1
|
Sohail AA, Koski MK, Ruddock LW. Structural insights on perlecan and Schwartz-Jampel syndrome. Matrix Biol 2025:S0945-053X(25)00026-5. [PMID: 40118124 DOI: 10.1016/j.matbio.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Perlecan is an essential multi-domain, disulfide bond rich basement membrane protein. Mutations in perlecan cause Schwartz-Jampel syndrome and dyssegmental dysplasia. While there has been a large body of experimental work reported on perlecan, there is only minimal structural information available to date. There is no prior structural data for region 3 of perlecan in which some Schwartz-Jampel syndrome causing point mutations have been reported. Here, we produce constructs of the disulfide rich region 3 of perlecan along with five mutations previously reported to cause Schwatz-Jampel syndrome. Four of the mutations resulted in decreased yields and thermal stability compared to the wild-type protein. In contrast, the P1019L mutation was produced in good yields and showed higher thermal stability than the wild-type protein. The crystal structures for both the wild-type and P1019L mutation were solved. As expected, both showed laminin IV-like and laminin-type EGF-like domains, with the P1019L mutation resulting in only a minor conformational change in a loop region and no significant changes in regular secondary or tertiary structure.
Collapse
Affiliation(s)
- Anil A Sohail
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, 90220, Finland
| | - M Kristian Koski
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, 90220, Finland; Biocenter Oulu, University of Oulu, Oulu, 90220, Finland
| | - Lloyd W Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, 90220, Finland; Biocenter Oulu, University of Oulu, Oulu, 90220, Finland.
| |
Collapse
|
2
|
Athamneh M, Daya N, Hentschel A, Gangfuss A, Ruck T, Marina AD, Schara‐Schmidt U, Sickmann A, Güttsches A, Deschauer M, Preusse C, Vorgerd M, Roos A. Proteomic studies in VWA1-related neuromyopathy allowed new pathophysiological insights and the definition of blood biomarkers. J Cell Mol Med 2024; 28:e18122. [PMID: 38652110 PMCID: PMC11037410 DOI: 10.1111/jcmm.18122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 04/25/2024] Open
Abstract
Bi-allelic variants in VWA1, encoding Von Willebrand Factor A domain containing 1 protein localized to the extracellular matrix (ECM), were linked to a neuromuscular disorder with manifestation in child- or adulthood. Clinical findings indicate a neuromyopathy presenting with muscle weakness. Given that pathophysiological processes are still incompletely understood, and biomarkers are still missing, we aimed to identify blood biomarkers of pathophysiological relevance: white blood cells (WBC) and plasma derived from six VWA1-patients were investigated by proteomics. Four proteins, BET1, HNRNPDL, NEFM and PHGDH, known to be involved in neurological diseases and dysregulated in WBC were further validated by muscle-immunostainings unravelling HNRNPDL as a protein showing differences between VWA1-patients, healthy controls and patients suffering from neurogenic muscular atrophy and BICD2-related neuromyopathy. Immunostaining studies of PHGDH indicate its involvement in apoptotic processes via co-localisation with caspase-3. NEFM showed an increase in cells within the ECM in biopsies of all patients studied. Plasma proteomics unravelled dysregulation of 15 proteins serving as biomarker candidates among which a profound proportion of increased ones (6/11) are mostly related to antioxidative processes and have even partially been described as blood biomarkers for other entities of neuromuscular disorders before. CRP elevated in plasma also showed an increase in the extracellular space of VWA1-mutant muscle. Results of our combined studies for the first time describe pathophysiologically relevant biomarkers for VWA1-related neuromyopathy and suggest that VWA1-patient derived blood might hold the potential to study disease processes of clinical relevance, an important aspect for further preclinical studies.
Collapse
Affiliation(s)
- Mohammed Athamneh
- Department of Neurology, Heimer Institute for Muscle ResearchUniversity Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
- Department of Clinical Science, Faculty of MedicineYarmouk UniversityIrbidJordan
| | - Nassam Daya
- Department of Neurology, Heimer Institute for Muscle ResearchUniversity Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
| | - Andreas Hentschel
- Leibniz‐Institut für Analytische Wissenschaften‐ISAS‐e.V.DortmundGermany
| | - Andrea Gangfuss
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro‐ and Behavioral SciencesUniversity Duisburg‐EssenEssenGermany
| | - Tobias Ruck
- Department of Neurology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Adela Della Marina
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro‐ and Behavioral SciencesUniversity Duisburg‐EssenEssenGermany
| | - Ulrike Schara‐Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro‐ and Behavioral SciencesUniversity Duisburg‐EssenEssenGermany
| | - Albert Sickmann
- Leibniz‐Institut für Analytische Wissenschaften‐ISAS‐e.V.DortmundGermany
| | - Anne‐Katrin Güttsches
- Department of Neurology, Heimer Institute for Muscle ResearchUniversity Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
| | - Marcus Deschauer
- Department of NeurologyTechnical University of Munich, School of MedicineMunichGermany
| | - Corinna Preusse
- Institute of Neuropathology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt Universität zu Berlin, Berlin Institute of HealthBerlinGermany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle ResearchUniversity Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
| | - Andreas Roos
- Department of Neurology, Heimer Institute for Muscle ResearchUniversity Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro‐ and Behavioral SciencesUniversity Duisburg‐EssenEssenGermany
- Children's Hospital of Eastern Ontario Research InstituteUniversity of OttawaOttawaCanada
| |
Collapse
|
3
|
Melrose J. Hippo cell signaling and HS-proteoglycans regulate tissue form and function, age-dependent maturation, extracellular matrix remodeling, and repair. Am J Physiol Cell Physiol 2024; 326:C810-C828. [PMID: 38223931 DOI: 10.1152/ajpcell.00683.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This review examined how Hippo cell signaling and heparan sulfate (HS)-proteoglycans (HSPGs) regulate tissue form and function. Despite being a nonweight-bearing tissue, the brain is regulated by Hippo mechanoresponsive cell signaling pathways during embryonic development. HS-proteoglycans interact with growth factors, morphogens, and extracellular matrix components to regulate development and pathology. Pikachurin and Eyes shut (Eys) interact with dystroglycan to stabilize the photoreceptor axoneme primary cilium and ribbon synapse facilitating phototransduction and neurotransduction with bipolar retinal neuronal networks in ocular vision, the primary human sense. Another HSPG, Neurexin interacts with structural and adaptor proteins to stabilize synapses and ensure specificity of neural interactions, and aids in synaptic potentiation and plasticity in neurotransduction. HSPGs also stabilize the blood-brain barrier and motor neuron basal structures in the neuromuscular junction. Agrin and perlecan localize acetylcholinesterase and its receptors in the neuromuscular junction essential for neuromuscular control. The primary cilium is a mechanosensory hub on neurons, utilized by YES associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) Hippo, Hh, Wnt, transforming growth factor (TGF)-β/bone matrix protein (BMP) receptor tyrosine kinase cell signaling. Members of the glypican HSPG proteoglycan family interact with Smoothened and Patched G-protein coupled receptors on the cilium to regulate Hh and Wnt signaling during neuronal development. Control of glycosyl sulfotransferases and endogenous protease expression by Hippo TAZ YAP represents a mechanism whereby the fine structure of HS-proteoglycans can be potentially modulated spatiotemporally to regulate tissue morphogenesis in a similar manner to how Hippo signaling controls sialyltransferase expression and mediation of cell-cell recognition, dysfunctional sialic acid expression is a feature of many tumors.