1
|
Tanouti Y, Roovers M, Wolff P, Lechner A, Van Elder D, Feller A, Soin R, Gueydan C, Kruys V, Droogmans L, Labar G. Structural insight into the novel Thermus thermophilus SPOUT methyltransferase RlmR catalysing Um2552 formation in the 23S rRNA A-loop: a case of convergent evolution. Nucleic Acids Res 2025; 53:gkaf432. [PMID: 40444636 PMCID: PMC12123411 DOI: 10.1093/nar/gkaf432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/15/2025] [Accepted: 05/13/2025] [Indexed: 06/02/2025] Open
Abstract
The A-loop of the 23S ribosomal RNA is a critical region of the ribosome involved in stabilizing the CCA-end of A-site-bound transfer RNA. Within this loop, nucleotide U2552 is frequently 2'-O-methylated (Um2552) in various organisms belonging to the three domains of life. Until now, two enzymatic systems are known to modify this position, relying on either a Rossmann fold-like methyltransferase (RFM) or a small RNA-guided system. Here, we report the identification of a third system involved in Um2552 formation, consisting of a methyltransferase of the SPOUT (SpoU-TrmD) superfamily encoded by the ttc1712 open reading frame of Thermus thermophilus, herein renamed RlmR. In Escherichia coli and human mitochondria, the absence of the RFM enzyme responsible for Um2552 formation is known to cause severe defects in ribogenesis and ribosome function. In contrast, no comparable effect was observed upon ttc1712 gene invalidation in T. thermophilus. We also report the high-resolution crystal structure of RlmR in complex with a 59-mer substrate RNA. The structure highlights significant conformational rearrangements of the A-loop and provides a new insight into the catalytic mechanism, revealing structural features that may be generalized to other SpoU methyltransferases.
Collapse
Affiliation(s)
- Yousra Tanouti
- Labiris, Avenue Emile Gryson 1, B-1070 Bruxelles, Belgium
- Laboratoire de Biologie Moléculaire du Gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | | | - Philippe Wolff
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - Antony Lechner
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - Dany Van Elder
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles (ULB), Labiris, Avenue Emile Gryson 1, B-1070 Bruxelles, Belgium
| | - André Feller
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles (ULB), Labiris, Avenue Emile Gryson 1, B-1070 Bruxelles, Belgium
| | - Romuald Soin
- Laboratoire de Biologie Moléculaire du Gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Cyril Gueydan
- Laboratoire de Biologie Moléculaire du Gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Véronique Kruys
- Laboratoire de Biologie Moléculaire du Gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Louis Droogmans
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles (ULB), Labiris, Avenue Emile Gryson 1, B-1070 Bruxelles, Belgium
| | - Geoffray Labar
- Labiris, Avenue Emile Gryson 1, B-1070 Bruxelles, Belgium
| |
Collapse
|
2
|
Yamagami R, Takahashi K, Shingu S, Namba M, Kamizaki K, Hori H. tRNA pseudouridine synthase D (TruD) from Thermus thermophilus modifies U13 in tRNA Asp, tRNA Glu, and tRNA Gln and U35 in tRNA Tyr. RNA (NEW YORK, N.Y.) 2025; 31:850-867. [PMID: 40138658 DOI: 10.1261/rna.080405.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Pseudouridine is a modified nucleoside found in various RNA species, including tRNA, rRNA, mRNA, and other noncoding RNAs. Pseudouridine is synthesized from uridine by pseudouridine synthases. While the landscape of pseudouridines in RNA has been extensively studied, much less is known about substrate RNA recognition mechanisms of pseudouridine synthases. Herein, we investigate the tRNA pseudouridine synthase D (TruD), which catalyzes the formation of pseudouridine at position 13 in tRNAAsp in Thermus thermophilus, a thermophilic eubacterium. To identify the tRNA substrates of TruD, we compared results of next-generation sequencing experiments combined with bisulfite probing of pseudouridine in tRNAs from both wild-type and a truD gene disruption mutant. Our data reveal that TruD recognizes tRNAAsp, tRNAGlu, and tRNAGln as substrate tRNAs. In addition, we discover that TruD modifies U35 in tRNATyr, which has previously been reported as a substrate of RluF in Escherichia coli These findings were validated through in vitro assays with recombinant TruD, which further demonstrated that TruD can act on other RNAs, including a CDC8 mRNA fragment, a known substrate of Pus7, the eukaryotic counterpart of TruD. Systematic mutational analysis of CDC8 transcripts reveals that TruD preferentially pseudouridylates the UNUAR sequence in tRNA substrates (N = any nucleotide, R = purine, U = target site). Finally, we identify over 600 mRNA fragments containing this recognition sequence in T. thermophilus ORFs and demonstrate the ability of TruD to act on these potential mRNA substrates. Our findings suggest the possibility that many other RNAs are modified by TruD in vivo.
Collapse
MESH Headings
- Thermus thermophilus/enzymology
- Thermus thermophilus/genetics
- Pseudouridine/metabolism
- RNA, Transfer, Asp/genetics
- RNA, Transfer, Asp/metabolism
- RNA, Transfer, Asp/chemistry
- Intramolecular Transferases/metabolism
- Intramolecular Transferases/genetics
- RNA, Transfer, Glu/genetics
- RNA, Transfer, Glu/metabolism
- RNA, Transfer, Glu/chemistry
- RNA, Transfer, Gln/genetics
- RNA, Transfer, Gln/metabolism
- RNA, Transfer, Gln/chemistry
- RNA, Transfer, Tyr/genetics
- RNA, Transfer, Tyr/metabolism
- RNA, Transfer, Tyr/chemistry
- Hydro-Lyases/metabolism
- Hydro-Lyases/genetics
- Substrate Specificity
- RNA, Transfer/metabolism
- RNA, Transfer/genetics
- Bacterial Proteins/metabolism
- Bacterial Proteins/genetics
Collapse
Affiliation(s)
- Ryota Yamagami
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Kojiro Takahashi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Shogo Shingu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Miyu Namba
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Kohsuke Kamizaki
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Hori
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
3
|
Popova A, Jain N, Dong X, Abdollah-Nia F, Britton R, Williamson J. Complete list of canonical post-transcriptional modifications in the Bacillus subtilis ribosome and their link to RbgA driven large subunit assembly. Nucleic Acids Res 2024; 52:11203-11217. [PMID: 39036956 PMCID: PMC11472175 DOI: 10.1093/nar/gkae626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Ribosomal RNA modifications in prokaryotes have been sporadically studied, but there is a lack of a comprehensive picture of modification sites across bacterial phylogeny. Bacillus subtilis is a preeminent model organism for gram-positive bacteria, with a well-annotated and editable genome, convenient for fundamental studies and industrial use. Yet remarkably, there has been no complete characterization of its rRNA modification inventory. By expanding modern MS tools for the discovery of RNA modifications, we found a total of 25 modification sites in 16S and 23S rRNA of B. subtilis, including the chemical identity of the modified nucleosides and their precise sequence location. Furthermore, by perturbing large subunit biogenesis using depletion of an essential factor RbgA and measuring the completion of 23S modifications in the accumulated intermediate, we provide a first look at the order of modification steps during the late stages of assembly in B. subtilis. While our work expands the knowledge of bacterial rRNA modification patterns, adding B. subtilis to the list of fully annotated species after Escherichia coli and Thermus thermophilus, in a broader context, it provides the experimental framework for discovery and functional profiling of rRNA modifications to ultimately elucidate their role in ribosome biogenesis and translation.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/genetics
- Bacterial Proteins/metabolism
- Bacterial Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/genetics
- Ribosomes/metabolism
- Ribosomes/genetics
Collapse
Affiliation(s)
- Anna M Popova
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nikhil Jain
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
- INSITRO, 279 E Grand Ave., South San Francisco, CA 94080, USA
| | - Xiyu Dong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Farshad Abdollah-Nia
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Popova AM, Jain N, Dong X, Abdollah-Nia F, Britton RA, Williamson JR. Complete list of canonical post-transcriptional modifications in the Bacillus subtilis ribosome and their link to RbgA driven large subunit assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593627. [PMID: 38765983 PMCID: PMC11100780 DOI: 10.1101/2024.05.10.593627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ribosomal RNA modifications in prokaryotes have been sporadically studied, but there is a lack of a comprehensive picture of modification sites across bacterial phylogeny. B. subtilis is a preeminent model organism for gram-positive bacteria, with a well-annotated and editable genome, convenient for fundamental studies and industrial use. Yet remarkably, there has been no complete characterization of its rRNA modification inventory. By expanding modern MS tools for the discovery of RNA modifications, we found a total of 25 modification sites in 16S and 23S rRNA of B. subtilis, including the chemical identity of the modified nucleosides and their precise sequence location. Furthermore, by perturbing large subunit biogenesis using depletion of an essential factor RbgA and measuring the completion of 23S modifications in the accumulated intermediate, we provide a first look at the order of modification steps during the late stages of assembly in B. subtilis. While our work expands the knowledge of bacterial rRNA modification patterns, adding B. subtilis to the list of fully annotated species after E. coli and T. thermophilus, in a broader context, it provides the experimental framework for discovery and functional profiling of rRNA modifications to ultimately elucidate their role in ribosome biogenesis and translation.
