1
|
Zhang Y, Ali SR, Nabbout R, Barcia G, Kaczmarek LK. A KCNC1 mutation in epilepsy of infancy with focal migrating seizures produces functional channels that fail to be regulated by PKC phosphorylation. J Neurophysiol 2021; 126:532-539. [PMID: 34232791 DOI: 10.1152/jn.00257.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Channelopathies caused by mutations in genes encoding ion channels generally produce a clear change in channel function. Accordingly, mutations in KCNC1, which encodes the voltage-dependent Kv3.1 potassium channel, result in progressive myoclonus epilepsy as well as other developmental and epileptic encephalopathies, and these have been shown to reduce or fully abolish current amplitude. One exception to this is the mutation A513V Kv3.1b, located in the cytoplasmic C-terminal domain of the channel protein. This de novo variant was detected in a patient with epilepsy of infancy with focal migrating seizures (EIFMS), but no difference could be detected between A513V Kv3.1 current and that of wild-type Kv3.1. Using both biochemical and electrophysiological approaches, we have now confirmed that this variant produces functional channels but find that the A513V mutation renders the channel completely insensitive to regulation by phosphorylation at S503, a nearby regulatory site in the C-terminus. In this respect, the mutation resembles those in another channel, KCNT1, which are the major cause of EIFMS. Because the amplitude of Kv3.1 current is constantly adjusted by phosphorylation in vivo, our findings suggest that loss of such regulation contributes to EIFMS phenotype and emphasize the role of channel modulation for normal neuronal function.NEW & NOTEWORTHY Ion channel mutations that cause serious human diseases generally alter the biophysical properties or expression of the channel. We describe a de novo mutation in the Kv3.1 potassium channel that causes severe intellectual disability with early-onset epilepsy. The properties of this channel appear identical to those of wild-type channels, but the mutation prevents phosphorylation of the channel by protein kinase C. Our findings emphasize the role of channel modulation in normal brain function.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Syed R Ali
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Rima Nabbout
- Department of Pediatric Neurology, Necker-Enfants Malades Hospital, Centre de Référence Épilepsies Rares, Member of ERN EPICARE, Institut Imagine, Université de Paris, Paris, France
| | - Giulia Barcia
- Department of Pediatric Neurology, Necker-Enfants Malades Hospital, Centre de Référence Épilepsies Rares, Member of ERN EPICARE, Institut Imagine, Université de Paris, Paris, France.,Department of Medical Genetics, Necker-Enfants Malades Hospital, Université de Paris, Paris, France
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
2
|
Wu J, Kaczmarek LK. Modulation of Neuronal Potassium Channels During Auditory Processing. Front Neurosci 2021; 15:596478. [PMID: 33613177 PMCID: PMC7887315 DOI: 10.3389/fnins.2021.596478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
The extraction and localization of an auditory stimulus of interest from among multiple other sounds, as in the ‘cocktail-party’ situation, requires neurons in auditory brainstem nuclei to encode the timing, frequency, and intensity of sounds with high fidelity, and to compare inputs coming from the two cochleae. Accurate localization of sounds requires certain neurons to fire at high rates with high temporal accuracy, a process that depends heavily on their intrinsic electrical properties. Studies have shown that the membrane properties of auditory brainstem neurons, particularly their potassium currents, are not fixed but are modulated in response to changes in the auditory environment. Here, we review work focusing on how such modulation of potassium channels is critical to shaping the firing pattern and accuracy of these neurons. We describe how insights into the role of specific channels have come from human gene mutations that impair localization of sounds in space. We also review how short-term and long-term modulation of these channels maximizes the extraction of auditory information, and how errors in the regulation of these channels contribute to deficits in decoding complex auditory information.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
3
|
Winkel F, Ryazantseva M, Voigt MB, Didio G, Lilja A, Llach Pou M, Steinzeig A, Harkki J, Englund J, Khirug S, Rivera C, Palva S, Taira T, Lauri SE, Umemori J, Castrén E. Pharmacological and optical activation of TrkB in Parvalbumin interneurons regulate intrinsic states to orchestrate cortical plasticity. Mol Psychiatry 2021; 26:7247-7256. [PMID: 34321594 PMCID: PMC8872988 DOI: 10.1038/s41380-021-01211-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/22/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Elevated states of brain plasticity typical for critical periods of early postnatal life can be reinstated in the adult brain through interventions, such as antidepressant treatment and environmental enrichment, and induced plasticity may be critical for the antidepressant action. Parvalbumin-positive (PV) interneurons regulate the closure of developmental critical periods and can alternate between high and low plasticity states in response to experience in adulthood. We now show that PV plasticity states and cortical networks are regulated through the activation of TrkB neurotrophin receptors. Visual cortical plasticity induced by fluoxetine, a widely prescribed selective serotonin reuptake inhibitor (SSRI) antidepressant, was lost in mice with reduced expression of TrkB in PV interneurons. Conversely, optogenetic gain-of-function studies revealed that activation of an optically activatable TrkB (optoTrkB) specifically in PV interneurons switches adult cortical networks into a state of elevated plasticity within minutes by decreasing the intrinsic excitability of PV interneurons, recapitulating the effects of fluoxetine. TrkB activation shifted cortical networks towards a low PV configuration, promoting oscillatory synchrony, increased excitatory-inhibitory balance, and ocular dominance plasticity. OptoTrkB activation promotes the phosphorylation of Kv3.1 channels and reduces the expression of Kv3.2 mRNA providing a mechanism for the lower excitability. In addition, decreased expression and puncta of Synaptotagmin2 (Syt2), a presynaptic marker of PV interneurons involved in Ca2+-dependent neurotransmitter release, suggests lower inputs onto pyramidal neurons suppressing feed-forward inhibition. Together, the results provide mechanistic insights into how TrkB activation in PV interneurons orchestrates the activity of cortical networks and mediating antidepressant responses in the adult brain.