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Sydney Medical School-Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Niu X, Zhang F, Ping L, Wang Y, Zhang B, Wang J, Chen X. vwa1 Knockout in Zebrafish Causes Abnormal Craniofacial Chondrogenesis by Regulating FGF Pathway. Genes (Basel) 2023; 14:genes14040838. [PMID: 37107596 PMCID: PMC10137681 DOI: 10.3390/genes14040838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Hemifacial microsomia (HFM), a rare disorder of first- and second-pharyngeal arch development, has been linked to a point mutation in VWA1 (von Willebrand factor A domain containing 1), encoding the protein WARP in a five-generation pedigree. However, how the VWA1 mutation relates to the pathogenesis of HFM is largely unknown. Here, we sought to elucidate the effects of the VWA1 mutation at the molecular level by generating a vwa1-knockout zebrafish line using CRISPR/Cas9. Mutants and crispants showed cartilage dysmorphologies, including hypoplastic Meckel’s cartilage and palatoquadrate cartilage, malformed ceratohyal with widened angle, and deformed or absent ceratobranchial cartilages. Chondrocytes exhibited a smaller size and aspect ratio and were aligned irregularly. In situ hybridization and RT-qPCR showed a decrease in barx1 and col2a1a expression, indicating abnormal cranial neural crest cell (CNCC) condensation and differentiation. CNCC proliferation and survival were also impaired in the mutants. Expression of FGF pathway components, including fgf8a, fgfr1, fgfr2, fgfr3, fgfr4, and runx2a, was decreased, implying a role for VWA1 in regulating FGF signaling. Our results demonstrate that VWA1 is essential for zebrafish chondrogenesis through effects on condensation, differentiation, proliferation, and apoptosis of CNCCs, and likely impacts chondrogenesis through regulation of the FGF pathway.
Collapse
Affiliation(s)
- Xiaomin Niu
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fuyu Zhang
- 8-Year MD Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lu Ping
- 8-Year MD Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yibei Wang
- Department of Otolaryngology-Head & Neck Surgery, China-Japan Friendship Hospital, Beijing 100730, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100730, China
| | - Jian Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaowei Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence:
| |
Collapse
|
5
|
Reyes Fernandez PC, Wright CS, Masterson AN, Yi X, Tellman TV, Bonteanu A, Rust K, Noonan ML, White KE, Lewis KJ, Sankar U, Hum JM, Bix G, Wu D, Robling AG, Sardar R, Farach-Carson MC, Thompson WR. Gabapentin Disrupts Binding of Perlecan to the α 2δ 1 Voltage Sensitive Calcium Channel Subunit and Impairs Skeletal Mechanosensation. Biomolecules 2022; 12:biom12121857. [PMID: 36551284 PMCID: PMC9776037 DOI: 10.3390/biom12121857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Our understanding of how osteocytes, the principal mechanosensors within bone, sense and perceive force remains unclear. Previous work identified "tethering elements" (TEs) spanning the pericellular space of osteocytes and transmitting mechanical information into biochemical signals. While we identified the heparan sulfate proteoglycan perlecan (PLN) as a component of these TEs, PLN must attach to the cell surface to induce biochemical responses. As voltage-sensitive calcium channels (VSCCs) are critical for bone mechanotransduction, we hypothesized that PLN binds the extracellular α2δ1 subunit of VSCCs to couple the bone matrix to the osteocyte membrane. Here, we showed co-localization of PLN and α2δ1 along osteocyte dendritic processes. Additionally, we quantified the molecular interactions between α2δ1 and PLN domains and demonstrated for the first time that α2δ1 strongly associates with PLN via its domain III. Furthermore, α2δ1 is the binding site for the commonly used pain drug, gabapentin (GBP), which is associated with adverse skeletal effects when used chronically. We found that GBP disrupts PLN::α2δ1 binding in vitro, and GBP treatment in vivo results in impaired bone mechanosensation. Our work identified a novel mechanosensory complex within osteocytes composed of PLN and α2δ1, necessary for bone force transmission and sensitive to the drug GBP.
Collapse
Affiliation(s)
- Perla C. Reyes Fernandez
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Christian S. Wright
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Adrianna N. Masterson
- Department of Chemistry and Chemical Biology, School of Science, Indiana University, Indianapolis, IN 46202, USA
| | - Xin Yi
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Tristen V. Tellman
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Andrei Bonteanu
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX 77005, USA
| | - Katie Rust
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Megan L. Noonan
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Kenneth E. White
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Karl J. Lewis
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Uma Sankar
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Julia M. Hum
- Division of Biomedical Science, College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA
| | - Gregory Bix
- Departments of Neurosurgery and Neurology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX 77005, USA
| | - Alexander G. Robling
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, School of Science, Indiana University, Indianapolis, IN 46202, USA
| | - Mary C. Farach-Carson
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX 77005, USA
| | - William R. Thompson
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Division of Biomedical Science, College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA
- Correspondence:
| |
Collapse
|
6
|
Gable DL, Mo A, Estrella E, Saffari A, Ghosh PS, Ebrahimi-Fakhari D. Upper motor neuron signs and early onset gait abnormalities in young children with bi-allelic VWA1 variants. Am J Med Genet A 2022; 188:3531-3534. [PMID: 35975723 DOI: 10.1002/ajmg.a.62953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/02/2022] [Accepted: 07/28/2022] [Indexed: 01/31/2023]
Abstract
Bi-allelic loss-of-function variants in Von Willebrand factor type A (VWA1) were recently discovered to lead to an early onset motor neuropathy or neuromyopathy. What makes this discovery particularly notable is the high frequency of one of the VWA1 (NM_022834.5) founder variants, c.62_71dup (p.Gly25ArgfsTer74), which nears 0.01% in European populations, and suggests that there may be a wide spectrum of disease features and severity. Here, we report two cases from nonconsanguineous families in North America that presented in early childhood with lower extremity weakness and prominent foot deformities, and were found to carry bi-allelic variants in VWA1. We draw focus to upper motor neuron signs and abnormal gait phenotypes as presenting symptoms in VWA1-related disorder and expand the clinical and molecular spectrum.