Collapse
Affiliation(s)
- Anna M. Popova
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nikhil Jain
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA, Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiyu Dong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Farshad Abdollah-Nia
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA, Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R. Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Clark ZS, O'Connor M. Suppressor analysis links trans-translation and ribosomal protein uS7 to RluD function in Escherichia coli. Biochem Biophys Res Commun 2024; 700:149584. [PMID: 38295647 PMCID: PMC10878134 DOI: 10.1016/j.bbrc.2024.149584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
The pseudouridine (ψ) synthase, RluD is responsible for three ψ modifications in the helix 69 (H69) of bacterial 23S rRNA. While normally dispensable, rluD becomes critical for rapid cell growth in bacteria that are defective in translation-termination. In slow-growing rluD- bacteria, suppressors affecting termination factors RF2 and RF3 arise frequently and restore normal termination and rapid cell growth. Here we describe two weaker suppressors, affecting rpsG, encoding ribosomal protein uS7 and ssrA, encoding tmRNA. In K-12 strains of E. coli, rpsG terminates at a TGA codon. In the suppressor strain, alteration of an upstream CAG to a TAG stop codon results in a shortened uS7 and partial alleviation of slow growth, likely by replacing an inefficient TGA stop codon with the more efficient TAG. Inefficient termination events, such as occurs in some rluD- strains, are targeted by trans-translation. Inactivation of the ssrA gene in slow-growing, termination-defective mutants lacking RluD and RF3, also partially restores robust growth, most probably by preventing destruction of completed polypeptides on ribosomes at slow-terminating stop codons. Finally, an additional role for RluD has been proposed, independent of its pseudouridine synthase activity. This is based on the observation that plasmids expressing catalytically dead (D139N or D139T) RluD proteins could nonetheless restore robust growth to an E. coli K-12 rluD- mutant. However, newly constructed D139N and D139T rluD plasmids do not have any growth-restoring activity and the original observations were likely due to the appearance of suppressors.
Collapse
Affiliation(s)
- Zachary S Clark
- Division of Biology and Biomedical Systems, School of Science and Engineering, 306 Spencer Hall, University of Missouri-Kansas City, 5007 Rockhill Rd., Kansas City, MO, 64110, USA
| | - Michael O'Connor
- Division of Biology and Biomedical Systems, School of Science and Engineering, 306 Spencer Hall, University of Missouri-Kansas City, 5007 Rockhill Rd., Kansas City, MO, 64110, USA.
| |
Collapse
|
6
|
Deng L, Kumar J, Rose R, McIntyre W, Fabris D. Analyzing RNA posttranscriptional modifications to decipher the epitranscriptomic code. MASS SPECTROMETRY REVIEWS 2024; 43:5-38. [PMID: 36052666 DOI: 10.1002/mas.21798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The discovery of RNA silencing has revealed that non-protein-coding sequences (ncRNAs) can cover essential roles in regulatory networks and their malfunction may result in severe consequences on human health. These findings have prompted a general reassessment of the significance of RNA as a key player in cellular processes. This reassessment, however, will not be complete without a greater understanding of the distribution and function of the over 170 variants of the canonical ribonucleotides, which contribute to the breathtaking structural diversity of natural RNA. This review surveys the analytical approaches employed for the identification, characterization, and detection of RNA posttranscriptional modifications (rPTMs). The merits of analyzing individual units after exhaustive hydrolysis of the initial biopolymer are outlined together with those of identifying their position in the sequence of parent strands. Approaches based on next generation sequencing and mass spectrometry technologies are covered in depth to provide a comprehensive view of their respective merits. Deciphering the epitranscriptomic code will require not only mapping the location of rPTMs in the various classes of RNAs, but also assessing the variations of expression levels under different experimental conditions. The fact that no individual platform is currently capable of meeting all such demands implies that it will be essential to capitalize on complementary approaches to obtain the desired information. For this reason, the review strived to cover the broadest possible range of techniques to provide readers with the fundamental elements necessary to make informed choices and design the most effective possible strategy to accomplish the task at hand.
Collapse
Affiliation(s)
- L Deng
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - J Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - R Rose
- Department of Advanced Research Technologies, New York University Langone Health Center, New York, USA
| | - W McIntyre
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Daniele Fabris
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
7
|
Xu Y, Zhu TF. Mirror-image T7 transcription of chirally inverted ribosomal and functional RNAs. Science 2022; 378:405-412. [DOI: 10.1126/science.abm0646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To synthesize a chirally inverted ribosome with the goal of building mirror-image biology systems requires the preparation of kilobase-long mirror-image ribosomal RNAs that make up the structural and catalytic core and about two-thirds of the molecular mass of the mirror-image ribosome. Here, we chemically synthesized a 100-kilodalton mirror-image T7 RNA polymerase, which enabled efficient and faithful transcription of the full-length mirror-image 5
S
, 16
S
, and 23
S
ribosomal RNAs from enzymatically assembled long mirror-image genes. We further exploited the versatile mirror-image T7 transcription system for practical applications such as biostable mirror-image riboswitch sensor, long-term storage of unprotected kilobase-long
l
-RNA in water, and
l
-ribozyme–catalyzed
l
-RNA polymerization to serve as a model system for basic RNA research.
Collapse
Affiliation(s)
- Yuan Xu
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- School of Life Sciences, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Ting F. Zhu
- School of Life Sciences, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Thakur P, Estevez M, Lobue PA, Limbach PA, Addepalli B. Improved RNA modification mapping of cellular non-coding RNAs using C- and U-specific RNases. Analyst 2020; 145:816-827. [PMID: 31825413 PMCID: PMC7002195 DOI: 10.1039/c9an02111f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Locating ribonucleoside modifications within an RNA sequence requires digestion of the RNA into oligoribonucleotides of amenable size for subsequent analysis by LC-MS (liquid chromatography-mass spectrometry). This approach, widely referred to as RNA modification mapping, is facilitated through ribonucleases (RNases) such as T1 (guanosine-specific), U2 (purine-selective) and A (pyrimidine-specific) among others. Sequence coverage by these enzymes depends on positioning of the recognized nucleobase (such as guanine or purine or pyrimidine) in the sequence and its ribonucleotide composition. Using E. coli transfer RNA (tRNA) and ribosomal RNA (rRNA) as model samples, we demonstrate the ability of complementary nucleobase-specific ribonucleases cusativin (C-specific) and MC1 (U-specific) to generate digestion products that facilitate confident mapping of modifications in regions such as G-rich and pyrimidine-rich segments of RNA, and to distinguish C to U sequence differences. These enzymes also increase the number of oligonucleotide digestion products that are unique to a specific RNA sequence. Further, with these additional RNases, multiple modifications can be localized with high confidence in a single set of experiments with minimal dependence on the individual tRNA abundance in a mixture. The sequence overlaps observed with these complementary digestion products and that of RNase T1 improved sequence coverage to 75% or above. A similar level of sequence coverage was also observed for the 2904 nt long 23S rRNA indicating their utility has no dependence on RNA size. Wide-scale adoption of these additional modification mapping tools could help expedite the characterization of modified RNA sequences to understand their structural and functional role in various living systems.
Collapse
Affiliation(s)
- Priti Thakur
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA.
| | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Bei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
10
|
Kirpekar F, Hansen LH, Mundus J, Tryggedsson S, Teixeira Dos Santos P, Ntokou E, Vester B. Mapping of ribosomal 23S ribosomal RNA modifications in Clostridium sporogenes. RNA Biol 2018; 15:1060-1070. [PMID: 29947286 DOI: 10.1080/15476286.2018.1486662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
All organisms contain RNA modifications in their ribosomal RNA (rRNA), but the importance, positions and exact function of these are still not fully elucidated. Various functions such as stabilizing structures, controlling ribosome assembly and facilitating interactions have been suggested and in some cases substantiated. Bacterial rRNA contains much fewer modifications than eukaryotic rRNA. The rRNA modification patterns in bacteria differ from each other, but too few organisms have been mapped to draw general conclusions. This study maps 23S ribosomal RNA modifications in Clostridium sporogenes that can be characterized as a non-toxin producing Clostridium botulinum. Clostridia are able to sporulate and thereby survive harsh conditions, and are in general considered to be resilient to antibiotics. Selected regions of the 23S rRNA were investigated by mass spectrometry and by primer extension analysis to pinpoint modified sites and the nature of the modifications. Apparently, C. sporogenes 23S rRNA contains few modifications compared to other investigated bacteria. No modifications were identified in domain II and III of 23S rRNA. Three modifications were identified in domain IV, all of which have also been found in other organisms. Two unusual modifications were identified in domain V, methylated dihydrouridine at position U2449 and dihydrouridine at position U2500 (Escherichia coli numbering), in addition to four previously known modified positions. The enzymes responsible for the modifications were searched for in the C. sporogenes genome using BLAST with characterized enzymes as query. The search identified genes potentially coding for RNA modifying enzymes responsible for most of the found modifications.
