistence involves entry into a transient semi-dormant state in which cells survive unfavorable conditions including killing by antibiotics, which is a significant clinical problem. TA complexes play a fundamental role in inducing persistence by downregulating cellular metabolism. Bacterial biofilms are important in numerous chronic inflammatory and infectious diseases and cause serious therapeutic problems due to their multidrug tolerance and resistance to host immune system actions. Multiple TAs influence biofilm formation through a network of interactions with other factors that mediate biofilm production and maintenance. Moreover, in view of their emerging contributions to bacterial virulence, TAs are potential targets for novel prophylactic and therapeutic approaches that are required urgently in an era of expanding antibiotic resistance. This review summarizes the emerging evidence that implicates TAs in the virulence profiles of a diverse range of key bacterial pathogens that trigger serious human disease.
Collapse
|
34
|
AAU-Specific RNA Cleavage Mediated by MazF Toxin Endoribonuclease Conserved in Nitrosomonas europaea. Toxins (Basel) 2016; 8:toxins8060174. [PMID: 27271670 PMCID: PMC4926141 DOI: 10.3390/toxins8060174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023] Open
Abstract
Nitrosomonas europaea carries numerous toxin-antitoxin systems. However, despite the abundant representation in its chromosome, studies have not surveyed the underlying molecular functions in detail, and their biological roles remain enigmatic. In the present study, we found that a chromosomally-encoded MazF family member, predicted at the locus NE1181, is a functional toxin endoribonuclease, and constitutes a toxin-antitoxin system, together with its cognate antitoxin, MazE. Massive parallel sequencing provided strong evidence that this toxin endoribonuclease exhibits RNA cleavage activity, primarily against the AAU triplet. This sequence-specificity was supported by the results of fluorometric assays. Our results indicate that N. europaea alters the translation profile and regulates its growth using the MazF family of endoribonuclease under certain stressful conditions.
Collapse
|
35
|
Coussens NP, Daines DA. Wake me when it's over - Bacterial toxin-antitoxin proteins and induced dormancy. Exp Biol Med (Maywood) 2016; 241:1332-42. [PMID: 27216598 DOI: 10.1177/1535370216651938] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toxin-antitoxin systems are encoded by bacteria and archaea to enable an immediate response to environmental stresses, including antibiotics and the host immune response. During normal conditions, the antitoxin components prevent toxins from interfering with metabolism and arresting growth; however, toxin activation enables microbes to remain dormant through unfavorable conditions that might continue over millions of years. Intense investigations have revealed a multitude of mechanisms for both regulation and activation of toxin-antitoxin systems, which are abundant in pathogenic microorganisms. This minireview provides an overview of the current knowledge regarding type II toxin-antitoxin systems along with their clinical and environmental implications.
Collapse
Affiliation(s)
- Nathan P Coussens
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Dayle A Daines
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
36
|
Miyamoto T, Kato Y, Sekiguchi Y, Tsuneda S, Noda N. Characterization of MazF-Mediated Sequence-Specific RNA Cleavage in Pseudomonas putida Using Massive Parallel Sequencing. PLoS One 2016; 11:e0149494. [PMID: 26885644 PMCID: PMC4757574 DOI: 10.1371/journal.pone.0149494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/02/2016] [Indexed: 11/18/2022] Open
Abstract
Under environmental stress, microbes are known to alter their translation patterns using sequence-specific endoribonucleases that we call RNA interferases. However, there has been limited insight regarding which RNAs are specifically cleaved by these RNA interferases, hence their physiological functions remain unknown. In the current study, we developed a novel method to effectively identify cleavage specificities with massive parallel sequencing. This approach uses artificially designed RNAs composed of diverse sequences, which do not form extensive secondary structures, and it correctly identified the cleavage sequence of a well-characterized Escherichia coli RNA interferase, MazF, as ACA. In addition, we also determined that an uncharacterized MazF homologue isolated from Pseudomonas putida specifically recognizes the unique triplet, UAC. Using a real-time fluorescence resonance energy transfer assay, the UAC triplet was further proved to be essential for cleavage in P. putida MazF. These results highlight an effective method to determine cleavage specificity of RNA interferases.