Collapse
Affiliation(s)
- Dustin L Gable
- Child Neurology Residency Training Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alisa Mo
- Child Neurology Residency Training Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Elicia Estrella
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA.,Neuromuscular Clinic, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Afshin Saffari
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Partha S Ghosh
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA.,Neuromuscular Clinic, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA.,Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Hayes AJ, Farrugia BL, Biose IJ, Bix GJ, Melrose J. Perlecan, A Multi-Functional, Cell-Instructive, Matrix-Stabilizing Proteoglycan With Roles in Tissue Development Has Relevance to Connective Tissue Repair and Regeneration. Front Cell Dev Biol 2022; 10:856261. [PMID: 35433700 PMCID: PMC9010944 DOI: 10.3389/fcell.2022.856261] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 12/19/2022] Open
Abstract
This review highlights the multifunctional properties of perlecan (HSPG2) and its potential roles in repair biology. Perlecan is ubiquitous, occurring in vascular, cartilaginous, adipose, lymphoreticular, bone and bone marrow stroma and in neural tissues. Perlecan has roles in angiogenesis, tissue development and extracellular matrix stabilization in mature weight bearing and tensional tissues. Perlecan contributes to mechanosensory properties in cartilage through pericellular interactions with fibrillin-1, type IV, V, VI and XI collagen and elastin. Perlecan domain I - FGF, PDGF, VEGF and BMP interactions promote embryonic cellular proliferation, differentiation, and tissue development. Perlecan domain II, an LDLR-like domain interacts with lipids, Wnt and Hedgehog morphogens. Perlecan domain III binds FGF-7 and 18 and has roles in the secretion of perlecan. Perlecan domain IV, an immunoglobulin repeat domain, has cell attachment and matrix stabilizing properties. Perlecan domain V promotes tissue repair through interactions with VEGF, VEGF-R2 and α2β1 integrin. Perlecan domain-V LG1-LG2 and LG3 fragments antagonize these interactions. Perlecan domain V promotes reconstitution of the blood brain barrier damaged by ischemic stroke and is neurogenic and neuroprotective. Perlecan-VEGF-VEGFR2, perlecan-FGF-2 and perlecan-PDGF interactions promote angiogenesis and wound healing. Perlecan domain I, III and V interactions with platelet factor-4 and megakaryocyte and platelet inhibitory receptor promote adhesion of cells to implants and scaffolds in vascular repair. Perlecan localizes acetylcholinesterase in the neuromuscular junction and is of functional significance in neuromuscular control. Perlecan mutation leads to Schwartz-Jampel Syndrome, functional impairment of the biomechanical properties of the intervertebral disc, variable levels of chondroplasia and myotonia. A greater understanding of the functional working of the neuromuscular junction may be insightful in therapeutic approaches in the treatment of neuromuscular disorders. Tissue engineering of salivary glands has been undertaken using bioactive peptides (TWSKV) derived from perlecan domain IV. Perlecan TWSKV peptide induces differentiation of salivary gland cells into self-assembling acini-like structures that express salivary gland biomarkers and secrete α-amylase. Perlecan also promotes chondroprogenitor stem cell maturation and development of pluripotent migratory stem cell lineages, which participate in diarthrodial joint formation, and early cartilage development. Recent studies have also shown that perlecan is prominently expressed during repair of adult human articular cartilage. Perlecan also has roles in endochondral ossification and bone development. Perlecan domain I hydrogels been used in tissue engineering to establish heparin binding growth factor gradients that promote cell migration and cartilage repair. Perlecan domain I collagen I fibril scaffolds have also been used as an FGF-2 delivery system for tissue repair. With the availability of recombinant perlecan domains, the development of other tissue repair strategies should emerge in the near future. Perlecan co-localization with vascular elastin in the intima, acts as a blood shear-flow endothelial sensor that regulates blood volume and pressure and has a similar role to perlecan in canalicular fluid, regulating bone development and remodeling. This complements perlecan's roles in growth plate cartilage and in endochondral ossification to form the appendicular and axial skeleton. Perlecan is thus a ubiquitous, multifunctional, and pleomorphic molecule of considerable biological importance. A greater understanding of its diverse biological roles and functional repertoires during tissue development, growth and disease will yield valuable insights into how this impressive proteoglycan could be utilized successfully in repair biology.
Collapse
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Wales, United Kingdom
| | - Brooke L. Farrugia
- Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Ifechukwude J. Biose
- Departments of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Gregory J. Bix
- Departments of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital, The Faculty of Medicine and Health, The University of Sydney, St. Leonard’s, NSW, Australia
| |
Collapse
|
8
|
Impact of perlecan, a core component of basement membrane, on regeneration of cartilaginous tissues. Acta Biomater 2021; 135:13-26. [PMID: 34454085 DOI: 10.1016/j.actbio.2021.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023]
Abstract
As an indispensable component of the extracellular matrix, perlecan (Pln) plays an essential role in cartilaginous tissue function. Although there exist studies suggesting that Pln expressed by cartilaginous tissues is critical for chondrogenesis, few papers have discussed the potential impact Pln may have on cartilage regeneration. In this review, we delineate Pln structure, biomechanical properties, and interactive ligands-which together contribute to the effect Pln has on cartilaginous tissue development. We also review how the signaling pathways of Pln affect cartilage development and scrutinize the potential application of Pln to divisions of cartilage regeneration, spanning vascularization, stem cell differentiation, and biomaterial improvement. The aim of this review is to deepen our understanding of the spatial and temporal interactions that occur between Pln and cartilaginous tissue and ultimately apply Pln in scaffold design to improve cell-based cartilage engineering and regeneration. STATEMENT OF SIGNIFICANCE: As a key component of the basement membrane, Pln plays a critical role in tissue development and repair. Recent findings suggest that Pln existing in the pericellular matrix surrounding mature chondrocytes is actively involved in cartilage regeneration and functionality. We propose that Pln is essential to developing an in vitro matrix niche within biological scaffolds for cartilage tissue engineering.
Collapse
|
9
|
Williams L, Layton T, Yang N, Feldmann M, Nanchahal J. Collagen VI as a driver and disease biomarker in human fibrosis. FEBS J 2021; 289:3603-3629. [PMID: 34109754 DOI: 10.1111/febs.16039] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Fibrosis of visceral organs such as the lungs, heart, kidneys and liver remains a major cause of morbidity and mortality and is also associated with many other disorders, including cancer and metabolic disease. In this review, we focus upon the microfibrillar collagen VI, which is present in the extracellular matrix (ECM) of most tissues. However, expression is elevated in numerous fibrotic conditions, such as idiopathic pulmonary disease (IPF), and chronic liver and kidney diseases. Collagen VI is composed of three subunits α1, α2 and α3, which can be replaced with alternate chains of α4, α5 or α6. The C-terminal globular domain (C5) of collagen VI α3 can be proteolytically cleaved to form a biologically active fragment termed endotrophin, which has been shown to actively drive fibrosis, inflammation and insulin resistance. Tissue biopsies have long been considered the gold standard for diagnosis and monitoring of progression of fibrotic disease. The identification of neoantigens from enzymatically processed collagen chains have revolutionised the biomarker field, allowing rapid diagnosis and evaluation of prognosis of numerous fibrotic conditions, as well as providing valuable clinical trial endpoint determinants. Collagen VI chain fragments such as endotrophin (PRO-C6), C6M and C6Mα3 are emerging as important biomarkers for fibrotic conditions.