Collapse
Affiliation(s)
- Finn Kirpekar
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Lykke H Hansen
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Julie Mundus
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Stine Tryggedsson
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | | | - Eleni Ntokou
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Birte Vester
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| |
Collapse
|
11
|
Stojković V, Chu T, Therizols G, Weinberg DE, Fujimori DG. miCLIP-MaPseq, a Substrate Identification Approach for Radical SAM RNA Methylating Enzymes. J Am Chem Soc 2018; 140:7135-7143. [PMID: 29782154 DOI: 10.1021/jacs.8b02618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although present across bacteria, the large family of radical SAM RNA methylating enzymes is largely uncharacterized. Escherichia coli RlmN, the founding member of the family, methylates an adenosine in 23S rRNA and several tRNAs to yield 2-methyladenosine (m2A). However, varied RNA substrate specificity among RlmN enzymes, combined with the ability of certain family members to generate 8-methyladenosine (m8A), makes functional predictions across this family challenging. Here, we present a method for unbiased substrate identification that exploits highly efficient, mechanism-based cross-linking between the enzyme and its RNA substrates. Additionally, by determining that the thermostable group II intron reverse transcriptase introduces mismatches at the site of the cross-link, we have identified the precise positions of RNA modification using mismatch profiling. These results illustrate the capability of our method to define enzyme-substrate pairs and determine modification sites of the largely uncharacterized radical SAM RNA methylating enzyme family.
Collapse
Affiliation(s)
- Vanja Stojković
- Department of Cellular and Molecular Pharmacology , University of California , San Francisco , California 94158 , United States
| | - Tongyue Chu
- Department of Cellular and Molecular Pharmacology , University of California , San Francisco , California 94158 , United States
| | - Gabriel Therizols
- Department of Cellular and Molecular Pharmacology , University of California , San Francisco , California 94158 , United States
| | - David E Weinberg
- Department of Cellular and Molecular Pharmacology , University of California , San Francisco , California 94158 , United States
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology , University of California , San Francisco , California 94158 , United States.,Department of Pharmaceutical Chemistry , University of California , 600 16th Street, MC2280 San Francisco , California 94158 , United States
| |
Collapse
|
12
|
Mundus J, Flyvbjerg KF, Kirpekar F. Identification of the methyltransferase targeting C2499 in Deinococcus radiodurans 23S ribosomal RNA. Extremophiles 2016; 20:91-9. [PMID: 26590840 PMCID: PMC4690841 DOI: 10.1007/s00792-015-0800-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/29/2015] [Indexed: 01/11/2023]
Abstract
The bacterium Deinococcus radiodurans-like all other organisms-introduces nucleotide modifications into its ribosomal RNA. We have previously found that the bacterium contains a Carbon-5 methylation on cytidine 2499 of its 23S ribosomal RNA, which is so far the only modified version of cytidine 2499 reported. Using homology search, we identified the open reading frame DR_0049 as the primary candidate gene for the methyltransferase that modifies cytidine 2499. Mass spectrometric analysis demonstrated that recombinantly expressed DR0049 protein methylates E. coli cytidine 2499 both in vitro and in vivo. We also inactivated the DR_0049 gene in D. radiodurans through insertion of a chloramphenicol resistance cassette. This resulted in complete absence of the cytidine 2499 methylation, which all together demonstrates that DR_0049 encodes the methyltransferase producing m(5)C2499 in D. radiodurans 23S rRNA. Growth experiments disclosed that inactivation of DR_0049 is associated with a severe growth defect, but available ribosome structures show that cytidine 2499 is positioned very similar in D. radiodurans harbouring the modification and E. coli without the modification. Hence there is no obvious structure-based explanation for the requirement for the C2499 posttranscriptional modification in D. radiodurans.
Collapse
Affiliation(s)
- Julie Mundus
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Karen Freund Flyvbjerg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
13
|
Gaston KW, Limbach PA. The identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometry. RNA Biol 2015; 11:1568-85. [PMID: 25616408 PMCID: PMC4615682 DOI: 10.4161/15476286.2014.992280] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The analysis of ribonucleic acids (RNA) by mass spectrometry has been a valuable analytical approach for more than 25 years. In fact, mass spectrometry has become a method of choice for the analysis of modified nucleosides from RNA isolated out of biological samples. This review summarizes recent progress that has been made in both nucleoside and oligonucleotide mass spectral analysis. Applications of mass spectrometry in the identification, characterization and quantification of modified nucleosides are discussed. At the oligonucleotide level, advances in modern mass spectrometry approaches combined with the standard RNA modification mapping protocol enable the characterization of RNAs of varying lengths ranging from low molecular weight short interfering RNAs (siRNAs) to the extremely large 23 S rRNAs. New variations and improvements to this protocol are reviewed, including top-down strategies, as these developments now enable qualitative and quantitative measurements of RNA modification patterns in a variety of biological systems.
Collapse
Affiliation(s)
- Kirk W Gaston
- a Rieveschl Laboratories for Mass Spectrometry; Department of Chemistry ; University of Cincinnati ; Cincinnati , OH USA
| | | |
Collapse
|
14
|
Dennis PP, Tripp V, Lui L, Lowe T, Randau L. C/D box sRNA-guided 2'-O-methylation patterns of archaeal rRNA molecules. BMC Genomics 2015; 16:632. [PMID: 26296872 PMCID: PMC4644070 DOI: 10.1186/s12864-015-1839-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/13/2015] [Indexed: 11/26/2022] Open
Abstract
Background In archaea and eukaryotes, ribonucleoprotein complexes containing small C/D box s(no)RNAs use base pair complementarity to target specific sites within ribosomal RNA for 2'-O-ribose methylation. These modifications aid in the folding and stabilization of nascent rRNA molecules and their assembly into ribosomal particles. The genomes of hyperthermophilic archaea encode large numbers of C/D box sRNA genes, suggesting an increased necessity for rRNA stabilization at extreme growth temperatures. Results We have identified the complete sets of C/D box sRNAs from seven archaea using RNA-Seq methodology. In total, 489 C/D box sRNAs were identified, each containing two guide regions. A combination of computational and manual analyses predicts 719 guide interactions with 16S and 23S rRNA molecules. This first pan-archaeal description of guide sequences identifies (i) modified rRNA nucleotides that are frequently conserved between species and (ii) regions within rRNA that are hotspots for 2'-O-methylation. Gene duplication, rearrangement, mutational drift and convergent evolution of sRNA genes and guide sequences were observed. In addition, several C/D box sRNAs were identified that use their two guides to target locations distant in the rRNA sequence but close in the secondary and tertiary structure. We propose that they act as RNA chaperones and facilitate complex folding events between distant sequences. Conclusions This pan-archaeal analysis of C/D box sRNA guide regions identified conserved patterns of rRNA 2'-O-methylation in archaea. The interaction between the sRNP complexes and the nascent rRNA facilitates proper folding and the methyl modifications stabilize higher order rRNA structure within the assembled ribosome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1839-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrick P Dennis
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043, Marburg, Germany. .,Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, VA, 20147, USA.
| | - Vanessa Tripp
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043, Marburg, Germany.
| | - Lauren Lui
- Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
| | - Todd Lowe
- Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
| | - Lennart Randau
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043, Marburg, Germany.
| |
Collapse
|
15
|
Polikanov YS, Melnikov SV, Söll D, Steitz TA. Structural insights into the role of rRNA modifications in protein synthesis and ribosome assembly. Nat Struct Mol Biol 2015; 22:342-344. [PMID: 25775268 PMCID: PMC4401423 DOI: 10.1038/nsmb.2992] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/17/2015] [Indexed: 11/23/2022]
Abstract
We report crystal structures of the Thermus thermophilus ribosome at 2.3- to 2.5-Å resolution, which have enabled modeling of rRNA modifications. The structures reveal contacts of modified nucleotides with mRNA and tRNAs or protein pY, and contacts within the ribosome interior stabilizing the functional fold of rRNA. Our work provides a resource to explore the roles of rRNA modifications and yields a more comprehensive atomic model of a bacterial ribosome.