Collapse
Affiliation(s)
- Tatsuki Miyamoto
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yuka Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Naohiro Noda
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| |
Collapse
|
37
|
Abstract
The development and application of a highly versatile suite of tools for mycobacterial genetics, coupled with widespread use of "omics" approaches to elucidate the structure, function, and regulation of mycobacterial proteins, has led to spectacular advances in our understanding of the metabolism and physiology of mycobacteria. In this article, we provide an update on nucleotide metabolism and DNA replication in mycobacteria, highlighting key findings from the past 10 to 15 years. In the first section, we focus on nucleotide metabolism, ranging from the biosynthesis, salvage, and interconversion of purine and pyrimidine ribonucleotides to the formation of deoxyribonucleotides. The second part of the article is devoted to DNA replication, with a focus on replication initiation and elongation, as well as DNA unwinding. We provide an overview of replication fidelity and mutation rates in mycobacteria and summarize evidence suggesting that DNA replication occurs during states of low metabolic activity, and conclude by suggesting directions for future research to address key outstanding questions. Although this article focuses primarily on observations from Mycobacterium tuberculosis, it is interspersed, where appropriate, with insights from, and comparisons with, other mycobacterial species as well as better characterized bacterial models such as Escherichia coli. Finally, a common theme underlying almost all studies of mycobacterial metabolism is the potential to identify and validate functions or pathways that can be exploited for tuberculosis drug discovery. In this context, we have specifically highlighted those processes in mycobacterial DNA replication that might satisfy this critical requirement.
Collapse
|
38
|
Schifano JM, Cruz JW, Vvedenskaya IO, Edifor R, Ouyang M, Husson RN, Nickels BE, Woychik NA. tRNA is a new target for cleavage by a MazF toxin. Nucleic Acids Res 2016; 44:1256-70. [PMID: 26740583 PMCID: PMC4756823 DOI: 10.1093/nar/gkv1370] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/25/2015] [Indexed: 01/08/2023] Open
Abstract
Toxin-antitoxin (TA) systems play key roles in bacterial persistence, biofilm formation and stress responses. The MazF toxin from the Escherichia coli mazEF TA system is a sequence- and single-strand-specific endoribonuclease, and many studies have led to the proposal that MazF family members exclusively target mRNA. However, recent data indicate some MazF toxins can cleave specific sites within rRNA in concert with mRNA. In this report, we identified the repertoire of RNAs cleaved by Mycobacterium tuberculosis toxin MazF-mt9 using an RNA-seq-based approach. This analysis revealed that two tRNAs were the principal targets of MazF-mt9, and each was cleaved at a single site in either the tRNA(Pro14) D-loop or within the tRNA(Lys43) anticodon. This highly selective target discrimination occurs through recognition of not only sequence but also structural determinants. Thus, MazF-mt9 represents the only MazF family member known to target tRNA and to require RNA structure for recognition and cleavage. Interestingly, the tRNase activity of MazF-mt9 mirrors basic features of eukaryotic tRNases that also generate stable tRNA-derived fragments that can inhibit translation in response to stress. Our data also suggest a role for tRNA distinct from its canonical adapter function in translation, as cleavage of tRNAs by MazF-mt9 downregulates bacterial growth.
Collapse
Affiliation(s)
- Jason M Schifano
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Jonathan W Cruz
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Irina O Vvedenskaya
- Waksman Institute, Rutgers University, Piscataway, NJ, USA Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Regina Edifor
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Ming Ouyang
- Department of Computer Science, University of Massachusetts Boston, Boston, MA, USA
| | - Robert N Husson
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Bryce E Nickels
- Waksman Institute, Rutgers University, Piscataway, NJ, USA Department of Genetics, Rutgers University, Piscataway, NJ, USA Member, Rutgers Cancer Institute of New Jersey, NJ, USA
| | - Nancy A Woychik
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, USA Member, Rutgers Cancer Institute of New Jersey, NJ, USA
| |
Collapse
|
39
|
Fedorova IA, Danilenko VN. Immunogenic properties of a probiotic component of the human gastrointestinal tract microbiota. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s2079086414060036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs. Nat Commun 2015; 6:6059. [PMID: 25608501 DOI: 10.1038/ncomms7059] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 12/05/2014] [Indexed: 11/08/2022] Open
Abstract
Toxin-antitoxin (TA) systems are highly conserved in members of the Mycobacterium tuberculosis (Mtb) complex and have been proposed to play an important role in physiology and virulence. Nine of these TA systems belong to the mazEF family, encoding the intracellular MazF toxin and its antitoxin, MazE. By overexpressing each of the nine putative MazF homologues in Mycobacterium bovis BCG, here we show that Rv1102c (MazF3), Rv1991c (MazF6) and Rv2801c (MazF9) induce bacteriostasis. The construction of various single-, double- and triple-mutant Mtb strains reveals that these MazF ribonucleases contribute synergistically to the ability of Mtb to adapt to conditions such as oxidative stress, nutrient depletion and drug exposure. Moreover, guinea pigs infected with the triple-mutant strain exhibits significantly reduced bacterial loads and pathological damage in infected tissues in comparison with parental strain-infected guinea pigs. The present study highlights the importance of MazF ribonucleases in Mtb stress adaptation, drug tolerance and virulence.