Collapse
Affiliation(s)
- Lynn Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Thomas Layton
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Nan Yang
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Jagdeep Nanchahal
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| |
Collapse
|
10
|
Arribat Y. Genetic alterations of VWA1: a new link between extracellular matrix and neuromuscular diseases. Brain 2021; 144:362-365. [PMID: 33693694 DOI: 10.1093/brain/awaa464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This scientific commentary refers to ‘Bi-allelic truncating mutations in VWA1 cause neuromyopathy’, by Deschauer et al. (doi:10.1093/brain/awaa418) and ‘An ancestral 10-bp repeat expansion in VWA1 causes recessive hereditary motor neuropathy’, by Pagnamenta et al. (doi:10.1093/brain/awaa420)
Collapse
Affiliation(s)
- Yoan Arribat
- Department of Biomedical Sciences School of Biology and Medicine University of Lausanne, Lausanne Switzerland
| |
Collapse
|
11
|
Wang Y, Ping L, Luan X, Chen Y, Fan X, Li L, Liu Y, Wang P, Zhang S, Zhang B, Chen X. A Mutation in VWA1, Encoding von Willebrand Factor A Domain-Containing Protein 1, Is Associated With Hemifacial Microsomia. Front Cell Dev Biol 2020; 8:571004. [PMID: 33015062 PMCID: PMC7509151 DOI: 10.3389/fcell.2020.571004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022] Open
Abstract
Background Hemifacial microsomia (HFM) is a type of rare congenital syndrome caused by developmental disorders of the first and second pharyngeal arches that occurs in one out of 5,600 live births. There are significant gaps in our knowledge of the pathogenic genes underlying this syndrome. Methods Whole exome sequencing (WES) was performed on five patients, one asymptomatic carrier, and two marry-in members of a five-generation pedigree. Structure of WARP (product of VWA1) was predicted using the Phyre2 web portal. In situ hybridization and vwa1-knockdown/knockout studies in zebrafish using morpholino and CRISPR/Cas9 techniques were performed. Cartilage staining and immunofluorescence were carried out. Results Through WES and a set of filtration, we identified a c.G905A:p.R302Q point mutation in a novel candidate pathogenic gene, VWA1. The Phyre2 web portal predicted alterations in secondary and tertiary structures of WARP, indicating changes in its function as well. Predictions of protein-to-protein interactions in five pathways related to craniofacial development revealed possible interactions with four proteins in the FGF pathway. Knockdown/knockout studies of the zebrafish revealed deformities of pharyngeal cartilage. A decrease of the proliferation of cranial neural crest cells (CNCCs) and alteration of the structure of pharyngeal chondrocytes were observed in the morphants as well. Conclusion Our data suggest that a mutation in VWA1 is functionally linked to HFM through suppression of CNCC proliferation and disruption of the organization of pharyngeal chondrocytes.
Collapse
Affiliation(s)
- Yibei Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Otolaryngology, China-Japan Friendship Hospital, Beijing, China
| | - Lu Ping
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaodong Luan
- School of Medicine, Tsinghua University, Beijing, China.,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yushan Chen
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
| | - Xinmiao Fan
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianyan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Yaping Liu
- Department of Medical Genetics and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pu Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuyang Zhang
- School of Medicine, Tsinghua University, Beijing, China.,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Xiaowei Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Lanigan LT, Mackie M, Feine S, Hublin JJ, Schmitz RW, Wilcke A, Collins MJ, Cappellini E, Olsen JV, Taurozzi AJ, Welker F. Multi-protease analysis of Pleistocene bone proteomes. J Proteomics 2020; 228:103889. [DOI: 10.1016/j.jprot.2020.103889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
|
13
|
Fitzgerald J. WARP: A Unique Extracellular Matrix Component of Cartilage, Muscle, and Endothelial Cell Basement Membranes. Anat Rec (Hoboken) 2019; 303:1619-1623. [PMID: 30768857 DOI: 10.1002/ar.24087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/16/2018] [Accepted: 09/07/2018] [Indexed: 11/09/2022]
Abstract
The von Willebrand factor A-domain-related protein (WARP) encoded by the VWA1 gene, is an orphan extracellular matrix protein that is expressed in a subset of ECM structures but whose function is poorly understood. Here, recent advances on understanding VWA1/WARP will be reviewed including analysis of VWA1 reporter and global knock-out mice, interaction studies, and recent transcriptome analyses. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jamie Fitzgerald
- Department of Orthopedic Surgery, Bone and Joint Center, Henry Ford Hospital System, Detroit, Michigan
| |
Collapse
|
14
|
Lv M, Zhou Y, Polson SW, Wan LQ, Wang M, Han L, Wang L, Lu XL. Identification of Chondrocyte Genes and Signaling Pathways in Response to Acute Joint Inflammation. Sci Rep 2019; 9:93. [PMID: 30643177 PMCID: PMC6331554 DOI: 10.1038/s41598-018-36500-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/21/2018] [Indexed: 01/14/2023] Open
Abstract
Traumatic joint injuries often result in elevated proinflammatory cytokine (such as IL-1β) levels in the joint cavity, which can increase the catabolic activities of chondrocytes and damage cartilage. This study investigated the early genetic responses of healthy in situ chondrocytes under IL-1β attack with a focus on cell cycle and calcium signaling pathways. RNA sequencing analysis identified 2,232 significantly changed genes by IL-1β, with 1,259 upregulated and 973 downregulated genes. Catabolic genes related to ECM degeneration were promoted by IL-1β, consistent with our observations of matrix protein loss and mechanical property decrease during 24-day in vitro culture of cartilage explants. IL-1β altered the cell cycle (108 genes) and Rho GTPases signaling (72 genes) in chondrocytes, while chondrocyte phenotypic shift was observed with histology, cell volume measurement, and MTT assay. IL-1β inhibited the spontaneous calcium signaling in chondrocytes, a fundamental signaling event in chondrocyte metabolic activities. The expression of 24 genes from 6 calcium-signaling related pathways were changed by IL-1β exposure. This study provided a comprehensive list of differentially expressed genes of healthy in situ chondrocytes in response to IL-1β attack, which represents a useful reference to verify and guide future cartilage studies related to the acute inflammation after joint trauma.
Collapse
Affiliation(s)
- Mengxi Lv
- Department of Mechanical Engineering, University of Delaware, Newark, DE, United States
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States
| | - Yilu Zhou
- Department of Mechanical Engineering, University of Delaware, Newark, DE, United States
| | - Shawn W Polson
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Meiqing Wang
- Department of Oral Anatomy and Physiology and TMD, the Fourth Military Medical University, Xi'an, Shanxi, China
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE, United States.