Collapse
Affiliation(s)
- Yury S Polikanov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute at Yale University, New Haven, CT, USA
| | - Sergey V Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute at Yale University, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
16
|
Jiang J, Kharel DN, Chow CS. Modulation of conformational changes in helix 69 mutants by pseudouridine modifications. Biophys Chem 2015; 200-201:48-55. [PMID: 25800680 DOI: 10.1016/j.bpc.2015.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 11/25/2022]
Abstract
Centrally located at the ribosomal subunit interface and mRNA tunnel, helix 69 (H69) from 23S rRNA participates in key steps of translation. Ribosome activity is influenced by three pseudouridine modifications, which modulate the structure and conformational behavior of H69. To understand how H69 is affected by the presence of pseudouridine in combination with sequence changes, the biophysical properties of wild-type H69 and representative mutants (A1912G, U1917C, and A1919G) were examined. Results from NMR and circular dichroism spectroscopy indicate that pH-dependent structural changes of wild-type H69 and the chosen mutants are modulated by pseudouridine and loop sequence. The effects of the mutations on global stability of H69 are negligible; however, pseudouridine stabilizes H69 at low pH conditions. Alterations to induced conformational changes of H69 likely result in compromised function, as indicated by previous biological studies.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | - Daya Nidhi Kharel
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States.
| |
Collapse
|
17
|
Popova AM, Williamson JR. Quantitative analysis of rRNA modifications using stable isotope labeling and mass spectrometry. J Am Chem Soc 2014; 136:2058-69. [PMID: 24422502 PMCID: PMC3985470 DOI: 10.1021/ja412084b] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Post-transcriptional RNA modifications
that are introduced during
the multistep ribosome biogenesis process are essential for protein
synthesis. The current lack of a comprehensive method for a fast quantitative
analysis of rRNA modifications significantly limits our understanding
of how individual modification steps are coordinated during biogenesis
inside the cell. Here, an LC-MS approach has been developed and successfully
applied for quantitative monitoring of 29 out of 36 modified residues
in the 16S and 23S rRNA from Escherichia coli. An isotope labeling strategy is described for efficient identification
of ribose and base methylations, and a novel metabolic labeling approach
is presented to allow identification of MS-silent pseudouridine modifications.
The method was used to measure relative abundances of modified residues
in incomplete ribosomal subunits compared to a mature 15N-labeled rRNA standard, and a number of modifications in both 16S
and 23S rRNA were present in substoichiometric amounts in the preribosomal
particles. The RNA modification levels correlate well with previously
obtained profiles for the ribosomal proteins, suggesting that RNA
is modified in a schedule comparable to the association of the ribosomal
proteins. Importantly, this study establishes an efficient workflow
for a global monitoring of ribosomal modifications that will contribute
to a better understanding of mechanisms of RNA modifications and their
impact on intracellular processes in the future.
Collapse
Affiliation(s)
- Anna M Popova
- Department of Integrative Structural and Computational Biology and ‡Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States
| | | |
Collapse
|
18
|
Jiang J, Aduri R, Chow CS, SantaLucia J. Structure modulation of helix 69 from Escherichia coli 23S ribosomal RNA by pseudouridylations. Nucleic Acids Res 2013; 42:3971-81. [PMID: 24371282 PMCID: PMC3973299 DOI: 10.1093/nar/gkt1329] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Helix 69 (H69) is a 19-nt stem-loop region from the large subunit ribosomal RNA. Three pseudouridine (Ψ) modifications clustered in H69 are conserved across phylogeny and known to affect ribosome function. To explore the effects of Ψ on the conformations of Escherichia coli H69 in solution, nuclear magnetic resonance spectroscopy was used to reveal the structural differences between H69 with (ΨΨΨ) and without (UUU) Ψ modifications. Comparison of the two structures shows that H69 ΨΨΨ has the following unique features: (i) the loop region is closed by a Watson-Crick base pair between Ψ1911 and A1919, which is potentially reinforced by interactions involving Ψ1911N1H and (ii) Ψ modifications at loop residues 1915 and 1917 promote base stacking from Ψ1915 to A1918. In contrast, the H69 UUU loop region, which lacks Ψ modifications, is less organized. Structure modulation by Ψ leads to alteration in conformational behavior of the 5' half of the H69 loop region, observed as broadening of C1914 non-exchangeable base proton resonances in the H69 ΨΨΨ nuclear magnetic resonance spectra, and plays an important biological role in establishing the ribosomal intersubunit bridge B2a and mediating translational fidelity.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
19
|
Baldridge KC, Contreras LM. Functional implications of ribosomal RNA methylation in response to environmental stress. Crit Rev Biochem Mol Biol 2013; 49:69-89. [PMID: 24261569 DOI: 10.3109/10409238.2013.859229] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The study of post-transcriptional RNA modifications has long been focused on the roles these chemical modifications play in maintaining ribosomal function. The field of ribosomal RNA modification has reached a milestone in recent years with the confirmation of the final unknown ribosomal RNA methyltransferase in Escherichia coli in 2012. Furthermore, the last 10 years have brought numerous discoveries in non-coding RNAs and the roles that post-transcriptional modification play in their functions. These observations indicate the need for a revitalization of this field of research to understand the role modifications play in maintaining cellular health in a dynamic environment. With the advent of high-throughput sequencing technologies, the time is ripe for leaps and bounds forward. This review discusses ribosomal RNA methyltransferases and their role in responding to external stress in Escherichia coli, with a specific focus on knockout studies and on analysis of transcriptome data with respect to rRNA methyltransferases.
Collapse
Affiliation(s)
- Kevin C Baldridge
- McKetta Department of Chemical Engineering, The University of Texas at Austin , Austin, TX , USA
| | | |
Collapse
|
20
|
Distinction between the Cfr methyltransferase conferring antibiotic resistance and the housekeeping RlmN methyltransferase. Antimicrob Agents Chemother 2013; 57:4019-26. [PMID: 23752511 DOI: 10.1128/aac.00448-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The cfr gene encodes the Cfr methyltransferase that primarily methylates C-8 in A2503 of 23S rRNA in the peptidyl transferase region of bacterial ribosomes. The methylation provides resistance to six classes of antibiotics of clinical and veterinary importance. The rlmN gene encodes the RlmN methyltransferase that methylates C-2 in A2503 in 23S rRNA and A37 in tRNA, but RlmN does not significantly influence antibiotic resistance. The enzymes are homologous and use the same mechanism involving radical S-adenosyl methionine to methylate RNA via an intermediate involving a methylated cysteine in the enzyme and a transient cross-linking to the RNA, but they differ in which carbon atom in the adenine they methylate. Comparative sequence analysis identifies differentially conserved residues that indicate functional sequence divergence between the two classes of Cfr- and RlmN-like sequences. The differentiation between the two classes is supported by previous and new experimental evidence from antibiotic resistance, primer extensions, and mass spectrometry. Finally, evolutionary aspects of the distribution of Cfr- and RlmN-like enzymes are discussed.
Collapse
|
21
|
Methylation of 23S rRNA nucleotide G748 by RlmAII methyltransferase renders Streptococcus pneumoniae telithromycin susceptible. Antimicrob Agents Chemother 2013; 57:3789-96. [PMID: 23716046 DOI: 10.1128/aac.00164-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several posttranscriptional modifications of bacterial rRNAs are important in determining antibiotic resistance or sensitivity. In all Gram-positive bacteria, dimethylation of nucleotide A2058, located in domain V of 23S rRNA, by the dimethyltransferase Erm(B) results in low susceptibility and resistance to telithromycin (TEL). However, this is insufficient to produce high-level resistance to TEL in Streptococcus pneumoniae. Inactivation of the methyltransferase RlmA(II), which methylates the N-1 position of nucleotide G748, located in hairpin 35 of domain II of 23S rRNA, results in increased resistance to TEL in erm(B)-carrying S. pneumoniae. Sixteen TEL-resistant mutants (MICs, 16 to 32 μg/ml) were obtained from a clinically isolated S. pneumoniae strain showing low TEL susceptibility (MIC, 2 μg/ml), with mutation resulting in constitutive dimethylation of A2058 because of nucleotide differences in the regulatory region of erm(B) mRNA. Primer extension analysis showed that the degree of methylation at G748 in all TEL-resistant mutants was significantly reduced by a mutation in the gene encoding RlmA(II) to create a stop codon or change an amino acid residue. Furthermore, RNA footprinting with dimethyl sulfate and a molecular modeling study suggested that methylation of G748 may contribute to the stable interaction of TEL with domain II of 23S rRNA, even after dimethylation of A2058 by Erm(B). This novel finding shows that methylation of G748 by RlmA(II) renders S. pneumoniae TEL susceptible.
Collapse
|
22
|
Monshupanee T, Johansen SK, Dahlberg AE, Douthwaite S. Capreomycin susceptibility is increased by TlyA-directed 2'-O-methylation on both ribosomal subunits. Mol Microbiol 2012; 85:1194-203. [PMID: 22779429 DOI: 10.1111/j.1365-2958.2012.08168.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The binding site of the cyclic peptide antibiotics capreomycin and viomycin is located on the ribosomal subunit interface close to nucleotides C1409 in 16S rRNA and C1920 in 23S rRNA. In Mycobacterium tuberculosis, the 2'-hydroxyls of both nucleotides are methylated by the enzyme TlyA. Loss of these methylations through inactivation of TlyA confers resistance to capreomycin and viomycin. We report here that TlyA orthologues occur in diverse bacteria and fall into two distinct groups. One group, now termed TlyA(I) , has shorter N- and C-termini and methylates only C1920; the second group (now TlyA(II) ) includes the mycobacterial enzyme, and these longer orthologues methylate at both C1409 and C1920. Ribosomal subunits are the preferred substrates for both groups of orthologues. Amino acid substitutions at the N-terminus of TlyA(II) reduce its ability to methylate these substrates. Growing pairs of recombinant TlyA(II) Escherichia coli strains in competition shows that even subtle changes in the level of rRNA methylation lead to significant differences in susceptibility to sub-inhibitory concentrations of capreomycin. The findings reveal that 2'-O-methyls at both C1409 and C1920 play a role in facilitating the inhibitory effects of capreomycin and viomycin on the bacterial ribosome.