Collapse
Affiliation(s)
- Frederike Winkel
- grid.7737.40000 0004 0410 2071Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maria Ryazantseva
- grid.7737.40000 0004 0410 2071Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Mathias B. Voigt
- grid.7737.40000 0004 0410 2071Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Giuliano Didio
- grid.7737.40000 0004 0410 2071Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Antonia Lilja
- grid.5012.60000 0001 0481 6099Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Maria Llach Pou
- grid.7737.40000 0004 0410 2071Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anna Steinzeig
- grid.7737.40000 0004 0410 2071Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juliana Harkki
- grid.7737.40000 0004 0410 2071Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jonas Englund
- grid.7737.40000 0004 0410 2071Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Stanislav Khirug
- grid.7737.40000 0004 0410 2071Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Claudio Rivera
- grid.7737.40000 0004 0410 2071Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Satu Palva
- grid.7737.40000 0004 0410 2071Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tomi Taira
- grid.7737.40000 0004 0410 2071Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Department of Veterinary Biosciences and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Sari E. Lauri
- grid.7737.40000 0004 0410 2071Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Juzoh Umemori
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Eero Castrén
- grid.7737.40000 0004 0410 2071Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Zemel BM, Zhi L, Brown EV, Tymanskyj SR, Liang Q, Covarrubias M. PKCε associates with the Kv3.4 channel to promote its expression in a kinase activity-dependent manner. FASEB J 2021; 35:e21241. [PMID: 33368632 DOI: 10.1096/fj.201901877r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 01/16/2023]
Abstract
The voltage-gated potassium channel Kv3.4 is a crucial regulator of nociceptive signaling in the dorsal root ganglion (DRG) and the dorsal horn of the spinal cord. Moreover, Kv3.4 dysfunction has been linked to neuropathic pain. Although kinases and phosphatases can directly modulate Kv3.4 gating, the signaling mechanisms regulating the expression and stability of the Kv3.4 protein are generally unknown. We explored a potential role of PKCε and found an unexpected interaction that has a positive effect on Kv3.4 expression. Co-immunoprecipitation studies revealed a physical association between PKCε and Kv3.4 in both heterologous cells and rat DRG neurons. Furthermore, in contrast to the wild-type and constitutively active forms of PKCε, expression of a catalytically inactive form of the enzyme inhibits Kv3.4 expression and membrane localization through a dominant negative effect. Co-expression of Kv3.4 with the wild-type, constitutively active, or catalytically inactive forms of PKCε had no significant effects on Kv3.4 gating. These results suggest that a novel physical interaction of the Kv3.4 channel with functional PKCε primarily determines its stability and localization in DRG neurons. This interaction is akin to those of previously identified accessory ion channel proteins, which could be significant in neural tissues where Kv3.4 regulates electrical signaling.
Collapse
Affiliation(s)
- Benjamin M Zemel
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA.,Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Lianteng Zhi
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Eric V Brown
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stephen R Tymanskyj
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Qiansheng Liang
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Manuel Covarrubias
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
5
|
Goel N, Peng K, Lu Y. Neuromodulation by mGluRs in Sound Localization Circuits in the Auditory Brainstem. Front Neural Circuits 2020; 14:599600. [PMID: 33224028 PMCID: PMC7674593 DOI: 10.3389/fncir.2020.599600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/05/2020] [Indexed: 11/15/2022] Open
Abstract
The ability of humans and animals to localize the source of a sound in a complex acoustic environment facilitates communication and survival. Two cues are used for sound localization at horizontal planes, interaural time and level differences (ITD and ILD), which are analyzed by distinct neural circuits in the brainstem. Here, we review the studies on metabotropic glutamate receptor (mGluR)-mediated neuromodulation of both intrinsic and synaptic properties of brainstem neurons in these circuits. Both mammalian and avian animal models have been used, with each having their advantages that are not present in the other. For the mammalian model, we discuss mGluR neuromodulation in the ILD circuit, with an emphasis on the recent discovery of differential modulation of synaptic transmission of different transmitter release modes. For the avian model, we focus on reviewing mGluR neuromodulation in the ITD pathway, with an emphasis on tonotopic distribution and synaptic plasticity of mGluR modulation in coincidence detector neurons. Future works are proposed to further investigate the functions and mechanisms of mGluRs in the sound localization circuits.