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States.
| |
Collapse
|
15
|
Das Bhowmik A, Dalal A, Matta D, Kandadai RM, Kanikannan MA, Aggarwal S. Identification of a novel splice site HSPG2 mutation and prenatal diagnosis in Schwartz Jampel Syndrome type 1 using whole exome sequencing. Neuromuscul Disord 2016; 26:809-814. [PMID: 27521129 DOI: 10.1016/j.nmd.2016.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 06/14/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
Schwartz-Jampel Syndrome type 1 is a rare autosomal recessive musculoskeletal disorder (OMIM #255800) caused by various mutations in the HSPG2 gene encoding protein perlecan, a ubiquitous heparan sulfate proteoglycan, which is an integral component of basement membranes and possesses angiogenic and growth-promoting attributes primarily by acting as a co-receptor for the basic fibroblast growth factors in human body. We report a novel homozygous intronic 5' splice site mutation in this gene (c.4740 + 5G>A) in a child with clinical features of Schwartz-Jampel syndrome type 1. The mutation was detected by exome sequencing and later confirmed by Sanger sequencing. The mother was found to be heterozygous for the mutation and an ongoing pregnancy found to be unaffected. cDNA analysis revealed skipping of exon 37 of HSPG2 gene in the patient due to the splicing error caused by this mutation. This is likely to result in loss of 38 amino acids from the domain III of the perlecan protein and presumably affects its structure and function as per protein modeling predictions. This report demonstrates the utility of exome sequencing as a routine molecular diagnostic approach of choice for this rare disorder.
Collapse
Affiliation(s)
- Aneek Das Bhowmik
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India; Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Divya Matta
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Rukmini M Kandadai
- Department of Neurology, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Meena A Kanikannan
- Department of Neurology, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Shagun Aggarwal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India; Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India.
| |
Collapse
|
16
|
The Basement Membrane Proteoglycans Perlecan and Agrin: Something Old, Something New. CURRENT TOPICS IN MEMBRANES 2015; 76:255-303. [PMID: 26610917 DOI: 10.1016/bs.ctm.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several members of the proteoglycan family are integral components of basement membranes; other proteoglycan family members interact with or bind to molecular residents of the basement membrane. Proteoglycans are polyfunctional molecules, for they derive their inherent bioactivity from the amino acid motifs embedded in the core protein structure as well as the glycosaminoglycan (GAG) chains that are covalently attached to the core protein. The presence of the covalently attached GAG chains significantly expands the "partnering" potential of proteoglycans, permitting them to interact with a broad spectrum of targets, including growth factors, cytokines, chemokines, and morphogens. Thus proteoglycans in the basement membrane are poised to exert diverse effects on the cells intimately associated with basement membranes.
Collapse
|
17
|
Deckx S, Carai P, Bateman J, Heymans S, Papageorgiou AP. Breeding Strategy Determines Rupture Incidence in Post-Infarct Healing WARPing Cardiovascular Research. PLoS One 2015; 10:e0139199. [PMID: 26406320 PMCID: PMC4583407 DOI: 10.1371/journal.pone.0139199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/09/2015] [Indexed: 01/28/2023] Open
Abstract
Background Von Willebrand A domain Related Protein (WARP), is a recently identified extracellular matrix protein. Based upon its involvement in matrix biology and its expression in the heart, we hypothesized that WARP regulates cardiac remodeling processes in the post-infarct healing process. Methods and results In the mouse model of myocardial infarction (MI), WARP expression increased in the infarcted area 3-days post-MI. In the healthy myocardium WARP localized with perlecan in the basement membrane, which was disrupted upon injury. In vitro studies showed high expression of WARP by cardiac fibroblasts, which further increases upon TGFβ stimulation. Furthermore, WARP expression correlated with aSMA and COL1 expression, markers of fibroblast to myofibroblast transition, in vivo and in vitro. Finally, WARP knockdown in vitro affected extra- and intracellular basic fibroblast growth factor production in myofibroblasts. To investigate the function for WARP in infarction healing, we performed an MI study in WARP knockout (KO) mice backcrossed more than 10 times on an Australian C57Bl/6-J background and bred in-house, and compared to wild type (WT) mice of the same C57Bl/6-J strain but of commercial European origin. WARP KO mice showed no mortality after MI, whereas 40% of the WT mice died due to cardiac rupture. However, when WARP KO mice were backcrossed on the European C57Bl/6-J background and bred heterozygous in-house, the previously seen protective effect in the WARP KO mice after MI was lost. Importantly, comparison of the cardiac response post-MI in WT mice bred heterozygous in-house versus commercially purchased WT mice revealed differences in cardiac rupture. Conclusion These data demonstrate a redundant role for WARP in the wound healing process after MI but demonstrate that the continental/breeding/housing origin of mice of the same C57Bl6-J strain is critical in determining the susceptibility to cardiac rupture and stress the importance of using the correct littermate controls.
Collapse
Affiliation(s)
- Sophie Deckx
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands
- Centre for Molecular and Vascular Biology, KULeuven, Leuven, Belgium
- * E-mail:
| | - Paolo Carai
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands
- Centre for Molecular and Vascular Biology, KULeuven, Leuven, Belgium
| | - John Bateman
- Murdoch Children’s Research Institute, University of Melbourne, Royal Children’s Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Stephane Heymans
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands
- Centre for Molecular and Vascular Biology, KULeuven, Leuven, Belgium
| | - Anna-Pia Papageorgiou
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands
- Centre for Molecular and Vascular Biology, KULeuven, Leuven, Belgium
| |
Collapse
|
18
|
Zhang Z. Chondrons and the pericellular matrix of chondrocytes. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:267-77. [PMID: 25366980 DOI: 10.1089/ten.teb.2014.0286] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In cartilage, chondrocytes are embedded within an abundant extracellular matrix (ECM). A typical chondron consists of a chondrocyte and the immediate surrounding pericellular matrix (PCM). The PCM has a patent structure, defined molecular composition, and unique physical properties that support the chondrocyte. Given this spatial position, the PCM is pivotal in mediating communication between chondrocytes and the ECM and, thus, plays a critical role in cartilage homeostasis. The biological function and mechanical properties of the PCM have been extensively studied, mostly in the form of chondrons. This review intends to summarize recent progress in chondron and chondrocyte PCM research, with emphasis on the re-establishment of the PCM by isolated chondrocytes or mesenchymal stem cells during chondrogenic differentiation, and the effects of the PCM on cartilage tissue formation.