Collapse
Affiliation(s)
- Tanakarn Monshupanee
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | | | | | | |
Collapse
|
23
|
Larsen LHG, Rasmussen A, Giessing AMB, Jogl G, Kirpekar F. Identification and characterization of the Thermus thermophilus 5-methylcytidine (m5C) methyltransferase modifying 23 S ribosomal RNA (rRNA) base C1942. J Biol Chem 2012; 287:27593-600. [PMID: 22711535 DOI: 10.1074/jbc.m112.376160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylation of cytidines at carbon-5 is a common posttranscriptional RNA modification encountered across all domains of life. Here, we characterize the modifications of C1942 and C1962 in Thermus thermophilus 23 S rRNA as 5-methylcytidines (m(5)C) and identify the two associated methyltransferases. The methyltransferase modifying C1942, named RlmO, has not been characterized previously. RlmO modifies naked 23 S rRNA, but not the assembled 50 S subunit or 70 S ribosomes. The x-ray crystal structure of this enzyme in complex with the S-adenosyl-l-methionine cofactor at 1.7 Å resolution confirms that RlmO is structurally related to other m(5)C rRNA methyltransferases. Key residues in the active site are located similar to the further distant 5-methyluridine methyltransferase RlmD, suggestive of a similar enzymatic mechanism. RlmO homologues are primarily found in mesophilic bacteria related to T. thermophilus. In accordance, we find that growth of the T. thermophilus strain with an inactivated C1942 methyltransferase gene is not compromised at non-optimal temperatures.
Collapse
Affiliation(s)
- Line H G Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | | | | | | | |
Collapse
|
24
|
Global identification of transfer RNAs by liquid chromatography–mass spectrometry (LC–MS). J Proteomics 2012; 75:3450-64. [DOI: 10.1016/j.jprot.2011.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 09/18/2011] [Accepted: 09/21/2011] [Indexed: 11/17/2022]
|
25
|
Kannan K, Mankin AS. Macrolide antibiotics in the ribosome exit tunnel: species-specific binding and action. Ann N Y Acad Sci 2012; 1241:33-47. [PMID: 22191525 DOI: 10.1111/j.1749-6632.2011.06315.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Macrolide antibiotics bind in the nascent peptide exit tunnel of the ribosome and inhibit protein synthesis. The majority of information on the principles of binding and action of these antibiotics comes from studies that employed model organisms. However, there is a growing understanding that the binding of macrolides to their target, as well as the mode of inhibition of translation, can be strongly influenced by variations in ribosome structure between bacterial species. Awareness of the existence of species-specific differences in drug action and appreciation of the extent of these differences can stimulate future work on developing better macrolide drugs. In this review, representative cases illustrating the organism-specific binding and action of macrolide antibiotics, as well as species-specific mechanisms of resistance are analyzed.
Collapse
Affiliation(s)
- Krishna Kannan
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 60607, USA
| | | |
Collapse
|
26
|
Using immobilized enzymes to reduce RNase contamination in RNase mapping of transfer RNAs by mass spectrometry. Anal Bioanal Chem 2012; 402:2701-11. [DOI: 10.1007/s00216-012-5741-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 01/30/2023]
|
27
|
Giessing AMB, Kirpekar F. Mass spectrometry in the biology of RNA and its modifications. J Proteomics 2012; 75:3434-49. [PMID: 22348820 DOI: 10.1016/j.jprot.2012.01.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/20/2012] [Accepted: 01/26/2012] [Indexed: 01/31/2023]
Abstract
Many powerful analytical techniques for investigation of nucleic acids exist in the average modern molecular biology lab. The current review will focus on questions in RNA biology that have been answered by the use of mass spectrometry, which means that new biological information is the purpose and outcome of most of the studies we refer to. The review begins with a brief account of the subject "MS in the biology of RNA" and an overview of the prevalent RNA modifications identified to date. Fundamental considerations about mass spectrometric analysis of RNA are presented with the aim of detailing the analytical possibilities and challenges relating to the unique chemical nature of nucleic acids. The main biological topics covered are RNA modifications and the enzymes that perform the modifications. Modifications of RNA are essential in biology, and it is a field where mass spectrometry clearly adds knowledge of biological importance compared to traditional methods used in nucleic acid research. The biological applications are divided into analyses exclusively performed at the building block (mainly nucleoside) level and investigations involving mass spectrometry at the oligonucleotide level. We conclude the review discussing aspects of RNA identification and quantifications, which are upcoming fields for MS in RNA research. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.
Collapse
Affiliation(s)
- Anders M B Giessing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | |
Collapse
|
28
|
Basturea GN, Dague DR, Deutscher MP, Rudd KE. YhiQ is RsmJ, the methyltransferase responsible for methylation of G1516 in 16S rRNA of E. coli. J Mol Biol 2012; 415:16-21. [PMID: 22079366 PMCID: PMC4140241 DOI: 10.1016/j.jmb.2011.10.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 10/27/2011] [Accepted: 10/27/2011] [Indexed: 11/21/2022]
Abstract
Ten methyltransferases and one pseudouridine synthase are required for complete modification of the small ribosomal subunit in Escherichia coli. Nine methyltransferases, as well as the pseudouridine synthase, are already known. Here, we identify RsmJ, the last unknown methyltransferase required for methylation of m(2)G1516 in 16S ribosomal RNA (rRNA), as the protein encoded by yhiQ. Reverse transcription primer extension analysis reveals that rRNA extracted from a yhiQ deletion strain is not methylated at G1516. Moreover, methylation is restored upon gene complementation. Also, purified recombinant YhiQ specifically methylates 30S subunits extracted from the deletion strain. The absence of the yhiQ gene leads to a cold-sensitive phenotype. Based on these data, we propose that the yhiQ gene be renamed rsmJ.
Collapse
Affiliation(s)
- Georgeta N Basturea
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
29
|
Krivos KL, Addepalli B, Limbach PA. Removal of 3'-phosphate group by bacterial alkaline phosphatase improves oligonucleotide sequence coverage of RNase digestion products analyzed by collision-induced dissociation mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3609-3616. [PMID: 22095510 DOI: 10.1002/rcm.5266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
RNase mapping by nucleobase-specific endonucleases combined with liquid chromatography/tandem mass spectrometry (LC/MS/MS) is a powerful analytical method for characterizing ribonucleic acids (RNAs). Endonuclease digestion of RNA yields products that contain a 3'-terminal phosphate group. MS/MS via collision-induced dissociation (CID) of these digestion products on a linear ion trap generates fragmentation pathways that include the loss of phosphoric acid (-H(3)PO(4); -98 u), which does not provide information about the sequence of the digestion products and can reduce ion abundance from other pathways that provide sequence information. Here we investigate the use of bacterial alkaline phosphatase (BAP) after RNase digestion to remove the 3'-terminal phosphate from all RNase digestion products prior to LC/MS/MS analysis. RNase digestion products lacking the 3'-phosphate were found to produce CID spectra with more consistent, high-abundance c- and y-type fragment ions as well as significantly more a-Base and w-type ions than digestion products retaining the 3'-phosphate. In this manner, RNase mapping with LC/MS/MS can provide more complete RNA sequence information from fragment ions of higher abundance that are easier to interpret and identify.
Collapse
Affiliation(s)
- Kady L Krivos
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, P.O. Box 210172, University of Cincinnati, Cincinnati, OH 45221-0172, USA
| | | | | |
Collapse
|
30
|
Nakayama H, Takahashi N, Isobe T. Informatics for mass spectrometry-based RNA analysis. MASS SPECTROMETRY REVIEWS 2011; 30:1000-1012. [PMID: 21328601 DOI: 10.1002/mas.20325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 07/01/2010] [Accepted: 07/01/2010] [Indexed: 05/30/2023]
Abstract
Mass spectrometry (MS) allows the sensitive and direct characterization of biological macromolecules and therefore has the potential to complement the more conventional genetic and biochemical methods used for RNA characterization. Although MS has been used much less frequently for RNA research than it has been for protein research, recent technical improvements in both instrumentation and software make MS a powerful tool for RNA analysis because it can now be used to sequence, quantify, and chemically analyze RNAs. Mass spectrometry is particularly well suited for the characterization of RNAs associated with ribonucleoprotein complexes. This review focuses on the software and databases that can be used for MS-based RNA studies. Software for the processing of raw mass spectra, the identification and characterization of RNAs by mass mapping, de novo sequencing, and tandem MS-based database searching are available.