Collapse
Affiliation(s)
- Nupur Goel
- Department of Anatomy and Neurobiology, Hearing Research Group, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Kang Peng
- Department of Anatomy and Neurobiology, Hearing Research Group, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Yong Lu
- Department of Anatomy and Neurobiology, Hearing Research Group, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
6
|
Sagi Y, Medrihan L, George K, Barney M, McCabe KA, Greengard P. Emergence of 5-HT5A signaling in parvalbumin neurons mediates delayed antidepressant action. Mol Psychiatry 2020; 25:1191-1201. [PMID: 30804492 PMCID: PMC7244406 DOI: 10.1038/s41380-019-0379-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 11/10/2022]
Abstract
The behavioral response to antidepressants is closely associated with physiological changes in the function of neurons in the hippocampal dentate gyrus (DG). Parvalbumin interneurons are a major class of GABAergic neurons, essential for DG function, and are involved in the pathophysiology of several neuropsychiatric disorders. However, little is known about the role(s) of these neurons in major depressive disorder or in mediating the delayed behavioral response to antidepressants. Here we show, in mice, that hippocampal parvalbumin interneurons express functionally silent serotonin 5A receptors, which translocate to the cell membrane and become active upon chronic, but not acute, treatment with a selective serotonin reuptake inhibitor (SSRI). Activation of these serotonergic receptors in these neurons initiates a signaling cascade through which Gi-protein reduces cAMP levels and attenuates protein kinase A and protein phosphatase 2A activities. This results in increased phosphorylation and inhibition of Kv3.1β channels, and thereby reduces the firing of the parvalbumin neurons. Through the loss of this signaling pathway in these neurons, conditional deletion of the serotonin 5A receptor leads to the loss of the physiological and behavioral responses to chronic antidepressants.
Collapse
Affiliation(s)
- Yotam Sagi
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY USA
| | - Lucian Medrihan
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY USA
| | - Katia George
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY USA
| | - Miles Barney
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY USA
| | - Kathryn A. McCabe
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY USA
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
7
|
Bezine M, Maatoug S, Ben Khalifa R, Debbabi M, Zarrouk A, Wang Y, Griffiths WJ, Nury T, Samadi M, Vejux A, de Sèze J, Moreau T, Kharrat R, El Ayeb M, Lizard G. Modulation of Kv3.1b potassium channel level and intracellular potassium concentration in 158N murine oligodendrocytes and BV-2 murine microglial cells treated with 7-ketocholesterol, 24S-hydroxycholesterol or tetracosanoic acid (C24:0). Biochimie 2018; 153:56-69. [DOI: 10.1016/j.biochi.2018.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/14/2018] [Indexed: 01/19/2023]
|
8
|
Tang ZQ, Lu Y. Anatomy and Physiology of Metabotropic Glutamate Receptors in Mammalian and Avian Auditory System. ACTA ACUST UNITED AC 2018; 1. [PMID: 30854519 DOI: 10.24966/tap-7752/100001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Glutamate, as the major excitatory neurotransmitter used in the vertebrate brain, activates ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs), which mediate fast and slow neuronal actions, respectively. mGluRs play important modulatory roles in many brain areas, forming potential targets for drugs developed to treat brain disorders. Here, we review studies on mGluRs in the mammalian and avian auditory system. Although anatomical expression of mGluRs in the cochlear nucleus has been well characterized, data for other auditory nuclei await more systematic investigations especially at the electron microscopy level. The physiology of mGluRs has been extensively studied using in vitro brain slice preparations, with a focus on the auditory circuitry in the brainstem. These in vitro physiological studies have demonstrated that mGluRs participate in synaptic transmission, regulate ionic homeostasis, induce synaptic plasticity, and maintain the balance between Excitation and Inhibition (E/I) in a variety of auditory structures. However, the modulatory roles of mGluRs in auditory processing remain largely unclear at the system and behavioral levels, and the functions of mGluRs in auditory disorders remain entirely unknown.