Collapse
|
41
|
An RNA-seq method for defining endoribonuclease cleavage specificity identifies dual rRNA substrates for toxin MazF-mt3. Nat Commun 2014; 5:3538. [PMID: 24709835 PMCID: PMC4090939 DOI: 10.1038/ncomms4538] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 03/03/2014] [Indexed: 11/10/2022] Open
Abstract
Toxin-antitoxin (TA) systems are widespread in prokaryotes. Among these, the mazEF TA system encodes an endoribonucleolytic toxin, MazF, that inhibits growth by sequence-specific cleavage of single-stranded RNA. Defining the physiological targets of a MazF toxin first requires the identification of its cleavage specificity, yet the current toolkit is antiquated and limited. We describe a rapid genome-scale approach, MORE (Mapping by Overexpression of an RNase in Escherichia coli) RNA-seq, for defining the cleavage specificity of endoribonucleolytic toxins. Application of MORE RNA-seq to MazF-mt3 from Mycobacterium tuberculosis reveals two critical ribosomal targets — the essential, evolutionarily conserved helix/loop 70 of 23S rRNA and the anti-Shine-Dalgarno (aSD) sequence of 16S rRNA. Our findings support an emerging model where both rRNA and mRNA are principal targets of MazF toxins and suggest that, as in E. coli, removal of the aSD sequence by a MazF toxin modifies ribosomes to selectively translate leaderless mRNAs in M. tuberculosis.
Collapse
|
42
|
Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins (Basel) 2014; 6:1002-20. [PMID: 24662523 PMCID: PMC3968373 DOI: 10.3390/toxins6031002] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 12/26/2022] Open
Abstract
The hallmark of Mycobacterium tuberculosis is its ability to persist for a long-term in host granulomas, in a non-replicating and drug-tolerant state, and later awaken to cause disease. To date, the cellular factors and the molecular mechanisms that mediate entry into the persistence phase are poorly understood. Remarkably, M. tuberculosis possesses a very high number of toxin-antitoxin (TA) systems in its chromosome, 79 in total, regrouping both well-known (68) and novel (11) families, with some of them being strongly induced in drug-tolerant persisters. In agreement with the capacity of stress-responsive TA systems to generate persisters in other bacteria, it has been proposed that activation of TA systems in M. tuberculosis could contribute to its pathogenesis. Herein, we review the current knowledge on the multiple TA families present in this bacterium, their mechanism, and their potential role in physiology and virulence.
Collapse
|
43
|
Demidenok OI, Kaprelyants AS, Goncharenko AV. Toxin-antitoxinvapBClocus participates in formation of the dormant state inMycobacterium smegmatis. FEMS Microbiol Lett 2014; 352:69-77. [DOI: 10.1111/1574-6968.12380] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/31/2013] [Accepted: 12/31/2013] [Indexed: 01/01/2023] Open
Affiliation(s)
- Oksana I. Demidenok
- Laboratory of Biochemistry of Stresses in Microorganisms; A.N. Bach Institute of Biochemistry Russian Academy of Sciences; Moscow Russia
| | - Arseny S. Kaprelyants
- Laboratory of Biochemistry of Stresses in Microorganisms; A.N. Bach Institute of Biochemistry Russian Academy of Sciences; Moscow Russia
| | - Anna V. Goncharenko
- Laboratory of Biochemistry of Stresses in Microorganisms; A.N. Bach Institute of Biochemistry Russian Academy of Sciences; Moscow Russia
| |
Collapse
|
44
|
Yamaguchi Y, Tokunaga N, Inouye M, Phadtare S. Characterization of LdrA (long direct repeat A) protein of Escherichia coli. J Mol Microbiol Biotechnol 2014; 24:91-7. [PMID: 24513967 DOI: 10.1159/000357949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Reminiscent of apoptotic genes in higher systems, almost all bacteria contain 'suicide' genes, which encode toxins. Toxins inhibit cell growth and may cause cell death. These are coexpressed with their cognate antitoxins from a toxin-antitoxin (TA) operon in normally growing cells. The cellular targets of toxins are diverse. The study of the TA system is important as in addition to their involvement in the normal bacterial physiology, TA systems may also play a role in bacterial pathogenicity. The long direct repeat (Ldr) family of proteins belongs to one such TA system. Here we report characterization of LdrA, the prototypical protein of the Ldr family, and show that it is highly toxic for cell growth. The data suggests that LdrA may exert toxicity by inhibiting ATP synthesis, possibly due to its localization in the cell membrane. This inhibition of energy production leads to the inhibition of biosynthetic reactions in the cell such as DNA replication, transcription and translation, and eventually cell growth.