Collapse
Affiliation(s)
- Hiroshi Nakayama
- Biomolecular Characterization Team, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
31
|
Havelund JF, Giessing AMB, Hansen T, Rasmussen A, Scott LG, Kirpekar F. Identification of 5-hydroxycytidine at position 2501 concludes characterization of modified nucleotides in E. coli 23S rRNA. J Mol Biol 2011; 411:529-36. [PMID: 21723290 DOI: 10.1016/j.jmb.2011.06.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
Abstract
Complete characterization of a biomolecule's chemical structure is crucial in the full understanding of the relations between their structure and function. The dominating components in ribosomes are ribosomal RNAs (rRNAs), and the entire rRNA-but a single modified nucleoside at position 2501 in 23S rRNA-has previously been characterized in the bacterium Escherichia coli. Despite a first report nearly 20 years ago, the chemical nature of the modification at position 2501 has remained elusive, and attempts to isolate it have so far been unsuccessful. We unambiguously identify this last unknown modification as 5-hydroxycytidine-a novel modification in RNA. Identification of 5-hydroxycytidine was completed by liquid chromatography under nonoxidizing conditions using a graphitized carbon stationary phase in combination with ion trap tandem mass spectrometry and by comparing the fragmentation behavior of the natural nucleoside with that of a chemically synthesized ditto. Furthermore, we show that 5-hydroxycytidine is also present in the equivalent position of 23S rRNA from the bacterium Deinococcus radiodurans. Given the unstable nature of 5-hydroxycytidine, this modification might be found in other RNAs when applying the proper analytical conditions as described here.
Collapse
Affiliation(s)
- Jesper Foged Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | | | | | | | | | |
Collapse
|
32
|
Pseudouridylation of 23S rRNA helix 69 promotes peptide release by release factor RF2 but not by release factor RF1. Biochimie 2011; 93:834-44. [PMID: 21281690 DOI: 10.1016/j.biochi.2010.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/30/2010] [Indexed: 11/22/2022]
Abstract
Pseudouridine [Ψ] is a frequent base modification in the ribosomal RNA [rRNA] and may be involved in the modulation of the conformational flexibility of rRNA helix-loop structures during protein synthesis. Helix 69 of 23S rRNA contains pseudouridines at the positions 1911, 1915 and 1917 which are formed by the helix 69-specific synthase RluD. The growth defect caused by the lack of RluD can be rescued by mutations in class I release factor RF2, indicating a role for helix 69 pseudouridines in translation termination. We investigated the role of helix 69 pseudouridines in peptide release by release factors RF1 and RF2 in an in vitro system consisting of purified components of the Escherichia coli translation apparatus. Lack of all three pseudouridines in helix 69 compromised the activity of RF2 about 3-fold but did not significantly affect the activity of RF1. Reintroduction of pseudouridines into helix 69 by RluD-treatment restored the activity of RF2 in peptide release. A Ψ-to-C substitution at the 1917 position caused an increase in the dissociation rate of RF1 and RF2 from the postrelease ribosome. Our results indicate that the presence of all three pseudouridines in helix 69 stimulates peptide release by RF2 but has little effect on the activity of RF1. The interactions around the pseudouridine at the 1917 position appear to be most critical for a proper interaction of helix 69 with release factors.
Collapse
|
33
|
O'Connor M, Gregory ST. Inactivation of the RluD pseudouridine synthase has minimal effects on growth and ribosome function in wild-type Escherichia coli and Salmonella enterica. J Bacteriol 2011; 193:154-62. [PMID: 21037010 PMCID: PMC3019933 DOI: 10.1128/jb.00970-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 10/18/2010] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli rluD gene encodes a pseudouridine synthase responsible for the pseudouridine (Ψ) modifications at positions 1911, 1915, and 1917 in helix 69 of 23S rRNA. It has been reported that deletion of rluD in K-12 strains of E. coli is associated with extremely slow growth, increased readthrough of stop codons, and defects in 50S ribosomal subunit assembly and 30S-50S subunit association. Suppressor mutations in the prfB and prfC genes encoding release factor 2 (RF2) and RF3 that restore the wild type-growth rate and also correct the ribosomal defects have now been isolated. These suppressors link helix 69 Ψ residues with the termination phase of protein synthesis. However, further genetic analysis reported here also reveals that the slow growth and other defects associated with inactivation of rluD in E. coli K-12 strains are due to a defective RF2 protein, with a threonine at position 246, which is present in all K-12 strains. This is in contrast to the more typical alanine found at this position in most bacterial RF2s, including those of other E. coli strains. Inactivation of rluD in E. coli strains containing the prfB allele from E. coli B or in Salmonella enterica, both carrying an RF2 with Ala246, has negligible effects on growth, termination, or ribosome function. The results indicate that, in contrast to those in wild bacteria, termination functions in E. coli K-12 strains carrying a partially defective RF2 protein are especially susceptible to perturbation of ribosome-RF interactions, such as that caused by loss of h69 Ψ modifications.
Collapse
Affiliation(s)
- Michael O'Connor
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
34
|
Oberacher H. Frontiers of mass spectrometry in nucleic acids analysis. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2010; 16:351-365. [PMID: 20530841 DOI: 10.1255/ejms.1045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nucleic acids research is a highly competitive field of research. A number of well established methods are available. The current output of high throughput ("next generation") sequencing technologies is impressive, and still technologies are continuing to make progress regarding read lengths, bp per second, accuracy and costs. Although in the 1990s MS was considered as an analytical platform for sequencing, it was soon realized that MS will never be competitive. Thus, the focus shifted from de novo sequencing towards other areas of application where MS has proven to be a powerful analytical tool. Potential niches for the application of MS in nucleic acids research include genotyping of genetic markers (single nucleotide polymorphisms, short tandem repeats, and combinations thereof), quality control of synthetic oligonucleotides, metabolic profiling of therapeutics, characterization of modified nucleobases in DNA and RNA molecules, and the study of non covalent interactions among nucleic acids as well as interactions of nucleic acids with drugs and proteins. The diversity of possible applications for MS highlights its significance for nucleic acid research.
Collapse
Affiliation(s)
- Herbert Oberacher
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
35
|
Nakayama H, Akiyama M, Taoka M, Yamauchi Y, Nobe Y, Ishikawa H, Takahashi N, Isobe T. Ariadne: a database search engine for identification and chemical analysis of RNA using tandem mass spectrometry data. Nucleic Acids Res 2009; 37:e47. [PMID: 19270066 PMCID: PMC2665244 DOI: 10.1093/nar/gkp099] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We present here a method to correlate tandem mass spectra of sample RNA nucleolytic fragments with an RNA nucleotide sequence in a DNA/RNA sequence database, thereby allowing tandem mass spectrometry (MS/MS)-based identification of RNA in biological samples. Ariadne, a unique web-based database search engine, identifies RNA by two probability-based evaluation steps of MS/MS data. In the first step, the software evaluates the matches between the masses of product ions generated by MS/MS of an RNase digest of sample RNA and those calculated from a candidate nucleotide sequence in a DNA/RNA sequence database, which then predicts the nucleotide sequences of these RNase fragments. In the second step, the candidate sequences are mapped for all RNA entries in the database, and each entry is scored for a function of occurrences of the candidate sequences to identify a particular RNA. Ariadne can also predict post-transcriptional modifications of RNA, such as methylation of nucleotide bases and/or ribose, by estimating mass shifts from the theoretical mass values. The method was validated with MS/MS data of RNase T1 digests of in vitro transcripts. It was applied successfully to identify an unknown RNA component in a tRNA mixture and to analyze post-transcriptional modification in yeast tRNAPhe-1.
Collapse
Affiliation(s)
- Hiroshi Nakayama
- Biomolecular Characterization Team, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Matthiesen R, Kirpekar F. Identification of RNA molecules by specific enzyme digestion and mass spectrometry: software for and implementation of RNA mass mapping. Nucleic Acids Res 2009; 37:e48. [PMID: 19264806 PMCID: PMC2665245 DOI: 10.1093/nar/gkp139] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The idea of identifying or characterizing an RNA molecule based on a mass spectrum of specifically generated RNA fragments has been used in various forms for well over a decade. We have developed software—named RRM for ‘RNA mass mapping’—which can search whole prokaryotic genomes or RNA FASTA sequence databases to identify the origin of a given RNA based on a mass spectrum of RNA fragments. As input, the program uses the masses of specific RNase cleavage of the RNA under investigation. RNase T1 digestion is used here as a demonstration of the usability of the method for RNA identification. The concept for identification is that the masses of the digestion products constitute a specific fingerprint, which characterize the given RNA. The search algorithm is based on the same principles as those used in peptide mass fingerprinting, but has here been extended to work for both RNA sequence databases and for genome searches. A simple and powerful probability model for ranking RNA matches is proposed. We demonstrate viability of the entire setup by identifying the DNA template of a series of RNAs of biological and of in vitro transcriptional origin in complete microbial genomes and by identifying authentic 16S ribosomal RNAs in a ‘small ribosomal subunit RNA’ database. Thus, we present a new tool for a rapid identification of unknown RNAs using only a few picomoles of starting material.