Collapse
Affiliation(s)
- Zheng-Quan Tang
- Oregon Hearing Research Center, Vollum Institute, Oregon Health and Science University, Oregon, USA
| | - Yong Lu
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Ohio, USA
| |
Collapse
|
9
|
Schlüter T, Berger C, Rosengauer E, Fieth P, Krohs C, Ushakov K, Steel KP, Avraham KB, Hartmann AK, Felmy F, Nothwang HG. miR-96 is required for normal development of the auditory hindbrain. Hum Mol Genet 2018; 27:860-874. [DOI: 10.1093/hmg/ddy007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/30/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Tina Schlüter
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Christina Berger
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
| | - Elena Rosengauer
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Pascal Fieth
- Computational Theoretical Physics Group, Institute of Physics, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Constanze Krohs
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Kathy Ushakov
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Alexander K Hartmann
- Computational Theoretical Physics Group, Institute of Physics, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Felix Felmy
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Hans Gerd Nothwang
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
10
|
Kaczmarek LK, Zhang Y. Kv3 Channels: Enablers of Rapid Firing, Neurotransmitter Release, and Neuronal Endurance. Physiol Rev 2017; 97:1431-1468. [PMID: 28904001 PMCID: PMC6151494 DOI: 10.1152/physrev.00002.2017] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/24/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022] Open
Abstract
The intrinsic electrical characteristics of different types of neurons are shaped by the K+ channels they express. From among the more than 70 different K+ channel genes expressed in neurons, Kv3 family voltage-dependent K+ channels are uniquely associated with the ability of certain neurons to fire action potentials and to release neurotransmitter at high rates of up to 1,000 Hz. In general, the four Kv3 channels Kv3.1-Kv3.4 share the property of activating and deactivating rapidly at potentials more positive than other channels. Each Kv3 channel gene can generate multiple protein isoforms, which contribute to the high-frequency firing of neurons such as auditory brain stem neurons, fast-spiking GABAergic interneurons, and Purkinje cells of the cerebellum, and to regulation of neurotransmitter release at the terminals of many neurons. The different Kv3 channels have unique expression patterns and biophysical properties and are regulated in different ways by protein kinases. In this review, we cover the function, localization, and modulation of Kv3 channels and describe how levels and properties of the channels are altered by changes in ongoing neuronal activity. We also cover how the protein-protein interaction of these channels with other proteins affects neuronal functions, and how mutations or abnormal regulation of Kv3 channels are associated with neurological disorders such as ataxias, epilepsies, schizophrenia, and Alzheimer's disease.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Departments of Pharmacology and of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Yalan Zhang
- Departments of Pharmacology and of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
11
|
Sinclair JL, Barnes-Davies M, Kopp-Scheinpflug C, Forsythe ID. Strain-specific differences in the development of neuronal excitability in the mouse ventral nucleus of the trapezoid body. Hear Res 2017; 354:28-37. [PMID: 28843833 DOI: 10.1016/j.heares.2017.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 08/10/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
This investigation compared the development of neuronal excitability in the ventral nucleus of the trapezoid body (VNTB) between two strains of mice with differing progression rates for age-related hearing loss. In contrast to CBA/Ca (CBA) mice, the C57BL/6J (C57) strain are subject to hearing loss from a younger age and are more prone to damage from sound over-exposure. Higher firing rates in the medial olivocochlear system (MOC) are associated with protection from loud sounds and these cells are located in the VNTB. We postulated that reduced neuronal firing of the MOC in C57 mice could contribute to hearing loss in this strain by reducing efferent protection. Whole cell patch clamp was used to compare the electrical properties of VNTB neurons from the two strains initially in two age groups: before and after hearing onset at ∼ P9 and ∼P16, respectively. Prior to hearing onset VNTB neurons electrophysiological properties were identical in both strains, but started to diverge after hearing onset. One week after hearing onset VNTB neurons of C57 mice had larger amplitude action potentials but in contrast to CBA mice, their waveform failed to accelerate with increasing age, consistent with the faster inactivation of voltage-gated potassium currents in C57 VNTB neurons. The lower frequency action potential firing of C57 VNTB neurons at P16 was maintained to P28, indicating that this change was not a developmental delay. We conclude that C57 VNTB neurons fire at lower frequencies than in the CBA strain, supporting the hypothesis that reduced MOC firing could contribute to the greater hearing loss of the C57 strain.