Collapse
Affiliation(s)
- Zijun Zhang
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland
| |
Collapse
|
19
|
Exome sequencing identifies a rare HSPG2 variant associated with familial idiopathic scoliosis. G3-GENES GENOMES GENETICS 2014; 5:167-74. [PMID: 25504735 PMCID: PMC4321025 DOI: 10.1534/g3.114.015669] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Idiopathic scoliosis occurs in 3% of individuals and has an unknown etiology. The objective of this study was to identify rare variants that contribute to the etiology of idiopathic scoliosis by using exome sequencing in a multigenerational family with idiopathic scoliosis. Exome sequencing was completed for three members of this multigenerational family with idiopathic scoliosis, resulting in the identification of a variant in the HSPG2 gene as a potential contributor to the phenotype. The HSPG2 gene was sequenced in a separate cohort of 100 unrelated individuals affected with idiopathic scoliosis and also was examined in an independent idiopathic scoliosis population. The exome sequencing and subsequent bioinformatics filtering resulted in 16 potentially damaging and rare coding variants. One of these variants, p.Asn786Ser, is located in the HSPG2 gene. The variant p.Asn786Ser also is overrepresented in a larger cohort of idiopathic scoliosis cases compared with a control population (P = 0.024). Furthermore, we identified additional rare HSPG2 variants that are predicted to be damaging in two independent cohorts of individuals with idiopathic scoliosis. The HSPG2 gene encodes for a ubiquitous multifunctional protein within the extracellular matrix in which loss of function mutation are known to result in a musculoskeletal phenotype in both mouse and humans. Based on these results, we conclude that rare variants in the HSPG2 gene potentially contribute to the idiopathic scoliosis phenotype in a subset of patients with idiopathic scoliosis. Further studies must be completed to confirm the effect of the HSPG2 gene on the idiopathic scoliosis phenotype.
Collapse
|
20
|
Farach-Carson MC, Warren CR, Harrington DA, Carson DD. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol 2013; 34:64-79. [PMID: 24001398 DOI: 10.1016/j.matbio.2013.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 12/11/2022]
Abstract
The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550 M years) extracellular matrix molecules. In vertebrates, perlecan's five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously suggested, to that of a critical agent for establishing and patrolling tissue borders in complex tissues in metazoans. We also propose that understanding these unique functions of the individual portions of the perlecan molecule can provide new insights and tools for engineering of complex multi-layered tissues including providing the necessary cues for establishing neotissue borders.
Collapse
Affiliation(s)
- Mary C Farach-Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States.
| | - Curtis R Warren
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel A Harrington
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel D Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| |
Collapse
|
21
|
Lord MS, Whitelock JM. Recombinant production of proteoglycans and their bioactive domains. FEBS J 2013; 280:2490-510. [DOI: 10.1111/febs.12197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/04/2013] [Accepted: 02/15/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Megan S. Lord
- Graduate School of Biomedical Engineering; The University of New South Wales; Sydney; NSW; Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering; The University of New South Wales; Sydney; NSW; Australia
| |
Collapse
|
22
|
Hansen U, Allen JM, White R, Moscibrocki C, Bruckner P, Bateman JF, Fitzgerald J. WARP interacts with collagen VI-containing microfibrils in the pericellular matrix of human chondrocytes. PLoS One 2012; 7:e52793. [PMID: 23300779 PMCID: PMC3530481 DOI: 10.1371/journal.pone.0052793] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
Collagen VI and WARP are extracellular structural macromolecules present in cartilage and associated with BM suprastructures in non-skeletal tissues. We have previously shown that in WARP-deficient mice, collagen VI is specifically reduced in regions of the peripheral nerve ECM where WARP is expressed, suggesting that both macromolecules are part of the same suprastructure. The object of this study was to conduct a detailed analysis of WARP-collagen VI interactions in vitro in cartilage, a tissue rich in WARP and collagen VI. Immunohistochemical analysis of mouse and human articular cartilage showed that WARP and collagen VI co-localize in the pericellular matrix of superficial zone articular chondrocytes. EM analysis on extracts of human articular cartilage showed that WARP associates closely with collagen VI-containing suprastructures. Additional evidence of an interaction is provided by immunogold EM and immunoblot analysis showing that WARP was present in collagen VI-containing networks isolated from cartilage. Further characterization were done by solid phase binding studies and reconstitution experiments using purified recombinant WARP and isolated collagen VI. Collagen VI binds to WARP with an apparent K(d) of approximately 22 nM and the binding site(s) for WARP resides within the triple helical domain since WARP binds to both intact collagen VI tetramers and pepsinized collagen VI. Together, these data confirm and extend our previous findings by demonstrating that WARP and collagen VI form high affinity associations in vivo in cartilage. We conclude that WARP is ideally placed to function as an adapter protein in the cartilage pericellular matrix.
Collapse
Affiliation(s)
- Uwe Hansen
- Institute for Physiological Chemistry and Pathobiochemistry, University Hospital of Muenster, Muenster, Germany
| | - Justin M. Allen
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, and University of Melbourne, Parkville, Victoria, Australia
| | - Rachel White
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Cathleen Moscibrocki
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Peter Bruckner
- Institute for Physiological Chemistry and Pathobiochemistry, University Hospital of Muenster, Muenster, Germany
| | - John F. Bateman
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia
- Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Jamie Fitzgerald
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
23
|
Bernardo BC, Belluoccio D, Rowley L, Little CB, Hansen U, Bateman JF. Cartilage intermediate layer protein 2 (CILP-2) is expressed in articular and meniscal cartilage and down-regulated in experimental osteoarthritis. J Biol Chem 2011; 286:37758-67. [PMID: 21880736 DOI: 10.1074/jbc.m111.248039] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Using transcriptome profiling to determine differential gene expression between the permanent mouse articular cartilage and the transient growth plate cartilage, we identified a highly expressed gene, Cilp2, which is expressed differentially by articular chondrocytes. CILP-2 is highly homologous to CILP-1 (cartilage intermediate layer protein 1), which is expressed in the intermediate zone of articular cartilage and has been linked to cartilage degenerative diseases. We demonstrated that Cilp2 has a restricted mRNA distribution at the surface of the mouse articular cartilage during development, becoming localized to the intermediate zone of articular cartilage and meniscal cartilage with maturity. Although the extracellular CILP-2 protein localization is broadly similar to CILP-1, CILP-2 appears to be more localized in the deeper intermediate zone of the articular cartilage extracellular matrix at maturity. CILP-2 was shown to be proteolytically processed, N-glycosylated, and present in human articular cartilage. In surgically induced osteoarthritis in mice, Cilp1 and Cilp2 gene expression was dysregulated. However, whereas Cilp1 expression was increased, Cilp2 gene expression was down-regulated demonstrating a differential response to mechanically induced joint destabilization. CILP-2 protein was reduced in the mouse osteoarthritic cartilage. Ultrastructural analysis also suggested that CILP-2 may be associated with collagen VI microfibrils and thus may mediate interactions between matrix components in the territorial and inter-territorial articular cartilage matrix. mRNA expression analysis indicated that whereas Cilp1 and Cilp2 are expressed most abundantly in cartilaginous tissues, expression can be detected in muscle and heart.