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Piscataway, N.J., USA
| | | | | | | |
Collapse
|
45
|
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis in humans, is a bacterium with the unique ability to persist for years or decades as a latent infection. This latent state, during which bacteria have a markedly altered physiology and are thought to be dormant, is crucial for the bacteria to survive the stressful environments it encounters in the human host. Importantly, M. tuberculosis cells in the dormant state are generally refractory to antibiotics, most of which target cellular processes occurring in actively replicating bacteria. The molecular switches that enable M. tuberculosis to slow or stop its replication and become dormant remain unknown. However, the slow growth and dormant state that are hallmarks of latent tuberculosis infection have striking parallels to the "quasi-dormant" state of Escherichia coli cells caused by the toxin components of chromosomal toxin-antitoxin (TA) modules. An unusually large number of TA modules in M. tuberculosis, including nine in the mazEF family, may contribute to initiating this latent state or to adapting to stress conditions in the host. Toward filling the gap in our understanding of the physiological role of TA modules in M. tuberculosis, we are interested in identifying their molecular mechanisms to better understand how toxins impart growth control. Our recent publication (1) uncovered a novel function of a MazF toxin in M. tuberculosis that had not been associated with any other MazF ortholog. This toxin, MazF-mt6, can disrupt protein synthesis by cleavage of 23S rRNA at a single location in an evolutionarily conserved five-base sequence in the ribosome active center.
Collapse
Affiliation(s)
- Jason M Schifano
- Department of Biochemistry and Molecular Biology; Rutgers University; Robert Wood Johnson Medical School; Piscataway, NJ USA
| | - Nancy A Woychik
- Department of Biochemistry and Molecular Biology; Rutgers University; Robert Wood Johnson Medical School; Piscataway, NJ USA
| |
Collapse
|
46
|
Bertram R, Schuster CF. Post-transcriptional regulation of gene expression in bacterial pathogens by toxin-antitoxin systems. Front Cell Infect Microbiol 2014; 4:6. [PMID: 24524029 PMCID: PMC3905216 DOI: 10.3389/fcimb.2014.00006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/13/2014] [Indexed: 01/27/2023] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic elements ubiquitous in prokaryotic genomes that encode toxic proteins targeting various vital cellular functions. Typically, toxin activity is controlled by adjacently encoded protein or RNA antitoxins and unleashed as a consequence of genetic fluctuations or stressful conditions. Whereas some TA systems interfere with replication or cell wall synthesis, most of them influence transcriptional and post-transcriptional gene regulation. Antitoxin proteins often act as DNA binding transcriptional regulators and many TA toxins exhibit endoribonuclease activity to selectively degrade different RNA species and thus alter gene expression patterns. Some TA RNases cleave tRNA, tmRNAs or rRNAs, whereas most commonly mRNAs either in association with the ribosome or as free transcripts, are targeted. Examples are provided on how TA toxins differentially shape gene expression in bacterial pathogens by creating specialized ribosomes or by altering the transcriptome and how this may be tied in the control of pathogenicity factors.
Collapse
Affiliation(s)
- Ralph Bertram
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen Tübingen, Germany
| | - Christopher F Schuster
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen Tübingen, Germany
| |
Collapse
|
47
|
A regulatory role for Staphylococcus aureus toxin-antitoxin system PemIKSa. Nat Commun 2013; 4:2012. [PMID: 23774061 DOI: 10.1038/ncomms3012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/15/2013] [Indexed: 11/08/2022] Open
Abstract
Toxin-antitoxin systems were shown to be involved in plasmid maintenance when they were initially discovered, but other roles have been demonstrated since. Here we identify and characterize a novel toxin-antitoxin system (pemIKSa) located on Staphylococcus aureus plasmid pCH91. The toxin (PemKSa) is a sequence-specific endoribonuclease recognizing the tetrad sequence U↓AUU, and the antitoxin (PemISa) inhibits toxin activity by physical interaction. Although the toxin-antitoxin system is responsible for stable plasmid maintenance our data suggest the participation of pemIKSa in global regulation of staphylococcal virulence by alteration of the translation of large pools of genes. We propose a common mechanism of reversible activation of toxin-antitoxin systems based on antitoxin transcript resistance to toxin cleavage. Elucidation of this mechanism is particularly interesting because reversible activation is a prerequisite for the proposed general regulatory role of toxin-antitoxin systems.