Collapse
Affiliation(s)
- James L Sinclair
- MRC Toxicology Unit, University of Leicester, Leicester, LE1 9HN, UK; Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, LE1 9HN, UK
| | - Margaret Barnes-Davies
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, LE1 9HN, UK
| | | | - Ian D Forsythe
- MRC Toxicology Unit, University of Leicester, Leicester, LE1 9HN, UK; Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, LE1 9HN, UK.
| |
Collapse
|
12
|
Intrinsic plasticity induced by group II metabotropic glutamate receptors via enhancement of high-threshold KV currents in sound localizing neurons. Neuroscience 2016; 324:177-90. [PMID: 26964678 DOI: 10.1016/j.neuroscience.2016.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/05/2016] [Accepted: 03/03/2016] [Indexed: 01/18/2023]
Abstract
Intrinsic plasticity has emerged as an important mechanism regulating neuronal excitability and output under physiological and pathological conditions. Here, we report a novel form of intrinsic plasticity. Using perforated patch clamp recordings, we examined the modulatory effects of group II metabotropic glutamate receptors (mGluR II) on voltage-gated potassium (KV) currents and the firing properties of neurons in the chicken nucleus laminaris (NL), the first central auditory station where interaural time cues are analyzed for sound localization. We found that activation of mGluR II by synthetic agonists resulted in a selective increase of the high-threshold KV currents. More importantly, synaptically released glutamate (with reuptake blocked) also enhanced the high-threshold KV currents. The enhancement was frequency-coding region dependent, being more pronounced in low-frequency neurons compared to middle- and high-frequency neurons. The intracellular mechanism involved the Gβγ signaling pathway associated with phospholipase C and protein kinase C. The modulation strengthened membrane outward rectification, sharpened action potentials, and improved the ability of NL neurons to follow high-frequency inputs. These data suggest that mGluR II provides a feedforward modulatory mechanism that may regulate temporal processing under the condition of heightened synaptic inputs.
Collapse
|
13
|
Lu Y. Metabotropic glutamate receptors in auditory processing. Neuroscience 2014; 274:429-45. [PMID: 24909898 PMCID: PMC5299851 DOI: 10.1016/j.neuroscience.2014.05.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/03/2014] [Accepted: 05/28/2014] [Indexed: 11/24/2022]
Abstract
As the major excitatory neurotransmitter used in the vertebrate brain, glutamate activates ionotropic and metabotropic glutamate receptors (mGluRs), which mediate fast and slow neuronal actions, respectively. Important modulatory roles of mGluRs have been shown in many brain areas, and drugs targeting mGluRs have been developed for the treatment of brain disorders. Here, I review studies on mGluRs in the auditory system. Anatomical expression of mGluRs in the cochlear nucleus has been well characterized, while data for other auditory nuclei await more systematic investigations at both the light and electron microscopy levels. The physiology of mGluRs has been extensively studied using in vitro brain slice preparations, with a focus on the lower auditory brainstem in both mammals and birds. These in vitro physiological studies have revealed that mGluRs participate in neurotransmission, regulate ionic homeostasis, induce synaptic plasticity, and maintain the balance between excitation and inhibition in a variety of auditory structures. However, very few in vivo physiological studies on mGluRs in auditory processing have been undertaken at the systems level. Many questions regarding the essential roles of mGluRs in auditory processing still remain unanswered and more rigorous basic research is warranted.
Collapse
Affiliation(s)
- Y Lu
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| |
Collapse
|
14
|
Oak MH, Yi E. Voltage-gated K(+) channels contributing to temporal precision at the inner hair cell-auditory afferent nerve fiber synapses in the mammalian cochlea. Arch Pharm Res 2014; 37:821-33. [PMID: 24925343 DOI: 10.1007/s12272-014-0411-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/09/2014] [Indexed: 12/16/2022]
Abstract
To perform auditory tasks such as sound localization in the space, auditory neurons in the brain must distinguish sub-millisecond temporal differences in signals from two ears. Such high temporal resolution is possible when each neuron in the ascending auditory pathway fires brief action potential at very accurate timing. Various pre- and postsynaptic machineries ensuring such high temporal precision of auditory synaptic transmission have been identified. Of particular, in this review, the role of K(+) channels in shortening the duration of synaptic potentials will be discussed. First, the contribution of K(+) channels to AP firing of general auditory neurons will be discussed. Then, the focus will be moved to the inner hair cell (IHC)-auditory afferent nerve fiber (ANF) synapses, the first synapses of ascending auditory pathway. Molecular and immunohistological techniques have revealed various K(+) channels in the cell bodies and their processes of ANFs. Since the development of patch-clamp recordings from the ANF dendrites in 2002, it became possible to monitor the IHC-ANF synaptic transmission in greater detail. As revealed in brain auditory synapses, several different K(+) channels appear to participate in reducing the duration of synaptic potentials at the IHC-ANF synapses. In addition, K(+) channels at the ANF dendrites might act as potential targets of efferent feedback from the brain. The hypothesis is that, upon loud sound exposure, efferent neurotransmitters released onto the ANF dendrites activate certain K(+) channels and prevent excitotoxicity of ANFs. Therefore, K(+) channels of the ANF dendrites might provide potential sites of pharmacological actions to prevent noise-induced hearing loss.