Collapse
Affiliation(s)
- Rune Matthiesen
- Population Genetics-Instituto de Patologia e Imunologia Molecular da Universidad do Porto, Porto, Portugal.
| | | |
Collapse
|
37
|
Durairaj A, Limbach PA. Matrix-assisted laser desorption/ionization mass spectrometry screening for pseudouridine in mixtures of small RNAs by chemical derivatization, RNase digestion and signature products. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:3727-34. [PMID: 18973194 PMCID: PMC3009585 DOI: 10.1002/rcm.3789] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We have developed a method to screen for pseudouridines in complex mixtures of small RNAs using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). First, the unfractionated crude mixture of tRNAs is digested to completion with an endoribonuclease, such as RNase T1, and the digestion products are examined using MALDI-MS. Individual RNAs are identified by their signature digestion products, which arise through the detection of unique mass values after nuclease digestion. Next, the endonuclease digest is derivatized using N-cyclohexyl-N'-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate (CMCT), which selectively modifies all pseudouridine, thiouridine and 2-methylthio-6-isopentenyladenosine nucleosides. MALDI-MS determination of the CMCT-derivatized endonuclease digest reveals the presence of pseudouridine through a 252 Da mass increase over the underivatized digest. Proof-of-concept experiments were conducted using a mixture of Escherichia coli transfer RNAs and endoribonucleases T1 and A. More than 80% of the expected pseudouridines from this mixture were detected using this screening approach, even on an unfractionated sample of tRNAs. This approach should be particularly useful in the identification of putative pseudouridine synthases through detection of their target RNAs and can provide insight into specific small RNAs that may contain pseudouridine.
Collapse
Affiliation(s)
- Anita Durairaj
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172, University of Cincinnati, Cincinnati, OH 45221-0172
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172, University of Cincinnati, Cincinnati, OH 45221-0172
| |
Collapse
|
38
|
Demirci H, Gregory ST, Dahlberg AE, Jogl G. Crystal structure of the Thermus thermophilus 16 S rRNA methyltransferase RsmC in complex with cofactor and substrate guanosine. J Biol Chem 2008; 283:26548-56. [PMID: 18667428 PMCID: PMC2546533 DOI: 10.1074/jbc.m804005200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 07/22/2008] [Indexed: 01/16/2023] Open
Abstract
Post-transcriptional modification is a ubiquitous feature of ribosomal RNA in all kingdoms of life. Modified nucleotides are generally clustered in functionally important regions of the ribosome, but the functional contribution to protein synthesis is not well understood. Here we describe high resolution crystal structures for the N(2)-guanine methyltransferase RsmC that modifies residue G1207 in 16 S rRNA near the decoding site of the 30 S ribosomal subunit. RsmC is a class I S-adenosyl-L-methionine-dependent methyltransferase composed of two methyltransferase domains. However, only one S-adenosyl-L-methionine molecule and one substrate molecule, guanosine, bind in the ternary complex. The N-terminal domain does not bind any cofactor. Two structures with bound S-adenosyl-L-methionine and S-adenosyl-L-homocysteine confirm that the cofactor binding mode is highly similar to other class I methyltransferases. Secondary structure elements of the N-terminal domain contribute to cofactor-binding interactions and restrict access to the cofactor-binding site. The orientation of guanosine in the active site reveals that G1207 has to disengage from its Watson-Crick base pairing interaction with C1051 in the 16 S rRNA and flip out into the active site prior to its modification. Inspection of the 30 S crystal structure indicates that access to G1207 by RsmC is incompatible with the native subunit structure, consistent with previous suggestions that this enzyme recognizes a subunit assembly intermediate.
Collapse
Affiliation(s)
| | | | | | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown
University, Providence, Rhode Island 02912
| |
Collapse
|
39
|
Mutations in conserved helix 69 of 23S rRNA of Thermus thermophilus that affect capreomycin resistance but not posttranscriptional modifications. J Bacteriol 2008; 190:7754-61. [PMID: 18805973 DOI: 10.1128/jb.00984-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translocation during the elongation phase of protein synthesis involves the relative movement of the 30S and 50S ribosomal subunits. This movement is the target of tuberactinomycin antibiotics. Here, we describe the isolation and characterization of mutants of Thermus thermophilus selected for resistance to the tuberactinomycin antibiotic capreomycin. Two base substitutions, A1913U and mU1915G, and a single base deletion, DeltamU1915, were identified in helix 69 of 23S rRNA, a structural element that forms part of an interribosomal subunit bridge with the decoding center of 16S rRNA, the site of previously reported capreomycin resistance base substitutions. Capreomycin resistance in other bacteria has been shown to result from inactivation of the TlyA methyltransferase which 2'-O methylates C1920 of 23S rRNA. Inactivation of the tlyA gene in T. thermophilus does not affect its sensitivity to capreomycin. Finally, none of the mutations in helix 69 interferes with methylation at C1920 or with pseudouridylation at positions 1911 and 1917. We conclude that the resistance phenotype is a consequence of structural changes introduced by the mutations.
Collapse
|
40
|
Durairaj A, Limbach PA. Mass spectrometry of the fifth nucleoside: a review of the identification of pseudouridine in nucleic acids. Anal Chim Acta 2008; 623:117-25. [PMID: 18620915 PMCID: PMC2597214 DOI: 10.1016/j.aca.2008.06.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 06/17/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
Abstract
Pseudouridine, the so-called fifth nucleoside due to its ubiquitous presence in ribonucleic acids (RNAs), remains among the most challenging modified nucleosides to characterize. As an isomer of the major nucleoside uridine, pseudouridine cannot be detected by standard reverse-transcriptase-based DNA sequencing or RNase mapping approaches. Thus, over the past 15 years, investigators have focused on the unique structural properties of pseudouridine to develop selective derivatization or fragmentation strategies for its determination. While the N-cyclohexyl-N'-beta-(4-methylmorpholinium)ethylcarbodiimide p-tosylate (CMCT)-reverse transcriptase assay remains both a popular and powerful approach to screen for pseudouridine in larger RNAs, mass-spectrometry-based approaches are poised to play an increasingly important role in either confirming the findings of the CMCT-reverse transcriptase assay or in characterizing pseudouridine sequence placement and abundance in smaller RNAs. This review includes a brief discussion of pseudouridine including a summary of its biosynthesis and known importance within various RNAs. The review then focuses on chemical derivatization approaches that can be used to selectively modify pseudouridine to improve its detection, and the development of mass-spectrometry-based assays for the identification and sequencing of pseudouridine in various RNAs.
Collapse
Affiliation(s)
- Anita Durairaj
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172, University of Cincinnati, Cincinnati, OH 45221-0172, United States
| | | |
Collapse
|
41
|
Abstract
Resistance to antibiotics that target the bacterial ribosome is often conferred by methylation at specific nucleotides in the rRNA. The nucleotides that become methylated are invariably key sites of antibiotic interaction. The addition of methyl groups to each of these nucleotides is catalyzed by a specific methyltransferase enzyme. The Erm methyltransferases are a clinically prevalent group of enzymes that confer resistance to the therapeutically important macrolide, lincosamide, and streptogramin B (MLS B) antibiotics. The target for Erm methyltransferases is at nucleotide A2058 in 23S rRNA, and methylation occurs before the rRNA has been assembled into 50S ribosomal particles. Erm methyltransferases occur in a phylogenetically wide range of bacteria and differ in whether they add one or two methyl groups to the A2058 target. The dimethylated rRNA confers a more extensive MLS B resistance phenotype. We describe here a method using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to determine the location and number of methyl groups added at any site in the rRNA. The method is particularly suited to studying in vitro methylation of RNA transcripts by resistance methyltransferases such as Erm.
Collapse
|
42
|
Muller S, Leclerc F, Behm-Ansmant I, Fourmann JB, Charpentier B, Branlant C. Combined in silico and experimental identification of the Pyrococcus abyssi H/ACA sRNAs and their target sites in ribosomal RNAs. Nucleic Acids Res 2008; 36:2459-75. [PMID: 18304947 PMCID: PMC2377435 DOI: 10.1093/nar/gkn077] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
How far do H/ACA sRNPs contribute to rRNA pseudouridylation in Archaea was still an open question. Hence here, by computational search in three Pyrococcus genomes, we identified seven H/ACA sRNAs and predicted their target sites in rRNAs. In parallel, we experimentally identified 17 Ψ residues in P. abyssi rRNAs. By in vitro reconstitution of H/ACA sRNPs, we assigned 15 out of the 17 Ψ residues to the 7 identified H/ACA sRNAs: one H/ACA motif can guide up to three distinct pseudouridylations. Interestingly, by using a 23S rRNA fragment as the substrate, one of the two remaining Ψ residues could be formed in vitro by the aCBF5/aNOP10/aGAR1 complex without guide sRNA. Our results shed light on structural constraints in archaeal H/ACA sRNPs: the length of helix H2 is of 5 or 6 bps, the distance between the ANA motif and the targeted U residue is of 14 or 15 nts, and the stability of the interaction formed by the substrate rRNA and the 3′-guide sequence is more important than that formed with the 5′-guide sequence. Surprisingly, we showed that a sRNA–rRNA interaction with the targeted uridine in a single-stranded 5′-UNN-3′ trinucleotide instead of the canonical 5′-UN-3′ dinucleotide is functional.