Collapse
Affiliation(s)
- Bianca C Bernardo
- Murdoch Childrens Research Institute, University of Melbourne, Parkville VIC 3052, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Duong T, Lopez IA, Ishiyama A, Ishiyama G. Immunocytochemical distribution of WARP (von Willebrand A domain-related protein) in the inner ear. Brain Res 2010; 1367:50-61. [PMID: 20971096 DOI: 10.1016/j.brainres.2010.10.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/14/2010] [Accepted: 10/15/2010] [Indexed: 11/18/2022]
Abstract
The basic components of the epithelial, perineural, and perivascular basement membranes in the inner ear have been well-documented in several animal models and in the human inner ear. The von Willebrand A domain-related protein (WARP) is an extracellular matrix molecule with restricted expression in cartilage, and a subset of basement membranes in peripheral nerves, muscle, and central nervous system vasculature. It has been suggested that WARP has an important role in maintaining the blood-brain barrier. To date no studies on WARP distribution have been performed in the inner ear, which is equipped with an intricate vasculature network. In the present study, we determined the distribution of WARP by immunocytochemistry in the human inner ear using auditory and vestibular endorgans microdissected from human temporal bones obtained at autopsy. All subjects (n=5, aged 55-87years old) had documented normal auditory and vestibular function. We also determined the WARP immunolocalization in the mouse inner ear. WARP immunoreactivity localized to the vasculature throughout the stroma of the cristae ampullaris, the maculae utricle, and saccule in the human and mouse. In the human and mouse inner ear, WARP immunoreactivity delineated blood vessels located in the stria vascularis, spiral ligament, sub-basilar region, stromal tissue, and the spiral and vestibular ganglia. The distinct localization of WARP in the inner ear vasculature suggests an important role in maintaining its integrity. In addition, WARP allows delineation of microvessels in the inner ear allowing the study of vascular pathology in the development of otological diseases.
Collapse
Affiliation(s)
- Trac Duong
- Surgery Department, Division of Head and Neck, David Geffen School of Medicine, UCLA, Los Angeles California, USA
| | | | | | | |
Collapse
|
25
|
Zhang Y, Dai Y, Liu Y, Ren J. Mandibulofacial dysostosis, microtia, and limb anomalies in a newborn: a new form of acrofacial dysostosis syndrome? Clin Genet 2010; 78:570-4. [DOI: 10.1111/j.1399-0004.2010.01427.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Kirn-Safran C, Farach-Carson MC, Carson DD. Multifunctionality of extracellular and cell surface heparan sulfate proteoglycans. Cell Mol Life Sci 2009; 66:3421-34. [PMID: 19629389 PMCID: PMC11115568 DOI: 10.1007/s00018-009-0096-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/01/2009] [Accepted: 07/06/2009] [Indexed: 02/06/2023]
Abstract
Heparan sulfate proteoglycans are a remarkably diverse family of glycosaminoglycan-bearing protein cores that include the syndecans, the glypicans, perlecan, agrin, and collagen XVIII. Members of this protein class play key roles during normal processes that occur during development, tissue morphogenesis, and wound healing. As key components of basement membranes in organs and tissues, they also participate in selective filtration of biological fluids, in establishing cellular barriers, and in modulation of angiogenesis. The ability to perform these functions is provided both by the features of the protein cores as well as by the unique properties of heparan sulfate, which is assembled as a polymer of N-acetylglucosamine and glucuronic acid and modified by specific enzymes to generate specialized biologically active structures. This article discusses the structures and functions of this amazing family of proteoglycans and provides a platform for further study of the individual members.
Collapse
Affiliation(s)
| | - Mary C. Farach-Carson
- Department of Biological Sciences, University of Delaware, Newark, DE 19707 USA
- Present Address: Department of Biochemistry and Cell Biology, Weiss School of Natural Sciences, Rice University, MS-102, P.O. Box 1892, Houston, TX 77251-1892 USA
| | - Daniel D. Carson
- Present Address: Department of Biochemistry and Cell Biology, Weiss School of Natural Sciences, Rice University, MS-102, P.O. Box 1892, Houston, TX 77251-1892 USA
| |
Collapse
|
27
|
Kirn-Safran C, Farach-Carson MC, Carson DD. Multifunctionality of extracellular and cell surface heparan sulfate proteoglycans. Cell Mol Life Sci 2009. [DOI: 10.1007/s00018-009-0096-1 doi:dx.doi.org] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
28
|
Allen JM, Zamurs L, Brachvogel B, Schlötzer-Schrehardt U, Hansen U, Lamandé SR, Rowley L, Fitzgerald J, Bateman JF. Mice lacking the extracellular matrix protein WARP develop normally but have compromised peripheral nerve structure and function. J Biol Chem 2009; 284:12020-30. [PMID: 19279005 DOI: 10.1074/jbc.m806968200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WARP is a recently identified extracellular matrix molecule with restricted expression in permanent cartilages and a distinct subset of basement membranes in peripheral nerves, muscle, and the central nervous system vasculature. WARP interacts with perlecan, and we also demonstrate here that WARP binds type VI collagen, suggesting a function in bridging connective tissue structures. To understand the in vivo function of WARP, we generated a WARP-deficient mouse strain. WARP-null mice were healthy, viable, and fertile with no overt abnormalities. Motor function and behavioral testing demonstrated that WARP-null mice exhibited a significantly delayed response to acute painful stimulus and impaired fine motor coordination, although general motor function was not affected, suggesting compromised peripheral nerve function. Immunostaining of WARP-interacting ligands demonstrated that the collagen VI microfibrillar matrix was severely reduced and mislocalized in peripheral nerves of WARP-null mice. Further ultrastructural analysis revealed reduced fibrillar collagen deposition within the peripheral nerve extracellular matrix and abnormal partial fusing of adjacent Schwann cell basement membranes, suggesting an important function for WARP in stabilizing the association of the collagenous interstitial matrix with the Schwann cell basement membrane. In contrast, other WARP-deficient tissues such as articular cartilage, intervertebral discs, and skeletal muscle showed no detectable abnormalities, and basement membranes formed normally. Our data demonstrate that although WARP is not essential for basement membrane formation or musculoskeletal development, it has critical roles in the structure and function of peripheral nerves.
Collapse
Affiliation(s)
- Justin M Allen
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Transcriptome-based systematic identification of extracellular matrix proteins. Proc Natl Acad Sci U S A 2008; 105:12849-54. [PMID: 18757743 DOI: 10.1073/pnas.0803640105] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extracellular matrix (ECM), which provides critical scaffolds for all adhesive cells, regulates proliferation, differentiation, and apoptosis. Different cell types employ customized ECMs, which are thought to play important roles in the generation of so-called niches that contribute to cell-specific functions. The molecular entities of these customized ECMs, however, have not been elucidated. Here, we describe a strategy for transcriptome-wide identification of ECM proteins based on computational screening of >60,000 full-length mouse cDNAs for secreted proteins, followed by in vitro functional assays. These assays screened the candidate proteins for ECM-assembling activities, interactions with other ECM molecules, modifications with glycosaminoglycans, and cell-adhesive activities, and were then complemented with immunohistochemical analysis. We identified 16 ECM proteins, of which seven were localized in basement membrane (BM) zones. The identification of these previously unknown BM proteins allowed us to construct a body map of BM proteins, which represents the comprehensive immunohistochemistry-based expression profiles of the tissue-specific customization of BMs.