Collapse
Affiliation(s)
- Min-Ho Oak
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeon, Muan, Jeonnam, 534-729, Republic of Korea
| | | |
Collapse
|
15
|
Ehmann H, Hartwich H, Salzig C, Hartmann N, Clément-Ziza M, Ushakov K, Avraham KB, Bininda-Emonds ORP, Hartmann AK, Lang P, Friauf E, Nothwang HG. Time-dependent gene expression analysis of the developing superior olivary complex. J Biol Chem 2013; 288:25865-25879. [PMID: 23893414 DOI: 10.1074/jbc.m113.490508] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The superior olivary complex (SOC) is an essential auditory brainstem relay involved in sound localization. To identify the genetic program underlying its maturation, we profiled the rat SOC transcriptome at postnatal days 0, 4, 16, and 25 (P0, P4, P16, and P25, respectively), using genome-wide microarrays (41,012 oligonucleotides (oligos)). Differences in gene expression between two consecutive stages were highest between P4 and P16 (3.6%) and dropped to 0.06% between P16 and P25. To identify SOC-related genetic programs, we also profiled the entire brain at P4 and P25. The number of differentially expressed oligonucleotides between SOC and brain almost doubled from P4 to P25 (4.4% versus 7.6%). These data demonstrate considerable molecular specification around hearing onset, which is rapidly finalized. Prior to hearing onset, several transcription factors associated with the peripheral auditory system were up-regulated, probably coordinating the development of the auditory system. Additionally, crystallin-γ subunits and serotonin-related genes were highly expressed. The molecular repertoire of mature neurons was sculpted by SOC-related up- and down-regulation of voltage-gated channels and G-proteins. Comparison with the brain revealed a significant enrichment of hearing impairment-related oligos in the SOC (26 in the SOC, only 11 in the brain). Furthermore, 29 of 453 SOC-related oligos mapped within 19 genetic intervals associated with hearing impairment. Together, we identified sequential genetic programs in the SOC, thereby pinpointing candidates that may guide its development and ensure proper function. The enrichment of hearing impairment-related genes in the SOC may have implications for restoring hearing because central auditory structures might be more severely affected than previously appreciated.
Collapse
Affiliation(s)
- Heike Ehmann
- From the Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Heiner Hartwich
- the Neurogenetics Group, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Christian Salzig
- the Department of System Analysis, Prognosis, and Control, Fraunhofer Institute for Industrial Mathematics (ITWM), D-67663 Kaiserslautern, Germany
| | - Nadja Hartmann
- From the Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | | | - Kathy Ushakov
- the Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karen B Avraham
- the Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Alexander K Hartmann
- the Computational Theoretical Physics Group, University of Oldenburg, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany, and
| | - Patrick Lang
- the Department of System Analysis, Prognosis, and Control, Fraunhofer Institute for Industrial Mathematics (ITWM), D-67663 Kaiserslautern, Germany
| | - Eckhard Friauf
- From the Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Hans Gerd Nothwang
- the Neurogenetics Group, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany,; the Center for Neuroscience, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany,; the Center of Excellence Hearing4all, 26111 Oldenburg, Germany.
| |
Collapse
|
16
|
Cotella D, Hernandez-Enriquez B, Duan Z, Wu X, Gazula VR, Brown MR, Kaczmarek LK, Sesti F. An evolutionarily conserved mode of modulation of Shaw-like K⁺ channels. FASEB J 2012; 27:1381-93. [PMID: 23233530 DOI: 10.1096/fj.12-222778] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Voltage-gated K(+) channels of the Shaw family (also known as the KCNC or Kv3 family) play pivotal roles in mammalian brains, and genetic or pharmacological disruption of their activities in mice results in a spectrum of behavioral defects. We have used the model system of Caenorhabditis elegans to elucidate conserved molecular mechanisms that regulate these channels. We have now found that the C. elegans Shaw channel KHT-1, and its mammalian homologue, murine Kv3.1b, are both modulated by acid phosphatases. Thus, the C. elegans phosphatase ACP-2 is stably associated with KHT-1, while its mammalian homolog, prostatic acid phosphatase (PAP; also known as ACPP-201) stably associates with murine Kv3.1b K(+) channels in vitro and in vivo. In biochemical experiments both phosphatases were able to reverse phosphorylation of their associated channel. The effect of phosphorylation on both channels is to produce a decrease in current amplitude and electrophysiological analyses demonstrated that dephosphorylation reversed the effects of phosphorylation on the magnitude of the macroscopic currents. ACP-2 and KHT-1 were colocalized in the nervous system of C. elegans and, in the mouse nervous system, PAP and Kv3.1b were colocalized in subsets of neurons, including in the brain stem and the ventricular zone. Taken together, this body of evidence suggests that acid phosphatases are general regulatory partners of Shaw-like K(+) channels.