Collapse
Affiliation(s)
- Sébastien Muller
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP, Nancy Université, Faculté des Sciences et Techniques, 54506 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
43
|
Toh SM, Xiong L, Bae T, Mankin AS. The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA. RNA (NEW YORK, N.Y.) 2008; 14:98-106. [PMID: 18025251 PMCID: PMC2151032 DOI: 10.1261/rna.814408] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 10/09/2007] [Indexed: 05/25/2023]
Abstract
A2503 in 23S rRNA of the gram-negative bacterium Escherichia coli is located in a functionally important region of the ribosome, at the entrance to the nascent peptide exit tunnel. In E. coli, and likely in other species, this adenosine residue is post-transcriptionally modified to m2A. The enzyme responsible for this modification was previously unknown. We identified E. coli protein YfgB, which belongs to the radical SAM enzyme superfamily, as the methyltransferase that modifies A2503 of 23S rRNA to m2A. Inactivation of the yfgB gene in E. coli led to the loss of modification at nucleotide A2503 of 23S rRNA as revealed by primer extension analysis and thin layer chromatography. The A2503 modification was restored when YfgB protein was expressed in the yfgB knockout strain. A similar protein was shown to catalyze post-transcriptional modification of A2503 in 23S rRNA in gram-positive Staphylococcus aureus. The yfgB knockout strain loses in competition with wild type in a co-growth experiment, indicating functional importance of A2503 modification. The location of A2503 in the exit tunnel suggests its possible involvement in interaction with the nascent peptide and raises the possibility that its post-transcriptional modification may influence such an interaction.
Collapse
Affiliation(s)
- Seok-Ming Toh
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Posttranscriptional modifications on the base or sugar of ribonucleosides generally result in mass increases that can be measured by mass spectrometry. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a direct and accurate means of determining the masses of RNAs. Mass spectra produced by MALDI are relatively straightforward to interpret, because they are dominated by singly charged ions, making it possible to analyze complex mixtures of RNA oligonucleotides ranging from trinucleotides up to 20-mers. Analysis of modifications within much longer RNAs, such as ribosomal RNAs, can be achieved by digesting the RNA with nucleotide-specific enzymes. In some cases, it may be desirable to isolate specific sequence regions before MALDI-MS analysis, and this requires a few additional steps. The method is applicable to the study of modified RNAs from cell extracts as well as RNA modifications added in cell-free in vitro systems. MALDI-MS is particularly useful in cases in which other techniques such as those involving primer extension or chromatographic analyses are not practicable. To date, MALDI-MS has been used to localize rRNA modifications that are involved in fundamental processes in protein synthesis as well as methylations that confer resistance to antibiotics. For several rRNA sites, MALDI-MS has served an essential role in the identification of the enzymes that catalyze the modifications.
Collapse
Affiliation(s)
- Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | |
Collapse
|
45
|
Guymon R, Pomerantz SC, Ison JN, Crain PF, McCloskey JA. Post-transcriptional modifications in the small subunit ribosomal RNA from Thermotoga maritima, including presence of a novel modified cytidine. RNA (NEW YORK, N.Y.) 2007; 13:396-403. [PMID: 17255199 PMCID: PMC1800508 DOI: 10.1261/rna.361607] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Post-transcriptional modifications of RNA are nearly ubiquitous in the principal RNAs involved in translation. However, in the case of rRNA the functional roles of modification are far less established than for tRNA, and are subject to less knowledge in terms of specific nucleoside identities and their sequence locations. Post-transcriptional modifications have been studied in the SSU rRNA from Thermotoga maritima (optimal growth 80 degrees C), one of the most deeply branched organisms in the Eubacterial phylogenetic tree. A total of 10 different modified nucleosides were found, the greatest number reported for bacterial SSU rRNA, occupying a net of approximately 14 sequence sites, compared with a similar number of sites recently reported for Thermus thermophilus and 11 for Escherichia coli. The relatively large number of modifications in Thermotoga offers modest support for the notion that thermophile rRNAs are more extensively modified than those from mesophiles. Seven of the Thermotoga modified sites are identical (location and identity) to those in E. coli. An unusual derivative of cytidine was found, designated N-330 (Mr 330.117), and was sequenced to position 1404 in the decoding region of the rRNA. It was unexpectedly found to be identical to an earlier reported nucleoside of unknown structure at the same location in the SSU RNA of the archaeal mesophile Haloferax volcanii.
Collapse
Affiliation(s)
- Rebecca Guymon
- Department of Medical Chemistry, University of Utah, Salt Lake City 84112, USA
| | | | | | | | | |
Collapse
|
46
|
Piekna-Przybylska D, Decatur WA, Fournier MJ. New bioinformatic tools for analysis of nucleotide modifications in eukaryotic rRNA. RNA (NEW YORK, N.Y.) 2007; 13:305-12. [PMID: 17283215 PMCID: PMC1800513 DOI: 10.1261/rna.373107] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
This report presents a valuable new bioinformatics package for research on rRNA nucleotide modifications in the ribosome, especially those created by small nucleolar RNA:protein complexes (snoRNPs). The interactive service, which is not available elsewhere, enables a user to visualize the positions of pseudouridines, 2'-O-methylations, and base methylations in three-dimensional space in the ribosome and also in linear and secondary structure formats of ribosomal RNA. Our tools provide additional perspective on where the modifications occur relative to functional regions within the rRNA and relative to other nearby modifications. This package of new tools is presented as a major enhancement of an existing but significantly upgraded yeast snoRNA database available publicly at http://people.biochem.umass.edu/sfournier/fournierlab/snornadb/. The other key features of the enhanced database include details of the base pairing of snoRNAs with target RNAs, genomic organization of the yeast snoRNA genes, and information on corresponding snoRNAs and modifications in other model organisms.
Collapse
MESH Headings
- Base Sequence
- Computational Biology/methods
- Databases, Genetic
- Genome, Fungal/genetics
- Nucleic Acid Conformation
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Analysis, RNA/methods
- Software
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- Department of biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003, USA
| | | | | |
Collapse
|
47
|
Charpentier B, Fourmann JB, Branlant C. Reconstitution of archaeal H/ACA sRNPs and test of their activity. Methods Enzymol 2007; 425:389-405. [PMID: 17673092 DOI: 10.1016/s0076-6879(07)25016-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Conditions for the reconstitution of archaeal sRNPs active in RNA-guided posttranscriptional modification of RNAs (2'-O-methylation or pseudouridylation) were recently developed. This has opened a vast field of research on structure-function relationships of the sRNP components. We present here an efficient method for in vitro reconstitution of H/ACA sRNPs with an active RNA-guided pseudouridylation activity. They are assembled from an in vitro transcribed H/ACA sRNA with recombinant L7Ae, aCBF5, aNOP10, and aGAR1 proteins. The protocol to test the activity of the assembled particles by the method of the nearest neighbor is also described. The combination of in vitro assembly of H/ACA sRNPs together with time course analysis of pseudouridine formation in the target RNA is useful for structure-function analysis of H/ACA sRNPs and also to identify the target sites of H/ACA sRNAs discovered by computer analysis of archaeal genomes. Furthermore, this efficient in vitro pseudouridylation system can be used for generation of pseudouridine residues at defined positions in RNAs.
Collapse
Affiliation(s)
- Bruno Charpentier
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, Nancy Université, Faculté des Sciences et Techniques, Vandoeuvre-les-Nancy, France
| | | | | |
Collapse
|
48
|
Abstract
All pairwise interactions occurring between bases which could be detected in three-dimensional structures of crystallized RNA molecules are annotated on new planar diagrams. The diagrams attempt to map the underlying complex networks of base–base interactions and, especially, they aim at conveying key relationships between helical domains: co-axial stacking, bending and all Watson–Crick as well as non-Watson–Crick base pairs. Although such wiring diagrams cannot replace full stereographic images for correct spatial understanding and representation, they reveal structural similarities as well as the conserved patterns and distances between motifs which are present within the interaction networks of folded RNAs of similar or unrelated functions. Finally, the diagrams could help devising methods for meaningfully transforming RNA structures into graphs amenable to network analysis.
Collapse
Affiliation(s)
| | - E. Westhof
- To whom correspondence should be addressed. Tel/Fax: +33 388 41 70 46; Email :
| |
Collapse
|