Collapse
|
30
|
Recent advances in annular pathobiology provide insights into rim-lesion mediated intervertebral disc degeneration and potential new approaches to annular repair strategies. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2008; 17:1131-48. [PMID: 18584218 DOI: 10.1007/s00586-008-0712-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 06/04/2008] [Accepted: 06/18/2008] [Indexed: 12/14/2022]
Abstract
The objective of this study was to assess the impact of a landmark annular lesion model on our understanding of the etiopathogenesis of IVD degeneration and to appraise current IVD repairative strategies. A number of studies have utilised the Osti sheep model since its development in 1990. The experimental questions posed at that time are covered in this review, as are significant recent advances in annular repair strategies. The ovine model has provided important spatial and temporal insights into the longitudinal development of annular lesions and how they impact on other discal and paradiscal components such as the NP, cartilaginous end plates, zygapophyseal joints and vertebral bone and blood vessels. Important recent advances have been made in biomatrix design for IVD repair and in the oriented and dynamic culture of annular fibrochondrocytes into planar, spatially relevant, annular type structures. The development of hyaluronan hydrogels capable of rapid in situ gelation offer the possibility of supplementation of matrices with cells and other biomimetics and represent a significant advance in biopolymer design. New generation biological glues and self-curing acrylic formulations which may be augmented with slow delivery biomimetics in microcarriers may also find application in the non-surgical repair of annular defects. Despite major advances, significant technical challenges still have to be overcome before the biological repair of this intractable connective tissue becomes a realistic alternative to conventional surgical intervention for the treatment of chronic degenerate IVDs.
Collapse
|
31
|
Fitzgerald J, Rich C, Zhou FH, Hansen U. Three novel collagen VI chains, alpha4(VI), alpha5(VI), and alpha6(VI). J Biol Chem 2008; 283:20170-80. [PMID: 18400749 DOI: 10.1074/jbc.m710139200] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the identification of three new collagen VI genes at a single locus on human chromosome 3q22.1. The three new genes are COL6A4, COL6A5, and COL6A6 that encode the alpha4(VI), alpha5(VI), and alpha6(VI) chains. In humans, the COL6A4 gene has been disrupted by a chromosome break. Each of the three new collagen chains contains a 336-amino acid triple helix flanked by seven N-terminal von Willebrand factor A-like domains and two (alpha4 and alpha6 chains) or three (alpha5 chain) C-terminal von Willebrand factor A-like domains. In humans, mRNA expression of COL6A5 is restricted to a few tissues, including lung, testis, and colon. In contrast, the COL6A6 gene is expressed in a wide range of fetal and adult tissues, including lung, kidney, liver, spleen, thymus, heart, and skeletal muscle. Antibodies to the alpha6(VI) chain stained the extracellular matrix of human skeletal and cardiac muscle, lung, and the territorial matrix of articular cartilage. In cell transfection and immunoprecipitation experiments, mouse alpha4(VI)N6-C2 chain co-assembled with endogenous alpha1(VI) and alpha2(VI) chains to form trimeric collagen VI molecules that were secreted from the cell. In contrast, alpha5(VI)N5-C1 and alpha6(VI)N6-C2 chains did not assemble with alpha1(VI) and alpha2(VI) chains and accumulated intracellularly. We conclude that the alpha4(VI)N6-C2 chain contains all the elements necessary for trimerization with alpha1(VI) and alpha2(VI). In summary, the discovery of three additional collagen VI chains doubles the collagen VI family and adds a layer of complexity to collagen VI assembly and function in the extracellular matrix.
Collapse
Affiliation(s)
- Jamie Fitzgerald
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
32
|
Wilson R, Bateman JF. Cartilage proteomics: Challenges, solutions and recent advances. Proteomics Clin Appl 2008; 2:251-63. [DOI: 10.1002/prca.200780007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
Melrose J, Hayes AJ, Whitelock JM, Little CB. Perlecan, the “jack of all trades” proteoglycan of cartilaginous weight-bearing connective tissues. Bioessays 2008; 30:457-69. [DOI: 10.1002/bies.20748] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Smith SML, West LA, Hassell JR. The core protein of growth plate perlecan binds FGF-18 and alters its mitogenic effect on chondrocytes. Arch Biochem Biophys 2007; 468:244-51. [PMID: 17971291 PMCID: PMC2696159 DOI: 10.1016/j.abb.2007.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/11/2007] [Accepted: 10/13/2007] [Indexed: 02/04/2023]
Abstract
Fibroblast growth factor-18 (FGF-18) has been shown to regulate the growth plate chondrocyte proliferation, hypertrophy and cartilage vascularization necessary for endochondral ossification. The heparan sulfate proteoglycan perlecan is also critical for growth plate chondrocyte proliferation. FGF-18 null mice exhibit a skeletal dwarfism similar to that of perlecan null mice. Growth plate perlecan contains chondroitin sulfate (CS) and heparan sulfate (HS) chains and FGF-18 is known to bind to heparin and to heparan sulfate from some sources. We used cationic filtration and immunoprecipitation assays to investigate the binding of FGF-18 to perlecan purified from the growth plate and to recombinant perlecan domains expressed in COS-7 cells. FGF-18 bound to perlecan with a K(d) of 145 nM. Near saturation, approximately 103 molecules of FGF-18 bound per molecule of perlecan. At the lower concentrations used, FGF-18 bound with a K(d) of 27.8 nM. This binding was not significantly altered by chondroitinase nor heparitinase digestion of perlecan, but was substantially and significantly reduced by reduction and alkylation of the perlecan core protein. This indicates that the perlecan core protein (and not the CS nor HS chains) is involved in FGF-18 binding. FGF-18 bound equally to full-length perlecan purified from the growth plate and to recombinant domains I-III and III of perlecan. These data indicate that low affinity binding sites for FGF-18 are present in cysteine-rich regions of domain III of perlecan. FGF-18 stimulated 3H-thymidine incorporation in growth plate chondrocyte cultures derived from the lower and upper proliferating zones by 9- and 14-fold, respectively. The addition of perlecan reversed this increased incorporation in the lower proliferating chondrocytes by 74% and in the upper proliferating cells by 37%. These results suggest that perlecan can bind FGF-18 and alter the mitogenic effect of FGF-18 on growth plate chondrocytes.
Collapse
Affiliation(s)
- Simone M-L Smith
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B Downs Boulevard, Tampa, FL 33612, USA
| | | | | |
Collapse
|
35
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|