Collapse
Affiliation(s)
- Diego Cotella
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kang JH, Toita R, Kim CW, Katayama Y. Protein kinase C (PKC) isozyme-specific substrates and their design. Biotechnol Adv 2012; 30:1662-72. [PMID: 22841933 DOI: 10.1016/j.biotechadv.2012.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 11/30/2022]
|
18
|
Brown MR, Kaczmarek LK. Potassium channel modulation and auditory processing. Hear Res 2011; 279:32-42. [PMID: 21414395 PMCID: PMC3137660 DOI: 10.1016/j.heares.2011.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/02/2011] [Accepted: 03/07/2011] [Indexed: 02/03/2023]
Abstract
For accurate processing of auditory information, neurons in auditory brainstem nuclei have to fire at high rates with high temporal accuracy. These two requirements can only be fulfilled when the intrinsic electrical properties of these neurons are matched to the pattern of incoming synaptic stimulation. This review article focuses on three families of potassium channels that are critical to shaping the firing pattern and accuracy of neurons. Changes in the auditory environment can trigger very rapid changes in the phosphorylation state of potassium channels in auditory brainstem nuclei. Longer lasting changes in the auditory environment produce changes in the rates of translation and transcription of genes encoding these channels. A key protein that plays a role in setting the overall sensitivity of the auditory system to sound stimuli is FMRP (Fragile X Mental Retardation Protein), which binds channels directly and also regulates the translation of mRNAs for the channels.
Collapse
Affiliation(s)
- Maile R. Brown
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8066, phone: 203-785-4500, fax: 203-785-5494
| | - Leonard K. Kaczmarek
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8066, phone: 203-785-4500, fax: 203-785-5494
| |
Collapse
|
19
|
Gamble KL, Kudo T, Colwell CS, McMahon DG. Gastrin-releasing peptide modulates fast delayed rectifier potassium current in Per1-expressing SCN neurons. J Biol Rhythms 2011; 26:99-106. [PMID: 21454290 PMCID: PMC3148520 DOI: 10.1177/0748730410396678] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mammalian circadian clock in the suprachiasmatic nucleus (SCN) drives and maintains 24-h physiological rhythms, the phases of which are set by the local environmental light-dark cycle. Gastrin-releasing peptide (GRP) communicates photic phase setting signals in the SCN by increasing neurophysiological activity of SCN neurons. Here, the ionic basis for persistent GRP-induced changes in neuronal activity was investigated in SCN slice cultures from Per1::GFP reporter mice during the early night. Recordings from Per1 -fluorescent neurons in SCN slices several hours after GRP treatment revealed a significantly greater action potential frequency, a significant increase in voltage-activated outward current at depolarized potentials, and a significant increase in 4-aminopyridine-sensitive fast delayed rectifier (fDR) potassium currents when compared to vehicle-treated slices. In addition, the persistent increase in spike rate following early-night GRP application was blocked in SCN neurons from mice deficient in Kv3 channel proteins. Because fDR currents are regulated by the clock and are elevated in amplitude during the day, the present results support the model that GRP delays the phase of the clock during the early night by prolonging day-like membrane properties of SCN cells. Furthermore, these findings implicate fDR currents in the ionic basis for GRP-mediated entrainment of the primary mammalian circadian pacemaker.
Collapse
Affiliation(s)
- Karen L. Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL
| | - Takashi Kudo
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA
| | | |
Collapse
|
20
|
Strumbos JG, Polley DB, Kaczmarek LK. Specific and rapid effects of acoustic stimulation on the tonotopic distribution of Kv3.1b potassium channels in the adult rat. Neuroscience 2010; 167:567-72. [PMID: 20219640 PMCID: PMC2854512 DOI: 10.1016/j.neuroscience.2010.02.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 02/17/2010] [Accepted: 02/18/2010] [Indexed: 11/29/2022]
Abstract
Recent studies have demonstrated that total cellular levels of voltage-gated potassium channel subunits can change on a time scale of minutes in acute slices and cultured neurons, raising the possibility that rapid changes in the abundance of channel proteins contribute to experience-dependent plasticity in vivo. In order to investigate this possibility, we took advantage of the medial nucleus of the trapezoid body (MNTB) sound localization circuit, which contains neurons that precisely phase-lock their action potentials to rapid temporal fluctuations in the acoustic waveform. Previous work has demonstrated that the ability of these neurons to follow high-frequency stimuli depends critically upon whether they express adequate amounts of the potassium channel subunit Kv3.1. To test the hypothesis that net amounts of Kv3.1 protein would be rapidly upregulated when animals are exposed to sounds that require high frequency firing for accurate encoding, we briefly exposed adult rats to acoustic environments that varied according to carrier frequency and amplitude modulation (AM) rate. Using an antibody directed at the cytoplasmic C-terminus of Kv3.1b (the adult splice isoform of Kv3.1), we found that total cellular levels of Kv3.1b protein-as well as the tonotopic distribution of Kv3.1b-labeled cells-was significantly altered following 30 min of exposure to rapidly modulated (400 Hz) sounds relative to slowly modulated (0-40 Hz, 60 Hz) sounds. These results provide direct evidence that net amounts of Kv3.1b protein can change on a time scale of minutes in response to stimulus-driven synaptic activity, permitting auditory neurons to actively adapt their complement of ion channels to changes in the acoustic environment.