Collapse
|
48
|
Ramirez MV, Dawson CC, Crew R, England K, Slayden RA. MazF6 toxin of Mycobacterium tuberculosis demonstrates antitoxin specificity and is coupled to regulation of cell growth by a Soj-like protein. BMC Microbiol 2013; 13:240. [PMID: 24172039 PMCID: PMC3834876 DOI: 10.1186/1471-2180-13-240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/24/2013] [Indexed: 09/03/2023] Open
Abstract
Background Molecular programs employed by Mycobacterium tuberculosis (Mtb) for the establishment of non-replicating persistence (NRP) are poorly understood. In order to investigate mechanisms regulating entry into NRP, we asked how cell cycle regulation is linked to downstream adaptations that ultimately result in NRP. Based on previous reports and our recent studies, we reason that, in order to establish NRP, cells are halted in the cell cycle at the point of septum formation by coupled regulatory mechanisms. Results Using bioinformatic consensus modeling, we identified an alternative cell cycle regulatory element, SojMtb encoded by rv1708. SojMtb coordinates a regulatory mechanism involving cell cycle control at the point of septum formation and elicits the induction of the MazF6 toxin. MazF6 functions as an mRNA interferase leading to bacteriostasis that can be prevented by interaction with its cognate antitoxin, MazE6. Further, MazEF6 acts independently of other Maz family toxin:antitoxin pairs. Notably, sojMtb and mazEF6 transcripts where identified at 20, 40 and 100 days post-infection in increasing abundance indicating a role in adaption during chronic infection. Conclusions Here we present the first evidence of a coupled regulatory system in which cell cycle regulation via SojMtb is linked to downstream adaptations that are facilitated through the activity of the MazEF6 TA pair.
Collapse
Affiliation(s)
| | | | | | | | - Richard A Slayden
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
49
|
Structural basis of mRNA recognition and cleavage by toxin MazF and its regulation by antitoxin MazE in Bacillus subtilis. Mol Cell 2013; 52:447-58. [PMID: 24120662 DOI: 10.1016/j.molcel.2013.09.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/30/2013] [Accepted: 09/05/2013] [Indexed: 11/21/2022]
Abstract
MazF is an mRNA interferase, which, upon activation during stress conditions, cleaves mRNAs in a sequence-specific manner, resulting in cellular growth arrest. During normal growth conditions, the MazF toxin is inactivated through binding to its cognate antitoxin, MazE. How MazF specifically recognizes its mRNA target and carries out cleavage and how the formation of the MazE-MazF complex inactivates MazF remain unclear. We present crystal structures of MazF in complex with mRNA substrate and antitoxin MazE in Bacillus subtilis. The structure of MazF in complex with uncleavable UUdUACAUAA RNA substrate defines the molecular basis underlying the sequence-specific recognition of UACAU and the role of residues involved in the cleavage through site-specific mutational studies. The structure of the heterohexameric (MazF)2-(MazE)2-(MazF)2 complex in Bacillus subtilis, supplemented by mutational data, demonstrates that the positioning of the C-terminal helical segment of MazE within the RNA-binding channel of the MazF dimer prevents mRNA binding and cleavage by MazF.
Collapse
|
50
|
Schuessler DL, Cortes T, Fivian-Hughes AS, Lougheed KEA, Harvey E, Buxton RS, Davis EO, Young DB. Induced ectopic expression of HigB toxin in Mycobacterium tuberculosis results in growth inhibition, reduced abundance of a subset of mRNAs and cleavage of tmRNA. Mol Microbiol 2013; 90:195-207. [PMID: 23927792 PMCID: PMC3912914 DOI: 10.1111/mmi.12358] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2013] [Indexed: 01/20/2023]
Abstract
In Mycobacterium tuberculosis, the genes Rv1954A-Rv1957 form an operon that includes Rv1955 and Rv1956 which encode the HigB toxin and the HigA antitoxin respectively. We are interested in the role and regulation of this operon, since toxin-antitoxin systems have been suggested to play a part in the formation of persister cells in mycobacteria. To investigate the function of the higBA locus, effects of toxin expression on mycobacterial growth and transcript levels were assessed in M. tuberculosis H37Rv wild type and in an operon deletion background. We show that expression of HigB toxin in the absence of HigA antitoxin arrests growth and causes cell death in M. tuberculosis. We demonstrate HigB expression to reduce the abundance of IdeR and Zur regulated mRNAs and to cleave tmRNA in M. tuberculosis, Escherichia coli and Mycobacterium smegmatis. This study provides the first identification of possible target transcripts of HigB in M. tuberculosis.
Collapse
Affiliation(s)
- Dorothée L Schuessler
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | | | | | | | | | | | | |
Collapse
|