Collapse
Affiliation(s)
- John G. Strumbos
- Departments of Pharmacology, Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT. 06520., Tel: 203-785-4500, Fax: 203-785-5494
| | - Daniel B. Polley
- Department of Hearing and Speech Sciences, Vanderbilt Bill Wilkerson Center for Otolaryngology and Communication Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Leonard K. Kaczmarek
- Departments of Pharmacology, Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT. 06520., Tel: 203-785-4500, Fax: 203-785-5494
| |
Collapse
|
21
|
Ehmann H, Salzig C, Lang P, Friauf E, Nothwang HG. Minimal sex differences in gene expression in the rat superior olivary complex. Hear Res 2008; 245:65-72. [PMID: 18793710 DOI: 10.1016/j.heares.2008.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 08/22/2008] [Accepted: 08/25/2008] [Indexed: 01/12/2023]
Abstract
A critical issue in large-scale gene expression analysis is the impact of sexually dimorphic genes, which may confound the results when sampling across sexes. Here, we assessed, for the first time, sex differences at the transcriptome level in the auditory brainstem. To this end, microarray experiments covering the whole rat genome were performed in the superior olivary complex (SOC) of 16-day-old Sprague-Dawley rats. Sexually dimorphic genes were identified using two criteria: a 2-fold change and a P-value < 0.05. Only 12 out of 41,374 probes (0.03%) showed sexually dimorphic expression. For comparison, pituitaries from 60-day-old female and male rats were analyzed, as this gland is known to display many sex-specific features. Indeed, almost 40 times more probes, i.e. 460 (1.1%), displayed sexual dimorphism. Quantitative RT-PCR confirmed 47 out of 48 microarray results from both tissues. Taking microarray and qRT-PCR data together, the expression of six genes (Prl, Eif2s3y, Gnrhr, Pomc, Ddx3y, Akr1c6) was higher in the male SOC, whereas two genes were upregulated in the female SOC (LOC302172, Xist). Four of these genes are sex-chromosome linked (Eif2s3y, Ddx3y, LOC302172, Xist). In summary, our data indicate only minor and negligible sex-specific differences in gene expression within the SOC at P16.
Collapse
Affiliation(s)
- Heike Ehmann
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany.
| | | | | | | | | |
Collapse
|
22
|
Kopp-Scheinpflug C, Tolnai S, Malmierca MS, Rübsamen R. The medial nucleus of the trapezoid body: comparative physiology. Neuroscience 2008; 154:160-70. [PMID: 18436383 DOI: 10.1016/j.neuroscience.2008.01.088] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/31/2008] [Accepted: 01/31/2008] [Indexed: 11/26/2022]
Abstract
Principal cells of the medial nucleus of the trapezoid body (MNTB) receive their excitatory input through large somatic terminals, the calyces of Held, which arise from axons of globular bushy cells located in the contralateral ventral cochlear nucleus. Discharges of MNTB neurons are characterized by high stimulus evoked firing rates, temporally precise onset responses, and a high degree of phase-locking to either pure tones or stimulus envelopes. Since the calyx of Held synapse is accessible to in vitro and to in vivo recordings, it serves as one of the most elaborate models for studying synaptic transmission in the mammalian brain. Although in such studies, the major emphasis is on synaptic physiology, the interpretation of the data will benefit from an understanding of the MNTB's contribution to auditory signal processing, including possible functional differences in different species. This implies the consideration of possible functional differences in different species. Here, we compare single unit recordings from MNTB principal cells in vivo in three different rodent species: gerbil, mouse and rat. Because of their good low-frequency hearing gerbils are often used in in vivo preparations, while mice and rats are predominantly used in slice preparations. We show that MNTB units in all three species exhibit high firing rates and precise onset-timing. Still there are species-specific specializations that might suggest the preferential use of one species over the others, depending on the scope of the respective investigation.
Collapse
Affiliation(s)
- C Kopp-Scheinpflug
- Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
| | | | | | | |
Collapse
|